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Abstract

Using a squential logit model and a mixed-effects logistic regression approach this empirical
study investigates factors for the adoption of automatic milking technology (AMS) at the farm
level accounting for problems of sequential sample selection and behaviour identification. The
results suggest the importance of the farmer’s risk perception, significant effects of peer-group
behaviour, and a positive impact of previous innovation experiences.
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1. Introduction

The adoption of new technologies in primary agricultural production has been at the centre of

traditional agricultural economic analysis for the last 50 years: One stream of studies empirically

investigates technology adoption and diffusion taking into account farmers’ perceptions with

respect to the risk of future yields. Others point to the importance of information gathering,

learning by doing and resources’ accumulation for the adoption decision. An increasing number

of studies model the adoption decision as a sample selection problem where the farms have to

pass a first threshold to be selected into the sample of potential adopters. Depending on the

technology to be adopted, the selection threshold refers either to size, network access or a

certain level of human capital. Building on these findings our study aims to make a step forward

by simultaneously modelling the effects of risk, social interaction, past innovation experiences

and the sequential structure of adoption decisions. Different econometric models are applied to

incorporate these potential factors and structural characteristics. A unique dataset on dairy

producers in Northern Europe is used to empirically investigate the adoption of automatic

milking systems (AMS).

2. Automatic Milking

Rising labor costs in the mid seventies were one of the main reasons for an increasing

automation in the milking sector. Crucial steps were the development of a reliable cow

identification system which could then be used for automatic concentrate feeders, the

development of automatic cluster removers, sensors to detect udder health problems, and finally

the development of automatic teat cup attachment systems (Meijering et al. 2002, Kochan

2004). An entirely automated milking system (AMS) - also called robotic milking system

(RMS) - was firstly developed in the Netherlands in the 1980s and the first commercial RMS

was placed into production there in 1992. Until the mid of the 1990s about 250 farms worldwide

used AM systems whereas the breakthrough of the AMS technology occurred at the end of the



1990s. Today AMS is in use on about 5,500 milk farms worldwide (Svennersten-Sjaunja and

Pettersson 2008). More than 90% of all dairy farms using AMS are located in northwestern

Europe where investments are driven by high labor costs, a continuous increase in the average

herd-size and a dominance of the family farm structure (Meijering et al. 2002). Originally, AMS

were targeted for small family farms with up to 150 cows, however, with continuous

technological progress and increased management skills, AMS is now also installed on larger

farms with more than 500 cows per herd. In general there are two basic designs of automatic

milking systems. The first is the single-stall system, in which one milking robot serves only one

milking stall with approximately 60 cows. The second design is a multi-stall system, in which

the robot travels along a rail between different stalls where each stall can service fewer than 60

cows (Hyde et al. 2007). Automatic milking relies on the cow’s motivation to enter the system

voluntarily where the main motive is the supply of concentrate.

Previous studies on the economics of different milking systems revealed that a minimum herd

size of about 60 cows is needed for an automatic milking system to work more profitable than

traditional milking systems (see Rotz et al. 2003, Hyde and Engle 2002, DeKoning et al. 2002).

On farm sizes well above this threshold multi-stall AMS show greater potential net return than

the use of two or more single-stall units. The herd milk production level was found to have only

a small effect on the economic difference between traditional and automatic milking systems

with a greater difference at a higher level of production. The potential benefit of AMS is

improved if a substantial increase in production is maintained through a greater milking

frequency. Studies showed that a large increase in the cost of labor can improve the net return of

an automatic milking system over all herd sizes. Finally, farm net return with an AMS is

significantly reduced if the economic life of the automatic system is reduced to represent a more

rapid depreciation than normally occurs with traditional milking systems (Rotz et al. 2003). Two

great advantages with AMS include reducing the workload of milking and milking more often

than twice daily without incurring extra labor costs (Dijkhuizen et al. 1997). On average, a 10%



reduction in total labor demand is reported compared with conventional milking systems with

twice milkings per day (Schick et al. 2000, DeKoning et al. 2003). Furthermore, milking

frequencies of more than twice daily can be reached under automatic milking which is desired

for high-yielding cows as 3 milkings a day are expected to enhance lactation milk yield by 10 to

15% on average (Billon 2002, Svennersten-Sjaunja et al. 2000, Speroni et al. 2002, Wagner-

Storch and Palmer 2003). Others stress the consistency of the milking process with automatic

milking technology: In a working AM system, the animals are treated in the same way at each

milking and the routines are predictable for the cows which increases milk production

(Samuelson et al. 1993). Different research projects have been conducted to understand the

effect of AMS on milk quality including both compositional and hygienic aspects. A

comparison of conventional and automatic milking showed no differences between the milking

systems for fat and protein contents (Svennersten-Sjaunja et al. 2000). However, others revealed

an increased level of free-fatty acid concentration (FFA) in milk collected from farms that had

introduced AMS (Justesen and Rasmussen 2000) or when compared with levels of milk FFA

before automatic milking was introduced (DeKoning et al. 2003). With respect to milk hygiene,

reports from the Netherlands and Denmark indicated that the total bacterial count (TBC)

increased in the bulk milk after introduction of automatic milking. Other studies, however,

revelaed that after 6 months the TBC stabilized and after 1 year the level of TBC was almost the

same as on farms with conventional milking (Klungel et al. 2000, Rasmussen et al. 2002). Initial

studies concluding in an increased somatic cell count (SCC) after introduction of AMS (see e.g.

Klungel et al. 2000) were followed by studies showing that automatic milking does not increase

the incidence of udder infections and SCC (e.g. Berglund et al. 2002 or Svennersten-Sjaunja and

Pettersson 2008). Finally, with respect to animal welfare, Hagen et al. (2005) note, that the cows

kept in an AMS displayed an increased chronic stress (measured as heart rate variability)

compared with cows kept in a loose housing system. On the other side, such stress was not

observed during milking corresponding to the findings by Gygax et al. (2006) who could not



confirm differences in milk cortisol between cows milked in an automatic vs such milked in an

conventional system. It is clear from these previous studies that AMS is not only a new milking

system, but rather a completely new management system. Mathijs (2004) as well as Hyde et al.

(2007) stress that noneconomic factors such as lifestyle choices including avoiding labor

management are at least as important as economic factors for the decision to adopt an automatic

milking system.

3. Adoption Literature Review

Since the seminal work by Griliches (1957) numerous studies have been produced investigating

different aspects of technology adoption in agriculture. Feder and Umali (1993) as well as

Sunding and Zilberman (2001) provide surveys on the general technological adoption literature.

