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Abstract

The paper studies the incentive for providers to invest in new health
care technologies under alternative payment systems, when the patients’
benefits are uncertain. If the reimbursement by the purchaser includes
both a variable (per patient) and a lump-sum component, efficiency can
be ensured both in the timing of adoption (dynamic) and the intensity
of use of the technology (static). If the second instrument is unavailable,
a trade-off may emerge between static and dynamic efficiency. In this
context, we also discuss how the regulator could use the control of the
level of uncertainty faced by the provider as an instrument to mitigate
the trade-off between static and dynamic efficiency. Finally, the model is
calibrated to study a specific technology.

JEL classification: I18, D92

1 Introduction

Since quasi-markets started to spread across health care systems, health economists
have focused on the characteristics of the payment schemes, as a crucial point
in the contractual relationship between the purchaser and the provider. Several
peculiarities of the health care market have been highlighted and their implica-
tions for the definition of (second-best) efficient contracts investigated1.

∗R. Levaggi and P. Pertile acknowledge the support from the Italian Ministry of Education
(PRIN programme 2007/2008). Earlier versions of the paper have been presented at the 10th
PET Conference in Istanbul, the 8th ECHE in Helsinki, the 2nd NERI meeting in Padova
and at the University of Augsburg. We would like to thank the participants and in particular
Mathias Kifmann and Robert Nuscheler and for helpful comments. The usual disclaimer
applies.
†Dip. di Scienze Economiche, University of Brescia.
‡Dip. di Scienze Economiche, University of Padova and FEEM.
§Dip. di Scienze Economiche, University of Verona.
1See for example Chalkley and Malcomson (1998, 2000)
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One characteristic of the treatment provided to patients whose impact on the
efficiency properties of alternative reimbursement schemes seems to have been
largely neglected so far is that often the provision of innovative treatments is the
result of an irreversible investment decision. The most obvious example is the
investment in equipment whose cost is sunk, at least to some extent. However,
there may be several other less obvious forms of irreversibility. For example,
Griffin et al. (forthcoming) show that even when a new technology is such that
the decision to admit it to reimbursement is not formally irreversible (e.g. phar-
maceuticals, medical devices), it may involve some degree of irreversibility if the
decision weakens the incentive to accumulate new evidence on the actual (cost-)
effectiveness of the new technology.
Although some efforts have been made to interpret the empirical evidence con-
cerning the diffusion of new technologies and the effect on the outcome of hos-
pital care2, the literature has not yet contributed to a full understanding of
how regulation should be used to ensure that adoption and use decisions of new
health technologies are “good value (health) for money” over time. A contri-
bution to the static dimension of the problem has been recently provided by
Barros and Martinez-Giralt (2009), but the dynamic dimension is still almost
unexplored, despite the awareness of its importance 3. This rather scant in-
terest is in sharp contrast with the concern that technological innovation is a
major health care cost driver (Weisbrod, 1988) and that uncertainty on the
performance of new technologies is often substantial at the outset (Gelijns and
Rosenberg, 1994; McClellan, 1995). A further motivation to investigate this
issue comes from the variety of solutions adopted in different health care sys-
tems for the reimbursement of capital costs (HOPE, 2006). For instance, in a
number of European countries (Austria, Finland, France, Italy, Sweden, The
Netherlands) tariffs tend to include these costs, whereas in others they may be
separately reimbursed (Denmark, Germany, Portugal, Spain).
The adoption of a new technology with the characteristics of an irreversible
investment is an intrinsically dynamic problem, the study of which requires to
depart from the structure of the static models mainly employed so far to study
the purchaser-provider relationship. Our approach is based on the literature on
investment under uncertainty (Dixit and Pindyck, 1994). This enables us to
investigate two dimensions of efficiency for alternative payment schemes: the
static dimension concerning the provision of the treatment to those patients for
whom benefits exceed costs, and the dynamic efficiency concerning the optimal
adoption timing for a technology whose benefits are still uncertain.
We show that both static and dynamic efficiency are attainable if the purchaser
makes, on top of a fixed fee per patient, a lump-sum payment to cover part
of the capital cost. If the payment is simply based on the fixed price compo-
nent, a trade-off may emerge between static and dynamic efficiency: the price
that ensures that the efficient number of patients is treated provides a weak

2See, among others, Bokhari (2009); Baker and Phibss (2002).
3“. . . , I will contend that economists have been too preoccupied with a one-period model

of health care services that takes technology as given, and that we need to pay more attention
to technological change.”(Newhouse, 1992, p. 5).
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incentive to invest, so that the adoption of the new technology will be delayed
in comparison with the social optimum. The reimbursement systems adopted
in several countries do not involve any lump-sum payment at all. This may
be due to either liability constraints for the purchaser or inability to differenti-
ate the pricing rules for technologies with substantial capital costs. Whatever
the reasons leading to this choice, our model shows that this payment system
produces a regulatory failure. Given the constraints that seem to characterize
the implementation of immediate capital cost reimbursements, we lastly discuss
use by the regulator of control of the uncertainty faced by the provider as an
instrument to mitigate the trade-off between static and dynamic efficiency.
The paper is organized as follows. Section 2 introduces a simple version of the
model that yields closed-form solutions. These are obtained and discussed in
the following Section. A generalization of the model is presented in Section 4,
whereas Section 5 discusses the policy implications. Section 6 presents a cali-
bration of the model for a specific technology, which leads to the description of a
second-best efficient policy and to a tentative measure of the cost of a regulatory
failure for that case. Section 7 concludes.

2 The Base Model

2.1 The Environment

A new medical technology is available in the market and it requires an instan-
taneous sunk cost4, I, to be adopted. To simplify the analysis, and to obtain
closed form solutions that help the intuition of how the payment rule influ-
ences the provider’s behavior, in this section we assume a linear form for the
instantaneous benefit function5:

b(xt, µt) = a+ µtxt (1)

where xt is the number of patients treated in the period, and µt is a measure of
effectiveness. Underlying eq. (1) is the assumption that all patients receive the
same benefit from the treatment6.
The constant a represents the net benefit accruing to society as a consequence of
the technology adoption, irrespective of the number of patients treated. It can
be interpreted as the net effect of informative spillovers, an impact on relational
quality, and the impact on the efficiency of other providers which patients could
choose. The first aspect relates to the impure public good aspect of the new
technology. Health care technologies produce a benefit to all the individuals in
terms of an option value to use it in case of need. A new treatment is available

4The decision that we study may be indifferently seen as the one of adopting the technology
to treat patients who were previously not treated, or to replace a standard technology with a
new one. In this case, the net benefits of the former are normalized to zero.

5As will be shown in Section 4, the quality of the results obtained under this assumption
are robust to the choice of more general benefit functions.

6This could be the case for some rather basic technologies, as well as highly specific tech-
nologies.

