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Modeling Electricity Prices: From the State of the Art to a Draft of a New 
Proposal 
Summary 
In the last decades a liberalization of the electric market has started; prices are now 
determined on the basis of contracts on regular markets and their behaviour is mainly driven 
by usual supply and demand forces. A large body of literature has been developed in order to 
analyze and forecast their evolution: it includes works with different aims and methodologies 
depending on the temporal horizon being studied. In this survey we depict the actual state of 
the art focusing only on the recent papers oriented to the determination of trends in electricity 
spot prices and to the forecast of these prices in the short run. Structural methods of analysis, 
which result appropriate for the determination of forward and future values are left behind. 
Studies have been divided into three broad classes: Autoregressive models, Regime switching 
models, Volatility models. Six fundamental points arise: the peculiarities of electricity market, 
the complex statistical properties of prices, the lack of economic foundations of statistical 
models used for price analysis, the primacy of uniequational approaches, the crucial role 
played by demand and supply in prices determination, the lack of clearcut evidence in favour 
of a specific framework of analysis. To take into account the previous stylized issues, we 
propose the adoption of a methodological framework not yet used to model and forecast 
electricity prices: a time varying parameters Dynamic Factor Model (DFM). Such an eclectic 
approach, introduced in the late ‘70s for macroeconomic analysis, enables the identification of 
the unobservable dynamics of demand and supply driving electricity prices, the coexistence of 
short term and long term determinants, the creation of forecasts on future trends. Moreover, 
we have the possibility of simulating the impact that mismatches between demand and supply 
have over the price variable. This way it is possible to evaluate whether congestions in the 
network (eventually leading black out phenomena) trigger price reactions that can be 
considered as warning mechanisms. 
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1. Introduction. Some stylized facts on the electric market and the 

electricity prices 

 

In the last decades, in order to improve efficiency and reduce electricity prices, following numerous 

European directives, a progressive liberalization of the electric market has started. This process, 

which is quite slow due to economies of scale, entry barriers and very high fixed costs faced by 

those who intend to operate in the energy markets, is in continuous development in some countries, 

whereas it is already completed in others. Electricity prices will then be determined on the basis of 

contracts on regular markets, where there is no possibility for arbitrage. In these markets supply will 

increase or decrease to meet the demand, whose curve results in being inelastic, therefore not much 

sensitive to price variations. 

The large body of literature on electricity prices includes studies with different aims and 

methodologies depending on the temporal horizon being studied. In the long run the study of the 

behaviour of electricity spot prices is important for profitability analysis and for power planning, 

whereas in the medium run it is typically used to obtain a forecast distribution in order to price 

derivative contracts. The evaluation of derivatives is made on the basis of spot prices, meaning that 

the price is determined by the market. In this survey we concentrate on those studies whose focus is 

the determination of trends in electricity spot prices and the forecast of these prices within the short 

run (day/week-ahead). 

Electricity is a particular commodity, characterised by a high variability; this is mainly due to the 

fact that electric energy cannot be stored, unless through costly and economically unsustainable 

methods. Only water reserves can be considered as a substitute method to manage the creation of 

electricity. From the results of numerous studies it does emerge that in Scandinavian countries or in 

the United States, in which these reserves are abundant, electricity prices show lower peaks due to 

the possibility of greater flexibility in the creation phase. Therefore, electricity has to be considered 

as an instantaneous consumption good. A second element capable of influencing prices is the fact 

that transmission networks are never perfect. Price variation among the different areas occur due to 

transmission, maintenance and plant costs. Possible overloads and potential faults or technical 

errors, that could in extreme cases lead to the system blackout, must then be considered in addition 

to these network problems.  
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In such a complex framework, the link between price and consumption is extremely difficult to 

analyse. Consumption, although having a clearly less volatile trend compared to spot prices, 

presents the same cyclical behaviour. We can therefore state that demand elasticity is very low, but 

prices are strongly influenced by the level of consumption. High levels of consumption are in fact 

the determinant of peaks in prices. The increase in demand determines the use of more expensive 

energetic resources in the production of electricity. In other words, the growth of consumption and 

therefore of volumes to be produced increases the marginal costs of production, which will rise 

exponentially depending on the use of nuclear, hydrogen, coal, oil or gas (see Figure 1). 

 

Figure 1. Marginal costs of production 

 

Price cyclicity and electricity demand represent a complex issue.  

First of all, electric markets exhibit three different types of seasonality. The first is linked to the 

greater use of artificial light and heating in the winter, and to the growing use of air conditioning in 

the summer. The second type of seasonality is weekly and is due to the changes in consumption 

among weekdays and weekends. Finally, we observe an intra-daily periodicity, which refers to 

variations between day and night and during the different stages of the day, in which generally we 

can identify two hot spots. Moreover, it is crucial to take into account that habits and climate 

conditions change among different countries. Seasonality needs therefore to be continuously 

focused on each market that has to be analysed. Furthermore, there are other relevant factors of 

distortion such as extreme temperatures, environmental disasters, particular social events and 

technical problems previously mentioned, as for example faults in generators.  

The combination of the characteristics of the electricity market and the shift from regulated prices 

to market-determined prices has resulted in a significant increase of electricity price volatility, 
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exemplified by occasional spikes. In fact, electricity spot prices show an extremely high daily 

average volatility, which varies between 10% and 50%, depending on the markets considered and 

on price levels, whereas oil and gas volatilities are 3% and 5%, respectively. The search of the best 

method to model and explain the trend of spot prices, in order to insure producers and consumers 

from sudden increases, has become in the last years a very relevant issue for the academic world. 

However, despite the large number of papers published on this topic, there is no clear empirical 

evidence supporting a specific theoretical model.  

 

The primary goal of this work is to propose a review of the economic literature on empirical 

electricity spot price analysis. Attention will be drawn on the methodological aspects, mainly 

economic and statistical, for evaluating the model performance based on estimation/forecast errors 

of spot prices. Moreover, it is worth noting that the available models are mostly for univariate 

analysis and that empirical studies mainly concentrate on the Nord Pool, that is the most mature 

power market in Europe. Because market structures and price dynamics differ widely across 

regions, our review will devote special attention to the methodologies applied in different markets. 

Finally, structural methods of analysis, which are most appropriate for the determination of forward 

and futures prices, will not be considered here.  

The available studies (see Table 1 for a summary) may be classified in terms of the applied 

methodology. With this respect, three broad classes emerge:  

 

• Autoregressive models, such as ARMA (AutoRegressive Moving Average), ARX 

(AutoreRressive with eXogenous inputs), PAR (Periodic AutoRegressive) 

 

• Jumps and regime switching models, such as ARJ including jumps with Poisson or Normal 

distribution, TAR (Threshold AutoRegressive) having a non linear mechanism, which shifts 

prices from a normal regime (mean reverting) to one with high prices, whose threshold is 

predetermined, MS (Markov Switching) at two or three regimes, whose threshold is 

represented by an unobservable random variable.  
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• Volatility models, such as ARCH (AutoRegressive Conditional Heteroskedasticity), 

GARCH (Generalised ARCH), MGARCH (Multivariate GARCH), suitable for describing 

volatility in a price heteroskedasticity framework (variance changing with time). 

 

In this section we briefly describe the basic model to explain electricity spot price behaviour for 

each class.  

We start with linear autoregression models (AR), followed by their extensions that allow to 

incorporate exogenous/fundamental factors (ARX). We introduce the second class, regime-

switching models that, by construction, should be well suited for modeling the nonlinear nature of 

electricity prices. This class includes threshold autoregression time series (TAR/TARX) and 

Markov models with a latent regime-switching variable (RS). Finally, since the residuals of the 

linear models typically exhibit heteroskedasticity, we discuss implementations of ARCH and 

GARCH models. 

 

1.1. Autoregressive Models 

In the engineering context, the standard model that takes into account the random nature and time 

correlations of the phenomenon under study is the autoregressive moving average (  model. 

It is composed of two parts: the autoregressive component and the moving average one.  

)ARMA

)

 

The autoregressive  model of order (AR p  can be written as ( )pAR  and is defined as  

 

tptpttt PPP εααα ++++= −−− ....110  

 

where  is a time series of electricity price, tP 0α  is a constant and tε  are the error term, generally 

assumed to be independent identically-distributed random variables (i.i.d.) sampled from a normal 
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( )2 ( ),0 σε N≈  and ( ) 2,0 σεε == tt VarE . The parameters pα αdistribution α ,.....,, 21

tP

 are called 

the  coefficients. The name “autoregressive” comes from the fact that  is regressed on its 

lagged values.  

