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Abstract 
 
Econometric models wishing to estimate relevant parameters for agricultural policy analysis are 
increasingly relying on unbalanced panels of farm-level data. Since in the agricultural economics 
literature such models have often been estimated through simplified approaches, in this paper we try 
to verify whether the adoption of more sophisticated panel data techniques may impact the estimation 
results. For this reason, the policy model by Moro and Sckokai (1999) has been re-estimated using 
techniques recently developed in the econometric literature. The preliminary results show a strong 
impact on the estimations. This seems to suggest that the adoption of proper panel-data techniques is 
likely to be very important in order to obtain reliable estimates of some key policy parameters. 
 
Key words: Agricultural policy, Panel data, Systems of equations 
 
 
1. Introduction 
 

Econometric models wishing to estimate relevant parameters for agricultural policy analysis are 
increasingly relying on farm-level data, like the European Union (EU) Farm Accounting Data Network 
(FADN) or the United States (US) Agricultural Resource Management Survey (ARMS). The structure of 
these databases is quite similar, since they are typically unbalanced panels, where we find repeated 
information on some farms but the same farm may not enter the sample every year. Moreover, they 
typically collect data referring to a large number of farms, providing very detailed information on farm 
production activities as well as on farm structural characteristics and resource use. 

 
In recent years, a number of papers have been published drawing relevant policy implications 

from the estimation of arable crop supply/acreage equations carried out on these databases, either related 
to the EU Common Agricultural Policy (CAP) (Oude Lansink and Peerlings, 1996; Oude Lansink, 1999; 
Moro and Sckokai, 1999; Sckokai and Anton, 2005; Serra et al., 2005; Sckokai and Moro, 2006; Serra et 
al., 2006) or to the corresponding US policy (Goodwin and Mishra, 2006). However, these papers have 
always adopted a simplified approach in taking into account the complex econometric issues implied by 
the use of these databases. In fact, their use implies the adoption of proper panel-data techniques suitable 
for system of equation estimation, in which the issue of censoring is properly taken into account, since it 
is very common that not every farm produces each crop every year. 

 
In light of these considerations, the present paper re-examines the analyses proposed for Italy by 

Moro and Sckokai (1999), adopting a more suitable econometric approach. Thus, we model the CAP 
arable crop regime using FADN data for Italy in order to analyse supply and acreage response to 
policy parameters, under the maintained hypothesis of risk-neutral behaviour by farmers. This 
empirical application has mainly illustrative purposes, since the main objective of the paper is to 
underline the  different results obtained adopting different panel data techniques. 

  
In terms of econometric approach, the paper relies on the Error Component Model (ECM), 

which is the most frequently used approach to analyse panel data in econometrics. When the panel is 
incomplete, which is the rule rather than the exception when the data come from large-scale surveys, 
standard estimation methods cannot be applied [see, e.g., Wansbeed and Kapteyn (1989), Baltagi et al. 
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(2001), and Davis (2002)]. Hence the general model we consider is a two-way error component 
regression for unbalanced panel data, in which both firm and time effects are introduced [among 
recent empirical applications adopting this approach, see e.g. Bhoumahdi et al (2004)]. We present 
results obtained using both single equation and system of equation estimation techniques, in which 
censoring issues have been taken into account using a proper two-step approach. 
 
 
2. Model 
 
2.1 Theoretical model 
 

The model we adopt refers specifically to the CAP for arable crops as it was implemented 
before the 2003 reform1. Under this package, farm income was supported through three main policy 
tools: the intervention price for cereals, the crop-specific area payments, introduced with the 1993 
reform of the CAP, and the compulsory rate of set-aside. Thus, any model wishing to analyse farmers’ 
response to these policy tools have to incorporate them in its assumed decision making structure.   
  

