

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from **AgEcon Search** may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

The Relationship Between the ACRE Program and Crop Insurance

Nick Paulson
Gary Schnitkey
Carl Zulauf

SCC-76 March 19-21, 2009 Galveston, TX

ACRE Program

- Beginning in 2009, producers have choice between:
 - (1) Traditional option
 - Direct payments
 - Marketing loans
 - Countercyclical payments
 - (2) ACRE option
 - Direct payments with 20% cut
 - Marketing loans with 30% cut in loan rates
 - ACRE revenue plan

ACRE Program

- ACRE based on a state-level revenue index
- Payments are crop specific
- Payments based on planted acres
- Revenue guarantee cannot change by more than 10% from previous year

ACRE Program: Two Triggers

- 1. Actual *state* revenue must fall below state guarantee level
- 2. Actual farm revenue must fall below farm guarantee level (farm benchmark)
- Implications
 - ACRE could pay at state level and some farms would not be eligible
 - Farm-level losses may not trigger ACRE payment

State Revenue Trigger

State Gua	arantee	Ì
-----------	---------	---

.90

X

5-year Olympic Avg. State Yield (Planted Acre)

X

2-year U.S. Market average Price

Capped at +/- 10% from previous year

State Revenue

Must Exceed

State Yield (Planted Acre Basis)

X

U.S. Market Avg. Price

Farm Revenue Trigger

Farm Guarantee

5-year Olympic Avg Farm Yield

X

2-year U.S. Market Average Price

+

Crop Insurance Premium

Must Exceed

Farm Revenue

Farm Yield

X

U.S. Market Average Price

Implies that farm-level yields will have to be provided.

Rules and documentation requirements for proving yield histories have not yet been released.

ACRE Payment

If both triggers are met, then the payment will be:

Planted acres

- X State-level payment (state guarantee minus state revenue)
- X .833 (.85 in 2012)
- X Avg Historic Farm Yield / Avg Historic State Yield

Maximum state level payment is 25% of state guarantee

ACRE vs. Traditional

Traditional:

- \$4 to \$5 higher per acre direct payment
- Very small chance of LDP or counter-cyclical payments

ACRE:

- \$4 to \$5 lower direct payment
- Much higher chance of ACRE payments. In some years, payments could be large

Tradeoff:

Give up certain dollars (Direct) for uncertain dollars (ACRE)

ACRE and Crop Insurance

- ACRE covers systemic revenue risk
- Individual insurance plans cover risk at the farm level
 - APH yield
 - CRC
 - Both value losses using futures prices
 - Cover price movements from fall/spring to harvest

ACRE and Crop Insurance

- ACRE not a complete substitute for crop insurance
 - Historical revenue index vs. "expected" yield/revenue in a given crop year
 - U.S. season average price vs. futures
- Coverage will overlap
 - Affect policy type or coverage level choices?

Historical Evaluation State Trigger

Corn

- State trigger met in 10 out of 31 years (32%)
- Avg. payment over all years = \$17 per planted acre
- Avg. payment when ACRE occurs = \$53 per planted acre

Soybeans

- State trigger is met in 5 out of 31 years (16%)
- Avg. payment over all years = \$6 per planted acre
- Avg. payment when ACRE occurs = \$37 per planted acre

Historical Evaluation Farm Triggers

Corn

- Between 78% and 86% of farms meet farm trigger with no farmer-paid premium
- Between 87% and 91% of farms meet farm trigger with \$20 farmer-paid premium

Soybeans

- Between 81% and 93% of farms meet farm trigger with no farmer-paid premium
- Between 90% and 98% of farms meet farm trigger with \$20 farmer-paid premium

Historical Evaluation - Corn Percent of IL FBFM farms receiving payments

Year	ACRE	85% CRC	85% APH
1977	90%	73%	25%
1983	83%	83%	83%
1984	83%	18%	15%
1986	100%	24%	2%
1988	72%	81%	81%
1991	77%	42%	38%
1997	99%	23%	23%
1998	98%	62%	5%
1999	96%	38%	7%
2005	97%	67%	34%

Historical Evaluation - Corn Percent of IL FBFM farms receiving payment

Year	ACRE	85% CRC	85% APH
1980	0%	50%	50%
1981	0%	30%	3%
1982	0%	48%	2%
1995	0%	49%	49%
2002	0%	25%	25%
2004	0%	57%	1%

Monte Carlo Model

- IL state-level yields (Weibull, ML parameters)
- US MYA prices (Lognormal)
- Insurance/Futures prices (Lognormal)
- Farm-level yields (Weibull, iFarm 09)
 - Low/high risk
 - Low/high correlation with state yield
- Historical correlation structure imposed (Iman and Conover)
- Various insurance coverage levels

Results Summary - Corn

- 2009 ACRE price component ~ \$4
- Scenario 1: 2009 crop year
 - \$4/4.04 insurance price
 - \$3.74 expected US MYA price (FAPRI 2009)
- Scenario 2
 - \$4/4.04 insurance price
 - \$4 expected US MYA price
- Scenario 3
 - \$4.50 insurance price
 - \$4 expected US MYA price

Results Summary - Corn

- Can assume producer markets at HP (less basis) or at MYA price
 - If HP is used, revenue insurance dominates yield insurance
 - If MYA is used, revenue insurance still dominates without ACRE
 - With ACRE and using MYA price, yield insurance performs slightly better in most cases

Results Summary

85%		Scenario 1		Scenario 3	
(70%) Coverage		5% cVaR	Min Revenue	5% cVaR	Min Revenue
Low Risk High Corr		APH	APH	APH	APH
Low Risk Low Corr		APH (CRC)	APH	CRC	APH
High Risk High Corr		APH	APH	APH	APH
High Risk Low Corr		APH (CRC)	APH (CRC)	APH (CRC)	APH

Conclusions

- Coupling ACRE with yield insurance may offer better risk reduction at a lower cost than with CRC
- Considerations:
 - Farm-state yield correlation
 - Assumptions on timing of marketing
- Magnitude of effect proportional to:
 - Farm yield risk
 - Coverage level

Conclusions

 Robust across corn/soybean/wheat and correlation/farm risk/price scenarios

Other:

- If ACRE is elected, may be able to reduce coverage level within insurance plans to achieve similar levels of risk reduction
 - i.e. 85% CRC + Traditional → 70% CRC + ACRE
 - Premium savings will, in general, offset reduction in direct payments
 - Depends on level of correlation between farm and state yields