Putler and Zilberman (1988) examine computer and application ownership patterns in

Californian agriculture. Their analysis indicates that the size of the farming operation, education

level, age level, and the ownership of a farm-related nonfarming business significantly influence

the probability of computer ownership. Foltz and Chang (2002) study the adoption and

profitability of Recombinant bovine somatotropin (rbST) on dairy farms in Connecticut. Their

research shows that larger farms with more productive technologies and with younger, more

educated farmers are more likely to adopt rbST. Barham et al. (2004) investigate the dynamics

of rbST adoption on dairy farms and examine the characteristics that distinguish among

nonadopters, disadopters, as well as early and late adopters. Their results confirm previous

findings showing that larger farms with complementary feeding technologies are more likely to

adopt rbST whereas nonadopters appear quite unlikely to become adopters. Abdulai and

Huffman (2005) try to explain diffusion of crossbred-cow technology for a sample of Tanzanian

farmers and conclude that the adoption of such technology positively depends on the proximity

of the farm to other users, on his schooling, and on his access to credit as well as extension



services. So far, no research has been undertaken which investigates the adoption of automatic

milking technology in favor of conventional milking systems.

Risk

One stream of studies empirically investigate technology adoption and diffusion taking into

account farmers’ perceptions with respect to the risk of future yield. Yaron et al. (1992) attempt

to analyze the effect of price uncertainty on the degree of innovation exhibited by family farms

in Israel. Kim and Chavas (2003) investigate the dynamic effects of technological progress on

risk exposure by using the conditional moments of the estimated yield and profit for corn

farmers in Wisconsin. They conclude that technological progress significantly contributes to

reducing the exposure to risk and downside risk over time. Koundouri et al. (2006) built on the

framework suggested by Antle (1983, 1987) and followed by Kim and Chavas (2003) and

develop a theoretical model to describe irrigation technology adoption by farmers facing

production risk and incomplete information about new technology. The adoption decision is

derived under the assumptions of farmers’ risk aversion and uncertainty because of random

climatic conditions and future profit development. The estimated first four moments of the

farmers’ profit distribution are incorporated in the technology adoption model as explaining

factors. They found risk to play an essential role in farmers’ decision to adopt the new

technology.

Learning, Network Externalities and Peer-Group Effects

Sunding and Zilberman (2001) point out that a complete analytical framework for investigating

adoption decisions should include information gathering, learning by doing and resources’

accumulation. Rosenberg (1982) distinguishes between three different forms of learning:

‘learning by doing’, ‘learning by using’, and ‘traditional learning’. Learning by doing relates to

the supply of the technology, hence does not provide an explanation for why a firm would be an

early or late adopter (McWilliams and Zilberman, 1996). Learning by using describes the effect

of the users of a given technology (i.e. the demand side) increasing their productivity over time



as they learn how to better use this new technology. Finally, traditional learning as the most

commonly discussed form of learning which involves potential adopters gathering information

about the performance of a new technology (i.e. its expected profit and variance). Firms or

farms are uncertain about the value of the new technology and are thus hesitant to invest in the

technology without having sufficient information on its performance. Such information may be

obtained by observing and interacting with others adopting and using the technology (i.e. peer-

group spillover effects, informational cascades), by talking to technology suppliers, or by

experimenting with the new technology themselves. In the context of this paper learning by

using as well as traditional learning will be of interest (see also Lindner et al. 1979, Stoneman

1981, Jensen 1982). Baerenklau (2005) points out, that traditional learning in the sense of

‘learning from others’ is more complicated as it may become rational for a forward-looking

agent to postpone adoption (at least partially) until better information becomes available

regarding the expected benefit of adoption. Such agents would tend to ‘wait and see’ what

happens to their neighbors (i.e. free-riding on others’ technology experiences) before they

assume the expected private costs of experimenting with a new technology themselves (i.e. an

information or network externality). Foster and Rosenzweig (1995) as well as Besley and Case

(1997) found that dynamic information externalities have only small observable effects on the

less costly and reversible adoption of new seed varieties. For adoption decisions with respect to

large, capital-intensive and irreversible decisions as examined in this study, a non-dynamic type

of behavioural spillover – referred to as neighborhood effect or peer-group effect (Banerjee

1992) – may have greater relevance. Social scientists have examined such effects in several

theoretical contributions (e.g. Coleman et al. 1966, Schelling 1971, for a recent overview see

also Brock and Durlauf 2001). However, with respect to empirical modelling confounding

identification problems have to be considered (Manski 1993): i) endogenous (peer-group or

neighbourhood) effects refer to the phenomenon that the propensity of an agent to behave varies

with the behaviour of his peer-group; ii) exogenous (contextual: time and space related, i.e.



fixed) effects describe the covariance between the propensity of an agent to behave and

exogenous characteristics of the peer-group; and iii) correlated (unobservable influences, i.e.

random) effects refer to the observation that agents in the same group tend to behave similarly

because of similar individual characteristics or institutional constraints. Nevertheless, previous

research on technology adoption behaviour has acknowledged the effect of such peer-group

effects by noting the importance of network externalities as a function of the total number of

technology users or by formulating the concepts of an informational cascade, first-movers based

on signalling, and pure conformity preference. Brock and Durlauf (2001) found that nonlinear

modeling can be used to identify these individual effects (see also An and Kiefer 1995 and

Durlauf 2003), however, as Baerenklau (2005) notes, there remains a lack of empirical research

that incorporates social interactions into behavioural models to explain technology adoption.

Selectivity, Sequential Decisions and Path-Dependent Behaviour

An increasing number of studies model the adoption decision as a sample selection problem

where the adopting farms or firms have to pass a first threshold to be selected into the sample of

potential adopters. Depending on the technology to be adopted, the selection threshold refers

either to size, network access or a certain level of human capital. The modelling structure has

then to correct for such sample selection bias. Asterbro (2003) uses a Heckman two-stage

selection model to study how sunk costs and size affects the probability and depth of adoption

(see also Smale et al. 1994, Dridi and Khanna 2005 or Abdulai et al. 2008). Smith et al. (2004)

investigate the computer and internet use by Great Plains farmers by modelling the exposure to

the technology as adoption threshold. Foltz and Chang (2002) note that the decision of a farmer

to adopt rbST is based on each farmer’s self-selection instead of random assignment. Hence,

their modelling approach consists of an index function model (i.e.probit) to endogenize the

adoption decision with respect to yield and profit estimations. Different other contributions aim

to tackle the phenomen that the adoption decision is not only subject to prior threshold criteria,

moreover is part of a joint or sequential decision structure. Moreno and Sunding (2005) estimate



a nested logit model of joint technology and crop choices aiming to acccount for unobserved

correlation among these decisions. The results support their modelling choice of a nested

structure alternative to a standard multinomial logit approach. Khanna (2001) applies a double

selectivity model based on bivariate sequential probits to study the sequential decision to adopt

two site-specific technologies, soil testing and variable rate technology and the impact on

nitrogen productivity. The results indicate that the factors for the two sequential adoption

decisions differ significantly and that nitrogen productivity gains from adoption depend on the

soil quality given. The experiences with the implementation of automatic milking systems

reported in the previous section suggest that a relevant empirical adoption model should

incorporate the following aspects: (i) individual risk preferences to account for the tendency of

farmers to care about profit developments in the first years after AMS adoption, (ii) sample

selection due to a minimum herd size threshold, (iii) sequential decisions with respect to an

increase in herd size and the adoption of automatic milking, (iv) learning by using, peer-group

effects and network externalities based on the social interaction of the farmers with others who

have already adopted the technology as well as the dissemination of individual experiences with

AMS, and (v) the potential relevance of earlier experiences with the successful adoption of other

technologies (e.g. organic dairy farming practices).