AR

 

MAThe  models represent time series that are generated by passing the white noise through a non 

recursive linear filter .The notation ( )qMA

tttP −

 refers to the moving average model of order q   

 +++= εθε ....11 qtq −εθ

A model which depends only on the previous values of itself is called an autoregressive model AR  

while a model which depends only on the innovation term is called a moving average model MA , 

and of course a model based on both past values and innovation values is an autoregressive moving 

average model ( ). ARMA

( qpARMA ,The notation  refers to the model with ) p autoregressive terms and  moving average 

terms. In fact this model contains the 

q

( )pAR ( )qMA and models, 

 
p q

 

 

These assumptions may be weakened but doing so will change the properties of the model. 

 

To accurately capture the relationship between prices and loads or weather variables, an ARMAX  

(autoregressive moving average with exogenous variables) model can be used. The notation 

 refers to the model with ( )bq,p,ARMAX p  autoregressive terms,  moving average terms and  

eXogenous inputs terms. This model contains the 

q b

( )pAR  and ( )qMA

i t0
1 1

t i t i i t
i i

P Pα α θ ε− −
= =

= + + +∑ ∑ ε

 models and a linear 

combination of the last b  terms of a known and external time series . It is given by tX
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A number of variations on  models are commonly used in econometrics, when the series are 

integrated or exhibit seasonalities. If multiple time series are used then the  can be thought of as a 

vector and a VARMA  (vector autoregressive moving average) model may be appropriate.  

(periodic autoregressive moving average) model is used in a multivariate context with the peresence 

of seasonality in the data. 

ARMA

tP

PAR

)
v

Pv =

 

1.2. Jumps and Regime-Switching Models 

The “spiky” character of spot electricity prices suggests that there exists a nonlinear switching 

mechanism between normal and high-price states or regimes. Two broad classes of these models 

can be distinguished: those where the regime can be determined by an observable variable and those 

where the regime is determined by an unobservable, latent variable. 

 

The simplest model of the first class is the Threshold Autoregressive model , which assumes 

that the regime is specified by the value of an observable variable , generally equal to the price 

recorded 24 hour before , relative to a threshold value 

(TAR

t

dtt − T , first determined by assumption 

or by multi-step optimization procedure 
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To simplify the exposition, we have specified a two-regime model only, however, a generalization 

to multiregime models is straightforward. It is also possible to include exogenous variables ( )TARX  

or taking to consideration more sophisticate process.  

 

Given that we can not be certain that a particular regime or jump has occurred at a particular point 

in time, we can only assign or estimate the probability of its occurrence. Considering a mean-

reverting model, that is in fact an autoregressive process of order 1, the most obvious approach is 

the addition of a stochastic jump process to the mean reverting process ( )ARJ

J Z

. The most common 

specifications for the jump are the normal distribution and a compound normal process. In the latter 

case, the jumps  are each the sum of independently and identically distributed normals . The 

Poisson arrival process for the compound jumps can produce strongly right-skewed jumps. 

t t

 

( )
( )

2

1 1
0

,
with

tn
t Z

t t t t
i t

Z N
P P Z

n Poisson

μ σ
ε α

λ
−

=

⎧ ≈⎪= + + ⎨
≈⎪⎩

∑  

 

When we let the arrival intensity of the Poisson jumps approach zero, and its multiplication with the 

expected jump size approach a constant we observe that this model nests a model with normally 

distributed jumps. Rewriting this in a notation that splits it up in a ‘normal’ process (when there are 

no jumps) and a spike process (when there is at least one jump), we find that the first state occurs 

with probability ( )exp 1λ−=q ( )exp1M , the second with probability 1=S − − λq

( )RS

( )RS

. When using this 

method we consider the jump arrival process as constant through time, whereas in electricity 

markets we typically observe alternating periods of high and low jump frequency; in fact power 

prices are time-dependent. 

The requirement of stochastic jump arrival probabilities directly leads to regime switching models 

 as natural candidates. In the Markov regime-switching (or simply regime-switching) models, 

the regime is determined by an unobservable latent variable. The basic  model has the 

following simple specification: 
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tR
tt PP =  

 

where  is a latent variable representing the regime of the process in time period t . The price 

processes , being linked to each of the regimes , are assumed to be independent from each 

other. The distinguishing characteristic is that this latent regime variable is not imposed ex ante like 

the probability of jump , but stochastically depends on previously realized price levels.  

tR

tR

( )ARJ

tP tR

 

( )
( )

2 1

21

2 1 ,
1 1

Regime : ,

,
Regime : , with

1
Transition matrix :

1

t
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∑
 

At any point in time the price process is either in regime M  (mean reverting) or in regime  

(spike). Contrarily to a stochastic jump model, the probability that a certain state prevails is not 

constant, but dependent on the previous state, a stochastic entity. The Markov transition matrix  

contains the probabilities  of switching from regime 

S

Q

SM ,q M  at time t  to regime S  at time 1+t . 

Because of the Markov property, the current state  at time t  depends on the past only through the 

most recent value . In practice, the current regime is not directly observable, but determined 

through an adaptive probabilistic process using Bayesian inference. More precisely, based on the 

posterior probabilities of the current regime, we can calculate the prior probability of the next 

regime being of a certain type.  

tR

R 1−t

More sophisticated processes can be included in the Markov Switching specification. It is also 

possible to build a three-regime model that contains a “normal” mean-reverting regime M, an “up” 

regime U and a “down” regime D, and impose constraint on the transition probability. In this case, 

with three regimes, the Markov transition matrix is a 3x3 matrix. 
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1.3. Volatility Models 

Electricity spot prices, present various forms of non-linear dynamics, the crucial one being the 

strong dependence of the variability of the series on its own past. Some nonlinearities of these series 

are a non constant conditional variance and, generally, they are characterized by the clustering of 

large shocks or heteroskedasticity. 

Given an autoregressive model (first class) or a simple regression model, the autoregressive 

conditional heteroskedasticity model ( )qARCH

( ) 2

u

 considers the variance of the current error term 

 to be a function of the variances of the previous time period's error terms. 

Specifically, is assumed that 

ttVar σε =

ttt σ= . Now tε ε  is time dependent and u  is assumed to be t

independent identically-distributed random variables (i.i.d.) sampled from a normal distribution 

. The time varying series  are modeled by ( )1,0Nut ≈ 2
tσ

∑
=

−+=
p

i
itit

1

2
0

2 εββσ  

 

If an autoregressive moving average model ( )ARMA  is assumed for the error variance, the model is 

a generalized autoregressive conditional heteroskedasticity model GARCH , where ( )qp, p  is the 

order of the  terms  and  is the order of the  terms . The model is given by GARCH 2

GARCH

( ,1GARCH GARCH

σ q ARCH 2ε

∑∑
=

−
=

− ++=
p

i
iti

q

i
itit

1

2

1

2
0

2 σγεββσ  

Although the existence of large numbers of GARCH  specifications like exponential , 

integrated , quadratic GARCH ,  in mean, threshold GARCH  and so on, 

 is the most used volatility model for power spot prices.  model are also used 

in multivariate context MGARCH  to understand if the volatility of a market leading the volatility of 

other markets. 

GARCH

GARCH

)1
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Table 1.a: Recent studies on electricity prices 

 

Article Class Model Market Frequency P. Transformation Exogenous 
Variable 

Cyriel De Jong (2007) 2, 3 Regime Switching,  Mean Reverting, 
Stochastic Jumps, GARCH  Models 

Nord Pool, EEX, APX, Powernext, 
EXAA, OMEL, PJM, NEPOOL. Hourly Logarithm None 

Adam Misiorek, Stefan Trueck and 
Rafal Weron (2006) 1, 2, 3 AR, ARMAX, TAR, TARX, GARCH, 

Regime Switching Models CalPX (California Power Exchange) Hourly Logarithm 
System Load, 

Temperature, Power 
Plan Availability 

Rafał Weron and Adam Misiorek 
(2006) 1, 2 AR, ARX, Threshold ARX  Models Nord Pool Hourly Logarithm Temperature 

Alvaro Cartea and Marcelo G. Figueroa 
(2005) 2 Mean Reverting and Jump Diffusion 

Models  
England and 
Wales Market Daily Log Return None 

Rafa l Weron, Ingve Simonsen and 
Piotr Wilman (2003) 2 Mean Reverting and Jump Diffusion 

Models  Nord Pool Daily  First Difference None 

Andrew C. Worthington, Adam Kay 
Spratley and Helen Higgs (2002) 3 M GARCH Model NEM (Australian National Electricity 

Market): NSV, QLD, SA, SNO, VIC. Daily  None None 

Graeme Guthrie and Steen Videbeck 
(2007) 1 PAR Model, Principal Components NZEM (New Zealand Electricity 

Market) Half Hourly None None 

Graeme Guthrie and Steen Videbeck 
(2002) 1 PAR, State Space Models NZEM (New Zealand Electricity 

Market) Half Hourly None None 

Niels Haldrup and Morten Ø. Nielsen 
(2006) 2 Regime Switching, Structural Models Nord Pool Hourly Logarithm Congestion 

Niels Haldrup and Morten Ø. Nielsen 
(2004) 2 Regime Switching model Nord Pool Hourly Logarithm Congestion 

Notes. The articles included in the table are classified according to: author, class (1=autoregressive; 2=jump and regime switching; 3=volatility), model applied, reference 
market, frequency of data, transformation made on prices and exogenous variables used. 

