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Abstract 
 
Opportunity cropping has been shown to reduce mean annual deep drainage compared to long fallow 

systems. A question that remained was the effect of added fertiliser nitrogen under each of the 

cropping systems and whether it would make a significant difference to amounts of deep drainage and 

to profitability. Estimates of crop yield and deep drainage results were generated using the APSIM 

(Agricultural Production Systems Simulator) cropping systems model, to compare long-fallow 

wheat/sorghum and two opportunity-cropping scenarios on a vertosol on the Liverpool Plains using 

rainfall data from 1958 to 1997. The results showed that fertiliser nitrogen did have a significant effect 

on deep drainage and gross margin under each cropping system. However, higher rates of nitrogen 

only produced small marginal benefits.  
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1. Introduction 
The Liverpool Plains catchment of northwest NSW (Figure 1) covers 1.24 million hectares bounded to 
the south by the Liverpool Ranges (part of the Great Dividing Range), to the east by the Melville 
Ranges and to the west by the Warrumbungle Range. Two rivers, the Mooki and Cox’s Creek, drain 
northwards into the Namoi River, a tributary of the Murray-Darling river system (Ringrose-Voase et 
al, 2003). Gunnedah is the largest town (pop. 10,000) and is located in the north of the catchment. 
Approximately 1.1 million hectares are managed for agricultural production of which about 36% is 
under dryland cropping, 4.5% under irrigation, 7.5% is under improved pasture, 35% is under native 
pasture and 17% is under timbered native vegetation (URS, 2001). More than 80% of dryland 
cropping is practised on cracking clay soils (Vertosols) of basaltic origin which generally have very 
high plant available water holding capacities of around 150-300 mm. 
 

Figure 1: Map of the Liverpool Plains, NSW 

 
 
 
The Liverpool Plains catchment faces a number of natural resource problems including dryland 
salinity, soil erosion, flooding and reduced soil organic matter fertility. Currently the severely salinised 
area (more than 80% yield reduction) is estimated to be 1,000 hectares (Ringrose-Voase et al, 2003). 
Current projections indicate the area that will be salinised to some degree will reach 175,000 hectares 
by 2025, with $80 million lost in production between 2000 and 2025 (URS, 2001). 
 
Long fallow wheat/sorghum rotations became common in the late 1960s and early 1970s on the 
Liverpool Plains due to wheat quotas, an increasing demand for grain sorghum for stock feed, reduced 
organic matter fertility requiring longer fallows to mineralise nutrients and to control wild oats ( a 
major crop weed). In addition, the long fallow periods of up to 15 months, if well managed, almost 
guaranteed a full profile of available soil water at planting, thus overcoming much of the variability of 
rainfall which characterises the Liverpool Plains and most dryland cropping regions of Australia. 
 



However, increased deep drainage below the root zone resulting from the replacement of perennial 
native vegetation with annual crops and fallows is believed to be the major cause of secondary dryland 
salinity. Long fallow cropping systems in the Liverpool Plains have been shown to be especially 
‘leaky’, allowing large amounts of water to infiltrate past the root zone late in the fallow period (Abbs 
and Littleboy 1998; Ringrose-Voase et al. 2003; Young 1999). This means that more precipitation 
infiltrates into subsoil zones, rather than being used by vegetation (this is ‘deep drainage’). When deep 
drainage exceeds the outflow from either local or regional groundwater systems, the water table will 
rise (often in different parts of the catchment) bringing dissolved soil salts closer to the surface in 
lower parts of the landscape and into the root zone of pastures and crops. Productivity then falls as the 
salinity levels rises beyond their tolerance. Long periods under fallow also expose the soil to risk of 
erosion due to wind and intense summer storms which are common in the region. 
 