3



and this positively affects the utility of each individual as a potential patient.
The second aspect relates to the positive effect that the new technology has
on the intrinsic motivation of the medical staff. The benefit accruing to the
patients depends on the quality of the treatment which in turn depends on the
technological content of the health care (medical quality) and on the effort of the
medical staff in motivating the patient to comply with the therapy (relational
quality). A recent literature 7 allows the physicians’ utility function to depend
also on the health outcome and the technology content of the productive process
adopted by the hospital. In this case, the introduction of the new technology
increases the effort of the medical staff in terms of relational quality, which in
turn improves the benefit that patients receive from the treatment. Unlike the
first two factors affecting the parameter a, the effect of a new adoption on the
efficiency of provision of the treatment by other providers may be negative in
strongly competitive contexts. In this case, competition may create an incentive
to adoptions in excess of the efficient level, thus reducing the overall level of
efficiency of provision8.
Since the technology is innovative, there is uncertainty on the benefits that it
can actually provide to patients. In particular, we assume that µ follows a
trendless geometric Brownian motion9:

dµt = σµdwt

where dwt are identically and independently distributed according to a normal
distribution with mean zero and variance dt, and the volatility parameter σ is
constant. The stochastic process represents uncertainty on the evolution of the
performance of the new technology. For the sake of simplicity, we assume that
uncertainty is restricted to the period before the adoption. Once the investment
is made, the technology characteristics are fixed at the level corresponding to
the time of adoption10.
The cost function for the base model is:

c(xt) =
1
2
x2
t (2)

For the sake of simplicity, we work with an infinite time horizon. The model
requires identification of a component of the investment cost I, which is equally

7See Levaggi et al. (2009) and references therein.
8This is referred to as “medical arms race” in the literature (Robinson and Luft, 1985).

For a discussion of the impact of competition on the timing of investment in new health care
technologies under uncertainty, see Pertile (2008).

9This means that no deterministic change in effectiveness over time is assumed. Positive
drift parameters could be interpreted as reflecting the expectation that on average the tech-
nology will go through a development process that leads to improvement in its performance.
None of the results that we obtain rely on this assumption.

10The situation where uncertainty stops once the technology has been adopted is consistent,
for example, with cases where it is related to the characteristics of the technology. In this
case, once a certain version of the technology is adopted, uncertainty disappears. Uncertainty
may not be resolved after the investment when it is due to limited evidence or the evolution
of the cost of materials - consumables or pharmaceuticals - necessary for the treatment.

4



attributed to each period. Given the infinite time horizon, this is ρI. With no
loss of generality we also assume that there are no fixed costs, other than the
cost of investment.

2.2 The Purchaser

We assume that the purchaser maximizes total welfare over time. The corre-
sponding instantaneous payoff function is,

Πpu
t = b(xt, µt)− c(xt) (3)

In our model the purchaser has the same role as an external regulator that has
to define the payment rule for a number of purchasers and providers, aiming
to maximize total welfare. Without loss of generality we assume that the pur-
chaser sets the rules. We also assume that the purchaser can commit to the
rule announced. The purchaser sets the payment rule and defines a level of ef-
fectiveness below which providers are not allowed to adopt the new technology.
In particular, we assume that there are two parameters which contribute to the
definition of the payment rule: the fixed-fee which is paid for each treatment
provided, and a lump-sum contribution to investment costs, i.e. a sum that
the purchaser pays to the provider at the time of adoption, as a contribution
to capital costs. In spite of the present debate (Claxton et al., 2008), reim-
bursement schemes designed in different health care systems are more or less
strictly cost based. We partially follow this approach by separating the price
paid to the provider for each treatment into two components. The first one is
meant to reimburse the marginal cost of the treatment provided, whereas the
second is a reimbursement of the capital cost component of the technology. The
marginal cost reimbursed may be different from the true marginal cost incurred
by the provider. In fact it represents the cost to treat the patient for whom the
marginal cost is equal to the marginal benefit µ. In this respect our formula,
although cost based, also takes also account of the value of care produced. The
nature of the second component is such that its size will necessarily depend on
the number of patients treated. In particular, it will be greater the smaller the
number of patients treated. Moreover, given the form of the cost function, the
marginal cost component also depends on that variable.
The structure of the payment rule is the following:

Pt =

{
ptxt + γI for t = tA

ptxt for t > tA

where tA denotes the time of adoption of the new technology by the provider.
In that period, the purchaser may decide to make a lump-sum payment γ (0 ≤
γ ≤ 1) that reduces the cost of investment actually faced by the provider. In
all periods in which the technology is in operation (t > tA), the purchaser pays
a price for each patient treated:

pt = cx(xst ) +
λρI

xst
(4)
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where it is assumed that in setting the price level the purchaser refers to the
number of patients which is optimal from his standpoint (xs). The price is
made up of two components. The first is the marginal cost of the treatment,
which is always covered by the price. The parameter λ (0 ≤ λ ≤ 1) captures an
additional component, which reflects the part of fixed costs reimbursed through
the price.
Since the number of patients that ensures equality between marginal costs and
marginal benefits is xst = µt, the price function for any period subsequent to
the adoption can be written as:

pt = µt +
λρI

µt
(5)

When the technology is adopted, the purchaser observes the value of µ and sets
the price according to the rule in eq. (5). The payments made at the time of
adoption (if any) and in subsequent periods also depend on γ and λ to which the
purchaser had previously committed. Given our assumption that uncertainty
ceases after the adoption, the price is constant for any subsequent period.
For very low values of µ this price formula could provide perverse incentives
implying increasing reimbursement prices as effectiveness falls. In real life, the
adoption of a technology with very low effectiveness will simply not be an issue
because there are typically authorities that would prevent the admission of these
technologies into the market11. We assume that the purchaser fixes a minimum
level of effectiveness below which adoptions are not allowed12:

µ =
√
λρI (6)

This ensures that the price in eq. (5) is a non-decreasing function of µ. Un-
less explicitly stated, in the rest of the paper we deal with the case where µ ≥ µ.

2.3 The Provider

We assume that the provider’s instantaneous payoff function is the difference
between revenues and costs of provision:

Πpr
t =

[
µt +

λρI

µt

]
xt − c(xt) (7)

The provider decides when to adopt the new technology, in order to maximize
its payoff function over time. Although we also study the case where the pur-
chaser can enforce the desired number of treatments per period, we are mainly

11It is well known that in some health care systems, this rule is more or less explicitly
formalized. For example, the rule could take the form of a maximum value of the Incremental
Cost-Effectiveness Ratio (ICER).

12We could alternatively assume that below that level of effectiveness the provider can adopt
the technology, but the reimbursement per patient is p = 0. The result would be identical
because in both cases the provider never invests.
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interested in the situation where the provider is free to decide it. This is a very
relevant point in the current debate on the appropriateness in the use of health
care technologies. When the provider is free to set the number of treatments,
the definition of the payment rule affects the provider’s payoff and hence the
investment decision both directly, due to the change in the price per patient and
the actual cost of investment, and indirectly, by changing the optimal number
of treatments from the provider’s perspective.