 



 

Table 1.b : Recent studies on electricity prices 

 

Article Class Model Market Frequency P. Transformation Exogenous 
Variable 

Apostolos Serletis and Akbar 
Shahmoradi (2006) 3 M GARCH Models Alberta's Power Market Hourly First Difference Natural Gas Price 

Julia Popova (2004) 1 Spatial Error Models  PJM Hourly None System Load, 
Temperature, Forward 

Angel Leon and Antonio Rubia (2002) 3 VAR, OGARCH, MGARCH Models  MEM (Argentina Electricity Market) Hourly Three Blocks / day  None 

Michel Culot, Valérie Goffin, Steve 
Lawford , Sébastien de Menten (2005) 2 Men Reverting Jump Diffusion, non 

parametric Models  APX (Amsterdam Power Exchange) Daily, Hourly Logarithm None 

Siem Jan Koopmana, Marius Ooms 
and M. Angeles Carnero (2005) 3 ARFIMA, G ARCH Models Nord Pool, EEX, APX, Powernext Monthly  Logarithm Hydro Reservoir Levels 

Michael Bierbrauer, Stefan Truck and 
Rafa l Weron (2004) 2 Two and three Regime Switching 

Models Nord Pool Daily  Logarithm None 

Ronald Huisman (2007) 2 Temperature Dependent Regime 
Switching APX Hourly Logarithm Temperature 

Ronald Huisman and Ronald Mahieu 
(2001) 2 Regime Jump Model CalPX, UKPX EEX,APX Daily  None None 

Abdou Kâ Diongue, Dominique 
Guégan, Bertrand Vignal (2007)  3 G GARCH EEX Hourly Logarithm None 

Bruno Bosco and Matteo Pelagatti 
(2006) 3 AR GARCH IPEX (Italian Power Exchange) Daily Mean None 

Notes. The articles included in the table are classified according to: author, class (1=autoregressive; 2=jump and regime switching; 3=volatility), model applied, reference 
market, frequency of data, transformation made on prices and exogenous variables used. 
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2. Modelling Electricity Spot Prices. What Does the Literature Say?  

 

In the following we will summarize the main features of the literature that addresses the issue of 

evaluating the performance of different models and methodologies applied to the analysis of spot 

electricity prices and their short run forecasting. Since our goal is to provide a picture of the current 

state of the art we will illustrate in detail only a selection of recent papers that appear to be very 

interesting both from the methodological point of view and also in terms of the empirical evidence 

they provide. On the basis of the evidence coming from the survey we propose in the next section 

the adoption of a “new” methodological framework for electricity prices analysis and forecasting.  

We refer to the Dynamic Factor Models; they have been introduced in the late ‘70s for 

macroeconomic analysis but they represent a “new” approach to modelling the electricity market in 

the sense that they never have been used for this purpose. 

 

2.1. General Contributions 

An overview of all the candidate models suitable to describe the features of the electricity market is 

provided by Misiorek, Trueck, and Weron (2006). The aim of their paper is to assess the short-term 

point and interval forecasting performance of different time series models of the electricity spot 

market during normal (calm), as well as extremely volatile, periods. 

Since the authors want to mimic a typical practitioner praxis, adopting a truly real time forecasting 

approach, they choose as test ground the California power market, that offers freely accessible high 

quality electricity price and load data; moreover this is a quite interesting market, since it provides 

the ideal framework for studying those behaviours typically leading to a market crash (really 

occurred in winter 2000/2001). 

After reviewing the most diffuse time series based modeling approaches for electricity spot prices 

the authors specify a set of competitor models:  

• AR/ARX: linear autoregression models eventually incorporating (X components) 

exogenous/fundamental factors (the system load in particular), 



• AR/ARX-GARCH,  

• TAR/TARX (non-linear, threshold regime-switching) 

• Markov models with a latent regime-switching variable 

The time series of hourly system prices, system-wide loads and day-ahead load forecasts was 

constructed using data obtained from the UCEI institute and the California independent system 

operator CAISO, for the calibration period July 5, 1999 – April 2, 2000; the period April 3 – 

December 3, 2000 was used for out-of sample testing.  

The empirical evidence is again in favour of regime-switching models, but in their simpler form: 

TAR/TARX models outperform their linear counterparts, both in point and interval forecasting, but 

simple ARX models reveal a quite encouraging forecasting performance. On the other side, an 

additional GARCH component generally decreases point forecasting efficiency so that GARCH-

inspired specifications do not outperform the relatively simple ARX approach. 

The primacy of TARX models emerges both within the point forecasts framework and in the 

interval forecasting one; in the latter the non-linear Markov regime-switching model systematically 

underestimated the range of possible next-day electricity prices and yielded the worst results of all 

tested models. 

 

In the paper by De Jong (2006) the focus is mainly on the existence of typical occasional spikes that 

are the main source of the large volatility affecting the electricity spot prices and because of their 

importance are usually incorporated into appropriate pricing, portfolio, and risk management 

models. Energy markets seem to suffer a level of uncertainty far larger than other commodity 

markets. Being electricity not storable, spot prices ultimately depend on local and temporal supply 

and demand conditions. In fact, on one side, large industrial customers usually can not vary their 

power demand in response to market prices, whereas on the other most power plants can gear up or 

gear down generation only with a significant time lag.  

This low level of flexibility is the main determinant of occasional extreme price spikes, which 

revert within hours or days to a their “standard” level. 

In the light of this, the investigation on the nature of power spikes in a number of different markets 

becomes a relevant line of research. 
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In particular the author makes a comparison among different time-series models aimed at capturing 

the dynamics of these disruptive spot prices:  

• standard mean reverting structure, which is a simple AR(1) model; 

• stochastic Poisson jumps model; 

• Markov switching regime model with stochastic Poisson jumps; 

• Markov switching model with three regimes: “Normal”-mean reverting, Up and Down; 

• Markov switching regime model with independent spikes; 

• threshold model. 

All these models have in common that the spot price (actually a day-ahead price), Pt, is divided into 

a predictable component, ft, and a stochastic component, Xt:  

pt = ln Pt =  ft +  Xt. 

The first component, ft, accounts for predictable regularities, and typically is a deterministic 

function of time. The stochastic second component Xt, that is the log spot price from which 

predictable trends have been removed, is the more interesting and triggers the most of the 

specification effort by the author. 

All the regime switching models above are used to evaluate whether the price spikes should be 

treated as abnormal and independent deviations from the ‘normal’ price dynamics or whether they 

form an integral part of the price process.  

The empirical application is referred to six day-ahead markets in Europe (Nord Pool Elspot- 

Scandinavia, EEX-Germany, APX-Netherlands, Powernext-France, EXAA-Austria, OMEL-Spain) 

and two in the US (PJM-US and New England Pool-US).  

As for the empirical evidence the paper concludes that, although they have a limited 

parameterization, regime-switching models are able to capture the price dynamics significantly 

better than a GARCH(1,1) model, a jump-model and a threshold model in the eight different 

markets. 
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The regime-switching model that strongly looks like a traditional jump model yields the best fit on 

average, but it is worth noting that there exist significant differences among the markets probably 

due to the different shares of hydro-power in the total supply stack: in fact hydro-power serves as an 

indirect means to store electricity, which has a dampening effect on spikes. 

 

2.2. Autoregressive Models  

Guthrie and Videbeck (2002) develop a new approach to understanding the behavior of high 

frequency electricity spot prices. Their approach treats electricity delivered at different times of the 

day as different commodities, while recognizing that these commodities may be traded on a small 

number of intra-day markets. They first present a detailed analysis of the high frequency dynamics 

of prices at a key New Zealand node. The analysis, which includes the use of a periodic 

autoregression model, suggests to consider electricity as multiple commodities, and also reveals 

intrinsic correlation properties that indicate the existence of distinct intra-day markets. Conventional 

models cannot adequately capture properties that have important implications for derivative pricing 

and real options analysis. Guthrie and Videbeck therefore extend the literature by introducing a 

state-space model of high frequency spot prices that preserves this intra-day market structure. 

The authors used a periodic autoregression model which impacts on both derivative pricing and real 

options analysis. The periodic autoregression model is used to value electricity derivatives with 

payoffs depending on high frequency spot price dynamics. The PAR’s principal limitation is the 

large number of parameters which need to be estimated.  