Natural resource management strategies to address a number of issues in the catchment, including 
salinity and soil erosion, have been outlined in the Liverpool Plains Catchment Investment Strategy 
(URS, 2001). A classification of Land Management Units based on geology, soil type, landscape 
position, and rainfall was developed. Changes in land use for each land management unit were then 
recommended in the Catchment Investment Strategy including a shift towards opportunity-cropping 
from long-fallow. The latter recommendation was based on research that showed that opportunity-
cropping (using both winter and summer crops) resulted in less surface runoff and less deep drainage 
than conventional cropping such as short fallow winter cropping or the long-fallow rotation (URS, 
2001; Young, 1999). For example, Abbs and Littleboy (1998) applied a cropping systems model 
(PERFECT) to determine deep drainage under different cropping systems. They found that for one 
black earth soil type, a long fallow rotation showed an annual average deep drainage of 48mm, 
compared to 22mm for opportunity cropping. Also, the model estimated that deep drainage events 
occurred in 50% of years under a long fallow system, compared to 29% of years under opportunity 
cropping. However, crop yields and profitability issues were not mentioned in the Abbs & Littleboy 
study. 
 
One of the most important questions that remain concerns the effects of opportunity-cropping on 
profitability, year to year cash flow and deep drainage compared to long-fallow. Farmers require that 
proposed changes to the cropping system are profitable, and it has been shown in past studies that 
perceived profitability and financial considerations is a key, if not the most important factor in 
adoption of ‘conservation’ and/or new practices (Cary and Wilkinson, 1997; Sinden and King, 1990; 
Cary et al, 2002; Marra et al, 2003). In the mid-1990’s, a survey showed that 56% of farmers were 
still using the long fallow wheat-sorghum rotation on the Plains, with 35% undertaking opportunity 
cropping (McLeish and Flavel, 1996).  
 
2. Methods 
 
2.1 Field Experiments and Simulation Modelling  
APSIM was verified against 5 years of comprehensive production and water balance data collected 
from on-farm experiments in the upper Liverpool Plains catchment (Ringrose-Voase et al. 2003). The 
sites were typical of the highly productive Vertosols and the light textured soils on outcropping 
sandstone ridges in the catchment. They were representative of areas previously identified as being 
significant sources of recharge of groundwater which resulted in raised watertables and associated soil 
salinity problems on the alluvial plains (Paydar et al. 1999; Ringrose-Voase et al. 2003; Young 1999). 
The project also involved adapting and validating the APSIM model (McCown et al. 1996; Paydar et 
al. 1999) to represent the soil types and rainfall patterns of various locations across the Liverpool 
Plains. The aim was to quantify the production, nutrient movement and water balance of cropping 
systems with varying lengths of fallow and perennial pastures. The result is a comparative prediction 
of agronomic and deep drainage outcomes for the different cropping systems over a range of climatic 
zones and soil types. Local farmers and advisers ‘sensibility tested’ APSIM output, resulting in 
appropriate changes to model specification, and were also consulted regarding details of model 
specification such as crop varieties and planting times relevant to representative areas within the 
catchment.  



 
Estimates of the long term productivity and water balance of alternative cropping systems were made 
using APSIM specified for crop agronomy, soils and climate zones relevant to the Liverpool Plains. 
The hydraulic properties of 20 soil types suitable for cropping were determined and historic weather 
data for 9 representative climate zones were downloaded from ‘Data Drill’ (Queensland Centre for 
Climate Applications, 1998) from Bureau of Meteorology data (Ringrose-Voase et al. 1999). 
Agronomic, deep drainage and runoff results were generated from the APSIM cropping systems model 
to compare different crop rotations in the Liverpool Plains using rainfall data between 1958 and 1997. 
The reason for using this time span was that reliable temperature data was collected from 1958 
onwards.  
 
Agronomic results were generated from APSIM to compare long-fallow wheat, continuous (short 
fallow) wheat, continuous sorghum and opportunity-cropping systems (defined by a wheat/sorghum 
rotation) on a large range of soil types and climatic zones within the catchment. The continuous wheat 
and continuous sorghum were included to try to gauge the relative impact of each crop on drainage 
and runoff, rather than as realistic crop options. Some form of rotation is necessary to reduce disease 
and weed risks, especially in wheat.  
 
