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Abstract: Chambers and Quiggin (2000) have used state-contingent production theory to establish 
important results concerning economic behaviour in the presence of uncertainty, including problems 
of consumer choice, the theory of the firm, and principal-agent relationships.  Empirical application 
of the state contingent approach has proved difficult, not least because most of the data needed for 
applying standard econometric methods are lost in unrealized states of the world. O'Donnell and 
Griffiths (2006) show how a restrictive type of state-contingent technology can be estimated in a fi-
nite mixtures framework.  This paper shows how Bayesian methodology can be used to estimate 
more flexible types of state-contingent technologies. 
 

 
 

                                                            
1 Paper presented at the 2009 Annual Conference of the Australian Agricultural and Resource Economics Society (AARES), Cairns.  The 
project was completed while O’Donnell was visiting the Universitat Autonoma Barcelona.  Financial support was provided by the Generali-
tat de Catalonia and the Australian Research Council. 
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1.   INTRODUCTION 
  
State-contingent production theory allows economists to apply the analytical tools of modern microeconomics in 
a stochastic production setting, provided ex ante preferences and production technologies are properly defined.  
Chambers and Quiggin (2000) have used the theory to establish important results concerning problems of choice 
under uncertainty, including the problems of moral hazard, incentive regulation and portfolio choice.  Unfortu-
nately, empirical implementation of the theory in a production context has proven difficult, not least because the 
ex ante production choices of firms are only partially observed.  
 
 O'Donnell and Griffiths (2006) have shown how to empirically estimate output-cubical state-contingent 
technologies in a finite mixtures framework.  Unfortunately, output-cubical technologies are inconsistent with 
important stylized facts concerning behaviour in the presence of risk.  The purpose of this paper is to show how 
the observed inputs and outputs of firms can be used to econometrically estimate more flexible state-allocable 
state-contingent technologies. 
 
 The structure of the paper is as follows.  Sections 2 and 3 describe some of the important characteristics of 
stochastic technologies and the producer optimization problem in the presence of risk.  Section 4 develops an 
econometric model for recovering the parameters of a two-state stochastic technology when allocations of inputs 
to diffierent states of Nature are unobserved.  Section 5 uses noiseless simulated data to demonstrate that the 
methodology can be used to recover unknown parameters and other economic quantities of interest without 
error.  Section 6 successfully applies the methodology to a real-world data set and recovers estimates of the (risk-
neutral) probabilities farmers assign to different states.  The paper is concluded in Section 7.  
 
 
 
2.  STOCHASTIC TECHNOLOGIES 
 
We begin by considering a firm that uses a single non-stochastic input to produce a single stochastic output.  We 
assume production activities take place over two time periods: in period 0 the producer chooses the input in the 
face of uncertainty; in period 1, Nature resolves uncertainty by choosing from a set of states {1,..., }.S=Ω   If 
Nature chooses s∈Ω  then the ex post realization of stochastic output is given by the state-s production function 
 
(2.1)  ( , )s s sz f x= β  
 
where sβ  is a vector of parameters permitted to vary across states, and  0sx ≥  is the amount of input allocated 
to production in state s.  We assume the function f is everywhere continuous and satisfies standard regularity 
properties, including monotonicity and quasi-concavity.  Chambers and Quiggin (2000) call such a technology 
state-allocable.  
 
 To illustrate the concept of state-allocability, Chambers and Quiggin (2000) provide a simplified cropping 
example in which a producer makes a pre-season allocation of a fixed amount of effort to the development of 
irrigation infrastructure and/or flood-control facilities.  If the producer allocates more pre-season effort to 
irrigation than to flood control then output will be relatively high if realized rainfall is low, and relatively low if 
rainfall is high.  Thus, different allocations of pre-season effort imply a trade-off between output realized in a 
low-rainfall state and output realized in a high-rainfall state.  Indeed, we can think of the producer as allocating 
the input to production in different states, and of reallocating the input between states in order to effect a 
substitution between state-contingent outputs. 
 