Rather than develop the PAR model, they pursued an alternative approach involving a state-space 

model. This is easily motivated from the intra-day market structure, and has the additional 

advantage of requiring a relatively small number of parameters to be estimated. It divides the day 

into distinct periods based on the correlation structure. 

The analysis revealed that daily time series of the prices of these commodities exhibit 

heterogeneous behavior. Further, the presence of remarkable structure suggests the existence of a 

small number of intra-day spot markets for electricity. The data suggest also that the structure of 

intra-day markets varies between weeks and weekends, and across seasons. 

Future research will reveal whether these patterns are stable over time and the extent to which they 

appear in other electricity spot markets. The authors ignored this seasonality in intra-day market 

 17



structure when estimating the state-space model in order to keep their model to manageable 

proportions. If more efficient means of estimating the state-space model can be found, then this 

extra-level of detail can be incorporated into dynamic models of spot prices. 

 

The contribution by Popova (2004) focuses on the evolution of electricity prices in deregulated 

market. The author formulates a model that takes into account the spatial features of a network of a 

market. The model is applied to equilibrium electricity spot prices of the PJM market. This paper 

addresses the issue of modelling spot prices, because spot prices are one of the key factors in 

strategic planning and decision support systems of a majority of market players, and are the 

underlying instrument of a number of electric power derivatives. The goal of the paper is to propose 

a model for electricity spot price dynamics that takes into account the key characteristics of 

electricity price formation in the PJM interconnection such as seasonality, weather-dependence, 

trading in the day-ahead market and spatial attributes of the distribution system. 

The novelty of this approach is the utilization of the spatial feature of the PJM market which is 

divided into twelve transmission zones. The PJM interconnection’s pricing mechanism and price 

data availability is designed in such a way as to allow considering each zone as a hypothetical 

generating unit. Both forward and spot prices are reported for each hypothetical producer hourly. 

This facilitates a high-frequency empirical analysis taking into account spatial characteristics of the 

interconnection. Consequently, the author assumes that the electricity spot price can be represented 

as a function of its lagged values, the forward price, weather conditions, and demand, which is 

equal to load. Popova assumes also that there is a unique price generating process, but the 

disturbances are spatially correlated due to the grid topology and the omitted variables problem.  

An empirical analysis indicates that the problem of unobserved spatial correlation in the network 

can be modelled by the Spatial Error providing an additional insight about the spot electricity prices 

in this market. The spatial aspect plays an essential role in electricity prices formation and ignoring 

the spatial characteristics and the grid topology may cause biased results and vague conclusions. 

The problem of unobserved spatial correlation in the grid can be modelled by the SEM. Strong 

spatial correlation is supported by the estimating results as well as by the testing procedure. Though 

the estimation of the “spatial” parameter is of little interest, it helps to bring out consistent estimates 

of explanatory variables. Therefore, the more robust estimates and inference can be drawn. 

Despite its attractiveness, the Spatial Error Model is not the only method available to model the 
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electricity prices and derivatives. Future of electricity price modelling may be oriented towards 

models incorporating finer components and an additional information about the network topology, 

weather conditions and connections between the PJM zones. The additional information can be 

utilized either by spatial approach or by other modelling methods. 

 

Weron and Misiorek (2006) assess the short-term forecasting power of different time series models 

in the Nord Pool electricity spot market. Four five-week periods were selected, which roughly 

correspond to the months of February, May, August and November. Given this choice, the authors 

are able to evaluate the performance of the models for all seasons of the year and the large out-of-

sample interval allows for a more thorough analysis of the forecasting results when compared to the 

investigations which are typically used in the literature considering single-week test samples.  

The models for electricity spot prices considered by the authors include linear and non-linear 

autoregressive time series with and without additional fundamental variables. The only exogenous 

information is the air temperature, since generally this is the most influential weather variable on 

electricity prices. The models were tested on a time series of hourly system prices and temperatures 

from the Nordic power market. 

Weron and Misiorek evaluate the accuracy of both point and interval predictions; the latter are 

specifically important for risk management purposes, where one is more interested in predicting 

intervals for future price movements than simply point estimates. The authors investigate the quality 

of the predictions, both in terms of the Mean Weekly Error (for point forecasts) and in terms of the 

nominal coverage of the models with respect to the true coverage (for interval predictions). They 

find evidence that non-linear models outperform their linear counterparts and that the interval 

forecasts of all models are overestimated in the relatively non-volatile periods. During relatively 

calm, periods the AR and spike pre-processed AR (p-AR) models generally yielded better point 

forecasts than their competitors, with p-AR being slightly better than the pure AR specification. 

However, during volatile weeks of May 2004 for example, the TAR model was the best. Regarding 

interval forecasts, they found that the estimated 90% and especially the 99% confidence intervals 

(CI) of the linear models are clearly too narrow for the volatile period. 

Better results are obtained for the TAR model, especially for the 90% CI. However, it predicts 

slightly too narrow 99% intervals and significantly too wide 50% intervals.  
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Moreover, the authors found that during relatively calm periods for all models almost all confidence 

intervals include the actual market clearing price (MCP) value. This is especially true for the 90% 

and 99% intervals, but even for the 50% CIs deviations from the actual MCP are rarely large 

enough to exclude the price from the interval. This is in contrast to the results for the California 

power market, where the TAR model yielded acceptable interval forecasts for the whole test 

sample. A possible reason for such a behavior could be temporal dependence (or “non-whiteness”) 

in the model residuals. Whether this is true has yet to be investigated. 

 

The study by Guthrie and Videbeck (2007) shows that some important properties of electricity spot 

prices cannot be captured by the statistical models, which are commonly used to model financial 

asset prices. Using more than eight years of half-hourly spot price data from the New Zealand 

Electricity Market, Guthrie and Videbeck find that the half-hourly trading periods fall naturally into 

five groups corresponding to the overnight off-peak, the morning peak, daytime off-peak, evening 

peak, and evening off-peak. The starting point for the analysis is to acknowledge that its non-

storability means that electricity traded at a particular time of the day is a distinct commodity, quite 

different from electricity traded at different times. The prices in different trading periods within 

each group are highly correlated with each other, yet the correlations between prices in different 

groups are lower. Financial models, which are currently applied to electricity spot prices, are 

incapable of capturing their behavior. On the contrary, the authors use a periodic autoregression to 

model prices, showing that shocks in the peak periods are larger and less persistent than those in 

off-peak periods, and that they often reappear in the following peak period. In contrast, shocks in 

the off-peak periods are smaller, more persistent, and die out (perhaps temporarily) during the peak 

periods.  

Guthrie and Videbeck illustrate a new approach to modelling electricity prices, the use of periodic 

autoregressions, because current approaches cannot capture this behavior either. A simple AR 

process, which ignores the different behavior of prices in different trading periods, can be calibrated 

to capture the low persistence evident in peak periods, or the greater persistence in off-peak periods, 

but not both simultaneously. Nor can it capture the reappearance of shocks later in the day when 

they first appear. The periodic autoregression used in this paper could be used to value electricity 

derivatives with payoffs depending on high frequency spot price dynamics. The PAR’s main 

limitation, however, is the large number of parameters to be estimated. For example, with half-

hourly trading periods each of the 48 equations has 48 slope coefficients, in addition to the 
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coefficients of various dummy variables. However, much of the dynamic structure would remain if 

only a subset of the lagged prices (for example 1, 2, 47 and 48 lags) is used. 

Parsimonious specifications might allow to introduce jumps and other relevant properties into the 

price process, although this line of research is not investigated in this work. 

 

2.3. Jumps and Regime-Switching Models 

After reviewing the stylized facts about power markets, Weron, Simonsen and Wilman (2003) build 

up a model which takes into account the well-known peculiar statistical properties of electricity spot 

prices. 

The first step of their analysis is to remove the seasonal components of the spot price, which are due 

to the fluctuations in demand, both at the annual level (due to climate condition) and at the weekly 

level (troughs over the weekends). The second step is to model the stochastic part of the 

deseasonalised series with a typical Ornstein-Uhlenbeck process, allowing for mean reversion and a 

volatility regime driven by a standard Brownian motion. 

Naturally, it is the “jumpy” characteristics of prices (after a jump they tend to remain high for 

several time periods, hours, sometimes even days) which requires a regime-switching model. 

Working on average daily spot prices from the Nord Pool power exchange since January 1, 1997 

until April 25, 2000, the authors propose and fit various models that exhibit mean reversion and 

assess their performance by comparing simulated and market prices. The models are: 

• a two-regime model with Gaussian spikes; 

• a two-regime model with lognormal spikes; 

• a two-regime model with Pareto spikes; 

• a three-regime model as in De Jong (2006): standard, jump upward or downward, reversal 

jump. 

