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Abstract

We analyze the effects of prior gain and loss experiences on individuals’ behavior in two 
coordination games: battle of the sexes and simultaneous market entry. We propose
subjectively transformed games that integrate elements of prospect theory, aggregation of 
prior and subsequent payoffs, and social projection. Mathematical predictions of behavior are 
derived based on equilibrium selection concepts. Males’ behavior in our experimental studies 
is largely consistent with our predictions. However, the behavior of many female respondents 
appears to be rather consistent with interpreting the initial random lottery outcomes used to 
manipulate prior experiences as a signal for the players’ abilities to compete. This could be 
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related to females’ known uneasiness of competing against counterparts that might be male 
and thus, a generally higher salience of rivalry in our incentivized experiments. Females also 
chose to play far more mixed strategies than males indicating some uncertainty about what 
type of behavior is appropriate.

Keywords: Prospect Game Theory, Prior Outcomes, Coordination, Equilibrium 
Selection, Economic Experiment

Zusammenfassung

Wir präsent ieren eine Verhaltensvariante der Spieltheorie, die auf der Wertfunktion der Pro-
spekttheorie, dem Aggregationsprinzip und auf sozialer Projektion beruht. Gleichgewichts-
vorhersagen basieren auf einer Anwendung der allgemeinen Gleichgewichtsauswahltheorie 
von Harsani und Selten. Unsere mathematischen Verhaltensvorhersagen werden mittels
zweier Experimente zum battle of the sexes und zum simultanen Markteintritt getestet. Das 
Verhalten männlicher Probanden stimmt weitgehend mit unseren Vorhersagen überein.
Dagegen scheinen weibliche Probanden die Ergebnisse der Zufallszuweisung von Gewinnen 
und Verlusten als Signale für die Wettbewerbsfähigkeit der Spieler zu interpretieren. Dies 
könnte damit zusammenhängen, dass Frauen sich in Wettbewerbssituationen, in denen die 
Mitspieler männlich sein könnten, unwohl fühlen – und einer damit einhergehenden Betonung 
des „Wettbewerbsaspektes“ unserer mit monetären Anreizen ausgestatteten Experimente.
Frauen benutzen außerdem wesentlich mehr gemischte Strategien als Männer. Letzteres
scheint eine Unsicherheit darüber anzudeuten, welche Verhaltensweisen in unseren Experi-
menten angemessen sind.

Schlüsselwörter: Prospekt-Spieltheorie, Vorerfahrungen, Koordination, 
Gleichgewichtsauswahl, ökonomisches Experiment
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1. Introduction

There is ample experimental and field evidence for the large effects of individuals’ prior gain 
and loss experiences on subsequent choices in non-strategic decisions (Bowman 1980, 1982;
Fiegenbaum and Thomas 1988; Fiegenbaum 1990; Shefrin and Statman 1985; Weber and 
Camerer 1998; Thaler and Johnson 1990; Myagkov and Plott 1997; Weber and Zuchel 2005).
These behaviors are often argued to be consistent with the convex-concave property of 
prospect theory’s value function (Kahneman and Tversky 1979; Tversky and Kahneman 
1992; Wakker amd Tversky 1993), context dependent preferences (Tversky and Simonson 
1993; Tversky and Kahneman 1991), and aggregation of prior experiences with future
(potential) outcomes (Thaler 1985; Thaler and Johnson 1990).

Interestingly, an explicit mathematical analysis of the effects of individuals’ prior gain and 
loss experiences integrating concepts in line with prospect theory is still missing for behavior
in strategic games.. This paper aims at developing a mathematical model based on
psychological and game-theoretic concepts that closes that gap for the case of coordination 
problems and tests the predictions experimentally. Studying symmetric coordination problems 
such as battle of the sexes (BOS) and simultaneous market entry (ME) is especially
interesting. Experimentally, gain and loss experiences have either not been studied in such 
coordination situations or all players shared the same experience (only for ME: Rapoport et al. 
1998). However, individuals’ behavior in symmetric situations is hard to predict; often, such 
predictions are made employing (rule) learning models that are applied to behavior in games 
with feedback that are played over multiple rounds (see, e.g., Camerer and Ho 1998; Stahl and 
Haruvy 2002). Prior gain and loss experiences are also realistic – there is no individual 
decision without ‘history’ –, they may be an important way to ‘break the symmetry’, and 
hence may help individuals to coordinate.

Underlying our mathematical treatment are the following four basic premises:

(1) Prior gain and loss experiences are reflected in a subjective transformation of payoffs 
according to a reference-dependent value function (Tversky and Kahneman 1991, 1992;
Kahneman and Tversky 1979; for games see also: Shalev 2000; Fehr and Schmidt 1999).

(2) Prior gains and losses and subsequent outcomes may be processed in an aggregated form
(Thaler and Johnson 1990; Weber and Camerer 1998).

(3) In a strategic game, players presume the same behavioral patterns of others that they 
would themselves exhibit, i.e. the same reaction to prior outcomes. This is consistent with 
the in social psychology well-established phenomenon of social projection (Allport 1924;
Festinger 1954; Orive 1988; Krueger 2000).

(4) Individuals behave consistent with the general equilibrium point selection theory of
Harsanyi and Selten (1988), specifically, with the selection criteria of perfectness and
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risk-dominance. Both assumptions can be motivated theoretically as well as empirically 
(e.g. Harsanyi 1995a, Selten 1995, Güth 2002, and Cabrales, Garcia-Fontes and Motta 
2000).1

The experimental studies test our theoretical predictions by implementing prior gain and loss 
experiences before BOS and ME games. Gain and loss experiences are assigned randomly 
and with real payments at the beginning of the experiment. Players are then confronted with 
multiple rounds of the respective game and with all possible gain/neutral/loss experiences of 
their counterparts, about whom they are informed. Since mixed strategy play has to be 
expected in coordination games, we explicitly elicit such strategies. Respondents are given the 
chance to make use of a randomizing device similar to Anderhub, Engelmann and Güth 
(2002), a procedure referred to as explicit randomization in the literature Camerer (2003).

We find that, consistent with our formal analysis, male respondents seem to aggregate prior 
and subsequent outcomes, seem to play subjectively transformed games, and select pure 
equilibrium points in situations when the prior experiences of the players are different. Many
female respondents, however, behave in a way that is inconsistent with our model. First,
whereas both males and females take advantage of the possibility of explicit mixing, females 
use it twice as often than males. Indeed, females play mixed strategies surprisingly often in 
asymmetric situations where we expected respondents to play a pure strategy. This might 
indicate some uncertainty as to what behavior to expect from the others. Second, females only 
sometimes choose the pure strategies we predicted in those asymmetric situations; but quite
often they choose the other one. Overall, females’ behavior appears to be consistent with 
being in conflict with the reasoning proposed by our model and perceiving our incentivized 
experiments as some sort of a rivalry where the random allocation of prior gains are
interpreted in terms of signals for the players’ abilities to compete. The latter is somewhat 
plausible because of females’ known uneasiness to ‘compete’ against counterparts that might 
be males (Gneezy, Niederle, and Rustichini 2003; Niederle and Vesterlund 2007).

The remainder of the paper is organized as follows. In the next section we introduce the 
mathematical framework of subjectively transformed games after gain and loss experiences.
Sections 3 and 4 theoretically and experimentally ana lyze the BOS and ME games,
respectively. Each of these sections starts with equilibrium predictions based on our formal 
framework. We then elaborate on the specifics of the experimental designs and report on the 
findings. In Section 5, we offer a discussion and propose avenues for future research.

1 For the case of incomplete information, see Cabrales, Nagel, and Armenter (2007). 



Coordination after gains and losses: Is prospect theory’s value function predictive for games? 3

SiAg-Working Paper 8 (2010); HU Berlin

2. Subjective Transformation of Games After Prior Experiences 
(TAP Games)

In this section we introduce our theoretical framework of subjectively transformed games for 
the case of prior gain and loss experiences, using standard game theoretic terminology.

Our approach is based on specific assumptions about the processing of prior gain and loss 
experiences and additional payoffs (Aggregation), the evaluation of such amounts (Transfor-
mation), and the assumptions players make on the subjective payoffs of their counterparts 
(Social Projection). Incorporating these assumptions into the class of normal form games, we 
are finally able to define a new class: TAP Games.

2.1 Transformation and common knowledge

According to (cumulative) prospect theory (Kahneman and Tversky 1979; Tversky and
Kahneman 1992; Wakker and Tversky 1993), individuals’ evaluation of monetary payments 
can be reflected by a reference-dependent value function :v →� � (Davies and Satchell
2007; Wakker and Zank 2002), where (0) 0v =  is the reference point and for , 0α λ > :

(1)
,            if 0

( )
( ) , if 0

z z
v z

z z

α

αλ
⎧ ≥

= ⎨
− ⋅ − <⎩

.

Estimations of the parameters for a median decision maker led to 0.88α ≈ and 2.25λ ≈
(Tversky and Kahneman 1992). This value function is strictly convex (which implies risk-
proneness) in the loss domain (i.e. for 0z < ) and strictly concave (which implies risk-
aversion) in the gain domain (i.e. for 0z ≥ ). A 1λ >  implies loss aversion.

For the sake of generality2, we postulate concave ( concavev ) and convex ( convexv ) functions 
(where (0) (0) 0concave convexv v= = ) and a loss aversion parameter λ  where ( ) ( ) 0v z v zλ − + <  (if 

0z > ), for { },concave convexv v v∈ , and v  is assumed to be strictly increasing and defined as

(2)
( ),                           if 0;

( )
( ) ( ), if 0.

concave

convex concave

v z z
v z

v z v z zλ
⎧ ≥

= ⎨
= − ⋅ − <⎩

It is an important issue how to ensure common knowledge, a mathematical prerequisite of 
solving our strategic games, when the assumed parameters are general. 3  In a standard game 
theoretic treatment, a solution to this problem would require assuming the same parameter 

2 The general requirements of our definition reflect the original approach of e.g. Tversky and Kahneman 
(1992), Kahnemann and Tversky (1984), Wakker and Deneffe (1996), and Abdellaoui (2000), who are more 
interested in describing “qualitative” risk attitudes than finding an “exact” parameterized mathematical value 
function.

3 We are grateful for an anonymous referee for pointing out this issue to us. This enabled us to better clarify 
this contribution of our paper. 
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values for all respondents; this could, e.g., be implemented by assuming that all players are 
characterized by roughly those values that Tversky and Kahneman (1992) have reported for a 
median decision maker (see above).

Our treatment, however, is more subtle. We basically assume that each decision maker plays 
his or her own subjective game. If a decision maker has parameter values of, say, 0.72α ≈
and 3.10λ ≈ , he or she assumes the counterparts to have the same values because of social
projection (for more details, see 2.3) and solves his or her subjective game accordingly. Or in 
other words, there is no need to think of a game solution as requiring two or three decision 
makers having congruent expectations. It is sufficient to require that the individual decision 
maker assumes the others to be alike.

2.2 Aggregation

If prior gain or loss experiences exist and are taken into account in the evaluation of
subsequent payments, we assume that an experience and a payment will be added together.
Formally, in the case of aggregation, the evaluation of an experience je ∈�  with a
subsequent payoff x∈�  by an individual j is simply reflected by a transformation

:
jeF × →� � � , where ( ) : ( )

je jF x v e x= +  and v is the value function defined in (2). In the 

case of no recent experience ( 0je = ), in the following also referred to as a “neutral
experience,” or if the individual segregates the amounts (this means, that the individual
“ignores” the experience), this expression is reduced to 0 ( ) ( )F x v x= .

2.3 Social Projection

We assume that a player will presume her anonymous counterparts to behave in the same way 
as she would behave if she was in the counterparts’ situation. This assumption is consistent 
with fundamental findings from social psychology. Specifically, whenever individuals come
from a similar social group, social projection leads to the above similarity presumption of 
counterparts’ attitudes and behavior (Allport 1924, Festinger 1954, Krueger 2000): “When a 
person reacts to (forms an opinion about) an opinion object, he or she has the tendency to 
project or attribute that response to others who may or may not be present” (Orive 1988, 953-
954).