Opportunity cropping was modelled using two different sowing rules as a follow on to the modelling 
results published in Ringrose-Voase et al (2003). Set rates of nitrogen were used in the APSIM model 
for that exercise and it was determined that a further research question of interest was the impact that 
different target rates of soil nitrogen had on both profitability and other key parameters such as 
drainage and runoff. The sowing rules related to depths of moist soil required for a crop to be planted, 
provided that the date is within a ‘sowing window’ (period for sowing suitable for that variety to yield 
adequately). The rules were 50 cm – 70 cm (winter – summer respectively) derived from discussions 
with local farmers in the mid-1990’s (Ringrose-Voase et al, 2003) and 50 cm – 100 cm (from recent 
discussions with local growers (R. Young, pers. comm.) available water capacity1 triggers for planting. 
The nitrogen target rates of interest were 10 kg N/ha, 50 kg N/ha, 100 kg N/ha, 150 kg N/ha and 200 
kg N/ha. These rates were applied to both the opportunity cropping and the long fallow simulations. 
The targets were the preferred rate of available nitrogen rather than a set rate of fertiliser, so the 
amount of fertiliser added would ‘top up’ the soil nitrogen to that level. The required amount of 
fertiliser nitrogen would depend on the yield and protein of the previous crop, or whether there was a 
long fallow to allow for natural nitrogen accumulation. Both experimental and simulated long fallow 
consisted of three phases to emulate the strip cropping systems commonly used for long fallow in the 
Plains (Table 1).  
 

Table 1: Long fallow phases 

Sub-system Year 1 Year 2 Year 3 
Strip 1 Fallow Wheat Sorghum 
Strip 2 Wheat Sorghum Fallow 
Strip 3 Sorghum Fallow Wheat 

 
This analysis focuses on ‘Lever Gully’, a self-mulching, black vertosol found on the lower slopes of 
the Liverpool Ranges. It has a very high clay content throughout the profile, good water entry 
properties and a high available water capacity. It covers approximately 483 square kilometres of the 
Liverpool Plains region (Banks, 1995; Banks 1998). Six climatic zones were suitable for cropping. 
This paper focuses on the climatic zone that represents the greatest proportion of the catchment, the 
Gunnedah zone. Mean annual rainfall is 626mm per year, with a mean evapotranspiration of 1,884 
mm per year and 11.9 frost days on average. Elevation is 306m above sea level on average and the 
zone represents 31.7% of the catchment (Ringrose-Voase et al, 2003).  
 
                                                      
1 A soil’s ‘available water capacity’ is water held between the wilting point and the field capacity (drained upper 
limit). Water that is held in the soil below the wilting point (lower limit) is unavailable to plants. 



2.2 Data Analysis Methods 
The initial analysis uses the mean values of these distributions in making comparisons of alternative 
management strategies. Gross margin budgets were developed based on annual outputs (yield, protein 
content) and inputs (fertiliser, other inputs). These were compared with average deep drainage figures 
and a simple classification of win-win cases is made. This is a deterministic or average-value 
evaluation of crop alternatives. 
 
The next stage of analysis involved looking at the distributions of gross margins and the resultant 
spread of financial returns using Mean-Standard deviation (or E,S) analysis (one alternative dominates 
another if it has a higher mean and lower standard deviation) (Hardaker et al, 1998).  
 
2.2.1 Derivation of gross margins 
The budget results for one of the trial sites from 1995 to 1999 were used to estimate the average wheat 
and sorghum variable costs (excluding nitrogen fertiliser and contract harvesting) as well as summer 
and winter fallow costs (Table 2). For example, the average cost of all of the winter fallow periods 
during the trial was used for winter fallow costs. Machinery assumptions and costs and levies are those 
appropriate to each enterprise under commercial conditions as outlined in Scott (1997 a, b). A gross 
margin is the gross income from an enterprise less the variable costs incurred in achieving it. Variable 
costs are those costs directly attributable to an enterprise and which vary in proportion to the size of an 
enterprise. The gross margin is not gross profit because it does not include fixed or overhead costs such as 
depreciation, interest payments, rates or permanent labour which have to be met regardless of enterprise 
size (Scott 1997 a, b).  