 Figure 1 depicts a two-state technology where the total amount of the input used in the production process 
has been fixed at *.x   Rightward movements along the horizontal axis in panel (a) in Figure 1 correspond to a re-
allocation of this fixed amount of input from production in state 1 to production in state 2. The downward-
sloping line in this panel shows how output in state 1 decreases as the amount of the input allocated to that state 
decreases; the upward-sloping function shows how output in state 2 increases as the amount of the input allo-
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cated to that state increases.  Panel (b) simply depicts the associated production possibilities frontier in state-
contingent output space.  Observe that by allocating 1

Ax  units of the input to state 1 and  *
2 1
A Ax x x= −  units to 

state 2 the firm can eliminate risk 1 2(z z=  at point A).  However, any other allocation of *x  involves risk.  For 
example, if the input is equally-allocated between states the firm will obtain a higher output in state 2 than in 
state 1 2 1(z z>  at point B).  The bisector in panel (b) gives the locus of all riskless state-contingent output pairs.  
The line passing through point C is a fair-odds line that will be discussed later in the paper. 
 
 Associated with (2.1) is the state-specific input requirement function 1( , ).s s sx f z−= β   It follows that 
production2 of the state-contingent output vector 1( ,..., )Sz z z ′=  requires an input commitment of 
 
(2.2)  1( , ).s s

s
x f z−

∈

≥ ∑
Ω

β  

 
The input distance function is3 
 

(2.3)  1( , , )
( , )I

s s
s

xD x z
f z−

∈

=
∑
Ω

β
β

 

 
where β  contains the distinct elements of 1,..., .Sβ β  This functional representation of the technology is the 
inverse of a Farrell (1957) measure of technical efficiency.  Other standard representations of the production 
technology are also available, including cost and output distance functions4.  In each of these alternative repre-
sentations, the vector of state-contingent outputs is treated in the same way as we treat vectors of multiple 
outputs when production is non-stochastic. 
 
 
 
3.  FIRM BEHAVIOUR 
 
Given a normalized input price of 0,w > the net return in state of Nature s is .s sy z wx≡ −  We assume the firm 
seeks to maximise a general welfare function that is non-decreasing in state-contingent net returns.  Then its 
optimization problem can be written 
 
(3.1)  { }max ( ) : ( , , ) 1Iz

W y D x z ≥β  

 
where 1( ,..., )Sy y y ′=  and W is a welfare function with the property ( ) ( ) / 0.s sW y W y y≡ ∂ ∂ ≥  The first-order 
conditions for efficient firm behaviour are5 

                                                            
2  Strictly speaking, the firm does not produce z.  Rather, it commits the input in such a way that zs is produced if Nature chooses s from Ω. 
3 The input distance function is defined as ( , , ) max{ : /  can produce }.ID x z x zβ = ρ ρ   Let *ρ  be the maximum factor by which a 
firm can contract its input vector and still produce the same output vector.  That is *( , ) / 0.g z xβ − ρ =   It follows that 

( , , ) / ( , ).ID x z x g zβ = β  
4 Given a normalized input price of 0,w > the cost function is ( , , ) ( , ).c w z wg zβ = β  To derive the output distance function, let δ  be 
the largest factor by which a firm can expand its output vector while holding its input vector fixed.  Then ( , ) 0.g z xδ β − =   If f is 
homogeneous of degree 1b−  then g is homogeneous of degree b, so that 1/ 1/( , ) .b bg z x−δ = β   The output distance function gives the 
inverse of the largest factor by which a firm can expand its output vector while holding its input vector fixed.  Thus, 

1/ 1/( , , ) 1/ ( , ) .b b
OD x z g z x−β = δ = β  

5 See Chiang (1984, pp. 201-202).  The partial total derivative of ( )W y with respect to 0sz ≥  is 
 

  
( ( , )) ( , )( ) ( ) ( ) ( ) .m m

m m s m
m m ms s s

y z wg z g zW y W y W y w W y
z z z∈Ω ∈Ω ∈Ω

∂ ∂ − β ∂ β
= = −

∂ ∂ ∂∑ ∑ ∑  

 
The inequality in (3.2) is due to the non-negativity restrictions 0.sz ≥  
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(3.2)  ( , ) 0s s swm z− ≤π β  for all s∈Ω  
 
where 1( , ) ( , ) / 0s s s s sm z f z z−≡ ∂ ∂ >β β  and  
 

(3.3)  
( )