Applied to the context of a strategic game, when a player in a game with anonymous 
counterparts forms an opinion about the whole game, she has the tendency to expect the other 
players to form the same opinion. In our case, each player should expect the same reaction 
pattern (after gains and losses) from others that she would exhibit herself. Moreover, each 
player should expect his or her own value function’s parameter values to also apply to the 
counterpart(s) ensuring a special form of ‘common’ knowledge within each subjective game 
(see also 2.1).
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2.4 TAP Games

Using all of the above assumptions, we are now able to characterize a subjectively
transformed game. Let ( )1 1,..., ; ,...,n nG S S U U=  be a noncooperative n − player coordination 
game in standard form (i.e. :jU S → �  are payoff4 realizations of a pure strategy vector 

1

n

jj
s S S

=
∈ = × , and jS  are strategy sets for player 1,...,j n= ) and let the players have made 

recent experiences je , then all players 1,...,j n=  consider the game

( )
11 1,..., ; ( ),..., ( )

nTAP n e e nG S S F U F U= . TAPG  differs from the original game G  only in the fact 

that the objective payoff jU  is replaced by the subjective payoff evaluation of player j :
( ) ( )

je j j jF U v e U= +  for all 1,...,j n= . In other words, all players i take the recent experiences 

je  of player j into account but transform the payoff according to the value function v , defined 
in (2). Each player also assumes the counterpart(s) to be described by the same parameter
values that apply to her. The abbreviation TAP results from the fact that our approach is based 
on the concepts of payoff Transformation with respect to Aggregation and on social
Projection.

Game-theoretic solutions for TAP games may be different from solutions of untransformed 
(normative) games. However, the following statements5 are very easy to verify and therefore 
will be stated without (complete) proofs: First, since payoff transformations according to 

jeF

are real numbers again, and the ‘common’ knowledge requirement about (subjective) payoffs 
will be satisfied by the social projection hypothesis (all players i “know” their own 

ieF  and 
the

jeF  of all the other players j), it follows e.g. from Theorem 1 in Nash, (1951):

LEMMA 1: A game TAPG  has (at least) one equilibrium point in mixed strategies.

Second, since payoff-transformations
jeF  in TAP Games are monotone increasing in x, it 

follows:

LEMMA 2: The strategy vector s S∈�  is a pure strategy equilibrium of the game G , if and 
only if, it is a pure strategy equilibrium of the game TAPG .

LEMMA 3: A pure strategy equilibrium 1s S∈�  payoff-dominates a pure strategy equilibrium 
2s S∈�  in the game G , if and only if, 1s S∈�  payoff-dominates 2s S∈�  in the 

game TAPG .

4 Payments received during or at the end of a game are called payoffs. 
5 For (formal) definitions of the respective terms see for instance Harsanyi and Selten (1988).
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In general, for a game with multiple pure strategy equilibria a number of so-called equilibrium 
point selection theories exist (Harsanyi and Selten 1988, Güth 1992, Harsanyi 1995a,
Harsanyi 1995b, Selten 1995 and Güth 2002), that all try to suggest final solutions for such a 
game. Common to all these theories is the requirement to apply a solution procedure only on a 
subset of equilibrium points that are called perfect (Selten 1975).

Further selection criteria are risk-dominance and payoff-dominance (Harsanyi and Selten 
1988). We will experimentally test the TAP approach for games with multiple pure strategy 
equilibria. In our games, no pure strategy equilibrium payoff-dominates another, and it hence
follows from LEMMA 2 and LEMMA 3 that payoff-dominance (Harsanyi and Selten 1988) 
cannot become the relevant selection criterion6. Instead, according to the general equilibrium 
point selection theory of Harsanyi and Selten (1988), we have to analyze our games with
respect to risk-dominance. APPENDIX D provides two simple examples to illustrate the
intention of perfectness and risk-dominance7, and shortly discusses methods to elicit game-
playing behavior if mixed strategies are the (theoretical) solution of a game.

3. Analysis of Battle Of The Sexes 

The standard BOS for two players i  and j  is defined as ( ), , ,i j i jBOS S S U U=  where

(3) { },i j
i i iS s s=  and { },i j

j j jS s s= ,

and payoffs for 0 x y< < :

(4)
, if ( , );

( ) , if ( , );
0,              else;

i i
i j
j j

i i j

y s s s
U s x s s s

⎧ =
⎪

= =⎨
⎪
⎩

 and 
, if ( , );

( ) , if ( , );
0,             else;

j j
i j
i i

j i j

y s s s
U s x s s s

⎧ =
⎪

= =⎨
⎪
⎩

,

and, normative ly, the only unique solution for this game is mixing among the pure perfect 
strategy equilibria ( , )i i i

i js s s=�  and ( , )j j j
i js s s=� . Let ip  denote the probability of playing i

is

for player i, and let jp  denote the probability of playing j
js  for player j. Then the mixed 

strategy equilibrium points are given by ( ,1 )i
i jp p p= −� � �  and (1 , )j

i jp p p= −� � � , where

i j
yp p

y x
= =

+
� � .

6 This fact also prevents the discussion, whether risk- or payoff-dominance has the priority within equilibrium 
selection theory. Whereas Harsanyi and Selten´s 1988 approach focusses on payoff dominance, modern 
theories (Harsanyi 1995a, Ha rsanyi 1995b, Selten 1995 and Güth 2002) see in risk-dominance the more 
important criterion.

7 For formal definitions see e.g. Harsanyi and Selten (1988).
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3.1 Equilibrium Forecasts for the TAP Game

For { }, , ,i j G N L∈ , where G identifies a player with a gain experience Ge , N identifies a 
player with a “neutral” – in the sense of zero prior outcomes – experience 0Ne = , and L
identifies a player with a loss experience Le , the respective TAP BOS has to be rewritten by

(5) ( ), ; ( ), ( )
i jTAP i j e i e jBOS S S F U F U= ,

where the subjective payoff is defined by 

(6) ( )
( ), if ( , );

( ) ( ), if ( , );
( ),             else;

i

i i
i i j

j j
e i i i j

i

v e y s s s
F U s v e x s s s

v e

⎧ + =
⎪

= + =⎨
⎪
⎩

 and ( )
( ), if ( , );

( ) ( ), if ( , );
( ),             else.

j

j j
j i j

i i
e j j i j

j

v e y s s s
F U s v e x s s s

v e

⎧ + =
⎪

= + =⎨
⎪
⎩

According to LEMMA 2, the pure strategy equilibria are again ( , )i i i
i js s s=�  and ( , )j j j

i js s s=� ,
which are both perfect, and according to LEMMA 3 there is no payoff-dominance relationship 
between is�  and js� . Additionally, one can derive a complete mixed strategy equilibrium and a
Transformed Mixed Nash Equilibrium (TMNE). For the probability ip�  of player i  for is� and
for the probability jp�  of player j  for js�  this is characterized by:

(7)
( ) ( )

( ) ( ) 2 ( )
j j

i
j j j

v e y v e
p

v e y v e x v e
+ −

=
+ + + −

�  and ( ) ( )
( ) ( ) 2 ( )

i i
j

i i i

v e y v ep
v e y v e x v e

+ −
=

+ + + −
� .

REMARK 1. Note, that (7) implies a difference between a mixed Nash equilibrium according to 
the standard BOS and the mixed Nash equilibrium for the transformation via prospect
theory’s value function (with or without aggregation).

Let ( , )i j  be a player combination (player i with a prior experience ie  interacts with player j
with a prior experience je ). Consider the case that both players have the same experience 

{ }, ,i j G N L= ∈ . Here, TAPBOS  is symmetrical, and neither is� risk dominates js�  nor the
other way around. Therefore, it follows from Harsanyi and Selten (1988):

PROPOSITION 1: Let the player combinations ( , )G G , ( , )N N , and ( , )L L  be given. According
to the criterion of risk-dominance the complete mixed equilibrium according to (7) will be 
selected.

Now, for TAPBOS , we fix L Ge e y= = . For asymmetric player combinations it holds:

PROPOSITION 2: Let the player combinations ( , )L G  and ( , )L N  be given. According to the 
criterion of risk-dominance the pure strategy equilibrium Ls�  will be selected.

PROOF: See Appendix B.
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To derive a prediction for the player combination ( , )G N  and to be able to compute 
boundaries minp  and maxp  for ( )max

, min ,i jp p p∈� of (7), it is necessarry to specify the value 

function defined in (2). This will be done applying the behavioral assumptions in section 2 
with a minimum loss in generality. In the following, we use the class of exponential
functions8:

(8)
( 1),       if 0;

( )
( 1),      if 0.

z

z

e z
v z

e z

α

αλ

−⎧− − ≥
= ⎨

⋅ − <⎩

where (0, )α ∈ +∞  is assumed to be individual specific.

PROPOSITION 3: Let the player combinations ( , )G N  be given and v be defined as in (8).
According to the criterion of risk-dominance the complete mixed equilibrium according to (7)
will be selected.

PROOF: Implementing exponential transformations according to (8) and recalcula ting the 
Nash-products, then both Nash-products are equal. According to Harsanyi and Selten (1988), 
the equilibrium in complete mixed strategies has to be selected.

Q.E.D.

REMARK 2. The insertion of (8) into (7) leads to the possibility to compute limits for 0α →
and α →∞  for the symmetric player combinations and for player combination ( , )G N , which 
forms the base for later analyses.

3.2 Experimental Implementation

The BOS experiment was conducted using the software Z-Tree (Fischbacher 1999, 2001) and 
carried out in an experimental laboratory in a large European city mostly with economics and 
management students ( 168n = , 63 female and 105 male respondents). The students were
recruited at different universities in a major European city using flyers, posters, and class 
room announcements. A minimum of six, a maximum of twelve students participated in an 
experimental session. Everyone received an upfront compensation of EUR 11 (approximately 
USD 15) for the duration of about one hour. A simple and transparent random device, a bingo 
cage with twelve numbered balls, was used to put the students in experimental conditions by 
creating prior outcome experiences. For each student, a ball was drawn without replacement.
If a number ranging from one to four was drawn, the respective student incurred a loss of 

8 First, there is evidence for a good approximation of outcome evaluation according to prospect theory by an 
exponential value function (Currim and Sarin 1989; Smidts 1997, and Beetsma and Schotman 2001). But it is 
shown by Zank (2001), that an exponential value function also satisfies the requirements of axiomatic 
(cumulative) prospect theory. Second, in section 3.3 and 4.3 we compare the results with alternative
approaches with respect to the curvature of v. For these comparisons it is necessary to consider value 
functions that are concave in the loss and convex in the gain domain, but stem from the same class.
Obviously (only) exponential functions can satisfy this requirement. For a very general approach modeling 
reference dependencies see also Bleichrodt 2007.
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EUR 9, if a number ranging from five to eight was drawn, the student neither lost nor earned 
anything, and if a number ranging from nine to twelve was drawn, the student incurred a gain 
of EUR 9 (i.e., 9Le = − , 9Ge =  and 0Ne = ). Respondents were told that the gain or loss 
would be added to or subtracted from their experimental account determining their total 
payoff at the end of the experiments. This was done to keep the experience salient over the 
course of the entire experiment. 

Participants were then informed that they would play a game with one opponent who was 
randomly selected out of all subjects by the computer and reselected each round. Learning
was not possible since feedback about the outcome of previous rounds was not provided 
throughout the experiment  (random rematching without feedback). In order to have the
respondents play all different player-type combinations at least once, each respondent had to 
play multiple rounds. In each round, the player was informed about the “type” of his opponent 
(i.e. initial payoff experience). The subjects were informed that one of the rounds played will 
be randomly selected by the computer for each participant and represents the basis for their 
final payout from the experiment. The outcomes in the BOS were specified with 3x =  and 

9y = . No comprehension tests were carried out because of the relative simplicity of the task. 
No experimental currency but the actual EUR amounts were used in the experimental
instructions.