As in Moro and Sckokai (1999), we consider the following profit function for the 
representative farmer:  
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where y is the n-dimensional vector of farm outputs and pe is the corresponding vector of expected 
output prices, x is the m-dimensional vector of variable inputs and w the corresponding vector of  
input prices, s is the vector of land allocations to the n crops, with sT being total farm land, np<n is the 
number of crops included in the arable crop regime, b is the vector of crop-specific area payments, d is 
the set-aside payment, c is the set-aside percentage, sr is the land that must be set aside, z is the vector of 
quasi-fixed inputs in the short run and T is the multi-output short-run technology. Finally, the three 
constraints are the total land constraint, the set-aside constraint and the technological constraint, 
respectively. 

 

If we assume that ),,,,,,( zbwpe csd Tπ is twice continuously differentiable, we can write the 
following set of derivative properties: 
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1 As it is well known, the most recent reform of the CAP was implemented starting in 2005. Thus, reliable farm-
level data referring to the application of the new Single Farm Payment scheme will become available only in the 
near future. 
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which allow us to define a set of output supply, input demand and land allocation equations that can be 
estimated on farm-level data. Since this model estimates simultaneously both supply and land 
allocation decisions, crop yields become endogenously defined. 
 
2.2 Empirical specification 

 
For a parametric specification of (1), we rely on the normalized quadratic function, a flexible 

functional form largely applied to the estimation of agricultural profit functions. This functional form has 
a Hessian of constants, so the curvature properties can hold globally. Moreover, it allows negative profits, 
which cannot be managed when logarithmic transformations are used. Choosing e

np  as the numeraire, the 

normalized quadratic profit function takes the following general form: 
 

(3) qAqqa TT
0a ++=π  

where e
np/ππ =  , ),,,/,/,/,/( zbwpq e cspdppp T
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n=  and the scalar a0, the vector a and the 

matrix A are parameters to be estimated.  
 
Using the derivative property in (5), output supply, input demand and land allocation equations 

can be written as: 
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where α ’s,β ’s, andγ ’s are appropriate elements of the above vector a and matrix A. 
 

Due to the specification of the vector q , the homogeneity property is maintained within the 
empirical model. Moreover, the standard symmetry and reciprocity properties can be imposed with the 
following parametric restrictions: jiij αα = , jiij ββ =  and jiij γγ = . 

 
 
3. Data 
 

The data used for the present study are taken from the EU FADN database for the period 1994-
2003 (ten years) and refer to the sample of Italian specialised arable crop farms. As mentioned in the 
introduction, the database is an unbalanced panel of 14,288 individuals observed in the above 10-year 
period, for a total of 34,140 observations2.  

                                                 
2 The sample we have used was obtained after the elimination of those farms that presented some “severe outliers” 
in the key variables needed for the estimation. All farms showing output prices and crop yields falling out of the 
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The database provides most of the variables needed to estimate the model: crop productions, 

output prices, land allocations, area payments, family labour, hired labour (number of hours and 
hourly wages), variable input costs by category (seeds, fertilisers, chemicals, water, …), quasi-fixed 
input stock values (buildings and machinery). Variable input prices are not provided by the FADN; 
thus, price indexes for Italy have been taken from the official Eurostat statistics. The same has been 
done for deflating capital values, since Eurostat provides also time series of rental price indexes for 
capital goods. 

 
The initial FADN dataset is very disaggregated, especially in terms of number of outputs and 

number of variable inputs; thus, to make the estimation feasible, some aggregation has been 
introduced. We have considered five output categories (maize, durum wheat, other cereals, oilseeds, 
and other arable crops) with their respective land allocations, where the first four represent those crops 
for which the CAP arable crop regime guaranteed different levels of area payments. We have also 
considered two variable inputs (crop inputs and other variable inputs) and two fixed inputs (total land 
and an aggregate of capital and family labour). The price of “other inputs” is our numeraire in the 
normalised quadratic specification. The aggregates have been generated as Laspeyres indexes, while 
short run profit has been computed as the sum of total gross sales and total area payments minus total 
variable costs. 