(0,1).
( )

s
s

s
s

W y
W y

∈

≡ ∈
∑
Ω

π    

 
Because the sπ  terms lie in the unit interval and sum to one, they can be interpreted as risk-neutral probabilities 
– the subjective probabilities a risk-neutral firm would need to have if it were to select the same production plan 
as a rational firm with preferences ( ).W y   Equation (3.2) implies that any efficient choice for a rational firm 
with an objective function defined over net-returns can be viewed as though it were generated by a risk-neutral 
firm with subjective probabilities given by 1( ,..., ) .S ′π π  Thus, without loss of generality, we can restrict our 
attention to the risk-neutral case. 
 Before solving the first-order conditions (3.2) for a specific stochastic technology, it is useful to consider 
an efficient risk-neutral firm seeking to solve the optimization problem (3.1) subject to the additional constraint 
that the input level is fixed at *.x   The constrained optimization problem can be written 
 

(3.4)  
1

*

,...,
max : ( , ) for all ;

S
s s s s s sx x s s

z z f x s x x
∈ ∈

⎧ ⎫= =⎨ ⎬
⎩ ⎭
∑ ∑
Ω Ω

π β  

and has an interior solution that satisfies6 
 

(3.5)  ,s m

m s

z
z
∂

= −
∂

π
π

   

 
for all , .s m∈Ω  Thus, *x  is optimally allocated (i.e., expected output is maximized) when negative odds ratios 
are equated to marginal rates of substitution between state-contingent outputs.  Panel (b) of Figure 1 depicts the 

                                                            
6 The Lagrangean is 
 

  *( , )s s s s
s s

L f x x x
∈Ω ∈Ω

⎡ ⎤= π β −ψ −⎢ ⎥⎣ ⎦
∑ ∑  

 
The first-order conditions are 
 

(1)  * 0s
s

L x x
∈Ω

∂
= − =

∂ψ ∑  and 

(2)  
( , )

0s s
s

s s

f xL
x x

∂ β∂
= π +ψ =

∂ ∂
 

 
From (2): 
 

(3)  
( , )
( , )

s s m m

m m s s

f x x
f x x
∂ β ∂ π

=
∂ β ∂ π

 

 
and from (1): 
 

  * .m s
s m

x x x
≠

= −∑  

 
Thus, / 1m sx x∂ ∂ = −  and equation (3) collapses to equation (3.5). 
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case where an optimal allocation of *x  places the efficient firm at point C on the efficient frontier.  The straight 
line passing through point C is the locus of all points with the same expected output.  It has slope 1 2/−π π  and is 
known as the fair-odds line.  Pictorially, optimization involves choosing that fair-odds line that is furthest from 
the origin and shares a point in common with the production possibilities set.   
 
     Finally, Figure 1 allows us to illustrate the importance of properly defining the stochastic technology.  
Suppose the amount of input allocated to state {1, 2}s∈  is fixed at *0.5 .x   Then the efficient firm is operating at 
point B in panel (b) of Figure 1.  Free disposability of state contingent outputs, together with the fact that the 
firm has no capacity to reallocate the input between states, means the production possibilities frontier is the 
rectangle with vertices at the origin and point B.  For this technology, the fair-odds line that solves the firm's 
optimization problem will always pass through point B, implying the firm will not (cannot) alter the mix of state-
contingent outputs in response to changes in the risk-neutral probabilities.  Even when the firm believes that state 
s is a near-certainty, it will not (cannot) re-allocate inputs to the production of output in that state.  This is 
implausible.  Restrictive technologies of this type (i.e., ones that do not allow substitution between state-
contingent outputs) are said to be output-cubical.  This term derives from the fact that when S = 3 the production 
possibilities set can be represented as a cube in state-contingent output space.   
 