To be able to analyze the behavior and to test our model, respondents were allowed to state 
mixed strategies. Specifically, they had to determine the number of A (strategy 1) and B 
(strategy 2) balls in a 100-ball urn; the computer picked one of the strategies randomly, and 
the probabilities for this random draw were directly derived from the number of A’s and B’s 
in the urn. Each of our 168 respondents played twelve rounds. Each game consisted of two 
players and 168 12 0.5 1008⋅ ⋅ =  games were played resulting in 2016 measured decisions. The
average session lasted 60 minutes. This included the first ten minutes during which the 
experiment was explained both verbally and on the screen. On average, twenty minutes were 
spent with responding to questions after the experiment.

3.3 Experimental Findings

Since there is empirical evidence for differences in the behavior of females and males in a
variety of decision situations (e.g. Byrnes, Miller and Schafer 1999; Eckel and Grossman 
2002; Eckel and Grossman 2005; Fehr-Duda, de Gennaro, and Schubert 2006), and because 
we quickly became aware of pronounced gender differences also in our two experiments and
games, we report our findings by gender.

The focus of our report lays in the investigation of subjects’ strategy choices. If one assumes 
that there exists a theory A and a theory B, and there are choice events AE  and BE  identifying
these (alternative) theories, then a common procedure to verify one of both theories is (e.g. in 
an experiment) to count the number of AE - and BE -choices, and to test these numbers against 
a uniform distribution (e.g. Camerer 1989; Battalio, Kagel, and Jiranyakul 1990). If for one of 
the theories the number of choices is significantly greater, the respective theory is recognized 
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as being verified (and the respective other theory is recognized as falsified). Taking under 
consideration that the number of choice events for A may differ from the number of choice 
events for B, we analyze our dataset in this spirit.

In Tables 1 and 4 the forecasts resulting from the concept of risk-dominance and based on the 
TAP approach are stated in percent with respect to the strategy choices. If risk-dominance
selects a pure strategy equilibrium corresponding with a 0% or 100% choice of the respective 
strategy, the case is marked with “RDTAP ”. Thereby, the percentage for a strategy choice is 
given from the perspective of playing the strategy of player i for the equilibrium is� ,

{ }, ,i G N L∈ (see also section 3.1.). For instance, for the combination ( , )L G  and the situation 
“L vs. G” and according to PROPOSITION 2, the loser (L) has to play the strategy L

Ls  for the 
equilibrium Ls�  with 100%. For the combination ( , )L G  and the situation “G vs. L” and 
according to PROPOSITION 2, the winner (G) has to play the strategy G

Gs  for the equilibrium 
Gs�  with 0%. In other words, the players have to coordinate in the pure equilibrium, which 

will be “preferred” by the loser. For the combination ( , )L N  and the situation “L vs. N” and 
according to PROPOSITION 2, the loser (L) has to play the strategy L

Ls  for the equilibrium Ls�
with 100%. For the combination ( , )L N  and the situation “N vs. L” and according to
PROPOSITION 2, the neutral (N) has to play the strategy N

Ns  for the equilibrium Ns�  with 0%.
Also, here the players have to coordinate in the pure equilibrium, which will be “preferred” by 
the loser.

For the symmetric combinations (Table 4) and ( , )G N  we have (analytically or numerically) 
derived the respective limits based on exponential value functions (see section 3.1.) and 
depending on the specific payoffs in the experiment: 3x = , 9Le = − , and 9Ge y= = . Those
predictions fall into the interval9 [51%,99%]  and are presented as the Transformed Mixed
Nash Equilibrium (TMNE). (Here, people had to mix between 51% and 99%.)  Additionally, 
for the sake of comparison, the Symmetric Mixed Nash Equilibrium (SMNE), i.e. the standard 
Nash equilibrium with untransformed payoff functions, is presented: It coincides with 75%.

9 It depends on the slope of the value function (concave versus convex) whether mixing takes place in the 
interval [51%,74%] or the interval [76%,99%]. For instance, for the combination ( , )G N  the insertation 

according to REMARK 2 gives the possibility to derive limits depending on the cases “ 0α → ”  and
“α →∞ ” using the specific payoffs from the game 3x =  and 9y = . We obtain for the equilibrium 
probabilities:

1 1,
2 2

y x
G

y x y x
e ep

e e e e

α α

α α α α

− −

− − − −

⎛ ⎞− −
∈⎜ ⎟− − − −⎝ ⎠

�  and 1 1,
2 2

x y
N

y x y x
e ep

e e e e

α α

α α α α

− −

− − − −

⎛ ⎞− −
∈ ⎜ ⎟− − − −⎝ ⎠

� .

Now, limit analyses for the cases “ 0α → ” and  “α →∞ ” reveal that either both players have to mix 
within [51%,74%] or both players have to mix within [76%,99%]. (Note, that we still assume that both 
players are characterized by the same α .) Similar results will be found analysing symmetric combinations. 
Therefore, for simplicity and keeping the results in mind, we leave out an exact differentiation and 
identification and refer to all scores on the interval [51%,99%] as „mixing.“
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In the following we want to investigate, whether real strategy choices correspond with the 
predictions for ip�  and jp�  (the probabilities for earning the higher payoff in the game).

Due to the specific predictions for asymmetric combinations we split the full length of the 
interval [0%,100%]  into the subsets

(9) {0%} [1%,50%] [51%,74%] {75%} [76%,99%] {100%}∪ ∪ ∪ ∪ ∪ ,

and for symmetric combinations into the subsets

(10) { }[0%,50%] {100%} [51%,74%] {75%} [76%,99%]∪ ∪ ∪ ∪ .

For the presentation of the results we used the following measure: We analyze strategy
choices for a specific subset or interval I  with length Il . If strategy choices were equally 
distributed, the measured number of choices Im  in I  would be equal to the expected number 
of choices I In P⋅ , where In  is the total number of choices in a specific player combination 

and
101

I
I

lP =  is the probability that one choice falls into I . Therefore, we define for an 

interval I  (which corresponds with the respective cases from Table 1) the measure
I

I
I I

mr
n P

=
⋅

, which is the ratio between the observed number of choices and the expected 

number of choices. In the case of a uniform distribution of choices, Ir  would be equal to one.
Furthermore, 1Ir >  supports the underlying case in the corresponding interval. If 1Ir < , there 
are less choices than there would be if strategies were equally distributed and the respective 
case has no support. Additionally, for each case (i.e. L vs. G, G vs. L etc.) we tested the 

empirical distribution of strategy choices 1

1

,..., k

k

mm
n n

⎡ ⎤
⎢ ⎥
⎣ ⎦

 against the distribution 1 ,...,
101 101

kll⎡ ⎤
⎢ ⎥⎣ ⎦

( {6,4}k ∈ ) implied by a uniform distribution about the entire interval [0%,100%] by running 
2χ -analyses. These tests are significant 10 at a 0.01p < -level. This means that some intervals 

will be more often empirically frequented than implied by a uniform distribution about the 
entire interval [0%,100%], and some subsets will be less often empirically frequented than 
implied by a uniform distribution about the entire interval [0%,100%].

Ratios identifying the cases from Tables 1 and 4 are presented in Tables 2 – 3 and 5 – 6. The 
respective maxima of Ir  are printed in bold, and if the maxima coincide with a specific 
prediction the maxima are highlighted with a grey shadow. For instance, for L vs. G in Table 
3 the number 48.45Ir =  reflects the fact that about 48 times more strategy choices coincide 
with losers’ pure strategy selection (100% for Ls� ) than were expected, assuming a uniform

10 In the case where no strategy choice coincides with a specific subset, the 2χ -test cannot be applied (see
Hope 1968; Patefield 1981). However, particulary in this case, the null hypothesis of an exp ectation based on 
a uniform distribution has to be rejected.
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distribution about the entire interval [0%,100%]. Here, the prediction based on TAP receives 
the highest support.

For all asymmetric situations containing one loser, the behavior of male players is consistent 
with predictions “RDTAP ” (Tables 1 and 3). Females’ behavior is only consistent with
predictions “RDTAP” in ( , )L G  and ( , )L N (Tables 1 and 2).

Additionally, we analytically checked predictions 11 (resulting from an equilibrium point
selection based on risk-dominance) according to alternative hypotheses of player behavior. In
detail, we assumed different value functions of the following forms: A value function, 
representing risk proneness in the loss as well as in the gain domain:

(11)
( ),      if 0;

( )
( ), if 0.

convex

convex

v z z
v z

v z zλ
⎧ ≥

= ⎨
⋅ <⎩

A value function, representing risk aversion in the loss as well as in the gain domain:

(12)
( ),      if 0;

( )
( ), if 0.

concave

concave

v z z
v z

v z zλ
⎧ ≥

= ⎨
⋅ <⎩

A value function, representing a converse curvature compared to the value function, defined 
in (2):

(13)
( ),                            if 0;

( )
( ) ( ), if 0.

convex

concave convex

v z z
v z

v z v z zλ
⎧ ≥

= ⎨
= − ⋅ − <⎩

We further distinguished with respect to loss aversion and loss proneness.

For (11) and (12) and exponential transformations according to (8), the result of the analyses 
(for all player combinations) is the TMNE, and selection hypotheses based on risk proneness
and risk aversion in the loss as well as in the gain domain have to be rejected.

For (13) and loss aversion, the forecast is opposite to the prediction of PROPOSITION 2: In 
combination ( , )L G  and according to the criterion of risk-dominance, the pure strategy
equilibrium Gs� will be selected. In combination ( , )L N  and according to the criterion of risk-
dominance the pure strategy equilibrium Ns�  will be selected. We find tendencies for such a 
prediction in the behavior of females (see Table 2).

In the symmetric combinations and ( , )L G  the behavior does not coinc ide with the prediction
according to the TMNE. Therefore it has to be rejected. Instead, the behavior of females, and 
in ( , )N N  for males, supports a forecast according to the SMNE (Tables 5 and 6).

11 The extensive analyses are available from the authors upon request.
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Summarizing, we find that whenever the prediction according to “RDTAP ” implies a pure 
strategy choice, this forecast is valid for male losers as well as winners. For females only 
losers act according to “RDTAP ”, whereas winners behave according to risk-dominance  in 
connection with TAP but with a value function that is concave in the loss and convex in the 
gain domain.

If the prediction implies mixing according to the TMNE, this forecast has to be fully rejected 
for females. For them, playing according to the SMNE (consistent with being unaffected by 
prior gain or loss experiences) has to be accepted for symmetric combinations. With males, 
however, actual behavior comes close to the prediction: When randomizing between 76% and 
99% is predicted (for G vs. N and for N vs. G), the pure strategy (100%) equilibrium is played 
instead. Altogether our predictions nearly perfectly hold for male respondents. However,
female respondents’ behavior deviates in various ways. The overall behavioral pattern of 
females in the asymmetric situations exhibits one simple characteristic, however: Females 
have a tendency to play their preferred equilibrium, regardless of whether this is predicted by 
our theory or not.