 
Since output prices are unknown at the time land allocation decisions are made, an assumption 

on how price expectations are formed is needed. We have adopted the well-known “adaptive 
expectation” hypothesis, following the approach proposed by Chavas and Holt (1990), which implies a 
correction of lagged prices3. Clearly, since our panel is incomplete, individual (farm) lagged prices 
cannot be used to construct the series of expected prices. Thus, for each crop, yearly regional average 
prices have been computed and used to model the mechanism of price expectations4. 
 
 
4. Econometric techniques 
 
4.1 Censoring 
 

As mentioned in the introduction, the estimation of supply and land allocation equations implies 
the adoption of an appropriate technique to account for censoring, since not every farm produces every 
crop each year. In order to obtain suitable results for policy analysis, this problem has to be addressed 
adopting a methodology that uses all the available observations, in order to preserve the 
representativeness of the FADN sample. For this reason, we used the two-step estimation procedure 

                                                                                                                                                         
range defined by the sample mean and two standard deviations were eliminated. The general idea of this 
procedure is to eliminate those observations that are likely to come from some errors in plugging in the basic 
data 
3 This correction is based on the assumption that, in each period, farmers update their “naive” expectations 
(lagged prices) based on the past history of the observed differences between actual prices and “naive” expected 
prices. 
4 To avoid the problem of eliminating entire years to model lagged prices, we have used national crop prices 
taken from Eurostat to model expectations in the first years of our sample. 
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proposed by Shonkwiler and Yen (1999). Thus, the system of equations in (4) is estimated in the 
following form: 

(5) )(),(f)(v *
iitiiiti

*
iitit ηhψqηh Θρ+Φ=  

where hit is a vector of variables which explains the binary choice of producing/non producing crop i 
and *

iη are first-stage probit estimates of the corresponding parameters; vit is any of the dependent 

variable and fi(.) is any of the equations of the system in (4); iψ  is the subset of the normalized 

quadratic parameters to be estimated that enter equation fi(.); (.)Φ and (.)Θ are the univariate standard 
normal cumulative distribution and probability density functions, respectively, both computed over 
probit results, while iρ  is an extra parameter to be estimated. 

 
The five probit models (one for each output) are estimated using as explanatory variables the 

level of three quasi-fixed inputs (family labour, buildings and machinery) and one set of dummy 
variables representing different regions/altitudes5. Thus, in each probit model we estimated 11 
parameters, including a constant term. 
 
4.2 Panel data estimation 
 

The panel data estimation relies on the error component model (ECM), which is the most 
frequently used approach to analyse panel data in econometrics. Since the panel is incomplete, 
standard estimation methods cannot be applied [see, e.g., Wansbeek and Kapteyn (1989), Baltagi et al. 
(2001), Davis (2002) and Chaaban and Thomas (2004)]. 

 
At first, we have estimated our model using the standard single equation one-way Fixed Effect 

(FE) and one-way Random Effect (RE) models, for which estimation commands exist in the most 
common econometric softwares. As it is well known, one-way FE and RE models assume that 
differences across individuals can be captured by means of an individual specific intercept term. The 
FE approach considers this term as a fixed parameter, while the RE approach considers it as a random 
disturbance6. In order to choose the right specification between RE and FE, one may rely on the 
Hausman test, which is based on Generalised Least Square estimation (Baltagi, 2005).  

 
In addition, we have estimated a set of two-way RE and FE models, which explore simultaneously 

both differences across individuals and differences over time for each individual. The econometric 
software we use (TSP version 5.0) offers the possibility of estimating the Maximum Likelihood (ML) 
two-way RE model, but since we like to carry out the corresponding Hausman test for choosing 
between two-way FE and two-way RE, we have decided to build our own GLS estimator.  