4. Conceptual Framework

We assume that risk averse dairy farmers utilize a vector of inputs x to produce an output q

through a technology described by a well-behaved - continuous and twice differentiable -

production function f(). The individual farmer is assumed to incur production risk as milk yield

and quality might be affected not only by herd health but also by technology underperformance

or failure. Such risk can be considered by a random variable ε with its distribution G() which is

exogenously determined. Dairy farmers in our sample are assumed to be price-takers in both the

input and output markets as our study area consists of a relatively small and homogenous



geographic area and hence factor price variability is low (Huffmann and Mercier 1991). Dairy

farmers in Europe further face a minimum guaranteed milk price regulated by the dairy regime

of the Common Agricultural Policy of the EU. As outlined in the previous section labor input

(xl) is essential in the dairy farm production process. The efficiency of labor use critically

depends on the utilized milking technology and can be captured by incorporating a function h()

in the milk production function [ ( ) , ]lq f h x x where  is a vector of heterogeneous farm and

farmer characteristics. The risk averse dairy farmer maximises the expected utility of profit 

described by (1)

(1)  
, ,

max [ ( )] max [ ( , ( ) , ) ' ] ( )
l l

l l l
x x

E U U pf h x r x dG     x x
x r x

where U() is the von Neumann-Morgenstern utility function, and p and r as the non-random

output and input prices respectively. The first-order condition for labor input choice is given by

(2) ௜ܷݎ]ܧ '] = ݌ቄܧ
డ௙(ఌ,௛(ఈ)௫೗,ܠ)

డ௫೗
ܷ'ቅ⟺

௥೗

௣
= ቄܧ

డ௙(ఌ,௛(ఈ)௫೗,ܠ)

డ௫೗
ቅ+

ୡ୭୴[௎ᇲ;డ௙(ఌ,௛(ఈ)௫೗,ܠ)/ப୶ౢ ]

ா[௎ᇲ]

with ' ( ) /U U     and with the first term on the right-hand side denoting the expected

marginal product of the labor input, and the second term measuring deviations from risk-neutral

behaviour in the case of assumed risk-aversion (Koundouri et al. 2006). The decision whether or

not to adopt a more labor efficient milking technology can be modeled as a binary choice, where

the farmer chooses to adopt (=1) or not (=0). In the case of adoption, labor use efficiency is

increased: h1() > h0() for 0<<1. The dairy farmer will adopt the new and more efficient

milking technology if the expected utility with adoption (E[U1]) is greater than the expected

utility without adoption (E[U0]): E[U1] - E[U0] > 0. Future profit flows after adopting the

new milking technology are not known with certainty due either to ignorance of the exact

technology performance or to the higher probability of technology failure as a consequence of

errors in the use and maintenance of this technology. Furthermore, investing in the new milking

technology entails sunk costs because of a fixed cost portion and the risk linked to a potential

resale of the equipment. As Dixit and Pindyck (1994) point out, additional information on the



Figure 1

D1: herdsize

decision

D1n: no increase

D1y: increase

D2: ams adoption

decision

D2n: no adoption

D2y: adoption

performance and risks of the new technology might possess a positive value for the individual

farmer. Linked to such information is the case that some dairy farmers may prefer to delay the

adoption until more information becomes available and consequently, an extra premium may

enter the technology adoption decision: (E[U0]): E[U1] - E[U0] > InfV where InfV  0

represents the value of new information for the individual dairy farmer. InfV can be described as

a function of the initial fixed costs of technology investment, the level of uncertainty related to

the new technology (e.g. access to peer-group experiences, extension services), and the farmer’s

own characteristics and experiences (e.g. age, farming experience, successful technology

innovations in the past).

Sequential Selection

A second layer of the model is related to the reported threshold for adopting automatic milking

technology in terms of a required minimum herd size of about 60 cows.

This threshold can be conceptualized along the lines of a double selectivity sequential adoption

problem: The decision to increase the scale of milk production by an increase in herdsize or not

(D1) is followed by the decision to invest in the automatic milking technology or not (D2). If the

farmer decides not to increase the herdsize (D1n) then the AMS adoption decision (D2) is not

relevant (see figure 1). A rational farmer would increase the herdsize if the expected benefits

1ܦܷ
∗ are greater than zero where

(5) ܷ஽ଵ
∗ = (ݕ1ܦ)ܷ − 1ܦ)ܷ )݊ > 0

and correspondingly would adopt the new milking technology if the expected benefits 2ܦܷ
∗ are

greater than zero with



(6) ܷ஽ଶ
∗ = (ݕ2ܦ)ܷ − 2ܦ)ܷ )݊ > 0.

The net benefts ܷ஽ଵ∗ and ܷ஽ଶ
∗

are latent variables, assumed to be random functions of vectors of

observed exogenous variables Z1 and Z2

(7) ܷ஽ଵ
∗ = ଵܼߛଵ + ଵߝ and ܷ஽ଶ

∗ = ଶܼߛଶ + ଶߝ

where ε1 and ε2 are random error terms and γ1 and γ2 are vectors of unknown coefficients. The

observable choices of the dairy farmer are

(8) ଵܦ = ଵ௬ܦ ݂݅ ܷ஽ଵ
∗ > 0; ଵܦ = ଵ௡ܦ otherwise and

(9) ଶܦ = ଶ௬ܦ ݂݅ ܷ஽ଶ
∗ > 0 and ଵܦ = ;ଵ௬ܦ ଶܦ = ଶ௡ܦ otherwise.

However, the selection equation (9) is defined only over the subsample where 1ܦ = ݕ1ܦ (since

1ܦ = 1݊ܦ 2ܦ݀݊ܽ = ݕ2ܦ is not observed). This three-way grouping leads to a bivariate

sequential model with the probabilities of the three outcomes

(10) ஽ଵ௬,஽ଶ௬ݎܲ = Pr൫ܦଵ = ଶܦ;ଵ௬ܦ = =ଶ௬൯ܦ Φଶ( ଵܼߛଵ, ଶܼߛଶ,ߩ)

(11) ஽ଵ௬,஽ଶ௡ݎܲ = Pr൫ܦଵ = ଶܦ;ଵ௬ܦ = =ଶ௡൯ܦ Φ( ଵܼߛଵ,ߩ) − ஽ଵ௬,஽ଶ௬ݎܲ

(12) ஽ଵ௡,஽ଶ௡ݎܲ = Pr(ܦଵ = (ଵ௡ܦ = 1 −Φ( ଵܼߛଵ)

where and Φ2 are the cumulative distribution functions of the standard normal distribution

and the standard bivariate normal distribution with correlation coefficient ,ߩ respectively.