The evidence is in line with De Jong (2006) in supporting the changing regime approach: in fact all 

the models seem to produce estimates for transition probabilities that can be interpreted according 

to market behaviour. Simulated price trajectories show high correlation with real price data and the 

parameters estimates are only slightly biased.  
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However, a critical point does emerge: in some cases the number of price spikes or extreme events 

generated by simulation of the estimated models is higher than in real price data. This evidence 

could be explained in terms of a structural drawback of the two-regime models, which are not able 

to distinguish a new current spike from the reversion following a past spike. Otherwise, this fact 

could reveal a kind of hypersensitivity typical of such a model category.  

While the number of extreme events is overestimated in all models, their estimated magnitude is 

smaller than the real one in the normal and lognormal models and greater within the Pareto-based 

one. To sum up, this exercise seems to provide strong support in favour of the three regime model 

already pointed out also in De Jong (2006). 

 

 A comparison among different regime switching structures for spot prices modelling with reference 

to the Nordic power market is conducted also by Bierbrauer, Truck, and Weron (2006). The authors 

analyze and model the logarithm of the deseasonalized average daily spot prices from the Nord Pool 

power exchange since January 1997 until April 25, 2000 and address the issue of modelling spot 

electricity prices with different regime switching models. The price behavior of spot electricity 

prices is modelled by dividing the time series into separate phases or regimes with different 

underlying processes. A jump in electricity prices is considered as a change to another regime. The 

switching mechanism is assumed to be governed by a random variable that follows a Markov chain 

with different possible states. Thus, there exists an unobservable variable in the time series that 

switches between a certain number of states which themselves are driven by independent stochastic 

processes. Additionally, there is a probability law that governs the transition from one state to 

another. 

The authors start considering the simplest model with two possible states. The two-regime model 

distinguishes between a base regime and a spike regime. They assume that base regime is governed 

by a mean-reverting process and they try different types of distributions for the spike regime. As 

suggested in the literature, Gaussian and Lognormal distribution are used. Since spikes happen very 

rarely but they usually are of large magnitude, they consider also heavy-tailed distributions (Pareto) 

for the spike regime. 

Clearly, the variety of regime-switching models is due to the possibility of choosing the number of 

regimes. Following Huisman and Mahieu (2003), they propose a regime switching model with three 
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possible regimes. The idea behind their specification differs significantly from the previous two-

state models. They identify three possible regimes: 

• a regime modeling the “normal” electricity price dynamics; 

• an initial jump regime for a sudden increase or decrease in price; 

• a regime that describes how prices move back to the normal regime after the initial jump has 

occurred.  

This definition implies that the initial jump regime is immediately followed by the reverting regime 

and then moves back to the base regime.  

While most spikes only last for one day, there are periods where the prices exhibit three or more 

extreme events in a row, a behaviour that could be considered as consecutive spikes. In contrast to 

the two-regime models, the three-regime model does not allow for consecutive spikes (or remaining 

at a different price level for two or more periods after a jump). 

Eventually they assess the performance of the models by comparing simulated and market prices. 

The main finding is that the models produce estimates for transition probabilities that can be 

interpreted according to market behavior. Simulated trajectories show close similarities with real 

price data. However, the number of price spikes or extreme events produced by simulations of the 

estimated models is higher than what could be observed in real price data. This is especially true for 

the two-regime models, where consecutive spikes have a higher probability than in the three-regime 

model. 

 

Cartea and Figueroa (2005) present a mean-reverting jump diffusion model for the electricity spot 

price and derive the corresponding forward price in closed-form. They have analysed electricity 

spot prices in the market of England and Wales. The introduction of NETA changed in a 

fundamental way the behaviour of this market introducing competition and price variations. 

However, its implementation only took place in March 27, 2001, resulting in not enough data to 

estimate or test the available models. Driven by this lack of data, the authors proposed a spot-based 

model from which it is also possible to extract in closed-form the forward curve. Both historical 

spot data as well as market forwards data are then used to calibrate the parameters of the model. 

Regarding the calibration of the model, the authors have circumvented a known drawback in 
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electricity spot-based models, that is the overwhelming dependence on a large number of 

parameters to estimate. As the market evolves and more data becomes available, it will be possible 

to estimate all the parameters more robustly, as already pointed out by some papers which have 

analysed more mature markets. The authors are able to reduce the number of parameters to be 

estimated, using a ‘hybrid’ approach which estimates some parameters from historical spot data and 

the remaining from market forward prices. It can be argued that this is an arbitrary choice, since 

calibrating to a market curve starting at a different point might yield different parameters. Even if 

this were the case, this is not a serious flaw. This would imply re-calibrating the forward curve with 

respect to a different market curve. In a dynamic hedging-strategy, this could be done as many 

times as necessary, depending on the exposure and the nature of the contract. 

As to the output of the model, the simulated price path resembles accurately the evolution of 

electricity spot prices as observed in this market. With regards to the forward curve shown, it 

succeeds in capturing changing convexities, which is a serious flaw in models that fail to 

incorporate seasonality effects or an appropriate number of other determinants. 

Finally, the robust evidence of fat tails in the distributions of electricity returns, together with the 

complexities on the calibration of these spot-based models and the existing problem of the exiguous 

data in this market, suggests the exploration of different alternatives. An interesting line of work to 

pursue involves models departing from the Gaussian distribution, as for instance those based on 

Levy processes. 

 

Since regime switching structures (allowing for mean reversion and long memory) seem to provide 

a qualified framework in order to correctly model the behaviour of spot prices, some papers tried to 

provide the different regimes with an economic justification as well. 

For this purpose Haldrup and Nielsen (2004, 2006) focus on the multilateral electricity price 

behaviour across regions with physical exchange of power and check the hypothesis that different 

regimes reflect congestion and non-congestion periods and that the direction of possible congestion 

episodes produces significant effects on the price dynamics.  

In the authors’ view, a situation where no grid congestions (or grid bottlenecks) exist across 

neighboring interconnectors will be characterised by a single identical price across the areas with no 
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congestions. However, when the transmission capacity in a sector of the grid is not sufficient, a 

congestion will arise and the market system will establish different price areas, with the higher price 

(positive price difference with respect to the other area prices) expressed by the region with excess 

demand of power. 

Price differentials among different areas reflect disequilibria between demand and supply in sub-

sectors of the grid: the bidding area with the largest price is the area with excess demand.  

As a consequence, an electricity market (for example Nord Pool) may be partitioned into separate 

bidding areas which become also separate price areas when the contractual flows between them 

exceed the capacity allocated by the transmission system operators for spot contracts. Three 

different states can be arise: non-congestion and congestion periods with excess demand in the one 

or the other region.  

To explore this issue the authors focus on separate prices bilaterally across grid points and in 

particular on the direction of the flow congestion; the referred market is Nord Pool for the period 3 

January 2000 - 25 October 2003 (more than 33000 observations). 

From the technical point of view, they improve and extend some previous models (Haldrup and 

Nielsen, 2005) allowing both for fractional integration and for a 3-state regime switching 

multiplicative SARFIMA simultaneously. 

The former feature accounts for the long memory of price series, whereas in accordance with the 

previous discussion three states are defined for the price behaviour: in the non-congestion state the 

difference in log prices is zero so that bilateral price are fractionally integrated, in the congestion 

states 1 and 2 different price dynamics can exist. Only conditioning on different states it is possible 

to correctly separate and identify different price dynamics, that are otherwise mixed in a complex 

way into a kind of convex combination of separate state processes. 

The empirical evidence shows that for Nord Pool data this particular model is well performing, that 

stressing that the long memory price behaviour may be depending on the current market conditions. 

Moreover, this approach can be considered a way to identify grid points with very separate price 

behaviour in different congestion states. 

 

Culot, Goffin, Lawford and de Menten (2006) propose a model with spikes for daily electricity 

prices, that incorporates various stylized features of power prices, including mean-reversion and 

 25



seasonal patterns. A mean reverting affine jump diffusion (AJD) model with spikes is developed for 

both spot and forward market prices. Spike behaviour flexibly is modeled using a Markov regime 

switching process, that enables to replicate the short-duration and extreme nature of price spikes.  

The model is estimated in a two-step procedure, where “structural” elements are pre-calibrated, and 

diffusive parameters estimated using maximum likelihood and the Kalman filter (as in Cartea and 

Figueroa, 2004).  

The performance of the model is illustrated, using daily and hourly data from the Amsterdam Power 

Exchange over the period 2001–2005. The spot data is appropriate for estimation of short-term 

shocks, spikes, and intra-week seasonality, while the forward curve is used to estimate 

medium/long-term shocks, and annual seasonality. The capacity in modelling performance of the 

model is also illustrated using a simulation-based assessment methodology, which shows, in 

particular, the ability of the hourly model to reproduce complicated intraday patterns. While some 

complex exotic products must be priced numerically using simulated data or numerical Fourier 

techniques, the AJD structure means that closed-form solutions exist for a variety of contracts. In 

short, the authors proposed a general and flexible treatment of power price modelling, that covers 

many important stylized features of daily and hourly electricity, and that has been shown to be 

amenable to efficient derivative pricing and hedging applications. 