3 Optimal statics and dynamics

3.1 The first best

In order to set a benchmark, we study the solution that ensures that the differ-
ence between the benefits for patients from treatments provided and the costs of
the technology (adoption and operation) are maximized. Given the characteris-
tics of the purchaser’s payoff function defined above, the first best solution also
coincides with the case where the purchaser decides both the timing of adop-
tion and the number of patients treated in each period. The solution to this
problem requires maximization of total welfare over time (eq. 3), also taking
the investment cost I into account.
To characterize such solution we define the following dimensions of efficiency:

• Static: efficiency in the provision of the treatment, once the technology is
adopted. If the provision is efficient, only patients for whom the marginal
benefit is at least as large as the marginal cost are treated. This require-
ment is satisfied when xst = µt.

• Dynamic: efficiency in the timing of adoption of the new technology. The
benchmark for this efficiency dimension is given by a threshold value of
the stochastic variable that should trigger investment once hit, whereas
waiting is the dynamically optimal strategy for lower values.

The following proposition defines the optimal investment threshold for the first-
best.

Proposition 1 In the first best, dynamic efficiency is characterized by the fol-
lowing optimal threshold:

µ∗pu = +

√(
2β
β − 2

)
(−a+ ρI) (8)

β in eq. (1) is the the positive root of the following equation:

Ψ(β) ≡ 1
2
σ2β2 +

(
µ− 1

2
σ2

)
β − ρ = 0 (9)
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It can be checked that β > 1 and that β is inversely related to the level of
uncertainty σ.
Proof:
Substituting the efficient number of patients into eq. (3), the following instantaneous
payoff function is obtained:

Πs
t =

µ2
t

2
+ a (10)

The type of problem to solve is referred to as “optimal stopping” in the real option
literature (Dixit and Pindyck, 1994, chap.4). The idea is that at any point in time
the value of immediate investment (stopping) is compared with the expected value of
waiting dt (continuation), given the information available at that point in time (the
value of the stochastic variable) and the knowledge of the process. The value of the
investment may be written as,

V pu(µt, t) = max

[
Ωpu(µt, t),

1

1 + ρdt
E [V pu(µt + dµt, t+ dt)|µt]

]
where Ωpu(µt, t) is the expected value of investing at time t, when the stochastic vari-
able is equal to µt. For the sake of simplicity the project time horizon as well as the
option life are assumed infinite.
V pu may be interpreted as the value of the opportunity to invest in the new technology,
which is the maximum between the expected values of “killing” the option to invest
immediately, and waiting dt, thus keeping the option alive.
The optimal threshold may be obtained using dynamic programming (Dixit and Pindyck,
1994). Let’s start from the definition of the value function after the investment has
been made:

Ωpu(µt) =
1

ρ

(
µ2
t

2
+ a

)
− I

Before the investment is made, the project’s value corresponds to the opportunity to
make the investment. This value may be written as Zµβt (see Appendix).
We can now write the purchaser’s value function in compact form:

V pu(µt) =

{
Zµβt for µt < µ∗pu
1
ρ

(
µ2
t

2
+ a
)
− I for µt ≥ µ∗pu

(11)

where µ∗pu is the threshold that characterizes the optimal timing of investment. The
values of µ∗pu and Z are simultaneously determined imposing appropriate boundary
conditions on the value function. The typical boundary conditions for these problems
are the so-called value matching and smooth pasting conditions. The former ensures
that the value function is continuous between the waiting and stopping region, i.e. at
the threshold. The latter also requires the derivatives w.r.t. µ to be equal at that
point. Hence,

Z =
(µ∗pu)2−β

ρβ

The substitution of this value into the value matching condition yields the value of
the threshold in eq. (8). Q.E.D.

Figure 1 illustrates the value functions incorporating the optimal decision. The
dashed line is the value of waiting (first line in eq. 11), or the value of the op-
portunity to invest. Since the dynamic approach to the solution of the problem
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Figure 1: First Best Value Functions

recognizes that there is an opportunity but no obligation to invest, this value is
non-negative also for low values of µ, when the NPV (solid line), i.e. the value
of investing for a given value of µ, is negative. The threshold (µ∗pu) is obtained
by imposing appropriate boundary conditions on the two functions in eq. (11):
value matching requires the value of waiting to equal the value of investing at
the threshold, smooth pasting requires their derivatives to be the same at that
point. Since it is optimal to invest for values of the threshold at least as large as
the threshold, above this the value of investing (second line in eq. 11) becomes
the relevant component of the value function. When the existence of an option
to postpone the investment is taken into account, the optimal threshold exceeds
the one corresponding to the NPV criterion (intersection between the solid line
and the horizontal axis). This difference is larger the greater the uncertainty.
The level of the optimal threshold is inversely related to the expected time of
investment. Eq. (8) shows that unless a is very big (a ≥ ρI)13 a positive thresh-
old exists only if β > 2. Since dβ

dσ < 0, this means that if uncertainty exceeds
a certain level it is not optimal from the societal perspective to adopt the new
technology for any value of µ.14

13Obviously if a is very big, the level of benefits is so high that from the societal perspective
it is optimal to adopt the new technology immediately and independently of the value of µ.

14Usually, very large levels of uncertainty may be observed at a stage where the adoption
of the technology is not permitted yet. For instance, Sculpher and Claxton(2005) use a log-
normal distribution to evaluate the health (utility) gain per 10 Kg weight loss due to the
adoption of the ORLISTAT. The standard error of the log-normal distribution is about 4.6%.
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3.2 Number of patients set by the purchaser

In this section we assume that the purchaser sets the number of treatments to
provide, whereas the investment decision is left to the provider. Since static ef-
ficiency is ensured by definition of this case, we concentrate on the instruments
available to the purchaser to ensure efficiency in the timing of investment.

Proposition 2 When the provider is free to decide when to adopt the new tech-
nology, and the purchaser can set the number of treatments, the optimal timing
of investment for the provider is characterized by the following threshold,

µ∗pr1 = +

√(
2β
β − 2

)
(ρI(1− γ − λ)) (12)

Proof:
The instantaneous payoff for the provider is obtained substituting the efficient number
of patients (xst = µt) into eq. (7):

Πpr1
t =

µ2
t

2
+ λρI (13)

The corresponding stopping value is:

Ωpr1(µt) =
µ2
t

2ρ
− I(1− γ − λ)

The shape of the value function in the waiting region (Lµβt ) is the same as in the
previous case (see Appendix), where β > 1 is the positive root of Ψ(β) = 0. Only the
constant will be different in general, since the optimal threshold will be different15. In
compact notation:

V pr1(µt) =

{
Lµβt for µ ≤ µt < µ∗pr1
µ2
t

2ρ
− I(1− γ − λ) for µt ≥ µ∗pr1

(14)

The usual boundary conditions (value matching and smooth pasting) enable determi-
nation of the value of the constant L,

L =
(µ∗pr1)2−β

ρβ

and hence the investment threshold in eq. (12) (Fig. 2). Q.E.D.

There is nothing to prevent the threshold as defined by eq. (12) from lying below
µ. When this is the case the payment rule is sufficiently generous to induce the
provider to invest at that level of µ, but the adoption is prevented16. When the

15The boundary conditions are employed to simultaneously determine the values of the
threshold and this constant.