Table 1: Equilibrium forecasts for assym. combinations in the game TAPBOS

0% 1% -50% 51% -74% 75% 76% -99% 100%

L    vs.    G RDTAP

G    vs.    L RDTAP

L    vs.    N RDTAP

N    vs.    L RDTAP

G    vs.    N TMNE TMNE

N    vs.    G TMNE

SMNE

TMNE

Table 2: Ratios Ir  for asymm. combinations in the game TAPBOS , female

0% 1% -50% 51% -74% 75% 76% -99% 100%

L    vs.    G 2.66 0.74 1.11 5.32 0.72 11.96

G    vs.    L 11.11 0.48 1.14 4.04 0.80 15.15

L    vs.    N 3.84 0.82 0.91 6.39 0.75 10.23

N    vs.    L 13.37 0.83 0.12 2.97 0.56 26.74

G    vs.    N 3.12 0.50 1.17 10.41 0.69 17.70

N    vs.    G 4.75 0.48 0.89 7.13 0.69 27.33
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Table 3: Ratios Ir  for assymm. combinations in the game TAPBOS , male

0% 1% -50% 51% -74% 75% 76% -99% 100%

L    vs.    G 4.78 0.35 0.97 2.73 0.17 48.45

G    vs.    L 33.40 0.72 0.34 1.63 0.34 13.85

L    vs.    N 6.27 0.42 0.58 4.88 0.70 38.31

N    vs.    L 36.90 0.54 0.51 1.29 0.49 11.65

G    vs.    N 8.75 0.87 0.56 0.00 0.36 26.24

N    vs.    G 5.81 0.20 0.36 5.81 0.94 47.69

Table 4: Equilibrium forecasts for symm. combinations in the game TAPBOS

1% -50%

100%
51% -74% 75% 76% -99%

G    vs.    G TMNE TMNE

N    vs.    N TMNE TMNE

L    vs.    L TMNE

SMNE

TMNE

Table 5: Ratios Ir  for symm. combinations in the game TAPBOS , female

1% -50%

100%
51% -74% 75% 76% -99%

G    vs.    G 0.94 0.97 5.55 0.97

N    vs.    N 1.23 0.48 10.45 0.63

L    vs.    L 0.96 0.69 2.77 1.33

Table 6: Ratios Ir  for symm. combinations in the  game TAPBOS , male

1% -50%

100%
51% -74% 75% 76% -99%

G    vs.    G 1.61 0.47 0.76 0.22

N    vs.    N 1.40 0.22 3.69 0.80

L    vs.    L 1.53 0.17 8.03 0.39
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4. Analysis of Simultaneous Market Entry 

In a three player simultaneous market entry game each player { , , } { , , }l i j k G N L∈ ∈  has the 
same strategy set { }0 1{0,1} ,l l lS s s= = , where “1” stands for “entering the market” and “0” 

stands for “staying out.” For the vector ( , , )i j ks s s s=  of pure strategy combina tions and 0z >
the payoff is defined as

(2 ( )), if 1
0,                 if 0

l
l

l

z m s s
U

s
− =⎧

= ⎨
=⎩

, (14)

where the number of players who actually enter the market is defined as ( ) i j km s s s s= + + .

4.1 Equilibrium Forecasts

For { }, , , ,i j k G N L∈ , the respective TAP ME can be written by 

(15) ( ), , ; ( ), ( ), ( )
i j kTAP i j k e i e j e kME S S S F U F U F U= ,

where for { , , }l i j k∈

(16) ( ) ( )(2 ( )) , if 1;
( )

( ),                       if 0.l

l l
e l

l l

v z m s e s
F U s

v e s
⎧ − + =

= ⎨
=⎩

This is equivalent to

(17) ( ) ( )(2 ( )) ( ), if 1;
: ( )

0,  if 0.l

l l l
l e l

l

v z m s e v e s
u F U s

s
⎧ − + − =

= = ⎨
=⎩

If we choose Le z= − , 0Ne = , and Ge z= , it is (in connection with LEMMA 2) easy to verify 
that games with a payoff defined by (16) as well as games with a payoff defined by (14) have 
the same structure of equilibrium points: Three pure strategy equilibria in which one player 
enters the market and two players stay out (denoted by ,  { , , }ls l i j k∈� , where the l’th player 
enters), three pure strategy equilibria in which two players enter the market and one player 
stays out (denoted by ,  { , , }ls l i j k− ∈� , where the l’th player stays out), one equilibrium in 
complete mixed strategies (denoted by p� , the probability for entering the market), and a 
continuum of equilibria in which one player enters the market, one player stays out, and one
player plays mixed strategies: For a standard equilibrium analysis see e.g. Duffy and Hopkins 
(2005).

To receive equilibrium forecasts, we apply the general equilibrium point selection theory of
Harsanyi and Selten (1988). The application of this theory requires the consideration of a so-
called ε -perturbed form of TAPME  denoted with TAPME ε . An ε -perturbed game has to be 
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irreducible (for a definition see Harsanyi and Selten 1988): One can easily verify that the 
game TAPME ε  is irreducible because it is not decomposable, does not contain inferior
strategies, and does not contain duplicate or semiduplicate strategies.

Given an irreducible game, the further application of Harsanyi and Selten’s theory (1988, p. 
222) requires the analysis of special substructures of the game, called primitive formations. In
the case of the considered ME game, primitive formations are identical with strict equilibrium 
points of TAPME ε , or in other words with perfect equilibria of the game TAPME . If there is only 
one strict equilibrium in TAPME ε , this point coincides with the solution. This will be the case in 
the asymmetric player combinations ( , , )L G G , ( , , )L L G , ( , , )L L N , and ( , , )L N N .

If there is more than one strict equilibrium, according to the definition in Harsanyi and Selten 
(1988, p. 223), one has to check pairwise the dominance relationships between such points.
Since the criterion of payoff-dominance in TAPME ε  is irrelevant for all possible player
combinations, only the criterion of risk-dominance defined according to Harsanyi and Selten 
(1988, p. 223) has to be considered. The respective tool in Harsanyi and Selten’s theory 
(1988) is the logarithmic tracing procedure, which has to be applied to the set of strict 
equilibria. According to Theorem 4.13.1 (Harsanyi and Selten 1988, p. 173), this procedure is 
always feasible, well defined, and its outcome is always unique. Since the number of players 
is greater than two, the application of the logarithmic tracing procedure requires the
multinomial equations to be analytically solved (see (4.13.5) – (4.13.7) in Harsanyi and Selten 
1988, p. 167-168). This is impossible, particularly for a function defined in (2). However, in 
the player combinations ( , , )G N N  and ( , , )G G N  only two solution candidates remain. If the 
set of risk-undominated equilibria contains more than one element, a substitution step that 
applies the tracing procedure using a special prior distribution, the centroid, is required.
Fortunately, we do not have to apply the tracing procedure directly. Due to Theorem 4.13.1
(Harsanyi and Selten 1988, p. 173), the logarithmic tracing procedure always selects a unique
risk-undominated equilibrium. Based on the argument of uniqueness we can solve all cases 
for the symmetric player combinations in terms of the TMNE.

Now, we determine the unique TMNE of the game TAPME :

PROPOSITION 3: Let Le z= − , 0Ne =  and Ge z= . The transformed mixed Nash equilibrium 
strategy of player j in the game TAPME  is given by

(18)
1

( ) ( ) ( )
1

( ) ( ) ( )
i k j

j
i k j

u z u z u z
p

u z u z u z

−
⎡ ⎤− −

= +⎢ ⎥
− −⎢ ⎥⎣ ⎦

� , where

(19) ( ) ( ) ( )l l lu z v z e v e− = − + −  and ( ) ( ) ( )l l lu z v z e v e= + − , for { , , }l i j k∈ .

PROOF: See Appendix C.
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REMARK 2. Again, we obtain a difference between the mixed Nash equilibrium according to 
the standard game ME and the mixed Nash equilibrium for the transformation via prospect 
theory’s value function (with or without aggregation).

PROPOSITION 4: Let the player combinations ( , , )G G G , ( , , )N N N , and ( , , )L L L  be given.
According to the criterion of risk-dominance the complete mixed equilibrium according to 
(18) will be selected.

PROOF: See Appendix C.

PROPOSITION 5: Let the player combinations ( , , )L j k (and ( ), ,L L k ) for { }, ,j k G N∈ be
given. In the game TAPME  only the equilibrium point Ls� ( ls−� , { , }l G N∈ ) is perfect, and 
therefore  will be selected.

PROOF: See Appendix C.

PROPOSITION 6: Let the player combination ( , , )G N N  (and ( ), ,G G N ) be given. According to 
the equilibrium point selection theory of Harsanyi and Selten in the game TAPME  either 

Gs� ( Ns� ) or the transformed mixed Nash equilibrium will be selected.

PROOF: See Appendix C.

According to the computation of limits in the forecast for equilibrium play in the game 
TAPBOS  we insert (8) into (17). Now it is possible to derive predictions for the symmetric 

combinations and ( , , )G N N  and ( , , )G G N .

4.2 Experimental Implementation

The ME experiment was conducted using the software Z-Tree (Fischbacher 1999, 2001) and 
carried out in an experimental laboratory at the same university mostly with economics and 
management students. The recruiting procedure was the same as with BOS. We conducted 13 
sessions; nine students participated in each of them, resulting in a total of 117=n  participants
(51 female, 66 male). Each received an upfront compensation of EUR 14 (approximately
USD 19).

A transparent bingo cage with nine numbered balls was used in the same way as in the BOS 
to put the students in different experimental conditions based on prior outcome experiences.
For each student a ball was drawn without replacement. If a number ranging from one to three 
was drawn, the respective student incurred a loss of EUR 6. If a number ranging from four to 
six was drawn, the student ne ither lost nor earned anything. If a number ranging from seven to 
nine was drawn, the student incurred a gain of EUR 6. Like in the BOS, these amounts were 
not directly paid out or collected. Subjects repeatedly played a market entry game with z = 6.
All other features were identical to the BOS experiment (i.e. random rematching without 
feedback), but the instructions were adapted to the different game. The nine respondents in 13 
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sessions each played 29 rounds leading to a total of 3393 decisions. The mean duration of a 
session was again approximately one hour of which the first ten minutes were spent
explaining the experiment (both verbally and on the screen). About ten minutes were spent 
with answering questions after the experiment. No comprehension tests were carried out 
because of the straightforward tasks. No artificial experimental currency but the actual EUR 
amounts were used in the experimental instructions.

4.3 Experimental Findings

According to the analyses of the BOS game, in Tables 7 and 9 the forecasts resulting from the
TAP approach are stated with respect to the strategy choices in percent.

If perfectness selects a pure strategy equilibrium, corresponding to a 0% or 100% choice of 
the respective strategy, the case is marked with “PTAP ”; if risk-dominance selects a pure 
equilibrium, it is marked with “RDTAP ”. Thereby, the percentage for a strategy choice is given 
from the perspective of playing the strategy of player i for market entry. For instance, for the 
combination ( , , )G L L  and the situation “G vs. LL” and according to PROPOSITION 5 the 
winner (G) has to play the strategy for market entry with 0%, and in the situation “L vs. GL”
and according to PROPOSITION 5 the loser (L) has to play the strategy for market entry with 
100%. In other words, the losers should enter the market and the winner stays out. 

For the symmetric combinations (Table 10) and ( , , )G N N  and ( , , )G G N  we have
(analytically) derived respective limits based on exponential value functions (see section 3.1.),
depending on the specific amounts of the experiment: 6z = , 6Le = − , and 6Ge = .

Those predictions lie in the interval [1%,99%]  and are again presented as the transformed 
mixed Nash equilibrium (TMNE) (here, people had to mix between 51% and 99%).
Additionally, as an alternative, the symmetric mixed Nash equilibrium (SMNE) is presented: 
it coincides with 50%.

Due to the specific predictions for asymmetric and symmetric combinations we split the full 
length of the interval [0%,100%]  into the subsets

(20) {0%} [1%,49%] {50%} [51%,99%] {100%}∪ ∪ ∪ ∪ .

Similar to the BOS-study, we tested the empirical distribution of strategy choices against the 
expected distribution of strategy choices assuming a uniform distribution about [0%,100%] by 
running 2χ -analyses. These tests are again significant at a 0.01p < -level.

Again, ratios identifying the cases from Tables 7 and 10 are presented in Tables 8 – 9 and 
11 – 12. The respective maxima of Ir  are printed in bold, and if the maxima coinc ide with a 
specific prediction the maxima are highlighted with a grey shadow.