Peer-Group/Neighboring Effetcs

A third component refers to the formalisation of effects based on the social interaction of the

farmer with other members of the relevant peer-group (i.e. a non-dynamic type of behavioural

spillover effect). Such network externalities and the dissemination of experiences based on

learning by using the automatic milking technology in the ”neighborhood” can be approximated

by a spatial diffusion measure for the new technology (see Brock and Durlauf 2001, Baerenklau

2005). Taking a certain time lag into account with respect to the manifestation of such social

interaction or peer-group effects pg is defined as a weighted proxy for the diffusion of the AMS

technology in the neighboring region(s):



(13) ݌ ௜݃௧
௖ = ቀ

ே೎
ೌ೘ ೞ

ே೎
ቁ
௧ି ଵ

where i, t and c denote farm i, time t, and region/county c, respectively. ܰܿ
ݏ݉ܽ as the number of

farms in the county/region having adopted the AMS technology and ܰܿ as the total number of

farms in the respective county/region.

Identification Problem

As outlined above, serious identification problems have to be considered with respect to the

empirical modelling of factors for innovation behaviour based on social interaction. Endogenous

effects, as e.g. peer-group or neighborhood based influences have to be distinguished from

exogenous effects, as e.g. time and space related influences affecting the individual farmer and

his peer-group in the same way. Finally, unobservable (i.e. random) effects refer to the notion

that farmers belonging to the same ”group” tend to show similar behavioural patterns as a

function of similar individual characteristics and/or structural and/or institutional constraints

(e.g. similar past experiences with respect to core farming practices and innovation, similar

structural farming conditions, similar exposure to policy/social events at the same point in time

etc.) By applying a modelling approach that allows for the consideration of both fixed and

random effects with respect to the AMS adoption decision an effort to empirically capture and

probably identify these effects can be made. Exogenous and endogenous fixed effects are

distinguished from random effects based on the grouping structure of the observations.

Previous Innovation Experiences

Previous innovation behaviour and experiences with the adoption of new technologies and

farming practices as e.g. the adoption of organic farming can have a potential effect on the

current adoption decision. If the concept of path dependency at the micro-level is broadly

defined the effects of such historical innovation patterns and experiences have to be taken into

account with respect to the explanation of current innovation behaviour. We follow Penrose

(1959) and others who analysed how the growth of a firm's both organically and through

acquisition is strongly influenced by the experience of its managers and the history of the firm's



development at any point in time. Hence, by incorporating proxies for the succesful adoption of

organic farming practices as the major technology innovation for dairy farmers in preceeding

years, and for potential cross-fertilization with other individual characteristics as e.g. experience,

peer-group effects, risk behaviour we aim to account for such path dependency in terms of

individual innovation behaviour (see also Foltz and Chang 2002, Baerenklau 2005).

5. Data and Econometric Modelling

More than 90% of all dairy farms using AMS are located in northwestern Europe where

investments are driven by high labor costs, a continuous increase in the average herd-size and a

dominance of the family farm structure (Meijering et al., 2002). This study uses a unique dataset

based on a pooled cross-section for 241 dairy farms in Denmark for the years 2002 to 2006. It

includes information on farms which had just adopted the new milking technology, i.e.

information on the production situation at the time the decision to adopt/not to adopt was made.

The farms were selected by a stratified random sampling procedure based on the farm accounts

data base collected by the Danish Agricultural Advisory Services, Skejby, Denmark. The farms

in the sample are located all over Denmark and the relevant “neighboring/peer-group region”

were defined based on the Danish communal structure as in place before the communal reform

in 2006. The average dairy farm in the sample produced with a herdsize of about 123 cows and

the average farmer had about 15 years of dairy farming experience. Up to 40% of all

“neighboring or peer-group” dairy farms had experience with the adoption of AMS at the time

the average farm adopted the new milking technology (a summary statistic can be obtained from

the authors). The different econometric modelling steps are based on the conceptual framework

outlined above.

Risk Proxies

The use of a moment-based approach for the estimation of production risk is based on a flexible

representation (see Antle 1983). This avoids the problem of potential model misspecification



with respect to the probability function of farmers’ profit (∙), the distribution of risk G(∙), and

farmers’ risk preferences as described by the utility function U(∙) in (1). Hence, the sample

moments of the profit distribution are estimated and subsequently used as explanatory variables

for the farmers’ adoption decision. As our dataset contains information on the situation at the

time the adoption decision was made, the estimated profit function has not yet been affected by

the adoption decision. The estimated moments of the profit distribution can be assumed to be

exogenous to farmers’ decision at the time of adoption. Hence, the first estimation step consists

of estimating the profit function and then computing the moments of the profit distribution for

each observation (i.e. farm i time t). Following the procedure outlined by Kim and Chavas

(2003) based on Antle (1983) we first regress farm profit  (profit per cow) on a vector of

variable input prices r (labor price, fodder price, concentrates price, veterinary price, cow price),

milk output price p, a vector of fixed inputs z (land, capital), and a vector of extra profit shifters

c (farmer’s age, farmer’s experience, type of breed, yield per cow, off-farm income,

geographical location, climatic and soil conditions, and time) as well as an iid error term u:

(14) ߱௜௧ = (ߚ;௜௧܋,௜௧ܢ,୧୲݌,௜௧ܚ)߮ + .௜௧ݑ

Assuming profit maximisation and applying a flexible translog functional form (14) is estimated

by OLS providing consistent and efficient parameter estimates. The jth central moment of profit

conditional on input use is defined as

(15) (∙)௝ߤ = (∙)߱]൛ܧ − ଵ]௝ൟߤ

where μ1 denotes the mean of profit. Thus, the estimated errors from the mean effect regression

=ොݑ) ߱ − ߮(∙)) are estimates of the first moment of the profit distribution. These are squared and

regressed on the set of explanatory variables from (14), which gives

(16) ො௜ݑ
ଶ = (ߜ;௜௧܋,௜௧ܢ,୧୲݌,௜௧ܚ)ߴ + .௜௧ߝ

By using OLS on (16) we obtain consistent and efficient estimates of the variance (2nd moment).

This procedure is followed to estimate also the third (i.e. skewness) and fourth (i.e. kurtosis)

central moments based on the estimated errors raised to the power of three and four,
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respectively, used as dependent variables. The estimates obtained for the four moments are used

as proxies for the individual farmer’s milk production risk by incorporating them into the

subsequent models of AMS technology adoption along with a vector of other explanatory

variables.

Adoption Model I: Robust Sequential Logit

If the adoption of the AMS technology is conceptualized as a sequential selectivity problem it

can be estimated as a sequential logit model based on separate logistic regressions for each step,

decision or transition (see Khanna 2001, Buis 2007 and 2009).