16In this case although the provider is still able to claim the right to invest at a later date,
the stopping value equals zero over the whole range of values of µ. Therefore, provided that
µ∗pr1 ≥ µ, we may drop the interval 0 ≤ µ ≤ µ from the analysis.
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Figure 2: Value Functions

number of patients treated can be controlled by the purchaser, the parameters
γ and λ have identical effects (eq. (12)). In other words, the purchaser can
make the investment by the provider more (less) likely by increasing (reducing)
either the lump-sum payment γ or the difference between price and marginal
cost through λ. The two instruments have perfectly symmetric effects.
The comparison between the threshold in eq. (12) and the one corresponding
to the first best (eq. 8) shows that:

Corollary 1 If the number of treatments is set by the purchaser, dynamic effi-
ciency is attained by any payment scheme such that,

γ + λ =
a

ρI
(15)

The above condition simply states that as long as a > 017 the lump-sum pay-
ment needed for a timely adoption of the new technology is increasing in the
ratio between the benefit component of the adoption that the provider does not
internalize and the investment cost. By Proposition 1 it is also worth noting
that if a = 0 the purchaser can induce the optimal timing of investment by
setting γ = 0 and λ = 0, i.e. when all patients receive the same benefit from the
treatment, dynamic efficiency can be attained paying only the marginal cost.

17When a < 0, for example as a result of particularly strong competitive pressures towards
adoption, the optimal policy would imply either a price below the marginal cost (λ < 0) or a
sort of taxation of the adoption (γ < 0). However, the fact that these policies are far from real
world payment rules may be taken as an indication that technologies with these characteristics
are rare, to say the least. Therefore, in the rest of the paper we will focus on cases where
a ≥ 0.
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This result depends on the specific form (linear) of the benefit function. As will
be shown in Section 4, replacing this functional form with one with decreasing
marginal benefits, γ = 0 and λ = 0 implies a higher threshold for the provider
(i.e. a lower probability of investment) than for the purchaser, and subsequently
the need for the purchaser to intervene either with lump-sum payment or by
increasing the price above the marginal cost18.

3.3 Number of patients set by the provider

Unlike in the previous section, here we assume that the provider can decide
not only when to invest, but also the number of patients to treat. Technically
speaking there is no particular difficulty in including the number of patients in
a contract, nor, in most cases, in verifying it. However, the relevance of the
international debate on appropriateness and necessity of treatments (Sistrom,
2009) suggests that the control of the number of treatments is difficult to im-
plement, and divergences from levels deemed ideal are asymmetric, cases where
patients in excess of the efficient level are treated being by far more frequent.
Furthermore, thresholds on reimbursement are rarely treatment specific; they
often include a wider range of activities of the hospital. Since in this case the
provider can decide the mix of treatments, those with a comparatively large
fixed cost component are likely to be the most convenient to expand. However,
it can be shown that the quality of our results does not change, even when a
threshold on the number of patients exists, as long as its level exceeds the effi-
cient level.

Proposition 3 When the provider can decide both the timing of adoption and
the number of treatments, the timing of investment is characterized by the fol-
lowing optimal threshold,

µ∗pr2 = +

√√√√( ρβ

β − 2

)[
I(1− λ− γ) +

√
I2(1− λ− γ)2 −

(
1− 4

β2

)
λ2I2

]
(16)

Proof:
In each period, the provider decides the number of patients to treat in order to max-
imize its instantaneous profit (eq. (7)), which, in our simple setting, implies xpt = pt
whilst, in setting the price, the purchaser still refers to the socially efficient number
of patients xst = µt. Under these assumptions, the provider’s instantaneous payoff
function becomes:

Πpr2
t =

1

2

[
µt +

λρI

µt

]2

(17)

18In this case, the benefit for each intramarginal patient exceeds the price so that in deciding
when to adopt the new technology, the provider fails to internalize part of the patients’
benefits. The result is a delay in the adoption. In other words, the decreasing marginal
benefit plays a similar role to a > 0 in the base model.
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Figure 3: Value Functions

The corresponding expected value of the investment (stopping value) is:

Ωpr2(µt) =
µ2
t

2ρ
+
ρλ2I2

2µ2
t

− I(1− λ− γ)

which is always increasing in µ for µ ≥ µ.
We can write the provider’s value function in compact form:

V pr2(µt) =

{
Kµβt for µ ≤ µt < µ∗pr2
µ2
t

2ρ
+ ρλ2I2

2µ2
t
− I(1− λ− γ) for µt ≥ µ∗pr2

By the standard boundary conditions at µ∗pr2 the following value for the constant K
is obtained:

K =
(µ∗pr2)2−β

ρβ
−

(µ∗pr2)−2−β

β
(ρλ2I2)

Substituting this value into the value matching condition the threshold in eq. (16) is

obtained. Q.E.D..

Eq. (16) shows that in this case the effects of λ and γ on the optimal threshold
are not symmetric. An increase in γ has the same effect as before. An increase
in λ produces a further effect:

Corollary 2 When the provider is free to set the number of treatments, any in-
crease in λ anticipates the expected time of investment as a result of the provider
anticipating the possibility of treating patients in excess of the efficient level.
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The last term on the right hand side of (16) captures the impact of an increase
in λ on the adoption decision of the provider who anticipates the opportunity to
repay investment costs exploiting the impossibility for the purchaser to enforce
the efficient number of treatments19. This term implies a further decrease in
the threshold, irrespective of the value of β20. This effect is added to that of
the explicit reimbursement of capital costs embedded in the first two terms in
brackets, which is equivalent to the one observed in the case where the number
of patients is set by the purchaser (eq. (12)). Therefore, whenever λ > 0 the
possibility for the provider to decide how many patients to treat implies a lower
threshold and hence, ceteris paribus, an anticipation in the expected time of
investment in comparison with the situation where only the marginal cost is
paid for each patient.

4 The General Model

The specific functional forms of the benefit and cost functions adopted in the
previous sections enable a closed form solution for the thresholds which im-
plicitly define the timing of adoption of the new technology. In what follows,
we show that all the key results discussed so far are valid even if the marginal
benefit is decreasing in the number of patients treated and the marginal cost is
increasing. In particular, we deem the extension to decreasing marginal bene-
fits important, because most new health care technologies are shown to provide
most benefits to patients with specific characteristics and the potential bene-
fits decrease, or are at least more uncertain, as the treatment is provided to
patients who are lacking in some of those characteristics. Appropriateness, i.e.
ensuring that only patients who can really benefit from the treatment receive
it, is a major issue in most health care systems. Therefore, this generalization
may provide insights into the impact of alternative payment rules on adoption
decisions and appropriateness in the provision of treatments.
The new benefit and cost functions are given respectively by,

b(xt, µt) = a+ µtx
θ
t (18)

and,
c(xt) = xδt (19)

with 0 < θ ≤ 1 and δ > 1.
The new number of patients that ensures static efficiency is,

xst =
(
θµt
δ

) 1
δ−θ

19This result would not hold if the purchaser was unable to commit to the rule. In that case,
it would be ex-post efficient from his standpoint to set λ = 0 once the investment has been
made. The provider would anticipate this and incorporate this parameter into the adoption
decision.