 
 
4.  ESTIMATION IN THE TWO STATE CASE 
 
In some empirical applications, input allocations to states of Nature and realized states of Nature are both readily 
observed.  For example, O'Donnell, Chambers and Quiggin (2006) describe a sugar-cane production system in 
which producers plant different varieties of sugar cane (either high-yielding but disease-susceptible, or lower-
yielding and disease-resistant) in the face of uncertainty about the incidence of sugar-cane smut disease.  
Acreages planted to different varieties of cane (input allocations) and levels of disease infestation (realized 
states) can both be observed ex post.  In these cases, conventional estimation methods, including data envelop-
ment analysis (DEA) and stochastic frontier analysis (SFA), can be used to recover the parameters of the 
production technology.  In some other empirical contexts, only the input allocations are observed.  For example, 
medical researchers can usually observe the different types of influenza vaccins administered by medical 
practitioners (input allocations), but cannot observe the numbers of patients exposed to different strains of 
influenza virus (realized states).  In these cases, if the technology is output-cubical, the parameters of the 
production technology can be estimated within the finite mixtures framework developed by O'Donnell and 
Griffiths (2006).  This paper develops methodology for estimating the parameters of the production technology 
in a third empirical context, namely when there are two observable states of Nature but input allocations to these 
states are unobserved. 
 
 Underpinning our estimation methodology is the assumption that firms are rational and technically efficient 
in production.  The efficiency assumption, which can be easily relaxed, means that the relationship between total 
input usage and state contingent outputs is of the form 
 
 (4.1)  1( , ) 0.s s

s

x f z−

∈

− =∑
Ω

β  

 
The rationality assumption means that an interior solution to the firm’s optimisation problem is given by 
 
(4.2)  ( , )s s swm z=π β   for all .s∈Ω  
 
Equation (4.2) is especially important for two reasons.  First, if the inverse of ( , )s sm z β exists then we can 
express state-contingent outputs as a function of normalised input prices and risk-neutral probabilities: 
 
(4.3)  ( )1 1 ,s s sz m w− −= π β  for all .s∈Ω  
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Second, in the two-state case, equation (4.2) allows us to express risk-neutral probabilities as functions of 
normalised input prices, realized states of Nature, and observed outputs: 
 
(4.4)  [ ] [ ]1 1 1 2 2( , ) 1 ( , )e wm q e wm q= + −π β β   and  

(4.5)  [ ] [ ]2 2 2 1 1( , ) 1 ( , )e wm q e wm q= + −π β β    
 
where 1se =  if 1s =  (and 0 otherwise).  Equations (4.4) and (4.5) can be substituted into equation (4.3), and the 
result can then be substituted into equation (4.1).  This yields a possibly nonlinear relationship between total 
inputs, normalized input prices, realized states of Nature, observed outputs, as well as the unknown parameters 
of the production technology.  Estimation involves embedding this relationship in a stochastic framework and 
applying an appropriate econometric estimator, such as nonlinear least squares (NLS).  Importantly, equation 
(4.2) cannot be used on its own to recover the parameters of the technology.  To see this, simply note that for any 
( , )s sz β pair there exists a sπ  that will satisfy (4.2) exactly.  This means that the parameters and risk-neutral 
probabilities cannot be separately identified unless additional information is introduced into the estimation 
process.  In this paper, this additional information comes in the form of equation (4.1). 
 