Table 2: Variable costs used in the budgets 

Costs, $/ha  Harvest 
 Basic Up to 2.5 tonnes 

grain/ha 
Increase per tonne 
grain/ha over 2.5 

Wheat 126.34  35.00 15.00 
Sorghum 141.80  40.00 6.30 
Winter fallow 39.70    
Summer fallow 45.50    
Source: Ringrose-Voase et al, 2003. 
 
The same commodity and individual input prices were used over the whole period. This was to 
prevent fluctuations in commodity prices and input prices obscuring rotation effects on the gross 
margins. Wheat prices used were $144 per tonne for 10% protein, $150 per tonne for 11.5% protein, 
and $188 per tonne for 13% protein with an increment of $0.50 per tonne for every 0.1% increase in 
protein within each class. Wheat with less than 10% protein was classed as feed wheat with a price of 
$117 per tonne. The sorghum price used was $130 per tonne. Wheat prices were based on averages 
from AWB Ltd and the sorghum price was based on a 10 year average sourced from ABARE 
(ABARE, 2001).  
 
Nitrogen fertiliser and contract harvest costs were added separately as part of the gross margin 
calculation process. Additionally, a rule was used that if the yield was so low that income would be 
less than the cost of harvest, then the crop would not be harvested. The costs incurred (ie. the resultant 
negative gross margin) would only include the basic costs (Table 2). 
 
2.2.2 Mean- Standard Deviation Analysis 
Mean-standard deviation (E,S) analysis is a variant of mean-variance efficiency analysis; both are 
applicable since the standard deviation is the square root of the variance (Hardaker et al, 1998). Mean-
standard deviation analysis was used to compare the variability of financial returns once they had been 
selected by a win-win condition. The E,S efficiency rule states that, when the degree of risk aversion 
isn’t known, the alternative that has a greater or equal expected value with a lower standard deviation 
is the dominant or preferred choice. In other words, an alternative is preferred for a given mean (or 
expected value) if its standard deviation is less than that of another alternative with the same mean 



(Hardaker et al, 1998). The advantage of using this technique is that only information on the means 
and standard deviations (or variances) are needed. A requirement for the E,S efficiency rule to be exact 
is that the distribution of outcomes (in this case, gross margins) should follow a normal (bell-curve) 
probability distribution centred around the mean, and 99% of values will fall within 3 standard 
deviations of the mean. When the sample outcomes do not best fit a normal probability distribution, 
the E,S efficiency rule is not invalid but it can only be approximate (Hardaker et al, 1998). 
 
2.2.3 Whole Farm budgets 
A steady state whole farm budget was used to estimate the effect upon whole farm returns. The 
budgets are deterministic and static, similar to a linear programming model, in that the selected 
rotation crops and fallow periods are distributed proportionally across the cropping area. Capital 
investment in land and machinery is incorporated, as well as variable and fixed (overhead) costs and 
an estimation of rates of return to capital invested. 
 
The budgets show profit measures such as net farm income and rate of return on assets and operator 
labour, but are not optimising. The profit results of all rotations are listed, rather than the model 
determining the most profitable rotation. The budget depicts returns and enterprise mix for a one year 
period. The rotation selected determines the amount of tractor use per year, which in turn influence 
tractor life and overhead costs. 
 
A combination of improved and native pastures are common on most properties on the Plains (L. 
Serafin, pers. comm. 2003), so for the budget it was assumed that 20% of the farm area would be 
under native pasture (@ 4 DSE/ha) and 40% would be under improved/introduced pasture (@ 8 
DSE/ha), which would be resown every eight years. Pasture maintenance assumed was 125 kg/ha of 
single superphosphate every two years. 
 