For all asymmetric situations, the behavior of male players is consistent with predictions 
“PTAP ” (Tables 7 – 8). Females’ behavior is only partly consistent with predictions “PTAP ”:
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See ( , , )G N G  and ( , , )N G G  in Tables 7 and 9. Moreover, there are strong tendencies for 
playing the SMNE.

We additionally analyzed predictions 12 (resulting from an equilibrium point selection based 
on perfectness and risk-dominance) according to alternative hypotheses of player behavior.
We derived predictions for equilibrium selection for value functions according to (11) – (13) 
(see section 3.3), and for loss aversion as well as loss proneness. According to perfectness in 
combinations of ( , , )G L L  and ( , , )G N L , the pure strategy equilibrium Gs�  will be selected, 
and in combinations of ( , , )L N L , ( , , )L G G , and ( , , )L G N , the pure strategy equilibrium Ls−�
will be selected. Therefore, in these combinations females’ behavior (Table 9) coincides with 
a value function that is concave in the loss and convex in the gain domain.

In the symmetric combinations, except in ( , , )N N N  for females, there are no tendencies for 
playing the SMNE as well as TMNE.

Summarizing the results, we find that the predictions according to “PTAP ” are validated for 
males. For females there are some tendencies to behave according to perfectness in
connection with TAP but with a value function that is concave in the loss and convex in the 
gain domain. For females and asymmetric combinations, mixing according to the SMNE 
seems also to be a good predictor. In symmetric combinations the hypothesis that males as 
well as females play according to the TMNE or SMNE has to be rejected.

12 The extensive analyses are available from the authors upon request.
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Table 7: Equilibrium forecasts for assym. combinations in the game TAPME

0% 1% -49% 50% 51% -99% 100%

G   vs.  LL PTAP

G   vs.  NL PTAP

G   vs.  GL PTAP

G   vs.  NG RDTAP TMNE TMNE

G   vs.  NN TMNE TMNE RDTAP

N   vs.  LL PTAP

N   vs.  NL PTAP

N   vs.  GL PTAP

N   vs.  NG RDTAP TMNE TMNE
N   vs.  GG TMNE TMNE RDTAP

L    vs.  NL PTAP

L    vs.  GL PTAP

L    vs.  NG PTAP

L    vs.  GG PTAP

L    vs.  GN

SMNE

PTAP

Table 8: Ratios Ir  for asymm. combinations in the game TAPME , male

0% 1% -49% 50% 51% -99% 100%

G   vs.  LL 39.98 0.18 0.00 0.56 23.15

G   vs.  NL 28.76 0.63 5.61 0.46 14.03
G   vs.  GL 30.64 0.58 14.75 0.39 9.08

G   vs.  NG 25.25 0.81 6.31 0.37 10.52

G   vs.  NN 37.88 0.61 16.83 0.13 10.52

N   vs.  LL 37.63 0.42 5.94 0.40 17.82

N   vs.  NL 32.68 0.52 5.94 0.55 9.90

N   vs.  GL 41.58 0.52 14.52 0.26 5.94

N   vs.  NG 33.67 0.65 7.92 0.24 10.89
N   vs.  GG 13.68 0.29 11.88 0.12 13.86

L    vs.  NL 9.95 0.38 14.54 0.50 37.49

L    vs.  GL 6.12 0.30 22.19 0.31 42.85

L    vs.  NG 7.14 0.28 10.20 0.54 41.32
L    vs.  GG 8.56 0.27 0.00 0.49 53.07

L    vs.  GN 6.12 0.34 10.71 0.56 41.32
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Table 9: Ratios Ir  for asymm. combinations in the game TAPME , female

0% 1% -49% 50% 51% -99% 100%

G   vs.  LL 13.86 0.38 13.86 0,53 33.67

G   vs.  NL 13.20 0.48 7.92 0.77 19.80

G   vs.  GL 24.97 0.40 28.37 0.46 6.81

G   vs.  NG 27.73 1.00 6.93 0.20 6.93

G   vs.  NN 21.78 0.65 17.82 0.36 11.88

N   vs.  LL 4.81 0.38 19.24 0.93 16.63

N   vs.  NL 6.01 0.74 19.24 0.64 8.42

N   vs.  GL 6.41 0.74 28.86 0.43 8.02

N   vs.  NG 9.62 0.78 15.63 0.52 14.43

N   vs.  GG 9.62 1.14 4.81 0.20 19.24

L    vs.  NL 13.47 0.32 8.42 1.03 8.42

L    vs.  GL 0.00 0.32 28.62 1.03 3.37

L    vs.  NG 11.22 0.78 13.47 0.62 2.24

L    vs.  GG 29.93 0.47 3.74 0.69 3.74

L    vs.  GN 16.83 0.58 10.10 0.69 6.73

Table 10: Equilibrium forecasts for symm. combinations in the game TAPME

0% 1% -49% 50% 51% -99% 100%

G   vs.  GG TMNE TMNE

N   vs.  NN TMNE TMNE

L   vs.   LL TMNE

SMNE

TMNE

Table 11: Ratios Ir  for symm. combinations in the game TAPME , male

0% 1% -49% 50% 51% -99% 100%

G   vs.  GG 31.56 0.49 0.00 0.32 31.56

N   vs.  NN 35.56 0.54 11.88 0.42 2.97

L   vs.   LL 22.95 0.36 11.48 0.37 32.14
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Table 12: Ratios Ir  for symm. combinations in the game TAPME , female

0% 1% -49% 50% 51% -99% 100%

G   vs.  GG 38.62 0.82 5.94 0.18 14.85

N   vs.  NN 3.61 0.63 28.86 0.52 14.43

L   vs.   LL 10.10 0.32 10.10 0.93 15.15

5. Discussion and Implications

The long discussion section will be concerned with the main question whether prospect 
theory’s value function generalizes to games (5.1.), with the behavioral differences we
observed between female and male respondents (5.2.), the prior evidence on mixed strategy 
play (5.3.), focal points and fairness as potential alternative explanations of our findings
(5.4.), and finally implications for future research (5.5).

5.1 Does prospect theory’s value function generalize to games?

This main question of the study has to be answered separately for the case of predictions in 
pure strategies, i.e., for the interesting player combinations where at least one but not all 
players are losers, and for predictions in mixed strategies (in the remaining cases).

Starting with the latter, according to remarks 1 and 2 (see sections 3 and 4), mixed
equilibrium play – either for individuals aggregating or segregating payoffs (i.e., taking into 
account or not taking into account prior experiences) – should differ for individuals applying 
prospect theory’s value function and individuals not applying prospect theory’s value
function. For mixed strategy predictions, our results are not consistent with individuals 
applying prospect theory’s value function. Potential reasons for a discrepancy between our 
theoretical predictions and the observed behavior will be discussed in the light of selected 
studies on mixed strategy play in section 5.3.

Our predictions in pure strategies, however, could be confirmed, most straightforward for 
male respondents. Indeed, males’ behavior in the cases where at least one player (but not all 
players) made a loss experience is remarkably close to our predictions. Male players seem to 
aggregate prior outcomes with (potential) subsequent payoffs; their behavior is consistent 
with social projection, equilibrium selection, and with the convex-concave property of
prospect theory’s value function. Female respondents also seem to behave according to most 
premises of our theory, but females’ behavior would imply that a reversed curvature of the 
value function has to be applied. Females’ behavior with different prior outcomes was also 
less pronounced than the behavior of males. Alternative reasons for the differences between 
males’ and females’ behavior are therefore discussed in the following subsection.

Thus, prospect theory’s value function partially generalizes to games.
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5.2 Gender Effects

Female respondents played twice as many mixed strategies than males and often chose the 
pure strategy not predicted by our model. Females’ behavior could differ from the behavior of 
males because risk preferences could differ. Heinemann, Nagel, and Ockenfels (2004) were 
able to verify an effect of risk propensity on behavior in coordination games and on outcomes.
Also, various studies report on differences between females and males with respect to risk 
preferences (Byrnes et al. 1999; Gupta, Poulsen and Villeval 2005; Maccoby and Jacklin 
1974; Magnan and Hinsz 2005). However, the results reported in these studies are somewhat
heterogeneous. Moreover, risk propensity was measured in our experiments, and no
difference between male and female respondents could be observed.13 Consequently, an
explanation for behavioral differences between males and females in our experiments might 
not be provided based on risk preferences.

The frequent use of mixed strategies by female respondents could indicate some uncertainty
about what type of behavior to expect from the counterparts. This could be consistent with a 
violation of our social projection hypothesis – in the sense that by applying social projection, 
there is no uncertainty about the others’ behavior – as well as with a conflict on part of the 
females as to what behavioral ‘model’ to apply in our coordination games. Indeed, several
studies show that social projection is far less important for women than men (e.g. Karniol, 
Gabay, Ochion and  Harari 1998; Knudson-Martin 1994).14 But what type of behavioral
‘model’ might be conflicting with the TAP approach on part of the female respondents, and 
does this model also explain the fact that many females exhibit a behavioral pattern opposite 
to what we expected based on the TAP approach?

Females’ oftentimes reversed reaction to prior gains and losses might imply that prior gains 
and losses are interpreted in a way different from what has been assumed by prospect theory 
and within our TAP approach. Specifically, even though allocated based on a visual random 
device, females might have associated losing or winning with some sort of signal indicating a 
respondent’s relative ‘ability’ to compete. To illustrate, when playing against two winners in 
ME and being in a loss situation themselves, male respondents predominantly choose market 
entry, consistent with the TAP prediction (see Tab. 8). On the contrary, females
predominantly opted to stay out in this situation (Tab. 9). Many female respondents might 
have argued with themselves in the following way: “I have been assigned the position of a 
‘loser’, and the other two have been assigned the position of ‘winners’. So they are ‘better’ 
players. This indicates that in this situation, they are designated to compete whereas I am 
designated not to compete.” If this reasoning were socially projected, those female
respondents might have derived a subjective equilibrium different from our TAP prediction
and played accordingly.

13 The analyses are available from the first author upon request. 
14 There is also evidence that reaction patterns of females toward others generally differ significantly from 

those of males (Day and Livingstone 2003; Hutson-Comeaux and Kelly 2002; Kimble and Hirt 2005;
McCray, King and Bailly 2005; Rotundo 2004).
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Why could females’ perception of our experimental situation differ so much from the
perception by the males? Although not directly related, recent findings from experimental 
economics demonstrate that men and women have different preferences for competition in 
general and specifically for competition against men and women. 15 An important result from 
the experimental research on competition is that women tend to shy away from it, especially 
with males whereas males do not shy away from competition and do not react differently to 
male and female opponents (Niederle and Vesterlund 2007; Gneezy, Niederle, and Rustichini 
2003).

Since our experiments where carried out in mixed groups of males and females with the 
gender of the counterpart(s) in the games unrevealed to the players, players were faced with 
an uncertain situation: It was unclear in a specific experimental round, whether they were 
playing against males or females. Whereas the gender of the counterpart(s) is rather
unimportant to males and competition nothing exceptional, the ‘rivalry’ aspect of experiments 
implementing real monetary incentives could have been a salient aspect for females. This
might have led to the unexpected interpretation of the prior random outcomes by females and, 
since in conflict with the interpretation suggested by the TAP approach perhaps even on a 
individual level, to a pronounced uncertainty as to what type of situation they are in, what 
type of behavior to be expected from the counterpart(s) and hence, what responses to choose.

The latter interpretation is especially suggestive when looking at females’ behavior in the 
asymmetric situations of the market entry game but also holds for the other scenarios to some 
extent. Here, a market entry probability of 50% appeared to be an extremely frequent
response across all situations, and pure strategy play was somewhat balanced between 0% and 
100% in many situations (see Tab. 9).