 
 
5.  EXAMPLE – SIMULATED DATA 
 
O'Donnell, et al. (2006) demonstrate that conventional approaches to efficiency measurement may be systemati-
cally and seriously biased in the presence of uncertainty.  For illustrative purposes, they consider a state-
allocable state-contingent production function of the Cobb-Douglas type: 
 
(5.1)  1/ 1/b b

s s sz x a−=  
 
where 1b ≥  and  0sa ≥  for {1, 2}.s∈ =Ω   In terms of the quantities introduced in Sections 2 to 4: 
 
(5.2)  1/ 1/( , ) b b

s s s sf x x a−=β    
 
(5.3)  1( , ) b

s s s sf z a z− =β     
 
(5.4)  1 1( , ) ( , ) / b

s s s s s s sm z f z z ba z− −= ∂ ∂ =β β   

(5.5)  ( )
1

1
1 1 ,

b
s

s s
s

m w
bwa

−
− − ⎛ ⎞

= ⎜ ⎟
⎝ ⎠

π
π β    

 
(5.6)  ( ) ( )1 1

1 1 1 2 21b be wba q e wba q− −= + −π   and  
 
(5.7)  ( ) ( )1 1

2 2 2 1 11b be wba q e wba q− −= + −π    

 
where ( , ) .s sa b ′=β   For this technology, the relationship between total inputs, normalized input prices, realized 
states of Nature and observed outputs is of the form: 
.   

(5.8)  
( ) ( ) ( ) ( )1 1 1 11 1

1 1 2 2 2 2 1 1
1 2

1 2

1 1
0

b b
b b b bb be wba q e wba q e wba q e wba q

x a a
bwa bwa

− − − −− −⎛ ⎞ ⎛ ⎞+ − + −
⎜ ⎟ ⎜ ⎟− − =
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 

An associated econometric estimating equation is: 
 



 7

(5.9)  
( ) ( ) ( ) ( )1 1 1 11 1

1 1 2 2 2 2 1 1
1 2

1 2

1 1
b b

b b b bb b
nt nt nt nt nt nt nt nt nt nt nt nt

nt nt
nt nt

e w ba q e w ba q e w ba q e w ba q
x a a

bw a bw a

− − − −− −⎛ ⎞ ⎛ ⎞+ − + −
⎜ ⎟ ⎜ ⎟= + +
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

υ  

 
where the subscripts n and t represent firms and time periods respectively ( 1,..., ; 1..., ),n N t T= =  and ntυ  is a 
random variable representing statistical noise.  We have used NLS to estimate this conditional input demand 
function using the simulated data reported in Table 4 of O'Donnell, et al. (2006).  The values of the unknown 
parameters used to generate that table were 12, 1.5b a= =  and 2 0.5.a =  Our NLS estimates of these parameters 
were 1

ˆ ˆ2, 1.5b a= =  and 2ˆ 0.5a =  with standard errors of zero.  The associated risk-neutral probabilities and 
unobserved state-contingent outputs were also recovered without error.   
 
 Implementing an NLS algorithm involves choosing starting values for the parameters of the technology 
that are compatible with risk-neutral probabilities lying in the unit interval.  Indeed, this requirement also needs 
to be met on each iteration of the algorithm.  Our experience with the simulated data was that the NLS algorithm 
failed if we chose starting values that were too far from the true values.  This is likely to a problem in real-world 
situations where the true values are, of course, unknown.  In the following section we overcome the problem by 
estimating the model in a Bayesian framework. 
 
 
 
6.  EXAMPLE –  RICE DATA 
 
O'Donnell and Griffiths (2006) use rice data to estimate an output-cubical state-contingent production frontier.   
The data consists of more than 300 observations on the inputs and rice outputs of farmers in the Tarlac region of 
the Philippines.  The descriptive statistics reported in Table 1 reveal a large amount of variation in the data set.  
The sample farmers have no access to irrigation, so at least some of the variation in the output variable can be 
attributed to variations in rainfall.  Observe from Table 1 that data on rice inputs has been aggregated into a 
single input index.  This is convenient because it allows us to work with the following trivial generalization of 
the technology given by (5.1): 
 
 (6.1)  1/ 1/b b

s s sz c x a−= +  
 
where 0,c ≥ 1b ≥  and  0sa ≥  for {1, 2}.s∈ =Ω   The associated econometric estimating equation is identical 
to (5.9) except that ntq is replaced by .ntq c−    The dummy variable 1nte  in (5.9) was set to one if rainfall was 
observed to fall below the first sample quartile (865 mm).   
 