Various extensions of the research in this paper are possible. We can imagine potential model 

modifications for a more realistic description of the observed spot series, e.g. by changing the 

annual pattern to account for multiple annual peaks, adapting the Markov regime-switching to allow 

for time-dependent spikes, or weakening the restrictions on the AJD coefficient matrices to enable 

modelling of stochastic volatility, correlations between risk factors, or more subtle stylized features. 

These modifications could come at the expense of an considerable increase in the computational 

burden. 

 

It is well known that prices in day-ahead electricity markets exhibit frequent spikes. The paper by 

Huisman (2007) focuses on how temperature influences the probability on these spikes in APX 

market. As temperature information is widely available, both actual values as forecasts, it provides 

timely information to all market participants at all times. Using a regime switching model in which 

the regime transition probabilities are time dependent it is shown that deviations from expected 

temperature influences the probability of a spike to occur. To describes the behaviour of daily 
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average day-ahead prices, as in Bierbrauer, Truck and Weron (2004), the author assumes in the 

model that the electricity market can be in one out of two regimes. Regime 1 reflects a normally 

behaving market. Regime 2 reflects a non-normal market due to a shock in demand and/or supply 

that results in a spike. Here, the transition probabilities are assumed to be a function of temperature. 

Temperature is assumed to influence the probability on a spike in the case when the actual 

temperature differs from the expected temperature. As is assumed that consumption volume 

depends on temperature, an unexpected change in temperature might lead to an unexpected change 

in consumption volume. This might then lead to a spike, if power producers are not flexible enough 

to adjust their volumes to the new consumption level. A further assumption is that the impact of 

temperature on spike probability depends on the season, as in summer months unexpected higher 

temperature might lead to an increase in demand (air-conditioning), whereas in winter months 

unexpected lower prices might lead to an increase in consumption (heating). 

In line with the theory the results indicates that temperature elasticities are different for the summer 

and the winter. For summer months, the elasticity parameter is positive and significantly different 

from zero. This implies that on days where the temperature is higher than what was expected, the 

price of power is higher. This is opposite for winter months as the parameter is negative and 

significantly different from zero. That is, on days where the temperature is lower than expected, the 

price of power is higher. These temperature effects only affect the mean price level. Adding the 

estimate for the mean spike to the mean price level implies that on average the mean price level 

during a spike increase, furthermore, the standard deviation in the spike regime is about three times 

higher. The stationary transition probability implies that every day a spike may occur with a 

probability of 3.5%. If the temperature is 1 degree Celsius higher than expected, the probability of a 

spike to occur increases to 4.3%. When it is 5 degrees warmer than expected, the probability equals 

10,1%. The estimate for the transition probability from the spike regime to the normal regime 

corresponds with a probability of 82.3%. That is, in about 82 of 100 spikes, the power price is back 

in the normal regime after one day and it stays in the spike regime in 18 cases. 

The results of this paper can be used for many situations in which practitioners need to manage the 

risks of spikes. Spikes are forecastable for a certain extend and the model above make it possible to 

simulate spikes and to better predict and model spike occurrence. In addition, as weather derivatives 

are traded, the known impact of temperature on spike occurrence can be used to optimize hedging 

spike risk using weather derivatives.  
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Using data from various electricity markets, natural gas and oil markets, Huisman and Mahieu 

(2001) examine the performance of two different models in order to describe the behaviour of 

electricity prices. The authors assume that electricity prices exhibit mean reversion, but considering 

that large jumps occur frequently, they propose a new model, where mean reversion is used to 

control jumps, because jump models that have been applied in previous studies generally suffer 

from a potential problem with identifying the true mean reversion within the process.  

Two ways of modelling electricity price jumps are presented: first, an autoregressive jump model 

(ARJ), that has been used in various studies, secondly, a new approach based on regime switching 

models (RS) in order to account for price jumps. The advantage of the latter model is that jumps are 

modelled separately from mean reversion, which reduces a potential identification problem.  

The first result is that mean reversion parameter estimates change from negative to positive after 

adding a stochastic jump process. Positive signs are not consistent with the nature of mean 

reversion; they imply a further move away from the long-term mean. Therefore, the intuition is that 

stochastic jump models indeed lead to misspecification of the true mean reverting behaviour. In an 

attempt to disentangle the jump modelling from mean-reversion, the authors propose a regime jump 

model that disentangles mean reversion from jump behaviour. This model identifies three different 

regimes, a normal one and two that control for a jump and a reversal back to the normal process. 

The results indicate the existence of mean reversion in the normal process with consistent parameter 

estimates. This fact implies that the second model resembles more closely the true price path of 

electricity prices. 

In conclusion, the evidence of this work is that autoregressive jump processes are not a proper way 

to model electricity price jumps as lead to problems with identifying the true mean reverting 

process in the data. From that perspective, the regime switching model is a first attempt to 

disentangle mean reversion from jump modelling. These results lead to differences in results when 

implemented in forward pricing and risk management frameworks. 

 

2.4. Volatility Models  

Worthington, Spratley and Higgs (2002) examine the transmission of spot electricity prices and 

price volatility among the five Australian electricity markets in the National Electricity Market 

(NEM): namely, New South Wales (NSW), Queensland (QLD), South Australia (SA), the Snowy 

Mountains Hydroelectric Scheme (SNO) and Victoria (VIC). All of these spot markets are member 
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jurisdictions of the recently established National Electricity Market (NEM). At the outset, contrary 

to evidence from studies in North American electricity markets, unit root tests confirm that 

Australian electricity spot prices are stationary. A multivariate generalised autoregressive 

conditional heteroskedasticity (MGARCH) model is used to identify the source and magnitude of 

spillovers. The estimated coefficients from the conditional mean price equations indicate that 

despite the presence of a national market for electricity, the state-based electricity spot markets are 

not integrated. In fact, only two of the five markets exhibit a significant own mean spillover. This 

would suggest that Australian spot electricity prices could not be fruitfully forecasted using lagged 

price information from either each market itself or from other markets in the national market. 

However, own-volatility and cross-volatility spillovers are significant for nearly all markets, 

indicating the presence of strong ARCH and GARCH effects. Strong own- and cross-persistent 

volatilities are also evident in all Australian electricity markets. This indicates that while the limited 

nature of the interconnectors between the separate regional spot markets prevents full integration of 

these markets, shocks or innovations in particular markets still exert an influence on price volatility.  

The results indicate the presence of positive own mean spillovers in only a small number of markets 

and no mean spillovers between any of the markets. This appears to be directly related to the 

limitations of the present system of regional interconnectors. The full nature of the price and 

volatility interrelationships between these separate markets could be either under- or over-stated 

depending on the specific transfomation applied to the original data. One possibility is that by 

averaging the half-hourly prices throughout the day, the speed at which innovations in one market 

influence another could be understated. For instance, with the data as specified the most rapid 

innovation allowed in this study is a day, whereas in reality innovations in some markets may affect 

others within just a few hours.  

The analysis could also be extended in a number of other ways. One approach would be to estimate 

a system of non-symmetrical conditional variance equations for an identical set of data. 

This would allow the analysis of cross-volatility innovations and persistence to vary according to 

the direction of the information flow. Unfortunately, strict computing requirements do not allow the 

application of this model with the five electricity markets specified in the analysis. 

Another useful extension would be to examine each of the five electricity markets individually and 

in more detail. Finally, the Sydney Futures Exchange (2000) has offered electricity futures contracts 

for two of Australia’s NEM jurisdictions, NSW and Victoria, since September 1997. An 
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examination of the relationship between Australian spot and derivative electricity prices using, say, 

cointegration techniques would then be interesting. 

 

Serletis and Shahmoradi (2006) specify and estimate a multivariate GARCH-M model of natural 

gas and electricity price changes, and test for causal relationships between natural gas and 

electricity price  changes and their volatilities, using data over the de regulated period from January 

1, 1996 to November 9, 2004 from Alberta’s spot power and natural gas markets. For natural gas, 

AECO is the most liquid intra-provincial index and daily spot prices were obtained from 

Bloomberg. The model allows for the possibilities of spillovers and asymmetries in the variance-

covariance structure for natural gas and electricity price changes, and also for the separate 

examination of the effects of the volatility of anticipated and unanticipated changes in natural gas 

and electricity prices. 

In the context of a VARMA-GARCH-in-mean specification, the authors jointly model the 

conditional variance-covariance process underlying natural gas and electricity price changes. Their 

model provides a good statistical description of the conditional mean and conditional variance-

covariance processes characterizing natural gas and electricity price changes. 