5.3 Prior Evidence on Mixed Strategy Play and Mental Accounting

Bloomfield (1994), Ochs (1995), and Shachat (2002) allowed the participants to explicitly
mix and the game-theoretic prediction also was the play of the SMNE. Most of the
respondents in these studies did not show the predicted behavior; instead they played pure 
strategies or selected mixtures inconsistent with the SMNE (see also Camerer 2003, p. 142).
A striking similarity between our findings and those of Bloomfield (1994), Ochs (1995), and 
Shachat (2002) can be observed when investigating our symmetric situations (e.g., ( , , )G G G
in Table 11). Here, hardly any of the male respondents plays the SMNE, but the average 
strategy is the SMNE. Note that our symmetric situations closely resemble the game
situations  investigated by these authors. Hence, a potential reason for discrepancies between 
our mixed strategy predictions and the observed behavior might be the fact that people are 
unwilling or unable to explicitly mix, instead of a rejection of basic premises of our theory.

According to early mental accounting experiments on non-strategic and non-risky situations, 
multiple gains will be segregated (Thaler 1985). This proposition can be tested in the relevant 

15 We are grateful to Sabrina Boewe who suggested this line of reasoning to us. 
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mixed equilibrium prediction scenarios in BOS, i.e., for ( , )N N , G vs. N, and N vs. G
situations (Tables 5 and 6). We observe pronounced differences between ( , )N N , G vs. N, and 
N vs. G situations so that a consistent behavior was not observed. This seems to contradict the 
general proposition based on Thaler’s early approach. However, our overall behavioral
tendencies after gain experiences are consistent with other empirical studies on risky
situations where prior outcomes are always aggregated with subsequent outcomes (e.g. Weber 
and Camerer 1998).

5.4 Focal points and fairness as alternative explanations?

An alternative explanation for the behavior observed in our experiments is fairness (e.g., 
Bolton and Ockenfels 2000) or inequity aversion (e.g., Fehr and Schmidt 1999). However,
fairness may be a less plausible behavior to be observed in a competitive setup such as the 
ME game. Since behavioral patterns are strikingly similar between BOS and ME, this may be 
seen as first evidence against a fairness reinterpretation of our findings . Furthermore, we are 
not aware of any application of existing fairness models to the case of potential losses and/or 
prior gain and loss experiences. We nevertheless applied the Fehr and Schmidt (1999) model 
of inequity aversion to our games (when prior and subsequent outcomes are fully aggregated).
However, the model fails to predict the behavior in the ME game. In fact, the equilibrium 
forecasts coincide with the normative game theoretic prediction. 16

Another alternative explanation that should be considered with respect to equilibrium
selection in coordination games is provided by focal points (Schelling 1960; for a formal 
representation of a focal point theory see Casajus 2001). According to Schelling, certain 
equilibria may be salient because the labels of the corresponding strategies are interpreted by 
large parts of the population as “suggesting themselves,” e.g., meeting in New York City 
implies meeting at 12 noon at the information desk of Grand Central (see also Mehta, 
Starmer, and Sugden 1994). However, a simple form of this  theory does not help in our setup.
A central prediction of our approach supported by experimental data is the dependence of 
strategy choices on the combination of gain and loss experiences of the players. If certain 
strategies’ labels would suggest these strategies as “natural,” the salient equilibria would be 
the same independent of any differences in the combination of prior experiences of the 
players. For example, a player in BOS should select the same strategy (and perceive the same 
equilibrium as salient) irrespective of whether she is playing against a loss or a gain player. 
We expected and observed just the opposite.

A more complex alternative explanation in terms of focal points would be an application of 
fairness considerations to combinations of different gain and loss experiences of players. E.g.,
a ‘fairness norm’ could imply that losers are to be supported by granting them access to their 
preferred equilibrium. However, norms such as fairness are „local“ concepts (Biccieri 1999). 
They do not generalize between games. Blanco, Engelmann and Hormann (2007) have 
demonstrated that individuals’ other-regarding preferences differ between situations. Hence,

16 The calculations are available from the first author upon request. 
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fairness as a basis of possible focal points in a coordination game may not be a general 
concept. Or in other words, what may be a focal point in game A may not be a focal point in 
game B. The consistency of behavior across games having such a different appeal to fairness 
norms like a two-person BOS and a three person ME would be quite surprising. Furthermore,
fairness norm considerations are in sharp contrast to the behavior of females in our
experiment who do not grant the loser access to her preferred equilibrium but rather behave in 
the opposite way. Why should only males obey to a certain social norm and make it a focal 
point?

5.5 Implications and Future Research

Our experimental findings offer an exciting avenue for a large number of future studies on 
females’ behavior in our type of coordination games. The next step to be taken would be 
carrying out experiments where experimental sessions are either run with only females or only 
males. We would expect that the behavior of male respondents would not change substantially 
but that the behavior of females would. In fact, we would expect females to be more in tune 
with our theoretical predictions when the possibility of ‘competing’ against male respondents 
is precluded by the mere fact that only female respondents can be observed in the laboratory.
When males are absent, the competitive ‘flavor’ of the experiments might become less salient 
to the females. Consequently, wining or losing in the initial lottery might not be
(re-)interpreted in terms of abilities to compete. Thus we would expect them to be more in
tune with the TAP approach. Another avenue to be taken is running the experiments in mixed 
groups but communicating the gender of the counterpart(s). The disadvantage of such a 
design might be demand effects to this type of information, however, the advantage would be 
to also understand behavior in mixed groups of counterparts – when playing against a male 
and a female, e.g., in a market entry game.

Another way to directly test (a) the social projection hypothesis and (b) the behavioral
‘model’ that different respondents might have would be the explicit elicitation of beliefs about 
the opponents’ behavior after different prio r experiences in each round of the game. We did 
not ask for such beliefs because we were afraid that this might affect the respondents’
behavior too much. Or in other words, our ‘no feedback’ plus ‘no beliefs’ setup sacrificed the 
possibility of testing the validity of our social projection premise and different behavioral 
models for the sake of having a ‘clean’ representation of individuals’ behavior after gains and 
losses. A study concentrating on that hypothesis might want to choose the opposite approach.
We would expect that the higher uncertainty of females with respect to the behavior expected 
from the counterparts would show up in such a study. Another step would involve a
combination of the above experiments on different gender compositions and on communi-
cating gender of the counterpart(s) with the approach of eliciting beliefs. This could answer 
the question whether females expect different behaviors from males than females.

The mathematical representation of individuals’ strategic behavior in BOS and ME games via 
an implementation of prospect theory’s value function is a first step, only, toward a ‘prospect 
game theory’. From the perspective of a further development of such an approach in the field 
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of mathematical psychology, the most important next step is to generalize our approach to 
different classes of games.

Another important step would be implementing the entire prospect theory by also integrating 
probability weighting. Mathematically, this is a non-trivial endeavor. The major difficulty
here is the existence of equilibria when the probability weighting functions of all players enter 
the calculation. Also, are probabilities that implicitly arise within a strategic game (endo-
genous risk) weighted in the same way as probabilities that individua ls are confronted with in 
a situation with exogenous risks (games against ‘nature’ with given probabilities)?
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Appendix A: Fundamentals

The mathematical basis for the respective derivations is the following 

LEMMA 1: Let nI ⊆ � . For each function : Iφ → �  the following conditions i) – v) are equivalent:

i) The function φ  is strictly concave (strictly convex).

ii) For all , ,a b t I∈  where a t b< <  the following holds:

( ) ( )( ) ( ) ( ) ( )b at a t a
b a

φ φφ φ −
> < + −

−
.

iii) For all , ,a b t I∈  where a t b< <  the following holds:

( ) ( ) ( ) ( )( )t a b a
t a b a

φ φ φ φ− −
> <

− −
.

iv) For all , ,a b t I∈  where a t b< <  the following holds:

( ) ( ) ( ) ( )( )b a b t
b a b t

φ φ φ φ− −
> <

− −
.

v) For all , ,a b t I∈  where a t b< <  the following holds:

( ) ( ) ( ) ( )( )t a b t
t a b t

φ φ φ φ− −
> <

− −
.

vi) For all ,a b I∈  and all (0,1)α ∈

( (1 ) ) ( ) ( ) (1 ) ( ).a b a bφ α α α φ α φ⋅ + − ⋅ > < ⋅ + − ⋅



32 Christian Schade, Andreas Schroeder, Kai Oliver Krause

SiAg-Working Paper 8 (2010); HU Berlin

Appendix B: Equilibrium Selection in the Bos Game

PROOF OF PROPOSITION 2. Let k
iπ  be the transformed payoff of player i  and k

jπ  the payoff of player j  in 

the pure strategy equilibrium ks� , { , }k i j∈ . Then with respect to risk-dominance we have to first show (see 

Harsanyi and Selten 1988, pp. 86-88) that for ( , )L G  and ( , )L N  it must be true that:

(B1) i i j j
L G L Gπ π π π⋅ > ⋅ ,

(B2) i i j j
L N L Nπ π π π⋅ > ⋅ .

According to the TAP approach (B1) is equivalent to

(0) ( ) ( ) ( )

( ) ( ) (2 ) ( )

convex convex concave concave

convex convex concave concave

v v y v x y v y

v y x v y v y v y

⎡ ⎤ ⎡ ⎤− − + −⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤> − + − − −⎣ ⎦ ⎣ ⎦

,

which can according to (2) be rewritten as

( ) (0) (2 ) ( )
( ) ( ) ( ) ( )

concave concave concave concave

concave concave concave concave

v y v v y v y
v y v y x v x y v y

− −
>

− − + −
.

Now we choose in iv) of Lemma 1 especially 0a t y x b y= < = − < =  and in iii) of Lemma 1 especially 

2a y t x y b y= < = + < =  then we obtain

( ) (0)
( ) ( )

concave concave

concave concave

v y v b a y
v y v y x b t x

− −
> =

− − −
 and 

(2 ) ( )
( ) ( )

concave concave

concave concave

y b a v y v y
x t a v x y v y

− −
= >

− + −
.

Relation (B2) is equivalent to

(2) in the main text

(0) ( ) ( ) ( ) ( ) ( )

( ) (0) ( ) .
( ) ( ) ( )

( ) (0)

convex convex concave convex convex concave

concave concave concave

concave concave concave

concave concave

conca

v v y v x v y x v y v y

v y v v y
v y v y x v x

v y v
v

⎡ ⎤ ⎡ ⎤− − > − + − −⎣ ⎦ ⎣ ⎦
⇔

−
>

− −

−
(iv) of Lemma 1 (ii) of Lemma 1

with with
 0  0

( ) .
( ) ( ) ( )

concave

ve concave concave

a t y x b y a t x b y

y v y
y v y x x v x

= < = − < = = < = < =

> >
− −

Q.E.D.
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Appendix C: Equilibrium Point Selection in the Me Game

PROOF OF PROPOSITION 3. Expression in (18) is the unique solution of the system:

( )
( ) (1 ) (1 ) ( ) 0,

( )
( ) (1 ) (1 ) ( ) 0,

( ) ( ) (1 ) (1 ) ( ) 0.

i
j k i j k i

i

j
i k j i k j

j

k
i j k i j k

k

u p
p p u z p p u z

p
u p

p p u z p p u z
p

u p p p u z p p u z
p

∂
= ⋅ ⋅ − + − ⋅ − ⋅ =

∂

∂
= ⋅ ⋅ − + − ⋅ − ⋅ =

∂

∂
= ⋅ ⋅ − + − ⋅ − ⋅ =

∂

� � � � �
�
�

� � � �
�

� � � � �
�

Q.E.D.

For the following Proofs, first we state some useful estimations:

Choose in vi) in Lemma 1 (Appendix A), specifically 0a = , 2b z= , and
1
2

α = , then:

(C1) (2 ) 2 ( )concave concavev z v z< .

Choose in vi) in Lemma 1 (Appendix A), specifically 2a z= − , 0b = , and
1
2

α = , then:

(C2) 2 ( ) ( 2 )convex convexv z v z− < − ,

From (C1) follows for a winner (G) and his payoff, defined in (20), section 4.1.:

(C3) ( ) ( ) (0) ( ) (2 ) ( ) 0concave concave concave concave
G Gu z u z v v z v z v z− + = − + − < .