We begin by writing the full set of NT equations represented by (5.9) in the more compact form: 
 
(6.2)  ( , , )x g q w β υ= +  
 
 
where 11 12( , ,..., ) ,NTx x x x ′= 1 2( , , , )c a a bβ ′=  and the remaining definitions are obvious.  The errors are assumed 
to be independent and identically distributed as 1(0, ).N h−   Thus, the likelihood function is 
 

(6.3)  [ ] [ ]1 / 2( | , ) ( | ( , , ), ) exp ( , , ) ( , , )
2

NT
N NT

hp x h f x g q w h I h x g q w x g q wβ β β β− ⎧ ⎫′= ∝ − − −⎨ ⎬
⎩ ⎭

 

 
where NTI  is an identity matrix of order NT  and ( | , )Nf a b C  denotes the probability density function (pdf) of a 
multivariate normal random vector with mean b and covariance matrix C.  We use the following improper prior: 
 
(6.4)  1( , ) ( ) ( 0)p h h I R I hβ β−∝ × ∈ × ≥  
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where (.)I  is an indicator function that takes the value 1 if the argument is true and 0 otherwise, and R is the 
region of the parameters space where the restrictions discussed in Section 5 are satisfied.  That is, R is the region 
where 1 20, 0, 0, 1c a a b≥ ≥ ≥ >  and all three parameters are such that the risk-neutral probabilities (defined by 
equations 5.6 and 5.7, but with q  replaced by )q c−  lie in the unit interval.  Thus, the posterior pdf is 
 
 (6.5)  1 1( , | ) ( | ( , , ), ) ( ) ( 0)N NTp h x h f x g q w h I I R I hβ β β− −= × × ∈ × ≥  
 
Conditional posterior pdfs that can be used within a Gibbs Sampler are: 
 

(6.6)  [ ] [ ]( | , ) exp ( , , ) ( , , ) ( )
2
hp x h x g q w x g q w I Rβ β β β⎧ ⎫′∝ − − − × ∈⎨ ⎬

⎩ ⎭
   and 

(6.7)  ( | , ) ( | , )Gp h x f h h NTβ =  
 
where 
 

(6.8)  
[ ] [ ]( , , ) ( , , )

NTh
x g q w x g q wβ β

=
′− −

 

 
and ( | , )Gf a b c  denotes the pdf of a gamma random variable with mean b and degrees of freedom c.   Simulating 
from the gamma density (6.7) is straightforward using random number generators available in most statistical 
software packages.  However, simulating from (6.6) is slightly more complicated because it is a truncated pdf.  
To simulate from (6.6) we used a random-walk Metropolis-Hastings algorithm with a multivariate normal 
proposal density.  For details concerning this algorithm, see Koop (2003).  During the transition, or burn-in, 
phase of the algorithm, the covariance matrix of the proposal density was set to a scalar multiplied by an identity 
matrix.  The scalar was set by trial and error to yield an acceptance rate in the range 0.3-0.5. After the burn-in, to 
improve the efficiency of the algorithm, we used the covariance matrix of the burn-in observations as the 
covariance matrix in the proposal density.   In this paper, we simulated 120,000 observations from the condi-
tional posteriors (6.6) and (6.7) and discarded the first 20,000 draws as a burn-in.   Figure 2 presents conver-
gence plots for each of the elements of β  and h.  We did not use statistical tests to confirm convergence of the 
MCMC chains because the convergence plots are quite conclusive insofar as they show absolutely no signs of 
non-stationarity. 
 