20Note that the sign of this term is the same as that of the term multiplying the terms in
brackets.
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and consequently the price can be written as,

pt = δ

(
θµt
δ

) δ−1
δ−θ

+ λρI

(
θµt
δ

)− 1
δ−θ

(20)

As in the base model, providers are free to decide when to invest in the new
technology, but this decision is subject to the constraint set by the purchaser
on the minimum value of effectiveness:

µ ≥

[
λρI

δ(δ − 1)

(
θ

δ

)− δ
δ−θ
] δ−θ

δ

≡ µ
g

4.1 First Best

Using the same approach employed in the previous section, we can write the
following value function for the first best:

V pug(µt) =

Zgµ
β
t for µt < µ∗pug

1
ρ

[
a+ µ

δ
δ−θ
(
θ
δ

) θ
δ−θ
(
δ−θ
δ

)]
− I for µt ≥ µ∗pug

(21)

By imposing the standard boundary conditions, the first best investment thresh-
old for the generalized model is:

µ∗pug =

 ρI − a(
1− δ

β(δ−θ)

) (
θ
δ

) θ
δ−θ
(
δ−θ
δ

)

δ−θ
δ

(22)

The impacts of the main parameters on the optimal investment threshold are
consistent with those observed in the base model. Increases in the investment
cost (I) and the parameter a have opposite effects on the timing of investment.
The effect of the level of uncertainty is also the same: the threshold increases as
β decreases, which means that, all else being equal, the investment occurs later
in expected terms, the greater the value of σ.

4.2 Number of patients set by the purchaser

The instantaneous profit function for the purchaser is:

Πpr1 = (δ − 1)
(
µθ

δ

) δ
δ−θ

+ λρI (23)

This leads to the following value function:

V prg1(µ) =

Lgµ
β for µ

g
≤ µ < µ∗prg1

δ−1
ρ

(
µθ
δ

) δ
δ−θ − I(1− λ− γ) for µ ≥ µ∗prg1

(24)
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From these functions, the usual procedure can be used to obtain the optimal
investment threshold for this case:

µ∗prg1 =
δ

θ

 ρI(1− λ− γ)

(δ − 1)
(

1− δ
β(δ−θ)

)

δ−θ
δ

(25)

As in the previous subsection, the consistency of the impact of changes in the
main parameters with the case with linear benefits can be easily checked.

4.3 Number of patients set by the provider

As for the base model, we are mainly interested in the study of the case where
the purchaser cannot enforce the socially optimal number of treatments. Given
the price in eq. (20) the provider sets the number of treatments in order to
maximize instantaneous profit, which becomes21,

Πpr2 = (δ − 1)
(
p(µ)
δ

) δ
δ−1

(26)

The corresponding value function is:

V prg2(µ) =

Kgµ
β for µ

g
≤ µ < µ∗prg2(

δ−1
ρ

)(
p(µ)
δ

) δ
δ−1 − (1− γ)I for µ ≥ µ∗prg2

(27)

where, µ∗prg2 is the optimal investment threshold for the provider with the gen-
eralized benefit and cost functions. It can be easily checked that the stopping
value is always increasing in µ for µ ≥ µ

g
.

Imposing the usual boundary conditions, the following equation implicitly de-
fines the optimal investment threshold:

µ∗prg2
ρβ

(p
δ

) 1
δ−1
(
∂p(µ∗prg2)

∂µ

)
=
(
δ − 1
ρ

)(
p(µ∗prg2)

δ

) δ
δ−1

− (1− γ)I (28)

In order to help intuition the above equation can be rewritten in more compact
notation:

Πpr2

ρ

[
1− δ

δ − 1
εp,µ
β

]
= (1− γ)I (29)

where, εp,µ denotes the elasticity of price with respect to the effectiveness param-
eter. Eq. (29) highlights the role on the elasticity in determining the existence
and the level of the optimal threshold. A necessary condition for the existence
of a threshold is that εp,µ < β δ−1

δ . If this does not hold, the value of investing
(left hand side) is always less than its net cost. Alternatively, for very low values

21In order to keep the notation as simple as possible, the price is denoted as an implicit
function of µ in the payoff and value functions.
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of elasticity, there may also be no threshold because the value of investing is
greater than its cost, independent of the level of effectiveness. In this case, the
investment will always take place. Since the term in brackets is never greater
than one for µ ≥ µ

g
, and given that the first term on the left hand side is the

Net Present Value of the investment, eq. (29) also shows a standard result in
the real options literature, namely that the optimal threshold exceeds the NPV
threshold. The difference between the two thresholds is greater, the smaller the
value of β, i.e. the greater the uncertainty.

5 Policy

In this section, the policy implications of the results presented so far are dis-
cussed, also taking into account possible limitations on the set of instruments
available to regulators.

5.1 Two instruments

The best possible scenario for the purchaser is one in which he can control
the price level through λ and the lump-sum payment through γ. By setting
λ to zero, static efficiency is ensured. By replacing this value into eq. (28),
the problem of dynamic efficiency boils down to the one tackled in Section 4.2,
because the provider treats the socially efficient number of patients when the
price equals the marginal cost.

Proposition 4 If the regulator can decide on both λ and γ, static and dynamic
efficiency can be simultaneously ensured.

Proof:
It is sufficient to prove that for λ = 0 a value of γ exists such that the provider’s
threshold equals the first best threshold. Setting the solution of eq. (28) for λ = 0
equal to the right hand side of eq. (22), the value of γ that ensures dynamic efficiency
is obtained:

γ∗ = 1−
(

1− a

ρI

)(
θ(δ − 1)

δ − θ

)
(30)

Eq. (15) is a special case of eq. (30) , for θ = 1, δ = 2 and λ = 0. Q.E.D.

Proposition 4 states that even when both the decision on the number of treat-
ments and on the timing of investment are decentralized, static and dynamic
efficiency can be simultaneously achieved if the regulator can use both param-
eters defining the payment rule. In order to ensure this result, a two-part tariff
is necessary: a variable component should cover the marginal cost of provision;
a lump sum paid upfront should instead be granted to cover a part of the capi-
tal cost. The optimal lump-sum payment depends on the characteristics of the
technology, but not on the level of uncertainty. In particular, the portion of
the investment cost to be immediately reimbursed is greater for targeted tech-
nologies (low θ) and for those whose marginal cost is comparatively flat (low δ).
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Finally, large values of a obviously require a larger part of the investment cost
to be immediately reimbursed.

5.2 Limitations on the instruments set

The above section suggests an easy solution to the problem of static and dynamic
efficiency when both the instruments introduced in the model are available. The
evidence on real reimbursement systems suggests that only some pricing schemes
involve lump-sum payments. In actual health care systems there can be differ-
ent reasons why the purchaser is unable or unwilling to pay at least part of
the capital cost of the investment. It is not our objective here to explore the
stimulating issue of why lump-sum contributions seem to be rather unpopular
in the real world. Simply, having observed this, we try to investigate the pol-
icy implications when the price per patient (through λ) is the only instrument
available to the regulator (γ = 0).

Corollary 3 When the payment scheme involves no lump-sum component, a
trade-off emerges between static and dynamic efficiency.