Such a model is known in the literature as a sequential response model (Maddala 1983) or a

sequential logit model (Agresti 2002). Figure 2 shows the hypothetical process which is to be

quantitatively described by using a sequential logit model. Corresponding to the three levels D1n,

D2n, D2y the process consists of two transitions. The first transition refers to a choice between no

increase in herd size, i.e. D1n, on the one hand and D2n and D2y on the other. The second

transition consists of a choice between an adoption of AMS, i.e. D2y, and no adoption of AMS,

i.e. D2n, but only for those that have chosen D2y and D2n in first transition. The sequential model

aims to model the probabilities of passing these transitions by estimating a logistic regression

for each transition on the sub-sample that is at risk. Corresponding to equation (10) above, the

probabilities p1 and p2 in figure 2 can be approximated for farm i at time t as

(17) ଵ௜௧݌ = Pr(ݕ�௜௧߳൛Dଶ୬୧୲, Dଶ୷୧୲ൟหܠ (ܜܑ =
୶ୣ୮ (ఌభ೔೟)

ଵା ୶ୣ୮ (ఌభ೔೟)
(௜௧ܠࢼ) and



(18) ଶ௜௧݌ = Pr(ݕ�௜௧߳൛Dଶ୷୧୲ൟหܑݕ,ܜܠ௜௧߳൛Dଶ୬୧୲, Dଶ୷୧୲ൟ) =
୶ୣ୮ (ఌమ೔೟)

ଵା ୶ୣ୮ (ఌమ೔೟)
(௜௧ܢࢽ)

where xit and zit are vectors of regressors for farm i at time t (i.e. [i] farm size proxied by the

amount of milkquota; [ii] farmer characteristics as age and experience; [iii] farm characteristics:

organic or conventional, debt of the farm, off-farm income, private consumption, subsidies

received, hired labor; [iv] herd and production characteristics: type of breed, yield per cow,

fodder expenses, veterinary expenses, labor per cow; [v] neighbouring/ peer-group effects; [vi]

yearly effects; [vii] risk proxies: the estimated moments based on (14), cross effects between

moments and farmers experience as well as moments and neighbouring/peer-group proxy)1. The

term ୶ୣ୮ (ఌ೔೟)

ଵା ୶ୣ୮ (ఌ೔೟)
ensures that the predicted probability remains between 0 and 1 by modelling the

effects of xit and zit as S-shaped curves. The coefficients can be interpreted as log odds ratios

and the likelihood function is given in Maddala (1983) or Buis (2009). The maximum likelihood

estimates are obtained by maximizing the likelihood function with respect to the parameters by

numerially approximating the integrals based on maximum simulated likelihood (Train 2003).

The simulations involved need to be repeated for each observation and by using a drawing

procedure based on a Halton sequence a more regular sequence of numbers can be generated

(Drukker and Gates 2006. The seqlogit package in Stata is used here, see Buis 2007). To address

the likely problem of heteroscedasticity because of pooled cross-sectional data we first test for

such heteroscedasticity and secondly estimate the robust covariance matrix using the Huber-

White sandwich estimator (see Huber, 1967 and White, 1980). The latter provides consistent

estimates of the covariance matrix for parameter estimates even when the fitted parametric

model fails to hold because of misspecification or violation of the error related assumptions.

Despite several cross variable terms are used in the model, the auxiliary regressions performed

showed no severe collinearity in the explanatory variables. To examine the validity of the final

model specification we test for a group wise insignificance of the parameters in (17) and/or (18)

1 Possible endogeneity of the monetary variables ’debt of the farm’, ’off-farm income’, ’subsidies received’, and ’private consumption’ is
addressed by using the estimates for those variables based on a instrumental variables regression procedure (IV) as explanatory variables in the
adoption model as outlined by (17) and (18).



by a generalized likelihood ratio testing procedure. A Runs test to test for possible serial

correlation is applied (see Greene, 2000). Finally, several alternative pseudo-R2 measures have

been computed to judge on the overall model quality. The outlined sequential logit model is

finally also estimated in a slightly modified specification by considering previous innovation

experiences as outlined in the previous section. Hence, xit and zit are modified by incorporating

additional explanatory variables (i.e. [viii] organic farming practices adopted before or not, cross

effects between organic technology and farming experience, between organic technology and

peer-group effects, and between organic technology and the individual risk proxies).

Adoption Model II: Robust Probit and Mixed-Effects Logistic Regression

The preceeding model is designed to empirically capture the selectivity problem. However,

these models are not able to capture the influences by random effects based on different

groupings of dairy farms in the sample. To empirically identify such random effects beside

obvious fixed effects we apply a two-stage estimation procedure: First, we estimate a binary

probit model (i.e. selection model) and use the estimates to form the inverse Mills ratio to

address the sample selection problem. Secondly, we estimate a mixed-effects logistic regression

incorporating the estimates for the inverse Mills ratio as an additional regressor to control for

selection bias. Following Maddala (1983) the probit model assumes that

(19) =ܮ)ܲ �1|ܼ = (ݖ = Φ(ݖᇱߛ)

where L is a binary response variable, Z is a vector of regressors and Ф as the cumulative

distribution function of the standard normal distribution. By using the concept of a latent

variable model, the decision to increase the herdsize is generated as

(20) ଶ௜௧ܮ
∗ = +௜௧ܢࢽ ଶ௜௧ߝ

with ଶ௜௧ܮ
∗ denotes the latent variable, zit is a vector of regressors for farm i at time t as outlined

above, and ଶߝ ∽ ܰ(0,1). L as an indicator for whether the latent variable meets the herdsize

threshold Hit, following

(21) ௜௧ܮ = ൜
1 ݂݅ ଶ௜௧ܮ

∗ > ௜௧ܪ
0 ℎݐ݋ ݓݎ݁ ݏ݅݁

�



and taking the value 1 as the herdsize of the respective farm i is more than 60 cows, and the

value 0 if it is below or equal to 60 cows at time t. The log-likelihood function to be maximised

is given in Maddala (1983). Subsequently, the estimates obtained by (20) are used to generate

the inverse Mill’s ratio as the ratio of the probability density function over the cumulative

distribution function. This ratio is needed to account for possible sample selection bias in the

second stage of the model (Heckman 1979). This stage (i.e. outcome model) consists of a

mixed-effects logistic regression to estimate the technology adoption decision (see e.g. Agresti

et al 2000, Hedecker 2003) by accounting for fixed and random effects. Hence, we are able to

predict the discrete outcome variable even if observations might be correlated. If ଵ௜௝௧ܮ descibes

again the binary dependent variable based on the AMS adoption decision, realized for farmer i

at time t and part of a group of farms j as l1ij, which takes the value of either 0 or 1, for i = 1,...,