 Estimates of the unknown parameters are presented in Table 2.  The point estimates are the means of the 
MCMC samples and are optimal Bayesian point estimates under quadratic loss.  The inequality restrictions in the 
prior (6.4) ensure that all the estimates in Table 2 are theoretically plausible.  The standard errors are the 
standard errors of the MCMC samples and suggest that only b has been estimated with any reliability.  However, 
estimated standard errors can be misleading.  A more complete picture of the level of uncertainty surrounding 
the unknown parameters is presented in Figure 3.  This figure presents estimated marginal posterior pdfs for each 
of the parameters.  A feature of these pdfs is that the estimated pdfs for 1 2,a a  and b are asymmetric.  This is a 
direct result of the inequality information contained in the prior.  A second remarkable feature is that the 
estimated pdf for b has no support beyond 1.5, indicating a high degree of substitutability between state-
contingent outputs.   Third, the estimated pdf for c is rectangular.  This parameter has only been constrained to 
be non-negative, so it is somewhat surprising that the estimated density function has been upper-truncated at 
0.35.  This upper truncation is quite possibly a consequence of constraining the risk-neutral probabilities to the 
unit interval.   
 
 Finally, the estimated parameters can be used to recover estimates of the latent variables in the model, 
including unrealized state-contingent outputs, input allocations to different states of Nature, and the risk-neutral 
probabilities assigned to different states of Nature by individual firms.  For example, Table 3 presents estimates 
of  1π  for Firms 1 to 10 in Years 1, 3, 6 and 8.  The estimates presented in this table reveal that all rice farmers 
plausibly tend to assign similar (risk-neutral) probabilities to states of Nature in any given year (e.g., in year 1, 
we estimate that the first 10 farmers all assessed 1π  in the range 0.66 to 0.81).  Furthermore, farmers may attach 
very different probabilities to future states of Nature from one year to the next (e.g., in year 8, we estimate that 
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Firms 1 to 10 assessed 1π  in the range 0.09 to 0.19).   Importantly, risk-neutral probabilities are utility-deflated 
probabilities, so variations in these probabilities reflect variations in the probabilities attached to different states 
of Nature as well as variations in attitudes towards risk. 
 
 
 
7.  CONCLUSION 
  
Empirical estimation of flexible state-contingent production technologies is complicated by the fact that data on 
state-contingent outputs and allocations of inputs to different states of Nature are often unobserved.  This paper 
shows how to overcome the problem of lack of data in the two-state case.  In theory, the econometric model 
developed in the paper can be estimated using either sampling theory or Bayesian methodology.  In an applica-
tion to Philippines rice data, the sampling theory approach broke down due to an inability to dynamically control 
a nonlinear least squares optimisation algorithm.  Estimating the model in a Bayesian framework proved much 
more straightforward and yielded plausible estimates of economic quantities of interest.   
 
 
 
 
REFERENCES 
 
Chambers, R.G. and Quiggin, J. (2000) Uncertainty, Production, Choice and Agency: The State-Contingent 
Approach, Cambridge, UK: Cambridge University Press. 
Chiang, A.C. (1984) Fundamental Methods of Mathematical Economics, 3rd edn., Blacklick, OH: McGraw-Hill. 
Farrell, M.J. (1957) 'The Measurement of Productive Efficiency', Journal of the Royal Statistical Society, Series 
A (General), 120 (3): 253-290. 
Koop, G. (2003) Bayesian Econometrics, Chichester: John Wiley and Sons. 
O'Donnell, C.J., Chambers, R.G. and Quiggin, J. (2006) 'Efficiency Analysis in the Presence of Uncertainty', 
Risk and Uncertainty Program Working Papers, University of Queensland. 
O'Donnell, C.J. and Griffiths, W.E. (2006) 'Estimating State-contingent Production Frontiers', American Journal 
of Agricultural Economics, 88 (1): 249-266. 
 