 
Note that, when adopting a two-way ECM approach, it is legitimate to  consider only the 

individuals which appear at least twice, since individuals appearing only once do not add any useful 
                                                 
5 Other pertinent variables to be included in probit estimation would be soil quality or demographic 
characteristics of the farmer (age, education, …), but unfortunately these variables are not included in the FADN 
database. 
6 The one-way FE is the most common approach adopted in agricultural economic studies employing panel data 
estimation techniques (see for example Oude Lansink and Peerlings, 1996; Oude Lansink, 1999; Sckokai and 
Anton, 2005). Other studies adopt ad hoc simplified approaches, that do not explore specifically the panel 
structure of the data (Moro and Sckokai, 1999; Sckokai and Moro, 2006; Serra et al, 2005; Serra et al., 2006). 
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information (Wansbeek and Kapteyn, 1989). Thus, after this elimination, our final sample is an 
unbalanced panel of 7,526 individuals observed in 10 years, for a total of 27,378 observations. In order 
to compare the results, we have used this reduced database also for one-way FE and RE estimation. 

 
4.2.1 Single equation two-way ECM 
 

The single equation two-way ECM estimation technique for unbalanced panel has been introduced 
by Wansbeek and Kapteyn (1989) and our estimator has been built following their procedure. 

Our unbalanced panel is characterized by a total of n observations, by F farms, indexed by 
i=1,…,F, and by T periods, indexed by t=1,…,T. Let Ti denote the number of times the farm i is 

observed and Ft the number of farms observed in period t. Hence nFT
t

t
i

i ==∑∑ . 

 
Let Dt be the FFt × matrix obtained from IF by omitting the rows corresponding to farms not 

observed in period t. With ( )'''
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dummy-variable structure for the unbalanced panel model. 
 
In the two-way FE model we consider the following matrices: 
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and therefore the within estimator is: 
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In the two-way RE model (GLS)  the covariance matrix of the composite error ittiitu ε+ν+µ=  

is: 
(10) ( ) '

22
'
11nI'uuE ∆∆∆∆Ω 2

ν
2
µ

2
ε σσσ ++==  

With FFF I~
2
µ

2
ε

σ
σ

+= ∆∆  and TTT I~
2
ν

2
ε

σ
σ

+= ∆∆ , by defining 

'
TF

1
FTFT

~~Q~ ∆∆∆∆ −−=  

[ ]
'
1

1
F1F

~IQ~
1

∆∆∆∆
−−=  

Wansbeek and Kapteyn (1989) show that 
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and then the GLS estimator is 
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(12) ( ) ( )y'XX'X 111GLS −−−= ΩΩβ  
 
We derive Quadratic Estimations (QUEs) for 2
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4.2.2 Two-Way ECM and SUR estimation 
 

The most appropriate way of estimating the model in (4) is by a system of equation estimation 
technique, which in this specific case must be a Seemingly Unrelated Regression (SUR) technique, 
since each of our dependent variables (output supplies, variable input demands and land allocations) is 
regressed over the same set of explanatory variables (output and input prices, area payments and 
quasi-fixed inputs). Once again, standard econometric softwares do not provide automatic commands 
to estimate two-way ECM SUR systems, since estimating such system implies the adoption of a 
specific procedure for inverting the variance-covariance matrix of the residuals 1−Ω . This, procedure 
has been recently proposed by Biørn (2004) for the estimation of a One-Way ECM SUR. Based on this 
framework, we have derived the corresponding estimator for the Two-Way ECM SUR. 

 
Let consider a system of M equations, indexed by m=1,…,M. The farms are observed in at least 

two periods and at most P periods. Let pF~  denote the number of farms observed in p periods, with 

p=2,…,P. Hence FF~
p

p =∑  and npF~
p

p =∑ . We assume that the farms are observed in P-1 groups 

such that the 2N~  farms observed twice come first, the 3N~  farms observed three times come second, 

etc. Hence with ∑
=

=
p

2k
kp F~C  being the cumulated number of farms observed up to p times, the index 

sets of the farm observed p times can be written as ( )p1pp C,...,1CI += −  where p=2,…,P and 0C1 =  

(note that Ip may be considered as a balanced panel with p observations for each farm). 
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With km being the number of regressors for equation m, the total number of regressors for the 

system is ∑
=

=
M

1m
msur kk . Stacking the M equations for the observation (i,t) we have 
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Since pE  and pJ  are symmetric and idempotent and have orthogonal columns we have: 
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Then we can consider the GLS problem for β  when µΣ , νΣ  and εΣ  are known, i.e. the 

problem of minimizing 
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If we apply GLS on the observations for the farms observed p times we obtain: 
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while the full GLS estimator is 
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We can estimate the covariance matrices µΣ , νΣ  and εΣ  by following either the within-

between procedure suggested by Biørn (2004) – corrected for the two-way model - or the QUE 
procedure suggested by Wansbeed and Kapteyn (1989) – corrected for the SUR..  