M; j = 1,..., nij. Abstracting from time the stochastic component is described by a Bernoulli

distribution with mean vector nij

(22) =ଵ௜௝~Bernoulli൫lଵ୧୨หπ୧୨൯ܮ π
୧୨

୪భ౟ౠ(1 − π୧୨)
ଵି୪భ౟ౠ

where ௜௝ߨ = Pr ଵ௜௝ܮ) = 1). The vector of random effects, bi, is restricted to be mean zero with a

symmentric positive semi-definite variance covariance matrix (see Hedecker 2003). The

systematic component is

(23) ௜௝ߨ =
ଵ

ଵା ୶ୣ୮ (ି൫ܑܒܠ઺ାܑܒ܊ܒܚ൯)

where xij is the vector of known fixed effects explanatory variables for farm i in group j as

outlined above, β as the vector of fixed effects coefficients to be estimated, rij is the vector of

known random effects explanatory variables and bi as the vector of random effects for farm i

based on group j (along the following factors as a consequence of [i] neighbouring/peer-group

effects, [ii] farm group effects, [iii] time, and [iv] soil/climatic conditions). The likelihood

function must marginalize over the random effects and is given in Hedeker (2003) or Bates

(2007). It can not be evaluated exactly and thus the maximum-likelihood solution must be



approximated, e.g. based on Laplacian approximation (the xtmelogit command contained in

Stata is used here). The outlined two-stage probit and mixed-effects logistic regression model is

also estimated in a slightly modified specification by considering previous innovation

experiences as outlined in the previous section. Finally different diagnosis tests and robust

estimation procedures are applied as outlined for adoption model I.

6. Results and Discussion

The overall quality of the four models estimated is largely satisfactory: The likelihood ratio and

other diagnosis tests indicate no severe misspecification and the different alternative R-square

measures show a high predictive power (due to space limitations only the estimates for the

second version of the models are shown in table A1, other estimates can be obtained from the

authors upon request). The models estimated show a high consistency with respect to the

individual parameter coefficients and their significance which suggests robust empirical results.

With respect to the decision to adopt the AMS technology all models show a positive and

significant influence of the scale of milk production, a negative and significant effect of the

farmer’s age but a positive significant effect of farming experience. With respect to farm

characteristics the overall debt of the farm and the amount of off-farm income have a negative

effect on the probablity of adopting the new milking technology. On the other hand, the amount

of private consumption showed to have a significantly positive effect on the adoption

probability. With respect to herd characteristics, we found a negative and significant effect of

the amount of fodder used but a positive and significant effect of veterinary expenses per cow.

These results confirm earlier findings with respect to the scale of the production - larger dairy

farms are more likely to adopt new technology - and the importance of the farmer’s age and

education - younger and better educated dairy farmers are more likely to adopt new technology

(see Putler and Zilberman 1988, Foltz and Chang 2002, Barham et al. 2004). However, the

finding that farming experience influences the probability of AMS adoption is somehow



contradictory but could be explained by the measurement of the variable as the number of years

operating the current farm. Hence, farmers tend to aquire a certain level of learning-by-doing

with respect to the current milking technology before they decide to switch to a new milking

technology. A soft budget constraint could explain the negative effect of the dairy farm’s off-

farm income on the probability of adopting the AMS technology: the farm is able to operate

with a less productive technology for a longer time span. Putler and Zilberman (1988) on the

other hand stress the importance of nonfarming business for the adoption of new technology.

Due to our findings farms at the negative as well as positive edge of financial risk management

(i.e. high debt or high off-farm income) are less likely to adopt new technology. Dairy farms

experiencing high veterinary costs per cow might consider a technology investment as a way to

avoid sources of costly diseases by minimising the effects of human labor. In a working AM

system, the animals are treated in the same way at each milking and the routines are predictable

for the cows which increases milk production (Samuelson et al. 1993). This is consistent with

findings that automatic milking does not increase the incidence of udder infections and SCC

(Svennersten-Sjaunja and Pettersson 2008), findings that cow stress was not observed during

automatic milking (Hagen et al. 2005), and findings that the milk cortisol level was not

increased in an automatic compared to a conventional system (Gygax et al. 2006). Contrary to

prior reasoning by more technical studies on automatic milking (see e.g. DeKoning et al. 2003),

the level of labor used per cow showed not to be of significance for the adoption decision. This

could possibly be explained by the fact that farmers and other labor already operating on a

relatively high level of labor productivity are those most interested in a further increase of their

labor productivity by adopting such labor saving technology.

With respect to the farmers’ risk perceptions our analysis revelead the following: The first

moment – expected profit – effects the technology adoption decision significantly positive, i.e.

the higher the expected profit the higher the probability of AMS adoption. The second moment

– profit variablility – showed to have a significant negative influence on the adoption



probability, i.e. the higher the probability of facing extreme profit gains or losses the lower the

probability of AMS adoption. For the third moment – skewness of profit – again a significantly

negative effect on the adoption decision has been found, i.e. the higher the downside profit risk

the lower the probability of adopting the new milking technology. The fourth moment – kurtosis

of profit – finally effects the probability of technology adoption also negative and this effect has

been found to be significant. A higher kurtosis of the profit distribution means more of the

variance is due to infrequent extreme deviations from the mean profit, as opposed to frequent

modestly-sized milk profit deviations. These findings are generally in line with theoretical

reasoning and previous empirical studies: Given the farmers’ general risk aversion and the

uncertainty related to the profit developmeent after adoption Kim and Chavas (2003) and

Koundori et al (2006) both conclude that the farmers’ decision to adopt a new technology is

significantly effected by risk considerations. In addition to these results we found that the cross-

effect of these risk proxies with farmers’ experience showed to significantly influence the

farmers’ AMS adoption decision. We found that the experience of the farmer with the operation

of the current business helped to adjust extreme profit expectations (first moment). This

confirms findings by Meijering et al. (2002) on the importance of realistic expectations with

respet to AMS adoption. On the other hand, the farmer’s experience are found to decrease the

farmer’s response to changes in the second to forth moment. These findings indicate that the

more experienced the farmer is in terms of running the current milk business the less responsive

he/she is to milk profit variance and infrequent milk profit deviations. Hence, the farmer’s

probability of adopting a new milking technology to hedge against profit outlier activity

increases (see also Koundori et al. 2006).

Time showed to have mixed but rather positive effects on the milking technology adoption

decision for the farms in the sample. This could reflect the role of information accumulation and

positive learning-by-doing effects in the relevant dairy farming community over time. The proxy

for neighboring/peer-group effects showed to be positive and significant with respect to the



AMS adoption decision. In addition the cross effects with the risk proxis (second to fourth

moment) were found to be also significantly positive, i.e. a decreasing negative effect of on

farmer’s response to changes in milk profit variance, skewness and kurtosis. Hence, our results

reveal that such social interaction effects decrease the individual farmer’s responsiveness to risk

exposure and consequently increase the probability of new technology adoption. In our second

modelling approach random effects were used to model unobservable factors related to such

peer-group influences, but also to control for individual farm, time, or soil/climatic related

effects. The estimates show a significant positive effect on the probability of adopting automatic

milking technology by the neighbouring/peer-group based farm grouping and a significant

positive effect by the time based farm grouping. Hence, we are able to empirically approximate

such neighboring/peer-group effects based on social interaction and learning-by-doing in the

wider peer-group. These findings are in line with, and even enforce, the findings by Baerenklau

(2005) and others: Peer-group based spillover effects as well as “bandwagon” effects generated

by early adopters have an impact on the individual adoption decision. Studies on AMS

concluded that automatic milking is not only a new milking system, but rather a completely new

management system, noneconomic factors such as lifestyle choices are at least as important as

economic factors for the decision to adopt an automatic milking system (Hyde et al. 2007).