Setting λ = 0 in eq. (28), the following threshold characterizes the provider’s
optimal timing of investment when he is free to set the number of treatments:

µ̃∗ =
δ

θ

 ρI(1− γ)

(δ − 1)
(

1− δ
β(δ−θ)

)

δ−θ
δ

(31)

which is greater than µ∗pug
22. This implies an inefficiently weak incentive for

the provider to invest in the new technology. Since the derivative of µ∗prg2
with respect to λ is negative, at least locally (see the Appendix), starting from
λ = 0 it is always possible to anticipate the expected time of investment by
increasing the price above the marginal cost. Since µ∗prg2 is decreasing in λ,
dynamic efficiency could be ensured by increasing the price above the marginal
cost level. The price for inducing the provider to anticipate the investment
in this way is the provision of the treatment to some patients for whom the
marginal cost exceeds the marginal benefit.
The following corollary immediately follows from the application of the theory
of the second-best to our problem:

Corollary 4 When the regulator is constrained not to include any lump-sum
component, it is second-best efficient to set λ at a level such that the provider’s
investment occurs later than in the first best.

An obvious implication of the Corollary above is that if γ = 0 is seen as a
constraint for the regulator, having technologies adopted later than would be

22It should be observed that, unlike in the base model, this is true also for a = 0 and for
negative values of a, provided they are sufficiently close to zero.
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socially efficient, which are used to treat patients in excess of the efficient level,
may be second-best optimal. Besides the rare use of capital costs contributions,
the relevance of the debate concerning appropriateness is another fact common
to most health care systems. Underlying is the idea that too many patients re-
ceive some treatments once a technology is adopted, in particular even patients
with characteristics such that the evidence on effectiveness or cost-effectiveness
is lacking. The coexistence of these two phenomena (no capital cost contribu-
tion and the issue of appropriateness) perfectly fits into our model when the
use of capital cost contribution is ruled out. Prices above marginal costs can
be interpreted as a way to improve dynamic efficiency sacrificing some static
efficiency. As seen above, when the number of patients treated cannot be con-
trolled, the impact on the investment decision is twofold. The first effect is the
pure contribution to capital costs embedded in the price (common to situations
with and without control over patients), the second is related to the fact that
the provider, at the time of deciding on the investment, anticipates the oppor-
tunity to exploit the difference between price and marginal cost to increase the
number of patients and therefore revenues. In this context, the debate on ap-
propriateness may be interpreted as an attempt to implement a control over the
number of treatments, which would enable overcoming of the trade-off (Sections
3.2 and 4.2).
The policy question that naturally arises is what factors may contribute to
mitigate the trade-off. From eqs. (8) and (16), the difference between the first-
best and the decentralized threshold shrinks for comparatively low values of
a. Therefore, competitive pressures towards technology adoption, or other fac-
tors reducing the value of the fixed effect, contribute to make the trade-off less
binding when the possibility of making lump-sum payments by the purchaser
is limited. However, the possibility for the regulator to influence the factors
affecting the value of the fixed benefit of adoption a may be very limited.
The characteristics of our model lead to some further considerations. It has been
assumed throughout the paper that provider and purchaser face symmetric un-
certainty. The discussion above has concentrated on two standard instruments
typically available for regulation: price and lump-sum contributions to capi-
tal costs. However, in our setting, the control of uncertainty by the regulator
may be conceived as a further instrument when lump-sum payments are not
available. It is assumed in the paper that provider and purchaser face sym-
metric uncertainty and variations in the stochastic variable µ are immediately
and completely reflected by the purchaser in variations in the level of price paid
(eq. (5)). However, the regulator could also decide to transfer variations in the
stochastic variable only partially. As a standard result in the real options liter-
ature, the value of the option to postpone the investment is greater the greater
the level of uncertainty. Hence, a reduction in the level of uncertainty leads to
an anticipation of the expected time of adoption. Of course, in reality providers
and purchasers face symmetric technological uncertainty. However, the regula-
tor can reduce the level of uncertainty actually faced by the provider replacing
the total and instantaneous adaptation of price that has been assumed so far,
with a partial adaptation. Alternatively, lower and/or upper price boundaries
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could be set.
Assuming that γ necessarily has to be set equal to zero, the extension of this
concept to our framework suggests that a reduction in the level of uncertainty
the provider faces could be used as an incentive to invest. This kind of incen-
tive, unlike an increase in λ, has no negative implications for static efficiency. Of
course, there is a price for the use of this instrument, which is related to the fact
that some risk is transferred from the provider to the purchaser. However, this
transfer could be efficient as long as the opportunities to diversify risk (across
providers and technologies) are greater for the purchaser than for the provider.

6 The case of Positron Emission Tomography

In this section, we provide a numerical example by calibrating the model de-
veloped in Section 4 to fit the characteristics of Positron Emission Tomography
(PET), one of the main innovations in diagnostic technologies in recent years.
The decision that we study is the adoption of a PET scan, whose cost is about
3,800,000 euros23. In order to do this, we use the following cost function:

c(xt) = 300xδt

We also assume that the net effect of the factors affecting a is such that a =
10, 000 euros, and that the values of the technological parameters θ and δ are
respectively 0.8 and 1.2.
To simplify the analysis, we keep working on an infinite time horizon, but we
introduce a jump process describing the probability that in each period a new
technology arrives, which makes PET obsolete. In other words, we assume that
once PET has been adopted, it will be in use until a sufficiently ground-breaking
innovation comes to replace it. In each period there is a given probability ε that
PET becomes obsolete and therefore the number of examinations falls to zero.
It can be shown that formally, these assumptions simply imply that the relevant
discount rate becomes ρ+ ε (Dixit and Pindyck, 1994, Ch. 4). We set ρ = 5%
and ε = 5%, which implies that the expected length of the project is 20 years.
We study the static and dynamic efficiency properties of some regulatory set-
tings by comparing respectively the actual with the efficient number of patients
treated and the actual with the efficient investment threshold. Concerning the
latter, it may be convenient to shift from a monetary measure of effectiveness
like µ to a more readily interpretable measure like the QALY (Quality adjusted
life years). This requires µ to be divided by the shadow value of a QALY
gained24. We set this parameter equal to 30,000 euro, which is a value consis-
tent with those usually employed in cost-utility analysis. Therefore, thresholds
in terms of QALYs are simply obtained by dividing the monetary value of the
threshold by 30,000.

23For a description of the main characteristics of the investment in PET, see Pertile et al.
(2009)

24This parameter coincides with the threshold value for cost-utility analysis.
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If the regulator can use both instruments, then static and dynamic efficiency can
be simultaneously obtained by simply setting λ = 0 and γ according to the rule
in eq. (30). In our case, a lump-sum payment covering 61% of the investment
cost at the time of adoption (2,318,000 euros) would ensure the efficient timing
of adoption. If lump-sum payments are not available, or there are constraints
on the maximum amount that can be immediately reimbursed, both dimensions
of efficiency cannot be simultaneously achieved. Let’s first investigate how the
optimal investment threshold varies for different levels of uncertainty assuming
that the purchaser only pays the marginal cost for each patient (λ = 0, γ = 0).