 
The first method considers the FE residuals WT

itit Xye β−≡
×1M

 for the farm i in period t. If we 

define eef itit −= , the MM ×  matrices of within farms, between farms and between times 

(co)variations in the f’s of the different equations are 
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The second method considers the FE residuals WT
mmm Xye β−≡  for the equation m=1,…, M . 
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5. Results 
 

For space reasons, we cannot report all the estimated parameters. However, it is important to 

note that, carrying out the Hausman tests for all the equations of the system, we always get a 2χ value 
statistically significant at the 1% level, which means that we reject the null hypothesis of zero random 
effects. This implies that the RE specification is always preferred to the FE specification. 

For illustrative purposes, in Table 1 we report the estimated parameters for the durum wheat 
supply equation, one of the most important arable crop in Italy. As one can easily appreciate, the 
adoption of different estimation techniques implies obtaining quite different results, both in terms of 
absolute value of the estimated parameters and in terms of their statistical significance7. 

For example, the own price-response of durum wheat (the P2 row in Table 1) is significant only 
in the 1-way FE and RE models and in the 2-way SUR system, while in other models is not 
statistically significant. Moreover, among significant parameters, we observe quite a strong variability, 
since the 2-way SUR system estimates a parameter that is approximately 50% higher than those 
estimated with single equation techniques. The same happens for the other key parameter of the own 
area payment effect (the A2 row in the same table). Here all models provide positive and significant 
parameters, but their absolute value is strongly different among models, with a different ranking with 
respect to the own-price parameter discussed above (i.e. here the highest value is obtained through the 
1-way RE model, while the 2-way SUR provides a value which is much closer to the FE parameters). 

                                                 
7 In Tables 1 and 2, we adopt the following convention: Q= Supply, P= Price, S= land allocation, A= area 
payment, 1= Other Cereals, 2= Durum wheat, 3= Oilseeds, 4= Maize, 5= Other output; 6= Crop input, S= Total 
Land, E= Set-aside Percentage, Z=Quasi fixed inputs. 
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In Table 2, we provide own-price and own-payment elasticities for both the supply and land 
allocation equations of our model, the key parameters that are used for policy simulations. Once again, 
results turn out to be quite different across models. For example, limiting our attention to those 
elasticities significantly different from 0, we have that for both maize supply and land allocation (rows 
Q4 and S4 in the Table) the own payment elasticity is much higher in the case of the two-way SUR 
system as compared to all the other models. For the corresponding price elasticity, the two-way SUR 
system provides a negative and significant elasticity (which is of course counterintuitive!) , while a 
number of other models estimates a positive response to price. 
 
 
6. Concluding remarks 

 
In recent years, a number of agricultural economics papers have been published drawing relevant 

policy implications from the estimation of arable crop supply/acreage equations carried out on farm-level 
data. However, these papers have often adopted a simplified approach in taking into account the complex 
econometric issues implied by the use of these data, which are typically unbalanced panels. In fact, the 
use of these data implies the adoption of proper panel-data techniques, which have been recently 
developed in the econometric literature and that have still to be incorporated as automatic commands in 
the standard econometric softwares. 

In light of these considerations, the present paper re-examines the analyses proposed for Italy by 
Moro and Sckokai (1999), adopting a more suitable econometric approach. Thus, we model the CAP 
arable crop regime using FADN data for Italy in order to analyse supply and acreage response to 
policy parameters. Our empirical application has mainly illustrative purposes, since the main objective 
of the paper is to underline the  different results obtained adopting different panel data techniques. 