Neighborhood /Peer-group effects play an important role with respect to the social diffusion of

such lifestyle changes which can be considered as “social network externalities” and as a

function of the total number of technology users. Such effects can be also due to pure

“conformity preferences” by the dairy farmers producing ancillary benefits from social

acceptance (Baerenklau 2005). Our findings correspond to these conclusions by adding current

empirical evidence on the importance of such “soft” factors for the adoption decision.

Finally, previous innovation experiences proxied by the adoption of organic farming practices in

previous years showed to have a significant positive influence on the probability of adopting

AMS technology. Further the cross-effects of such previous adoption experiences with overall



milk farming experience as well as with neighboring/peer-group externalities showed to have a

positive impact on the adoption probability in the sample. Such cross fertilization significantly

increases the probability of adopting the new milking technology. Such a significant positive

effect on the probability of adopting AMS has been finally also found for the cross-terms of

previous innovation experiences and the different risk proxies in the form of profit moments:

Previous experiences with a successful technology adoption lead to an additional adjustment of

extreme profit expectations (first moment) and, on the other hand, to an additional decrease in

responsiveness to milk profit variance and infrequent profit deviations (second to fourth

moment). Hence, the farmer’s probability of adopting a new milking technology to hedge

against profit outlier activity increases as he/she has previous experiences with a successful

technology adoption. These results somehow confirm previous studies on other livestock and

dairy related technologies concluding in a higher adoption probability for farms having adopted

complementary technologies before (Barham et al. 2004). Such experiences likely contribute to

realistic expectations with respect to the adoption of AMS named by Meijering et al. (2002) as a

key factor for a successful implementation of this new milking technology.

7. Conclusions

Using different quality response models this empirical study investigates factors for the adoption

of a new milking technology at the farm level accounting for problems of sequential selection

and behaviour identification. The results suggest the importance of the farmer’s risk perception,

significant effects of peer-group behaviour, and a positive impact of previous innovation

experiences. These findings are relevant for policy or technology suppliers aiming to efficiently

set incentives for an effective technology adoption. Neglecting to account for these effects can

change the estimated subjective beliefs of possible adopters and thus the incentive to adopt the

technology, as well. On the other hand, using relevant peer-groups to spread adoption related

information can induce a faster technology diffusion. In addition, policy makers should consider



the importance of the farmer’s risk perception when designing economic instruments to foster

technology adoption in order to adequately reflect risk reducing benefits by adopting the

technology. Future research should focus on disentangling such unobservable effects based on

social interaction by using large balanced panels to track individual farm behaviour before and

after technology adoption.
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Appendix

Table A1 Estimates

1: * - 10%-, ** - 5%-, *** - 1%-level of significance.
2: due to likley endogeneity the estimates for those variables based on a instrumental variables regression procedure (IV) are used.

model I) sequential logit model II) probit / mixed-effects logistic regression
(n = 1000) coefficient1 robust se (n = 1000) coefficient1 robust se

decision to increase herdsize (logit 1) decision to increase herdsize (probit)
farm size farm size
milkquota 0.099** 0.026 milkquota 0.004*** 7.09e-04
milkquota x milkquota -3.350e-05*** 1.210e-05 milkquota x milkquota -9.64e-05*** 9.43e-06
farmer characteristics farmer characteristics
age -1.065*** 0.187 age -0.162*** 0.054
experience 1.854*** 0.356 experience 0.104** 0.041
farm characteristics farm characteristics
debt of farm (estimate)2 2.505*** 0.696 debt of farm (estimate)2 -1.80e-07 1.56e-07
off-farm income (estimate) 0.029 0.016 off-farm income (estimate) -7.58e-06 6.86e-06
private consumption (estimate) -0.327 1.081 private consumption (estimate) 9.73e-06 5.03e-06
subsidies received (estimate) -0.025*** 0.004 hired labor/total labor 3.589** 1.411
hired labor/total labor 31.408*** 8.635
herd characteristics yearly effects
breed 14.054*** 2.912 2003 -0.505 0.474
fodder 0.046*** 0.016 2004 -1.026* -1.93
veterinary expenses per cow -0.008*** 0.001 2005 -0.438 0.571
neighborhood/peer-group effect 2006 -0.192 0.649
weighted neighborhood adoption proxy -21.071 18.965
yearly effects constant -0.380 0.628
2003 -8.756*** 3.264
2004 -5.430*** 1.669
2005 2.522*** 0.845
2006 -6.321** 2.995
risk effects
1st profit moment (mean) 0.749*** 0.173
x experience 0.022** 0.011
x weighted neighborhood adoption proxy 2.511 2.989
2nd profit moment (variance) -0.177*** 0.024
x experience 0.101*** 0.014
x weighted neighborhood adoption proxy -1.989* 1.227
3rd profit moment (skewness) -0.222*** 0.078
x experience 0.043*** 0.006
x weighted neighborhood adoption proxy 3.382* 1.758
4th profit moment (kurtosis) -0.031*** 0.009
x experience 0.008*** 0.001
x weighted neighborhood adoption proxy 0.558 2.687
previous innovation experience/organic farming adoption
organic farming (1-yes, 0-no) -2.636*** 0.639
x experience -0.520 0.056
x 1st profit moment -0.295* 0.148
x 2nd profit moment 0.212 0.164
x 3rd profit moment 0.147 0.142
x 4th profit moment 0.006 0.025

constant -2.829 5.290



Table A1 Estimates (continued)

decision to adopt automatic milking technology (logit 2) decision to adopt automatic milking technology (me logistic regression)