From (C2) follows for a loser (L) and his payoff, defined in (20), section 4.1.:

(C4) ( ) ( ) ( 2 ) 2 ( ) 0convex convex
L Lu z u z v z v zλ ⎡ ⎤− + = − − − >⎣ ⎦ .

PROOF OF PROPOSITION 4. Consider for the game TAPME ε  the set of strategy combinations

(C5) { }1 (1 , , ),( ,1 , ),( , ,1 )S ε ε ε ε ε ε ε ε ε= − − − ,

and

(C6) { }2 (1 ,1 , ),(1 , ,1 ),( ,1 ,1 )S ε ε ε ε ε ε ε ε ε= − − − − − − .
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Here, “ ε ” and “1 ε− ” identifies the probability for market entry. Now it is easy to show that for ( , , )L L L  the 

set 2S  and for ( , , )G G G  and ( , , )N N N  the set 1S  defines equilibria in the game TAPME ε : For instance, for 

( , , )L L L  and the strategy vector (1 ,1 , )ε ε ε− −  forms an equilibrium, because for the expected payoff for 

the “1 ε− ”-playing player follows for small 0ε > :

(C7) [ ]2(1 ,1 , ) (1 ) ( ) ( ) 0L L Lu u z u zε ε ε ε ε− − = − − + >�

 For a “ε ”-playing player from (C4) it follows from ( ) 0Lu z > , ( ) 0Lu z− <  and the fact that 0ε >  is 

arbitrarily small:

(C8) 2 2(1 ,1 , ) (1 ) ( ) ( ) 0L L Lu u z u zε ε ε ε ε ε⎡ ⎤− − = − − + <⎣ ⎦� .

Thus, no player has an incentive to deviate. The strategy vector ( ,1 , )ε ε ε−  cannot form an equilibrium, 

because the “ε ”-playing player has according to (C4) an incentive to deviate:

(C9) [ ]2( ,1 , ) (1 ) ( ) ( ) 0L L Lu u z u zε ε ε ε ε− = − − + >� .

The analyses for ( , , )G G G  can be done accordingly, based on (C3). The analyses for ( , , )N N N  is based on 

the assumption of loss aversion. For an “ ε ”-playing player in ( ,1 , )ε ε ε−  we have:

(C10) [ ]2( ,1 , ) (1 ) ( ) ( ) 0N N Nu u z u zε ε ε ε ε λ− = − − + <� .

For an “ 1 ε− ”-playing player in ( ,1 , )ε ε ε−  we have for small 0ε > :

(C11) 2 2( ,1 , ) (1 ) ( ) (1 ) ( ) 0N N Nu u z u zε ε ε ε ε λ ε⎡ ⎤− = − − + − >⎣ ⎦� .

But for an “ ε ”-playing player in (1 ,1 , )ε ε ε− −  we have:

(C12) [ ]2(1 ,1 , ) (1 ) ( ) ( ) 0N N Nu u z u zε ε ε ε ε λ− − = − − + <� .

If there is more than one equilibrium in TAPME ε , according to the General Equilibrium Point Selection Theory of 

Harsanyi and Selten (1988), one has to apply the logarithmic tracing procedure. Since, according to Theorem 

4.13.1 (Harsanyi and Selten 1988, p. 173), this procedure is always feasible, well defined, and its outcome is 

always unique, the only unique solution with respect to the player indices and the equilibrium structure, is the 

TMNE.

Q.E.D.
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PROOF OF PROPOSITION 5. An equilibrium point in TAPME  is only perfect, if it is a (strict) equlibrium in the 

game TAPME ε . Therefore, we show that for the player combination ( , , )L G G  the game TAPME ε  consists 

exactly of the equilibrium Ls� . We denote with (1,0,0)  the pure strategy equilibrium in the game TAPME

concerning the player combination ( , , )L G G . In TAPME ε  the corresponding strategy vector is (1 , , )ε ε ε− ,

respectively.

For the expected payoff of player L we conclude according to (C4):

(C13) 2 2(1 , , ) (1 ) ( ) (1 ) ( ) 0L L Lu u z u zε ε ε ε ε ε⎡ ⎤− = − − + − >⎣ ⎦� .

For the expected payoff of a player G we conclude according to (C3):

(C14) [ ]2(1 , , ) (1 ) ( ) ( ) 0G G Gu u z u zε ε ε ε ε− = − − + <� .

Therefore (1 , , )ε ε ε−  forms an equilibrium in TAPME ε . We denote with (0,1,0)  the pure strategy

equilibrium in the game TAPME  concerning the player combination ( , , )L G G , again (this means, one of the 

winners enters the market, and the other players stay out). In TAPME ε  the corresponding strategy vector is 

( ,1 , )ε ε ε− , respectively. Now we show that ( ,1 , )ε ε ε−  cannot be an equilibrium in TAPME ε :  Considering 

the expected payoff of the loser, then from (C4) follows:

(C15) [ ]2( ,1 , ) (1 ) ( ) ( ) 0L L Lu u z u zε ε ε ε ε− = − − + >� ,

this means, the loser has an incentive to choose  “1 ε− ” instead of “ ε ” .

The strategy combinations ( ,1 ,1 )ε ε ε− − , (1 ,1 , )ε ε ε− −  and (1 , ,1 )ε ε ε− −  cannot form equilibria in 

TAPME ε , because the “1 ε− ”-playing winners have an incentive for playing “ ε ”:

(C16) [ ]2(1 , ,1 ) (1 ) ( ) ( ) 0G G Gu u z u zε ε ε ε ε− − = − − + <� .

The analyses for the remaining combinations can be completed accordingly, using (C3) and (C4). The main 

aspect for the analyses of player combinations including neutrals is based on loss aversion (see Proof of

Proposition 4).

Q.E.D.
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PROOF OF PROPOSITION 6. Similar to the approach in the Proof of Proposition 5 one can show that the set 

{ }1 (1 , , ),( ,1 , ),( , ,1 )S ε ε ε ε ε ε ε ε ε= − − −  coincides with equilibria in TAPME ε . Since the logarithmic 

tracing procedure cannot be applied because it  requires the multinomial equations to be analytically solved (see

4.13.5-4.13.7 in Harsanyi and Selten 1988, pp. 167-168), which is impossible, the corresponding equilibria 

(1,0,0) , (0,1,0) , (0,0,1)  and the TMNE remain. From uniqueness of the logarithmic tracing procedure it 

follows that for ( , , )G N N  the pure strategy equilibrium Gs�  and the TMNE, and for ( , , )G G N  the pure 

strategy equilibrium Ns�  and the TMNE are solution candidates.

Q.E.D.
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Appendix D: Solution Criteria, Measurement of Mixed Strategies

Perfectness

Consider the 2 2× -game in figure 1, where player 1 has the strategy set { }1 2
1 1 1,S s s=  and player 2 has the 

strategy set { }1 2
2 2 2,S s s= , respectively. 

Figure 1: Perfectness
player 2

1
2s 2

2s

1
1s (1, 1) (2,0)

player 1
2
1s (0,2) (2,2)

The game has two Nash-equilibria, namely 1 1 1
1 2( , )s s s=�  and 2 2 2

1 2( , )s s s=� . First, we consider 1s� : We assume 

that player 2 speculates that player 1 knows that this strategy combination is an equilibrium point. However, 

player 2 has to expect, that player 1 deviates from her equilibriu m strategy with a small probability 0ε >  (e.g. 

there is a small chance of error). This implies, that player 1 in fact plays the mixed strategy (1 , )ε ε−  instead of 

the pure strategy 1
1s , where the first component identifies the probability for playing the first pure strategy and 

the second component identifies the probability for playing the second one, respectively. From the perspective of 

the second player, and in the case of playing 1
2s , she is faced with the expected payoff : 

(D1) 1
2 2(1 , ) (1 ) 1 2 1u sε ε ε ε− = − ⋅ + ⋅ = + .

In the case of playing 2
2s  the expected payoff is given by:

(D2) 2
2 2(1 , ) (1 ) 0 2 2 .u sε ε ε ε− = − ⋅ + ⋅ =

For small values of ε , player 2 maximizes her expected payoff by placing a minimal weight on 2
2s . By 

symmetry, player 1 should place a minimal weight on 2
1s  if player 2 is playing the mixed strategy (1 , )ε ε− .
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Therefore, the equilibrium 1s�  satisfies the simple requirement of perfectness:  It is robust with respect to small 

chances of error.

A similar argumentation fails to show that the equilibrium 2s�  is perfect. Assuming player 1 plays the mixed 

strategy ( ,1 )ε ε− , then player 2’s expected payoff by playing 1
2s  is 

(D3) 1
2 2( , ) 1 (1 ) 2 2 .u sε ε ε ε= ⋅ + − ⋅ = −

If player 2 plays 2
2s  she will receive

(D4) 2
2 2( , ) 0 (1 ) 2 2 2 .u sε ε ε ε= ⋅ + − ⋅ = −

For all positive values of ε , player 2 maximizes her expected payoff by placing a minimal weight on 2
2s .

Therefore 2s�  is not perfect because player 2 (and, by symmetry, player 1) maximizes her expected payoff by 

deviating if there is a small chance of error.

In general, an equilibrium point s S∈�  of a game G is called perfect, if for the so called ε -perturbed game Gε

(here, all pure strategies have to be played with a small minimum probability ε ) a sequence ksε�  of equlibria

exists, which converge for k →∞  to s� .

Risk-Dominance

Consider the 2 2× -game in figure 1, where 1 1 0a b> >  and 2 20 a b< < .

Figure 2: Risk-Dominance
player 2

1
2s 2

2s

1
1s 1 2( , )a a (0,0)

player 1
2
1s (0,0) 1 2( , )b b

(For 1 2a b= and 2 1a b=  this is matrix presentation of the BOS game, studied in section 3.) Again, the strategy 

combinations 1 1 1
1 2( , )s s s=�  and 2 2 2

1 2( , )s s s=�  are (perfect) equilibrium points, but player 1 receives more in 
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1s� , and player 2 receives more in 2s� . Assuming, both players know, that either 1s�  or 2s�  is the solution of the 

game, then the question arises which strategy they should play. If player 1 expects that player 2 will select 1
2s

with probability q  (and 2
2s  with 1 q− , respectively), then from the expected payoff one can derive that she 

would play 1
1s  if 1

1 1

bq
a b

>
+

 and she would play 2
1s  if 1

1 1

aq
a b

>
+

 . Similarly, if player 2 expects, that 

player 1 chooses 1
1s  with probability p  (and 2

1s  with 1 p− , respectively), then she will select 1
2s  if 

2

2 2

bp
a b

>
+

 and 2
2s  if 2

2 2

ap
a b

>
+

. Player 1’s incentive to prefer 1
1s  over 2

1s  can be specified by the 

realation 1 1 1 1

1 1 1 1

a a b a
a b b b

+
⋅ =

+
, and player 2’s incentive to prefer 2

2s  over 1
2s  by the relation

2 2 2 2

2 2 2 2

b a b b
a b a a

+
⋅ =

+
. If both players take this fact into account, they will be coordinated in 1s� , if 

1 2

1 1

a b
b a
> , or 1 2 1 2a a b b⋅ > ⋅  hold for the “Nash”-products.

In general, for the game in figure 2, one can specify, that the criterion of risk-dominance selects 
(a) 1s� , if 1 2 1 2a a b b⋅ > ⋅ ,

(b) 2s� , if 1 2 1 2a a b b⋅ < ⋅ ,

(c) the complete mixed Nash-equilibrium p� , if 1 2 1 2a a b b⋅ = ⋅ .

Mixed Strategies

Mixed strategies are defined as probability distributions about pure strategies. Since a mixed strategy equilibrium 

can be a solution of a (on risk-dominance based) selection concept, the question arises, how one can measure a 

mixed strategy. 