In terms of econometric approach, the paper relies on the Error Component Model, both in its 
one-way version (i.e. considering only the individual specific effect) and in its two-way version (i.e. 
considering both the individual and the time specific effects), while the choice between the alternative 
Fixed Effect (FE) and Random Effect (RE) specifications has been carried out through the appropriate 
Hausman tests. Since the estimated model is a set of simultaneous equations, the corresponding 
regressions have been estimated both as single equations and as a SUR system of equations. In 
adopting this last technique, we have extended the one-way SUR technique proposed by Bjorn (2004) 
to the two-way case.      

The preliminary results of our work confirm our initial expectations, since the adoption of 
different estimation techniques implies obtaining quite different results, both in terms of absolute 
value of the estimated parameters and in terms of their statistical significance. This seems to suggest 
that the adoption of proper panel-data techniques is likely to be very important in order to obtain 
reliable estimates of some key policy parameters, like the output price and area payment elasticites 
estimated in our model. 
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Table 1: Durum wheat supply estimated parameters under different panel-data techniques 
Q2 FE   FE   RE   RE   RE   RE   SUR WB SUR QUE 
  1 WAY   2 WAY   1 WAY (ML) 1 WAY (GLS) 2 WAY (ML) 2 WAY (GLS) 2 WAY (GLS) 2 WAY (GLS)

P1 -1.3836 *** -1.3270 *** -1.2476 *** -1.2426 *** -1.1916 *** -1.2118 *** -1.4894 *** -1.9022 *** 
  (0.1441) (0.1447)  (0.1318) (0.1300) (0.1319) (0.1341) (0.1252) (0.1232)
P2 0.7387 ** -0.3754   0.6598 ** 0.6600 ** -0.2403   -0.2437   0.9090 *** 0.9343 *** 
  (0.3162) (0.3816)  (0.3078) (0.3048) (0.3668) (0.3651) (0.3009) (0.2962)
P3 -0.6987 *** -0.7061 *** -0.3569 ** -0.3362 ** -0.3529 ** -0.4291 *** -0.6952 *** -0.8854 *** 
  (0.1676) (0.1685)  (0.1570) (0.1550) (0.1573) (0.1591) (0.1501) (0.1474)
P4 0.5820 *** 0.9533 *** 0.4411 ** 0.4366 ** 0.7726 *** 0.7858 *** 0.2802 * 0.4750 *** 
  (0.1807) (0.1868)  (0.1707) (0.1687) (0.1756) (0.1769) (0.1644) (0.1627)
P5 -0.1466   -0.3742 ** -0.4294 *** -0.4464 *** -0.6780 *** -0.6008 *** -0.7750 *** -0.5041 *** 
  (0.1329) (0.1678)  (0.1279) (0.1265) (0.1584) (0.1579) (0.1243) (0.1225)
P6 -4.4451 *** -2.4421 * -7.4735 *** -7.6837 *** -5.6935 *** -4.9683 *** -7.3669 *** -5.8880 *** 
  (1.2687) (1.3965)  (1.2322) (1.2187) (1.3493) (1.3469) (1.2028) (1.1873)
A1 0.0434   -0.0272   -0.2052   -0.2085   -0.2899   -0.2749   0.6242 *** 0.4295 *** 
  (0.1952) (0.2028)  (0.1742) (0.1717) (0.1793) (0.1830) (0.1637) (0.1597)
A2 0.4052 *** 0.4515 *** 0.9928 *** 1.0263 *** 1.0248 *** 0.9040 *** 0.9574 *** 0.5926 *** 
  (0.0934) (0.0942)  (0.0872) (0.0856) (0.0875) (0.0883) (0.0826) (0.0816)
A3 -0.0536   0.0845 ** -0.0975 *** -0.0996 *** 0.0434 *** 0.0459   -0.0789 ** -0.0384   
  (0.0342) (0.0402)  (0.0334) (0.0330) (0.0390)  (0.0385) (0.0326) (0.0322)
A4 -0.0491   -0.0499   -0.0531   -0.0537   -0.0747   -0.0679   -0.0329   0.0673   
  (0.0569) (0.0604)  (0.0542) (0.0536) (0.0571) (0.0574) (0.0526) (0.0520)
S 0.5398 *** 0.5369 *** 0.4203 *** 0.4174 *** 0.4190   0.4312 *** 0.4947 *** 0.4121 *** 
  (0.0125) (0.0125)  (0.0076) (0.0073) (0.0076) (0.0081) (0.0073) (0.0072)
Z 0.0011 *** 0.0011 *** 0.0016 *** 0.0017 *** 0.0016 *** 0.0013 *** 0.0017 *** 0.0030 *** 
  (0.0003) (0.0003)  (0.0002) (0.0002) (0.0002) (0.0003) (0.0002) (0.0002)
E -37.0379 *** -37.3892 *** -24.4107 *** -23.6270 *** -24.6105 *** -27.4723 *** -31.8690 *** -35.7399 *** 
  (2.4832) (2.4926)  (2.3250) (2.2858) (2.3273) (2.3467) (2.2148) (2.1843)