(n = 1000) coefficient1 robust se (n = 1000) coefficient1 robust se
farm size farm size
milkquota 0.012*** 0.002 milkquota 4.21e-04** 1.87e-04
milkquota x milkquota -2.53e-06 6.03e-07 milkquota x milkquota -4.44e-08*** 1.58e-08
farmer characteristics farmer characteristics
age -0.129** 0.058 age -0.004*** 8.84e--4
experience 0.132*** 0.045 experience 0.004** 0.002
farm characteristics farm characteristics
debt of farm (estimate)2 -0.851*** 0.231 debt of farm (estimate)2 -0.024** 0.011
off-farm income (estimate) -0.011** 0.005 off-farm income (estimate) -4.67e-04** 2.10e-04
private consumption (estimate) 0.611*** 0.242 private consumption (estimate) 0.042* 0.016
subsidies received (estimate) 1.89e-04 0.005 subsidies received (estimate) 9.75e-05 9.41e-05
hired labor/total labor -1.121 1.292
herd characteristics herd characteristics
breed -0.493** 0.217 breed -0.019** 0.008
fodder -0.002*** 8.33e-04 fodder -7.53e-05*** 3.01e-05
veterinary expenses per cow 0.002** 7.81e-04 veterinary expenses per cow 6.77e-05** 3.11e-05

yield per cow -1.41e-05 1.01e-05
labor per cow -3.38e-04 0.001

neighborhood/peer-group effect neighborhood/peer-group effect
weighted neighborhood adoption proxy 7.142*** 1.394 weighted neighborhood adoption proxy 0.413*** 0.167
yearly effects yearly effects
2003 -17.709*** 1.841 2003 -0.001 0.184
2004 0.148 1.212 2004 0.126*** 0.028
2005 -1.091* 0.624 2005 0.031 0.032
2006 18.289*** 1.401 2006 0.091* 0.037
risk effects risk effects
1st profit moment (mean) 2.447*** 0.702 1st profit moment (mean) 0.034*** 0.003
x experience -0.173*** 0.044 x experience -0.008*** 0.001
x weighted neighborhood adoption proxy -3.181 2.485 x weighted neighborhood adoption proxy -0.012 0.041
2nd profit moment (variance) -2.403*** 0.691 2nd profit moment (variance) -0.021*** 0.006
x experience 0.123*** 0.042 x experience 0.090*** 0.003
x weighted neighborhood adoption proxy 17.329*** 2.938 x weighted neighborhood adoption proxy 0.009*** 0.004
3rd profit moment (skewness) -1.136*** 0.301 3rd profit moment (skewness) -0.003** 0.001
x experience 0.053*** 0.013 x experience 1.12e-05*** 7.95e-05
x weighted neighborhood adoption proxy 4.043*** 1.534 x weighted neighborhood adoption proxy 0.059*** 0.023
4th profit moment (kurtosis) -0.147*** 0.444 4th profit moment (kurtosis) -5.90e-05*** 3.10e-06
x experience 0.003*** 8.52e-04 x experience 3.72e-06** 1.62e-06
x weighted neighborhood adoption proxy 1.399*** 0.326 x weighted neighborhood adoption proxy 0.009*** 0.003
previous innovation experience/organic farming adoption previous innovation experience/organic farming adoption
organic farming (1-yes, 0-no) 3.569*** 0.896 organic farming (1-yes, 0-no) 0.064** 0.031
x experience 1.804*** 0.427 x experience 0.003*** 0.001
x 1st profit moment -4.622*** 1.364 x 1st profit moment -0.103*** 0.016
x 2nd profit moment 4.016*** 1.198 x 2nd profit moment 0.004*** 0.001
x 3rd profit moment 0.429*** 0.141 x 3rd profit moment 0.009*** 0.001
x 4th profit moment 0.059** 0.027 x 4th profit moment 0.002*** 2.66e-04

x weighted neighborhood adoption proxy 0.134*** 0.024
soil/climatic cluster effects
cluster 2 -3.34e-04 0.052
cluster 3 0.049 0.046
cluster 4 0.031 0.034
cluster 5 0.006 0.034
cluster 6 0.030 0.042
cluster 7 0.011 0.034
random effects
weighted neighborhood adoption proxy
(28 groups)

1.501*** 0.466

farms (241 groups) 1.38e-05 0.566
time (5 groups) 1.835** 0.950
soil/climatic clusters (8 groups) 0.194 0.307

inverse Mill’s ratio (sample selection) 0.034*** 0.002
constant -68.349*** 19.397 constant 0.088 0.092

1: * - 10%-, ** - 5%-, *** - 1%-level of significance.
2: due to likley endogeneity the estimates for those variables based on a instrumental variables regression procedure (IV) are used.
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Table A2 Diagnosis and Model Specification Tests

diagnosis tests

model I) sequential logit model II) probit / mixed-effects logistic regression

Log-Likelihood -98.843
Log-Pseudolikelihood [probit]

Log-Likelihood [me logistic]

-34.405
-125.887

LR chi2(66) [overall specification] 343.97***
Wald chi2(12) [probit]

LR chi2(1) [me logistic]

113.19***
31.49***

successes completely determined
[1st sequence / 2nd sequence]

835 / 743 Pseudo R2 [probit] 0.731

McKelvey and Zavoina’s R2 0.997 / 0.661 McKelvey and Zavoina’s R2 [probit / me logistic] 0.987 / 0.974
McFadden’s Adj. R2 0.910 / 0.831 McFadden’s Adj. R2 [probit / me logistic] 0.629 / 0.548
Count R2 0.998 / 0.952 Count R2 [probit / me logistic] 0.986 / 0.970
serial correlation / Runstest
H0 = residuals follow random order

-5.32 (not rejected)
serial correlation / Runstest [probit / me logistic]
H0 = residuals follow random order

-17.40 / -15.88 (not rejected in both cases)

heteroscedasticity / White’s test
H0 = homoscedastic error

861.097***
(rejected, Huber-White-Sandwich robust
estimator applied)

heteroscedasticity / White’s test [probit / me logistic]
H0 = homoscedastic error

471.24*** / 214.49***
(rejected in both cases, Huber-White-Sandwich robust
estimator applied)

specification tests

model I) sequential logit model II stage 2) mixed-effects logistic regression

sLR-tests on groupwise insignificance
H0 = first sequence variables have no significant effect (chi2(30))

H0 = second sequence variables have no significant effect (chi2(28))

H0 = farm size related variables have no significant effect (chi2(2))

H0 = farmer related variables have no significant effect (chi2(2))

H0 = time related variables have no significant effect (chi2(4))

H0 = farm characteristics related variables have no significant effect (chi2(5))

H0 = risk related variables have no significant effect (chi2(12))

H0 = previous innovation related variables have no significant effect (chi2(6))

H0 = climate/soil related variables have no significant effect (chi2(6))

623.02*** (rejected at 1%-level)

48.02** (rejected at 5%-level)

549.29*** (rejected at 1%-level)

180.75*** (rejected at 1%-level)

61.08*** (rejected at 1%-level)

27.08*** (rejected at 1%-level)

55.10*** (rejected at 1%-level)

53.07*** (rejected at 1%-level)

---

---
---
51.40*** (rejected at 1%-level)

6.14** (rejected at 5%-level)

29.57*** (rejected at 1%-level)

15.64*** (rejected at 1%-level)

118.50*** (rejected at 1%-level)

75.60*** (rejected at 1%-level)

49.90*** (rejected at 1%-level)

1: * - 10%-, ** - 5%-, *** - 1%-level of significance.