Basically, in experimental studies one can distinguish between implicit and explicit randomization (see also 

Camerer, 2003). Implicit randomization means that subjects can only choose pure strategies and that the relative 

frequency will be interpreted as the mixture. 
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Explicit randomization identifies the situation in which people can state probability distributions directly. The 

advantage of this approach is that the experimentor has the possibility to measure a mixed strategy in a single

round. Since, as found in the experimental studies of this work, the number of repetitions is small, the statement 

of a distribution by the subjects seems to be an appropriate approach to derive mixtures. We will realize this 

according to the procedure of Anderhub et al. 2002.
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Appendix E: Instructions for the Battle of the Sexes (BOS) Game

Where necessary, explanations of experimental procedures are added in bold italics for better understandability.
The actual instructions and information received by the participants is shown in boxes.

After being seated at their places, and before beginning with the computer-based part of the experiment, the 
participants were paid a participation fee of € 11.00 and told to pocket it.

They were then informed of the following:

We will now conduct a lottery with the following features:

There are 12 balls with numbers from 1 to 12 in a bingo cage. They will be drawn without replacement, i.e. once 
drawn, a ball will not be placed back into the cage.
A draw of a ball with the numbers 1-4 will result in a gain of € 9.00 for you.
A draw of a ball with the numbers 5-8 results in no payment (€ 0.00).
A draw of a ball with the numbers 9-12 will result in a loss of € 9.00.

The draws will take place in private at each participant’s seat and will only be seen by that participant.

The individual bingo ball lotteries were then conducted and the respondents informed about their (gain, loss, 
or neutral) outcome.

The following information was then provided:

In the experiment you will play games with changing counterparts. In addition to the rules of the game, the only 
information all of you will have is the outcome of the lottery we just conducted. In other words, you will always 
be informed about the outcome of your respective counterpart, as he or she will be about your outcome.

The participants began playing the computer-based game. All of them were presented with the following 
screens in the order given here (Screen type A through G).
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Screen type A:

Welcome to our experiment on decision making!

Your decisions in this experiment will depend on your skill and luck, and will result in real payments 
of different amounts. We will need some information about you, to identify and pay you at the end of 
the experiment.

Please copy your participant number as shown on the screen to your form and then completely fill out 
the form.

You have participant number: 1

All information will be kept strictly confidential.

Screen type B:

Information

Conditions of Payment:

This experiment will take place over several rounds. While the results of each round will not be 
displayed, a summary of the whole experiment’s results will be provided at the end of the experiment. 
Out of all rounds, one will randomly be selected by the computer. Your game result in this randomly 

chosen round will then be added to your result in the lottery conducted at the beginning of the 
experiment. At the end of the experiment, the experiment’s supervisor will settle your account by 

paying out or collecting the payments from you.

Have fun participating in the game!!

The values in parantheses varied depending on the participant’s own result and the result of their opponent in 
the bingo cage lottery.

Screen Type C:

Information

Reminder: In the lottery conducted at the beginning of the experiment you {suffered a loss of € 9.00 / 
achieved a neutral result of € 0.00 / gained a profit of  € 9.00}, which (in addition to any potential gains or 

losses made during the experiment) will be settled at the end of the experiment. 

Thus your current account balance is  {€ -9.00/ € 0.00/€ 9.00}.
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Screen type D:

Rules of the Game

You are playing with an opponent randomly selected by the computer. Both of you have the choice 
between the two alternative strategies, A and B, with the following payoffs:

You play strategy A,

… and your opponent chooses strategy A, then you gain € 3.00 and your opponent gains € 9.00.
… and your opponent chooses strategy B, then both of you receive a payment of € 0.00.

You play strategy B,

… and your opponent chooses strategy B, then you gain € 9.00 and your opponent gains € 3.00.
… and your opponent chooses strategy A, then both of you receive a payment of € 0.00.

Game

Information: In the lottery at the beginning of the experiment your opponent {suffered a loss of € 9.00 
/ achieved a neutral result of € 0.00 / gained a profit of € 9.00}.

Your decision will be made with the help of a virtual raffle drum whose contents will be determined 
by you. You can fill it with a total of 100 tickets (A and B tickets). If an A ticket is drawn, strategy A 
will be chosen for you by the computer. If a B ticket is drawn, strategy B will be chosen. Please now 
specify the contents of the drum by stating the number of A and B tickets to be included:

Please indicate the number of A tickets to be placed in the drum: _______

Please indicate the number of B tickets to be placed in the drum: _______

Subsequently, multiple rounds with changing opponents were played according to screen type D. To ensure 
that the participants noticed that conditions changed from round to round, screen type E was presented prior 
to type D before to each round (except the first).

Screen type E:

Information

Attention: In this round, the conditions of the game have changed. Please pay close attention to the 
information concerning the outcomes.

Several psychometric scales and questions followed the actual experiment and preceded the payout rounds; 
results are not reported in this paper. 
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Based on the results from the round randomly chosen by the computer and the bingo cage lottery conducted 
at the very beginning of the experimental sessions, screen type F was used to calculate final payments. 

Screen type F:

Game Summary

The following table provides a summary of all rounds played: your respective chosen number of A and 
B tickets, the resulting strategies (A or B), and your results. You can identify your opponent’s number 
and result for every round.

Round Number of A 
tickets

Number of B 
tickets

Drawn ticket 
1=A,2=B

Your Result Your Opponent 
(number)

Opponent’s
Result

{1…12} {0…100} {0…100} {1/2} {0.00/3.00/9.00} {1…12} {0.00/3.00/9.00}

Screen type G:

Final Result

To calculate your payout, round {1…12} was randomly selected of all rounds by the computer.

In the selected round {1…12} you {achieved a neutral result of € 0.00 / gained a profit of  € 3.00 / gained a 
profit of € 9.00}.

In the lottery at the beginning of the experiment you {suffered a loss of € 9.00 / achieved a neutral result of 
€ 0.00 / gained a profit of € 9.00}.

Added to the result of {€ 0.00/€ 3.00/€ 9.00} in round {1…12} your total payout is € {-9.00/-
6.00/0.00/3.00/9.00/12.00/18.00}.

An amount of € {-9.00/-6.00/0.00/3.00/9.00/12.00/18.00} will be settled with you.

This is the end of the experiment. Thank you very much for participation. Please quietly stay 

seated and wait until the supervisor has balanced accounts with you.
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Appendix F: Game Instructions for the Market Entry (ME) Game:

Where necessary, explanations of experimental procedures are added in bold italics for better understandability.
The actual instructions and information received by the participants is shown in boxes.

After being seated at their places, and before beginning with the computer-based part of the experiment, the 
participants were paid a participation fee of € 14.00 and told to pocket it.

They were then informed of the following:

We will now conduct a lottery with the following features:

There are 12 balls with numbers from 1 to 12 in a bingo cage. They will be drawn without replacement, i.e. once 
drawn, a ball will not be placed back into the cage.
A draw of a ball with the numbers 1-4 will result in a gain of € 6.00 for you.
A draw of a ball with the numbers 5-8 results in no payment (€ 0.00).
A draw of a ball with the numbers 9-12 will result in a loss of € 6.00.

The draws will take place in private at each participant’s seat and will only be seen by that participant.

The individual bingo ball lotteries were then conducted and the respondents informed about their (gain, loss, 
or neutral) outcome.

The following information was then provided:

In the experiment you will play games with changing counterparts. In addition to the rules of the game, the only 
information all of you will have is the outcome of the lottery we just conducted. In other words, you will always 
be informed about the outcome of your respective counterpart, as he or she will be about your outcome.

The participants began playing the computer-based game. All of them were presented with the following 
screens in the order given here (Screen type A through G).
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Screen type A:

Welcome to our experiment on decision making!

Please pay attention to the following:

� Your decisions in this experiment will depend on your skill and luck, and will result in real 
payments of different amounts.

� This experiment will take place over several rounds.
� While the results of each round will not be displayed, a summary of the whole experiment’s results 

will be provided at the end of the experiment.
� Out of all rounds, one will randomly be selected by the computer. Your game result in this 

randomly chosen round will then be added to your result of the lottery conducted at the beginning 
of the experiment.

� At the end of the experiment, the experiment’s supervisor will settle your account by paying out or 
collecting the payments from you.

� You will find a red button at the bottom of each screen. When you understood and completed all 
tasks on that screen, press it to continue.

� All information is anonymous and will be kept confidential.

Have fun participating in the game!!

Screen type B:

You will now play a three person game over several rounds.

Your opponent will change from round to round as previously and randomly determined by the 
computer.

The values in parantheses varied depending on the participant’s own result and the result of their opponents
in the bingo cage lottery.

Screen type C:

Reminder

In the lottery conducted at the beginning of the experiment you {suffered a loss of € 6.00 / achieved a 
neutral result of € 0.00 / gained a profit of € 6.00}, which (in addition to any potential gains or losses made 

during the experiment) will be settled at the end of the experiment. 

Thus your current account balance is  {€ -6.00/ € 0.00/€ 6.00}.
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Screen type D:

Your Game Situation:

You and your two opponents have the choice of entering a market with limited demand.

If all three of you decide to enter the market, everyone will suffer a loss of € 6.00.

If two of you decide to enter the market, the two entering players as well as the not entering player 
will receive € 0.00.

If only one of you decides to enter the market, he receives € 6.00 and the other two players who did 
not enter receive € 0.00. 

If none of you decide to enter the market, all three players receive € 0.00. 

In the lottery at the beginning of the experiment, your two opponents in this round 
had the following results:

One opponent {suffered a loss of € 6.00 / achieved a neutral result of € 0.00 /
gained a profit of € 6.00 }.

Your other opponent { suffered a loss of € 6.00 / achieved a neutral result of € 0.00 / 
gained a profit of € 6.00}.

Your decision:

Your decision will be made with the help of a virtual raffle drum whose contents will be determined by you. You 
can fill it with a total of 100 tickets (Entry and NoEntry tickets). If an Entry ticket is  drawn, you will enter the 
market. If a No Entry ticket is drawn, you will not enter the market. Please now specify the contents of the drum by
stating the number of Entry and NoEntry tickets to be included:

Please indicate the number of Entry tickets to be placed in the drum: _______

Please indicate the number of No Entry tickets to be placed in the drum: _______

Subsequently, multiple rounds with changing opponents were played according to screen type D. To ensure 
that the participants noticed that conditions changed from round to round, screen type E was presented prior 
to type D before each round (except the first).
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Screen type E:

Information

Attention: In this round, the conditions of the game have changed. Please pay close attention to the 
information concerning the outcomes.

Several psychometric scales and questions followed the actual experiment and preceded the payout rounds; 
results are not reported in this paper. 

Based on the results from the round randomly chosen by the computer and the bingo cage lottery conducted 
at the very beginning of the experimental sessions, screen type F was used to calculate final payments. 

Screen type F:

Game Summary

The following table provides a summary of all played rounds with your chosen number of Entry and
NoEntry tickets, the resulting strategies (Entry and NoEntry tickets), and your results of each round. 
Moreover, you can identify your opponents’ strategies for every round.

Round Number of E 
Tickets

Number of NE 
Tickets

Drawn Ticket Choice of 1st

Opponent
Choice of 2nd

Opponent
Your Result

{1…29} {0…100} {0…100} {NE/E} {NE/E} {NE/E} {-6.00/0.00/6.00}

Screen type G:

Final Result

To calculate your payout, round {1…29} was randomly selected of all rounds by the computer.

Source Amount [€]

Lottery at the beginning of the experiment {-6.00/0.00/6.00}

Result of randomly chosen round {1…30} {-6.00/0.00/6.00

Total: {-12.00/-6.00/0.00/6.00/12.00}

An amount of € {-12.00/-6.00/0.00/6.00/12.00} will be settled with you.

This is the end of the experiment. Thank you very much for participation. Please quietly stay 

seated and wait until the supervisor has balanced accounts with you.
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