 
 
 



 10

 
  Table 1.  DESCRIPTIVE STATISTICS  
  _____________________________________________________  
 
               Mean         SD         Min        Max   
  _____________________________________________________  
 
   Q           6.543      5.104     0.3700      31.10   
   X      2.199e+004 1.660e+004      1889. 9.251e+004   
   W           1.085     0.3871     0.4253      3.363   
   E1         0.2500     0.4336     0.0000      1.000   
  _____________________________________________________ 
 
 
 
 
 
 
 
  Table 2.  ESTIMATED PARAMETERS  
  _____________________________________________________  
 
                                     5th       95th  
   Coef        Mean     St.Dev     Pctile     Pctile  
  ______________________________________________________  
 
   c          0.183      0.106     0.0179      0.350  
   a1        0.0585     0.0428    0.00403      0.139  
   a2         0.143     0.0713     0.0327      0.264  
   b           1.20      0.149       1.02       1.51  
   h      1.32e-009  1.01e-010  1.16e-009  1.49e-009  
  _____________________________________________________  
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 Table 3.  ESTIMATED (RISK-NEUTRAL) PROBABILITIES ASSIGNED TO STATE 1  
 _______________________________________________________________________  
 
                                                     5th       95th                
   Obs    Year   Firm         P(s=1)    St.Dev     Pctile     Pctile    
 _____________________________________________________________________ 
  
     1      1      1          0.7558    0.09776     0.6079     0.9267   
     2      1      2          0.7776    0.08983     0.6423     0.9335   
     3      1      3          0.7501     0.1008     0.5983     0.9253   
     4      1      4          0.7628    0.09538     0.6144     0.9294   
     5      1      5          0.7756    0.09006     0.6396     0.9327   
     6      1      6          0.8127    0.08077     0.6832     0.9478   
     7      1      7          0.6659     0.1336     0.4629     0.8996   
     8      1      8          0.7597    0.09604     0.6130     0.9280   
     9      1      9          0.7854    0.08627     0.6554     0.9356   
    10      1     10          0.7955    0.08224     0.6715     0.9387   
    :       :      :           :           :          :         :       
    87      3      1          0.7638    0.09482     0.6208     0.9291   
    88      3      2          0.7022     0.1223     0.5154     0.9126   
    89      3      3          0.8189    0.07318     0.7086     0.9458   
    90      3      4          0.7134     0.1147     0.5374     0.9145   
    91      3      5          0.7382     0.1055     0.5793     0.9216   
    92      3      6          0.8176    0.07933     0.6902     0.9497   
    93      3      7          0.6821     0.1272     0.4894     0.9045   
    94      3      8          0.8430    0.06325     0.7442     0.9532   
    95      3      9          0.7358     0.1065     0.5754     0.9209   
    96      3     10          0.7574    0.09896     0.6070     0.9283   
    :       :      :           :           :          :         :       
   216      6      1          0.8789    0.04880     0.8027     0.9639   
   217      6      2          0.5949     0.1698     0.3287     0.8824   
   218      6      3          0.7077     0.1180     0.5301     0.9128   
   219      6      4          0.8015    0.08013     0.6760     0.9409   
   220      6      5          0.7706    0.09213     0.6316     0.9311   
   221      6      6          0.8205    0.07939     0.6924     0.9514   
   222      6      7          0.7208     0.1145     0.5464     0.9179   
   223      6      8          0.8142    0.07465     0.6983     0.9448   
   224      6      9          0.7969    0.08130     0.6739     0.9390   
   225      6     10          0.6524     0.1406     0.4403     0.8962   
    :       :      :           :           :          :         :       
   302      8      1          0.1233    0.08779   0.009265     0.2894   
   303      8      2          0.1839     0.1360    0.01342     0.4487   
   304      8      3          0.1306    0.09493   0.009653     0.3131   
   305      8      4         0.09419    0.06604   0.007067     0.2186   
   306      8      5          0.1301    0.09459   0.009602     0.3120   
   307      8      6         0.08734    0.06144   0.006454     0.2029   
   308      8      7          0.1945     0.1393    0.01455     0.4582   
   309      8      8          0.1416     0.1005    0.01068     0.3309   
   310      8      9          0.1368    0.09816    0.01023     0.3232   
   311      8     10          0.1823     0.1337    0.01344     0.4402   
 _____________________________________________________________________ 
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Figure 1.  A State-Allocable State-Contingent Technology  
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Figure 2.  Convergence Plots 
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Figure 3.  Estimated Posterior Pdfs 
 
 
 
 