Table 1: λ = 0;γ = 0
σ 0.01 0.08 0.15

First-Best
Threshold 6,221 7,614 11,482
Patients 711 1,178 3,289
Price 1,339 1,480 1,818

Decentralized

Threshold 8,518 10,426 15,723
Efficient no. patients 1,599 2,584 7,216
Patients 1,599 2,584 7,216
Price 1,566 1,732 2,128

Delta
Threshold (euro) 2,297 2,812 4,241
Threshold (QALY) 0.077 0.094 0.141
Patients 0 0 0

Table 1 shows the main results for this case for three different levels of un-
certainty (1%, 8%, 15% standard deviation). For the first best, the table re-
ports the optimal investment threshold (µ∗pug), the efficient number of patients
(xs(µ∗pug)), and the corresponding price (p(µ∗pug)) calculated on the threshold.
The corresponding information on “Threshold” (µ∗prg2), “Patients” (xp(µ∗prg2))
and “Price” (p(µ∗prg2)) is reported in the second part of the table for the decen-
tralized solution (the provider decides how many patients to treat). This part of
the table also reports the efficient number of patients given the provider’s thresh-
old (xs(µ∗prg2)). This is different from the first best number of patients because
decentralization implies that investment is undertaken for values of µ which are
larger than the first best threshold (µ>prg2µ

∗
pug). Since the threshold is higher,

the efficient number of patients is larger. The lower part of the table shows the
properties in terms of dynamic and static efficiency, through the differences in
the thresholds (both in monetary terms and in terms of utility/effectiveness)
and the number of patients treated. In particular, the comparison is between
the first best and decentralization for the thresholds (rows 1 and 4), and be-
tween the actual and the efficient (given the decentralized threshold) number of
patients (rows 5 and 6)25.
For example, if the purchaser only pays the marginal cost for each patient, with
σ = 0.01, the first-best investment should take place for values of µ at least as

25Since in our model static efficiency is only defined for a given level of effectiveness, the
comparison between the first best number of patients and the decentralized number would be
meaningless.
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large as 6,221 euros, which is lower than the provider’s threshold (8,518 euros).
The difference (2,297 euros) corresponds to 0.077 QALYs. At the provider’s
threshold, the number of patients treated is efficient as a result of having set
λ = 0, and therefore static efficiency is ensured. However, the delay in the
expected time of adoption makes the situation dynamically inefficient. Table
1 also shows that uncertainty exacerbates the problem of dynamic inefficiency,
reaching a difference of 0,141 QALYs with σ = 0.1526.

Table 2: λ = 0.35;γ = 0

σ 0.01 0.08 0.15

First-Best
Threshold 6,221 7,614 11,482
Patients 711 1,178 3,289
Price 1,339 1,480 1,818

Decentralized

Threshold 6,944 8,677 13,458
Efficient no. Patients 935 1,632 4,891
Patients 1,510 2,099 5,238
Price 1,556 1,662 1,996

Delta
Threshold (euro) 723 1,063 1,976
Threshold (QALY) 0.024 0.035 0.066
Patients 575 467 347

Table 2 shows the role of uncertainty in determining the size of the trade-off
when the lump-sum payment is not available (γ = 0). The parameter λ has
been fixed at 0.35, so that the quality of this combination of parameters (γ = 0,
λ = 0.35) is similar to that of a possible second-best from the purchaser’s stand-
point (Corollary 4)27. Since the change in λ is the only difference from Table 1,
the first-best results are not affected. As a result of the increase in the price, the
provider’s threshold is reduced, and therefore the expected time of investment
anticipated. The improvement in dynamic efficiency is shown by the smaller
differences between the first-best and the provider’s thresholds in Table 2, in
comparison with Table 1. The drawback of raising the price above the marginal
cost is a number of patients treated that exceeds the efficient level, as the last
row in the table shows. It is interesting to see that the impact of uncertainty
on static efficiency is different from that on dynamic efficiency. Whereas the
first increases with uncertainty, moving from 0.024 QALYs to 0.066 QALYs, the
second falls, moving from 575 patients more than the efficient level to 347.
The Table also provides some insights into point discussed at the end of the
previous section, concerning the implications of purchaser and provider facing
different levels of uncertainty. The purchaser’s threshold with σ = 0.08 is 7,614
euros. For the provider, the thresholds are 6,944 and 8,677, respectively with

26In the discussion of the example we ignore the technical limits that imply a maximum
number of treatments that can be provided in one period (around 2,500). In fact, this is
the only case (λ = 0, γ = 0, σ = 0.15) among those considered, where the capacity limit is
binding. Tables 2 and 3 show that when the payment parameters are efficiently set (first- or
second-best) the number of treatments provided is within the capacity limit).

27See also Table 3.
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σ = 0.01 and σ = 0.08. This suggests that there is a value of σ between
these two values such that the decentralized threshold corresponds to the first-
best, calculated for σ = 0.08. This means that if the uncertainty faced by the
provider could be substantially reduced, the dynamic inefficiency of the situa-
tion described in Table 2 could be virtually eliminated.

Finally, we want to study the optimal policy by the regulator when lump-
sum payments are not available (γ = 0) and therefore the trade-off between
static and dynamic efficiency arises (Table 3). We do this by studying how the
present value of the investment from the purchaser’s standpoint changes as λ
is increased, starting from λ = 0, assuming that the provider sets the number
of patients (Table 3). Given the purchaser’s objective function, the expected
present value of the project is defined as:

Ψ = E0

[
e−(ρ+ε)tA

] [b(xp)− c(xp)
ρ+ ε

− I

]
(32)

It is shown in the Appendix that:

E0

[
e−(ρ+ε)tA

]
=

(
µ0

µ∗prg2

)ξ
(33)

with ξ > 1.

Table 3: Second-best efficient pricing rule

Dynamic eff. Static eff. Present Value
λ FB thresh. Dec. Thresh. Eff. patients Dec. patients
0 0.275 0.377 3,160 3,160 1,829,170

0.1 0.275 0.363 2,886 2,995 1,923,420
0.2 0.275 0.348 2,585 2,812 2,030,650
0.3 0.275 0.328 2,240 2,599 2,148,090
0.38 0.275 0.307 1,899 2,385 2,226,890
0.39 0.275 0.304 1,848 2,353 2,231,310
0.4 0.275 0.300 1,795 2,319 2,232,750
0.41 0.275 0.297 1,739 2,283 2,220,680
0.42 0.275 0.292 1,677 2,243 2,220,680

The starting value of the stochastic parameter (µ0) is set at 7,000 euros, with
σ = 0.1. The other parameter values are as above. Table 3 shows the trade-
off due to the increase in the price above the marginal cost. Increases in λ
anticipate the investment thus reducing the gap from the first best threshold,
but also increase the number of patients above the efficient level28. For the case
under examination a value of λ = 0.4 yields the maximum present value for the
investment, and hence the optimal trade-off. Consistently with the statement in
Corollary 4 this second-best solution involves both static and dynamic efficiency.