The conditional variance of the electricity price seems to be higher on average than that of the 

natural gas price. For natural gas, volatility appears highest (on average) in 1997, whereas for 

electricity the period of greatest volatility appears between 1999 and 2001, a period of increased 

demand, no excess capacity, and considerable uncertainty about future prices. Moreover, the model 

indicates that there is a bidirectional (linear and nonlinear) Granger-type causality between natural 

gas and electricity prices. Thus, the existence of bidirectional causality between natural gas and 

electricity prices means that there are empirically effective arbitraging mechanisms in Alberta’s 

natural gas and power markets, raising questions about the efficient markets hypothesis. 

This paper rules out alternative volatility models that dot not allow for the possibilities of spillovers 

and asymmetries in the variance-covariance matrix for natural gas and electricity price changes.  

 

An empirical analysis of daily spot prices for four European electricity markets using periodic 

seasonal Reg-ARFIMA-GARCH models is presented by Koopman and Ooms (2005) to explain the 

dynamics in the conditional mean and variance of log prices.  
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The time series of daily spot electricity prices are examined from four European emerging markets:  

• Nord Pool exchange market in Norway; 

• European Energy Exchange (EEX) in Germany; 

• Powernext in France;  

• Amsterdam Power Exchange (APX) in The Netherlands; 

The periodic seasonal regression ARFIMA model with seasonal heteroskedasticity and GARCH 

disturbances combines ideas from different strands of the statistical, geophysical and econometric 

literature.  

Statistical properties and inference for ARFIMA and other long memory processes are extensively 

discussed in the monograph by Beran (1994b), in the overview article of Baillie (1996) and, more 

recently, in the edited volume of Robinson (2003). A novelty in this paper is the introduction of a 

GARCH process for the variance of a periodic seasonal Reg-ARFIMA model.  

The day-of-the-week periodic autocovariances for short run dynamics are modeled by lagged 

dependent variables and for long run dynamics by seasonal ARFIMA models. Regressors capture 

yearly cycles, holiday effects and possible interventions in mean and variance. The GARCH-t 

component takes account of volatility clustering and extreme observations. The model parameters 

are estimated simultaneously by approximate maximum likelihood methods. Given the persistent 

changes in volatility, the authors prefer simultaneous estimation of mean and variance parameters 

above two-step methods. Residual diagnostics show a good fit of the model. The resulting time 

series models allow for dynamic point forecasting and stochastic simulation.  

The Nord Pool market trades hydro power and it is shown that a significant part of the short term 

price movement can be explained by weekly water reservoir levels and daily electricity 

consumption. The inclusion of these explanatory variables in the model does not significantly 

change the estimated periodic heteroskedastic seasonal autocovariance structure in Nord Pool 

prices.  

The basic modeling framework is successful for Nord Pool prices while it can be somewhat 

improved for prices from other European markets.  
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Suggestions for future extensions are more flexible distributions for the error term, smoothly time-

varying (periodic) parameters and a more extensive specification of the conditional variance 

equation. More parsimonious periodic AR components can be estimated and tested. The model can 

also be used for prices at a particular hour of the day. Finally, the strong interrelationships between 

prices and consumption may lead to multivariate modeling approaches. The empirical findings in 

this paper may have important consequences for the modeling and forecasting of mean and variance 

functions of spot prices for electricity and associated contingent assets. 

 

In order to provide robust forecasts for EEX spot electricity prices, Diongue, Guegan and Vignal 

(2007) propose a new approach based on the k-factor GIGARCH process which allows taking into 

account a lot of stylized facts observed on the electricity spot prices, in particular stochastic 

volatility, long memory and periodic behaviours. The authors are principally interested in 

calculating the conditional mean and variance of the prediction error.  

The probabilistic study of this model was introduced in Guégan (2000, 2003). Diongue and Guégan, 

(2004) developed the parameter estimation of the k-factor GIGARCH process. Here is provided the 

expression of the forecasts using the k-factor GIGARCH process and given their properties. These 

marks are applied on the German Wholesale spot electricity market 

EEX (European Energy eXchange), providing forecasting hourly electricity spot prices up until a 

one month-ahead. This goal is completely new in the sense that, in most published papers, the 

previsions concern mostly the on day-ahead horizon.  

The authors apply two models and discuss their capability in forecasting. The tested model are: 

• M1: 1-factor GIGARCH model  

• M2: 3-factor GIGARCH model  

The choice of the number of factors in a k-factor GIGARCH process is not obvious, however it is 

crucial from a forecasting point of view, see Collet, Guégan and Valdes-Sosa, (2003). 

The forecasting results with the two proposed models are highly convening in the sense of RMSE 

criteria. The conclusion is that the k-factor GIGARCH process is a suitable tool to forecast spot 

prices, furthermore the model M2 provides better forecasts than model M1, when modelling EEX 

prices on the period under study.  
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It is important to see if the methodoly proposed in this paper can be fruitfully applied to other 

spot markets having similar characteristics such as Powernext in France or APX in the Netherlands. 

 

After reviewing the historical facts about Italian Power Exchange, Bosco, Parisio and Pelagatti 

(2006) analyze the time series of daily average prices generated in this market, which started to 

operate as a Pool in April 2004. The analysis of these electricity prices carried out in this study 

permits a good understanding of the most relevant features of the data.  

The first finding is the significant change of behaviour that the data generating process has 

undergone starting from mid January 2005. This fact seems to be due to a learning time needed by 

the traders involved and by a change of regulation that took place in that period. Another peculiarity 

of the Italian prices is the relevant drop during Christmas holidays and summer vacations, that 

makes the use of few sinusoids or monthly dummies not fit for modelling with-year seasonality. An 

original methodology to deal with this problem has been developed. Furthermore, the interaction of 

the within-year seasonality with the within-week seasonality has also been modelled. A slow but 

significant (increasing) linear trend in the prices has also been noted and fitted. The reasons for this 

may be found in the relevant growth of the prices of hydrocarbon-based energy sources. 

To characterize the high degree of autocorrelation and multiple seasonalities in electricity prices, 

the authors use periodic time series models with GARCH disturbances and leptokurtic distributions 

and compare their performance with more classical ARMA-GARCH processes. The within-year 

seasonal variation is modelled using the low frequencies components of physical quantities, which 

are very regular throughout the sample.  

Results reveal that much of the variability of the price series is explained by deterministic multiple 

seasonalities which interact with each other. Periodic autoregressive GARCH models seem to 

perform quite well in mimicking the features of the stochastic part of the price process. Leptokurtic 

PAR-GARCH models fit best the different amount of memory of past observations that each 

weekday carries, as well as the presence of spikes and some form of volatility clustering. 

Although the limited length of the price time series leaves some questions open, the models 

developed in this paper seem to perform quite well. 
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The aim of the work by Leon and Rubia (2002) is to forecast the multivariate conditional volatility 

for portfolios containing intradaily electricity spot price from the Argentine Electricity Market 

(MEM) by grouping prices in three daily series (block bids). The method proposed could be a 

useful tool in order to manage the risk implied by the high volatility of the intradaily power price. 

Some methodologies characterized as simple multivariate conditional volatility models are applied 

by using orthogonal garch (OGARCH) and multivariate garch (MGARCH) models. Both models 

have been developed to cope with the time-dependent volatility of portfolios that include a great 

number of assets in financial and capital markets. 

First, the authors estimate the conditional mean of intradaily series by means of the autoregressive 

vector (VAR) methodology and a deterministic function capturing the strong seasonal behaviour 

implied in the power commodities. Then, taking the multivariate residual error series from VAR 

model, they estimate the conditional covariance matrix by the multidimensional GARCH model. 

More specifically, the models proposed by Alexander (2000) and Engle and Mezrich (1996) are 

applied. Both models get the estimation of parameters under a feasible computational way. The 

forecasting performance of OGARCH and MGARCH models, is evaluated in terms of their mean 

square error, both in sample and out of sample, when these are used for computing the daily block 

bid volatilities and covariances. 

The main conclusion of the forecasting performance comparison between the two approaches is that 

they give quite similar results. The goal of this paper has been to provide an intuitive tool which 

could be easily implemented by market agents. Of course, there is an implied trade-off between 

simplicity and realism in doing so. This methodology could be appropriate to the development of 

some extensions trying to cover more complex structures, such as the infrequent extreme jumps, 

pricing and managing basket options taking a block bid portfolio as underlying asset, and also for 

the valuation of derivatives on intradaily time-blocks of electricity spot prices. These topics are 

undoubtedly interesting challenges for further research. 
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3. Analyzing and Forecasting the Electricity Prices: a New Proposal  

 

3.1. The State of the Art. Summarizing Major and Minor Issues 

Six fundamental points arise from the analysis of the theoretical and empirical literature on 

electricity prices: 

• The electricity market retains absolutely peculiar characteristics: it is an auction market that, 

although liberalised, is not strictly a spot one, but it requires both price and quantity of 

equilibrium to be defined one day in advance on the basis of expected supply and demand. 