Standard errors in brackets. *** 1% significance, **5% significance, *10% significance 
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Table 2: Estimated own-price and own-payment elasticities under different panel-data techniques 

    FE   FE   RE   RE   RE   RE   SUR (WB)   SUR (QUE)   
    1 WAY   2 WAY   1 WAY (ML)   1 WAY (GLS)   2 WAY (ML)   2 WAY (GLS)   2 WAY   2 WAY   
Q1 price 0.5797 *** 0.5806 *** 0.5765 *** 0.5774 *** 0.5767 *** 0.5753 *** 0.6011 *** 0.6282 ***

  payment -0.0624   -0.0773   0.0649   0.0942 * 0.0524   0.0494   -0.0813   -0.1317 ** 

            

Q2 price 0.1206 ** -0.0613   0.1077 ** 0.1077 ** -0.0392   -0.0398   0.1484 *** 0.1525 ***

  payment 0.1571 *** 0.1751 *** 0.3850 *** 0.3980 *** 0.3974 *** 0.3506 *** 0.3713 *** 0.2298 ***

            

Q3 price 0.7875 *** 0.7712 *** 0.8607 *** 0.8775 *** 0.8459 *** 0.8633 *** 0.8785 *** 0.8746 ***

  payment -0.0027   0.0161   0.0486   0.0561   0.0349   0.0777   0.0982 * 0.1153 ** 

            

Q4 price 0.0280   0.0650   0.0650   0.0650   0.0848 * 0.0766 * 0.0496   -0.1655 ***

  payment 0.0599 ** -0.0259   0.0886 *** 0.0886 *** 0.0219   0.0053   0.0642 ** 0.3206 ***

            

S1 price 0.5868   0.5861   0.5995 *** 0.6063 *** 0.5985 *** 0.5951 *** 0.6428 *** 0.6573   

  payment -0.0807   -0.0952   -0.0141   -0.0265   -0.0260   -0.0303 *** -0.1909   -0.2042   

            

S2 price -0.0530 *** -0.0765 *** -0.0622 *** -0.0619 *** -0.0825 *** -0.0829 *** -0.0320 *** -0.0259 ***

  payment 0.0434 * 0.0543 * 0.1727   0.1877   0.1808   0.1576   0.1623 *** 0.0327 ** 

            

S3 price 0.7910   0.7714   0.8689   0.8836   0.8509 * 0.8672 * 0.8961   0.8983 ***

  payment 0.0923   0.0358 * 0.0814 *** 0.0773 *** 0.0169 *** 0.0580 *** 0.0743 *** 0.0930   

            

S4 price 0.0657 *** 0.0604 *** 0.0983 *** 0.0989 *** 0.0870 *** 0.0761 *** 0.0632 *** -0.2073 ***

  payment 0.0805 ** -0.0126   0.1183 ** 0.1192 ** 0.0430   0.0242   0.1127 * 0.3185 ** 

*** 1% significance, **5% significance, *10% significance 
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