Liabilities included are of three types. For each budget, the tractor is assumed to be 3 years old and 
paid off over 10 years. Also, it is assumed that a seasonal loan is required to cover 50% of crop 
variable costs, the amount of this varies from rotation to rotation. Lastly, a term loan amount is 
assumed. A debt per hectare figure was calculated ($325/ha) using ABARE survey data for mean farm 
size and “Farm business debt at June 30”. The debt per hectare figure was multiplied by farm area 
used and the amount owing on the tractor and the seasonal loan for crop variable costs was subtracted 
to determine the term loan amount. 
 
The budget reports various measures such as; 
• Total farm gross margin 
• Net farm income (total farm gross margin less overhead costs) 
• % operating return on total assets and operator labour 
• % business return (net farm income less interest and loan repayments) on equity 
 
Operating return on total assets and operator labour shows the earning rate on all funds and 
management skill, and so provides a guide to the expected earning rate of all resources.  
 
The analysis package @RISK was used to derive distributions of best-fit for wheat and sorghum yields 
from the APSIM output for each cropping system. The distributions were then used in the whole farm 
budgets to determine an estimate of the variability in whole farm returns under the cropping and 
fertiliser systems under comparison. A large number of iterations (5000) of the model were required 
for the results to converge- that is, for the results statistics to change by less than 1.5% between 
iterations. 



 
3. Results  
 
3.1 Gross margin and drainage results 
 
The results show that most of the opportunity cropping options for each nitrogen target rate have a 
greater mean gross margin than long fallow, and lower mean annual combined deep drainage and 
runoff. A 'win-win' comparison table (Table 3) showed that for rates of target nitrogen from 50 to 200, 
the opportunity cropping options both increased mean annual gross margin and reduced mean annual 
drainage and runoff compared to long fallow. The 10 kg N/ha nitrogen target doesn’t meet the ‘win-
win’ criteria. 
 

Table 3: Mean gross margin and deep drainage comparison 

Mean gross margin 10 N 50N 100N 150N 200N 
Long fallow 61 98 161 186 191 
50W-70S 45 197 264 283 289 
50W-100S 47 217 258 251 276 
Drainage  10 N 50N 100N 150N 200N 
Long fallow 89 76 51 38 33 
50W-70S 66 18 9 6 6 
50W-100S 70 20 6 6 7 
Win-win? 10 N 50N 100N 150N 200N 
50W-70S no yes yes yes yes 
50W-100S no yes yes yes yes 
 
Figure 2 shows the comparison of mean gross margin and drainage figures. There is a moderate 
reduction of deep drainage for the opportunity cropping options with a 10 kg N/ha nitrogen target and 
substantial reduction for those nitrogen targets including and above 50 kg N/ha. The two opportunity 
cropping options appear to be reasonably similar in terms of average gross margin and deep drainage. 
Further criteria, such as a comparison of variability and of costs outlined in following sections allows 
additional refinement of the options. 
 



Figure 2: Mean gross margins and deep drainage  
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3.2 Variability 
A key concern of farmers in the region is that opportunity cropping has more variability in gross 
margin returns. Once opportunity cropping options had been chosen using the ‘win-win’ criteria, 
Mean-Standard deviation (E,S) analysis was used as a rule to choose between them. This measure is 
based in the principle that if the expected value of choice X is greater than or equal to choice Y, and 
that the standard deviation of X is less than that of Y, then X is preferred to Y (Hardaker et al, 1998). 
The rule states that one alternative dominates another if it has a higher mean and a lower standard 
deviation. Mean annual gross margin was graphed against standard deviation (Figure 3). Application 
of the E,S efficiency criterion indicates that the E,S efficient set is: 

• 50W-70S 50 kg N/ha target 
• 50W-100S 100 kg N/ha target 
• 50W-100S 150 kg N/ha target 
• 50W-100S 200 kg N/ha target 

 