28The number of patients in columns 4 and 5 are both calculated on the provider’s threshold.
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The former takes the form of a larger threshold and hence a delay in investment,
with a difference of 0.025 QALYs. The latter leads to treat patients in excess
of the efficient level (2,319 vs. 1,795). The comparison between the second best
Present Value (2,232,750 euros) and the first best (2,437,640 euros), attainable
with a lump-sum payment covering 61% of the investment cost and a fixed fee
equal to the marginal cost, provides an estimate of the cost of the regulatory
failure. In our case this is 204,890 euros.

7 Conclusion

The paper employs the typical instruments of the literature on irreversible in-
vestments under uncertainty to investigate the implications of alternative re-
imbursement rules. Although decisions with these characteristics are frequent
in the health care sector (e.g. at the time of adopting innovative equipment)
and often have substantial impacts on costs, specific regulation issues related
to these have been rarely addressed in the literature so far. Moreover, there is
a substantial variety among the solutions implemented in different health care
systems.
A central issue investigated in the paper is the distinction and the interaction
between static efficiency (providing the treatment to an efficient number of pa-
tients once the technology has been adopted) and dynamic efficiency (efficiency
in the timing of adoption). If the purchaser is unable to set the level of pa-
tients at the efficient level, the choice of the payment scheme influences both
the timing of adoption and the number of patients that receive the treatment.
We have investigated the properties of a number of instruments available to the
regulator to improve efficiency. If the purchaser can give the provider immedi-
ate reimbursement of a fraction of the capital cost (appropriately determined)
when the provider decides to invest in the new technology, then both dynamic
and static efficiency are obtained by simply paying the marginal cost for each
patient treated. However, if for some reasons lump-sum payments cannot be
used, a trade-off emerges between static and dynamic efficiency: the incentive
to adopt the new technology when the price equals marginal cost, thus ensuring
static efficiency, is too weak. In this case, the adoption of the technology occurs
later than would be efficient.
The evidence from real world health care systems suggests that lump-sum reim-
bursements of capital costs are not frequently used. This may be due to either
liability constraints for the purchaser or inability to differentiate the pricing
rules for technologies with substantial capital costs (typically equipment). Al-
though the investigation of exactly why this may be the case is beyond the scope
of this work, our results provide a possible explanation of why appropriateness
(provision of treatments only to those patients that really need it) is an issue
in several health care systems. It is also interesting to note that the regulators
in health care systems that are more sensitive to this issue are moving in the
direction described in our model. In Switzerland the new DRG system that will
come into force in 2012 foresees a model for capital reimbursement that is very
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similar to the one we have presented in this paper29. The calibration of the
model for the case of PET has provided a tentative estimate of the monetary
cost of departing from the optimal payment rule, by relying only on the payment
of a fixed price per patient.
For the health care systems that still use a pure DRG system , our model set-up
enables the identification of instruments that could be used by the purchaser as
a substitute for the immediate reimbursement of capital cost to foster dynamic
efficiency. For example, setting boundaries to the variation of prices in response
to changes of the stochastic variable, would reduce the variance actually faced
by the provider and hence reduce the value of the option to postpone the in-
vestment.
Hopefully, these results will contribute to the development of the theoretical
analysis of the incentives underlying specific purchasing rules when the provi-
sion of the service requires an irreversible commitment of resources. Our model
could be developed in a number of directions. For instance, competition is only
implicitly treated in our analysis through the impact on the fixed net benefit
component. It would also be interesting to investigate the sensitivity of the
results to changes in the objective functions of the purchaser and the provider.
Finally, the interaction of the payment rule with other policy tools (e.g. a di-
rect control by the purchaser on the timing of investment) could also provide
useful insights. In particular, the reallocation of risk (uncertainty) between the
purchaser and the provider as a policy tool could be a fruitful area for future
research.

8 Appendix

Derivation of the value function in the waiting region:

The value of the project before the investment is made, F (µ), follows the following
Bellman equation (Dixit and Pindyck, 1994):

ρF (µ) = limdt→0
1

dt
E[dF (µ)] (34)

Applying Ito’s Lemma, the last term on the right hand side may be written as:

E[dF (µ)] = αµ
∂F (µ)

∂µ
+

1

2
σ2µ2 ∂

2F (µ)

∂2µ
(35)

The substitution of this into eq. (34) yields the following differential equation:

−(ρ+ δ)F (µ) + αµ
∂F (µ)

∂µ
+

1

2
σ2µ2 ∂

2F (µ)

∂2µ
= 0 (36)

The general solution of this equation is,

Z1µ
β1 + Z2µ

β2

29See http://www.swissdrg.org/fr/07 casemix office/InformationenZuSwissDRG.asp?navid=11.
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where, β1 > 1 and β2 < 0 are the solutions of eq. (9). The value of Z1 and Z2 is
obtained imposing appropriate restrictions. First, for values of µ that tend to zero, the
term Z2µ

β2 would make the value jump to infinity. Of course, this is inconsistent with
our problem, given that the provider is not allowed to invest for µ < µ, and therefore
the value of the corresponding opportunity to invest is zero. Therefore, Z2 has to be
set equal to zero. The value of Z1 is determined simultaneously with the value of the
optimal threshold, as explained in the text. Since Z1 is the only relevant constant
throughout, the subscript has been dropped in the text to simplify the notation.

The impact of increases in λ on µ∗prg2:

dµ∗prg2
dλ

= −
dΠpr2

dλ
1
ρ

[
1− δ

δ−1
1
β
εp,µ∗prg2

]
− Πpr2

ρ
δ
δ−1

1
β
dε
dλ

dΠpr2

dµ∗prg2

1
ρ

[
1− δ

δ−1
1
β
εp,µ∗prg2

]
− Πpr2

ρ
δ
δ−1

1
β

dε
dµ∗prg2

The sign of this expression depends on that of the denominator. In order to simplify
the notation, below we replace µ∗prg2 with µ∗ in what follows.

=
dΠpr2

dµ∗
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ρ
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δ − 1
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δ
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The sign of this expression is positive for λ = 0. Therefore, we can draw conclusions
on a local result:

dµ∗

dλ
|λ=0< 0

Proof of eq. (33)

The solution to E0[e−(ρ+ε)tA ] can be obtained via the usual dynamic programming
decomposition (Dixit et al., 1999 p.184).
Since the process µt is continuous, the expected discount factor is increasing in µ0

and decreasing in µ∗prg2; then it can be defined by a function D(µ0;µ∗prg2). Over the
infinitesimal time interval dt, µt will change by the small value dµt, hence we get the
following Bellman equation:

(ρ+ ε)D(µ0;µ∗prg2)dt = E(dD(µ0;µ∗prg2))
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By applying Itô’s Lemma to dD we obtain the following differential equation:

1

2
σ2µ2D′′ + αµD′ − (r + ε)D = 0

We solve it subject to the two boundary conditions:

lim
µ0→0

D(µ0;µ∗prg2) = 0

lim
µ0→µ∗prg2

D(µ0;µ∗prg2) = 1

and we get D(µ0;µ∗prg2) =
(

µ0
µ∗prg2

)ξ
, where ξ > 1 is the positive root of the auxiliary

quadratic equation Ψ(ξ) = 1
2
σ2ξ(ξ − 1) + αξ − ρ = 0.
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