Figure 3: Mean-standard deviation analysis 
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A comparison of the E,S efficient set of opportunity cropping options with long fallow (Table 4) 
shows that the means for all opportunity cropping options are higher than long fallow for all N targets.  
A t-test was also undertaken to test there is a statistical difference between the long fallow and 
opportunity cropping mean gross margins.  
The null hypothesis used is LFOCH µµ ≤=0 , that is the mean of the opportunity cropping option for 
a particular N target rate is less than or equal to that of the corresponding long fallow option. The 
alternative hypothesis is LFOCAH µµ >= , that is that the mean gross margin opportunity cropping 
rotation is greater than that of the corresponding long fallow. Using the test statistic for each N target 
rate; 

ns
X

t
/

0* µ−
=  

where X = mean gross margin for each N target rate, s = standard deviation, n = number of years 
 
Using α = 0.025, null hypothesis will be rejected if the test statistic t* is greater than the critical value 
of 2.021 
The results for each N target rate were;  

• 50 kg N/ha    t* = 5.36, reject H0 
• 100 kg N/ha  t* = 2.81, reject H0 
• 150 kg N/ha   t* = 2.15, reject H0 
• 200 kg N/ha t* = 2.28, reject H0 

So we can conclude from this that the opportunity cropping options do have a statistically higher 
average gross margin than the long fallow options. 
 
When the coefficients of variation are compared (Table 4), the opportunity cropping options for 100, 
150 and 200 kg N/ha show a higher relative variation than the corresponding long fallow options, with 
the coefficient for opportunity cropping with 50 kg target N/ha being very similar to the one for long 



fallow. This indicates that the variability of opportunity cropping gross margins is higher on average 
for N target rates including and above 100 kg N/ha. However, profitability is also substantially higher. 
 

Table 4: Comparison of E,S efficient set with long fallow 

 Long fallow  E,S efficient set of opportunity crop options 
N target Mean SD Coefficient 

of variation
Planting Rule Mean SD Coefficient 

of variation 
50       94  74             79% 50W-70S 217 168  77% 

100 156  106             68% 50W-100S 264 261  105% 
150 179  131             73% 50W-100S 283 274  104% 
200 183  137             75% 50W-100S  289 284  111% 

 
  
3.3 Costs 
Another area of concern for growers is the higher variable costs of opportunity cropping systems.  
Figure 4 shows a comparison of average gross margin against variable cost as adapted from 
methodology on marginal and dominance analysis used by CIMMYT (1988). Dominance analysis 
compares the variable costs with the gross margin, showing the increase in costs required to gain a 
given increase in gross margin. Treatments were first listed in order of increasing variable costs. Any 
treatment that had a total gross margin less than (or equal to) those of a treatment with lower total 
variable costs is dominated. Therefore, dominated treatments have a lower extra gross margin per unit 
of extra costs than other treatments (CIMMYT, 1988). 

Figure 4: Comparison of gross margins against variable cost 
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The higher input costs though are mainly attributable to a higher cropping frequency. The crop 
frequency (Table 5) of opportunity cropping is almost double that of long fallow wheat/sorghum. Also 
as discussed in the previous section, the standard deviations of the gross margins for opportunity 
cropping were lower than those for long fallow. 



 

Table 5: Cropping frequency over 40 years (crops in 40 years) 

Treatment 10 50 100 150 200 
Mean 50W_70S 50  48  48 46 44 
Mean 50W_100S 47  49  44 39 39 
Mean LF 25  25  25 25 25 
 
 
3.4 Whole Farm analysis 
The opportunity cropping rotations in the whole farm budget were set at the proportion of two-thirds 
sorghum/one third wheat.  
 
Wheat and sorghum yields and wheat proteins for both the opportunity cropping and long fallow 
options were taken from distributions derived from the APSIM yield output. The analysis package 
@RISK was used to derive the distribution that best fit the yield and protein output data according to 
the Chi-square test (Palisade, 2000). These distributions were then truncated so they could not return a 
value below zero since a negative yield or protein would be nonsensical. A simulation of 5000 
iterations was run for each opportunity cropping and long fallow options. This was required to ensure 
the descriptive statistics of the output distributions did not vary more than 1.5% from on iteration to 
the next, indicating the results were stable.  
 
The results are summarised in Figure 5. The opportunity cropping options showed better returns on a 
whole farm basis for all nitrogen targets except for the 10 kg N/ha target. The E,S analysis and a 
comparison of variable costs against gross margin didn’t show much difference between the 150 and 
200 kg N/ha nitrogen targets, but the whole farm budget showed lower returns for the 200 kg N/ha 
target. The reason for the lower returns appears to be a combination of higher costs and slightly lower 
crop frequency for the 200 kg N/ha target. On this basis it appears as though the 150 kg N/ha target 
would be the most profitable option in the long term.  
 

Figure 5: Whole farm results using derived yield distributions 
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The software package also returned probability distributions for each result. One set (for the 50w-100s 
rule for the 150 kg N/ha target) is shown in Figure 6 as an example. There is only a 5% chance of 
obtaining a zero return on assets and operator labour in this case.  



Figure 6: Probability Distributions for opportunity cropping 50W-100S, 150 kg N/ha 
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 Distribution for % return on total assets and operator labour
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Figure 7 shows the underlying probability distribution, this was a BetaGeneral (Palisade, 2000) 
distribution, slightly skewed to the left. The distributions of return for the 150N opportunity cropping 
option compare favourably to the equivalent long fallow system (Figure 8). The averages for the 
opportunity cropping option were considerably higher than for the long fallow option. 
 



Figure 7: Underlying distribution for OC 150N for return on assets 
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Figure 8: Probability Distributions for Long Fallow, 150 kg N/ha target 
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4. Discussion 
 
Several opportunity cropping and nitrogen target scenarios were found that improved mean annual 
gross margin and reduced mean annual deep drainage when compared to long fallow. Basic gross 
margin and drainage comparisons and mean-standard deviation analysis were used to select a set of 
four opportunity cropping/nitrogen target options. There were 50W-70S 50 kg N/ha, 50W-100S 100 
kg N/ha, 50W-100S 150 kg N/ha, and 50W-100S 200 kg N/ha. A t-test was used to confirm that these 
four options did have statistically higher mean gross margins than the equivalent long fallow options. 

 
A comparison of the coefficients of variation showed that the opportunity cropping rotation for the 50 
kg N/ha target was similar to that of the long fallow. The other opportunity cropping options showed 
larger coefficients of variation than that of the long fallow options, hence they have a higher relative 
variation than that of long fallow. This indicates that the concerns of growers about opportunity 
cropping being a more variable option than that of long fallow have validity. 
 
Most opportunity cropping scenarios also had higher mean annual variable costs than long fallow, 
although this was driven by a higher cropping frequency.  
 
This approach shows that for this hypothetical farm, the change to opportunity cropping using the 
50W-100S planting rule and nitrogen target of 150 kg N/ha would be the most profitable and reduce 
deep drainage significantly.  
 
An evident occurrence in these results is the relative flatness of the whole farm returns near the 
maximum (Figure 5). This implies there may be a reasonably wide margin of error and that a nitrogen 
target rate of between 125 kg and 175 N/ha would capture 90% of the benefits from the change to an 
opportunity crop planting rule of 50 cm soil moisture for winter crops and 1 metre for summer crops. 
 
Ultimately, it is the individual grower’s attitude to risk that will determine whether they decide to 
make the change from the traditional long fallow wheat-sorghum strip cropping system to opportunity 
cropping based on soil moisture and soil nitrogen levels. The results shown here do provide useful 
information to growers about the likely variability of each system compared to the other. The issue 
remains that these results are drawn from yields generated by a computer model as opposed to real 
world measurements. Therefore results such as this should be combined with some case study data 
from growers’ experiences in the field to deliver a comprehensive extension message. 
 
5. Conclusion 
 
Opportunity cropping as represented by a wheat/sorghum rotation had improved profitability and 
reduced drainage and runoff compared to a set long fallow strip cropping system. Added fertiliser 
nitrogen to achieve a soil nitrogen target amount also had a positive impact on returns. The optimal 
amount appeared to be 150 kg N/ha for this soil type. 
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