This guarantees a good match among supply and demand, that, due to the non-storability of 

electricity, to unexpected peaks in demand and to congestions over the distribution network, 

could fail, causing jumps in prices and leading in extreme cases to the system blackout. 

• The series of electricity prices have complex statistical properties that vary depending on 

spectral frequency to which data are measured and on sample size. Depending on the cases, it 

is possible to notice phenomena of seasonality at different frequencies, trends which are more 

or less linear at low frequencies, phenomena of auto-correlated volatility at high frequencies, 

and combinations of outliers apparently managed by non standard distributions. 

• A wide range of models dedicated to the analysis of the properties of price series follow an 

approach that can be defined as being agnostic from the point of view of economic 

interpretation, meaning they do not foster the inference on (economic) factors that influence 

prices, but they limit the analysis to only their statistical properties. 

• However, it seems evident that the evolution of prices over time is driven by the interaction 

between supply and demand of electricity, that is, from two phenomena not directly 

measurable and in someway latent. Therefore, in order to effectively model demand and 

supply it would be suitable to include in the model those factors that determine their trend: for 

example, climatic factors or the business cycle state that affect demand; productivity, size of 

the plant and costs of production concerning supply. It is a insidious approach, as these 

determinants play a role at different frequencies and usually statistical data on them are 
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characterised by significant measurement errors, which makes more difficult the correct 

identification of the effects caused by each phenomenon on prices. 

• Even for the hidden dangers previously mentioned, the econometric models dedicated to the 

analysis of electricity prices adopt very simplified specifications, often uniequational, taking 

into account only a few aspects of the issue at a time.  

• Among the models proposed by the literature, none of them seems to be characterised by a 

uniformly better capability of fitting the data and by an outperforming forecasting behaviour; 

depending on the market taken as reference, on the sample of data being considered and on the 

measure of forecasting performance chosen, now prevail very simple autoregressive models, 

whereas other times Markow switching models with changing regimes. 

 

In the light of the previous stylized issues, we consider the necessity of adopting a completely new 

methodological framework in order to efficiently specify and forecast the behaviour of electricity 

prices; an eclectic approach is needed which enables the estimate and the effective identification of 

the unobservable dynamics of demand and supply, the management of extremely wide datasets 

containing high frequency data, the coexistence of short term determinants of electricity prices with 

those of long term1, the creation of forecasts on future trends as well as simulations of the impacts 

of structural shocks. 

The natural and physiological candidate for the role of this innovative methodological tool is 

represented by dynamic factor models (henceforth DFM). 

These models were introduced in the late ‘70s and present characteristics which are definitely 

appropriate for the resolution of the six problems highlighted in the analysis of the literature on 

modelling and forecasting the electricity prices.  

Within the DFM framework it is possible to: 

• Produce efficient forecasts on the basis of many predictors and large equation systems. 

• Identify, estimate and analyse properties of widespread but unobservable variables, as the 

economic cycle or market demand and supply (electricity market in this case). 

                                                 
1 Extracting the economic signal from the noise 
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• Clean the data, separating measurement errors and idiosyncratic behaviours from the 

economic structural signal. 

 

3.2. A Brief Survey of DFM Literature. From Theoretical Aspects to Empirical 

Applications 

In his Ph.D. thesis Geweke (1977) moving from the observation of strong comovements among 

economic series2, introduced the dynamic factor representation, expressing each economic variable 

as the sum of a distributed lag of a small number of unobserved common3 factors plus an 

orthogonal idiosyncratic disturbance. In early applications to macro data Sargent and Sims (1977) 

and Sargent (1979) find empirical support to the view that a small number of common factors drive 

a large part of the observed variation in the economic aggregates; the perturbations affecting factors 

are just the common structural economic shocks the theoretical analysis and the policy makers are 

interested in, such as demand or supply shocks.  

It clearly emerges that dynamic common factors could provide a “natural” way of summarizing in a 

formal framework the informational content of large economic datasets and provide a sounder 

statistical basis for the extraction of synthetic measures of complex phenomena from multiple time 

series. Their great advantage is to efficiently reduce the large dimensional problem of handling tons 

of variables to identify and estimate a very small number of components. 

Finally, composite indexes have attracted a considerable attention due to their capacity of 

summarizing, describing and identifying not observable economic phenomena hidden in a (large) 

number of macroeconomic series, like in primis demand and supply. 

 

During the last twenty years the use of DFM has significantly spread in the academic framework as 

well as at the institutional level and the pioneering empirical applications, all oriented toward the 

analysis of the business cycle, left space for more differentiated applications in terms of economic 

content and properties of data. 

 

                                                 
2 As firstly stressed by Burns and Mitchell (1946) 
3 Common to (near)all variables in the dataset 
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In a sequence of cornerstone papers, Stock and Watson (1989), or SW89, and Stock and Watson 

(1991, 1992) show how to obtain through the Kalman filter the maximum likelihood estimation of 

the parameters and the factors in a DFM cast into state space form and within this framework they 

rationalize and refine the U.S. Business cycle coincident composite index produced by the 

Conference Board.  

Their index is obtained as the unique estimated factor of a low dimensional DFM allowing only for 

coincident variables. The corresponding n-period leading index may be obtained as the n-step ahead 

forecast of the coincident index based on a linear combination of past values of a group of pre-

selected leading indicators. This way Stock and Watson (1999) produced forecasts of US GDP and 

inflation. 

Despite its exceptional innovations, the SW89 proposal suffers three main drawbacks: (a) when n is 

very large (the most interesting case), maximizing the likelihood over so many parameters is too 

much consuming from the computational point of view, (b) the hypothesis that a unique common 

factor drives most of macroeconomic variables does not fit reality and (c) it is required an ex-ante 

classification of variables into coincident and leading ones. 

 

Since SW89, a large body of literature has been developed on DFM and forecasting: some lines of 

research have developed SW89 in an incremental way, whereas others have put forward proposals 

related but potentially alternative to it.  

 

Stock and Watson (2002a), or SW02a, and Stock and Watson (2002b), or SW02b, address all issues 

(a), (b) and (c) and show that with large datasets, including both coincident and leading (at all leads) 

variables, the consistent estimation of q > 1 dynamic factors can be based on static Principal 

Components Analysis (henceforth PCA), which is equivalent to solve a nonlinear least squares 

problem. Thus, becomes evident the correspondence between common dynamic factors and 

composite indexes in the sense that the estimated common factors are just weighted averages 

(weighted indexes) of variables contained in the original dataset and that the weighting system is an 

optimal one because minimises a quadratic loss function. SW02a in fact gives the estimated factors 

an interpretation in terms of “diffusion” indexes developed by NBER analysts to measure business 

cycles.  
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In this context, the generation of linear forecasts is directly obtained by using the h-step ahead 

formulation of the measurement equation of the DFM model.  

 

Following an indirect two step procedure, past values of the previously estimated common factors 

can also be used within a dynamic linear equation in order to forecast a coincident index, some of 

its components or any other macroeconomic variable (Marcellino, Stock and Watson, 2003, and 

Banerjee, Marcellino and Masten, 2003, for the Euro area; Artis, Banerjee and Marcellino (2004) 

for UK).  

To produce iterated h-step ahead forecasts, Favero, Marcellino and Neglia (2004) and Bernanke, 

Boivin and Eliasz (2005) proposed an approach that models jointly as a VAR a block of pre-

estimated factors (through static PCA) and a set of macroeconomic variables of interest. Such an 

approach, named Factor Augmented VAR (FAVAR), integrates factor methods into VAR analysis 

and provide a unified framework for structural VAR analysis using dynamic factors. Forni, Hallin, 

Lippi and Reichlin (henceforth FHLR) (2003) and Giannone, Reichlin, Sala (2004) constrain the 

shocks onto the factors equation of VAR to have reduced dimension in a work aimed at forecasting 

Euro-wide inflation and industrial production. Stock and Watson (2005b) significantly refine the 

FAVAR approach taking into account in their model the exclusion restrictions implied by the DFM.  

 

FHLR propose two alternative approaches to that of Stock and Watson, for the estimate of a DFM, 

anyhow based on the use of the principal components.  

In the former (FHLR 2003), the loss function to be minimised for the estimation depends on the 

inverse of the variance and covariance matrix of the idiosyncratic component4.  

A further line of research, (FHLR, 2000, 2001, 2004), switch from static to dynamic PCA and apply 

this alternative methodology to the derivation of a composite coincident index for the Euro area. 

This method allows for a richer dynamic structure than static PCA, but it is based on two-sided 

filters so its use for forecasting requires trimming the data at the end of the sample. The way for a 

real time implementation of the dynamic PCA approach was showed by Altissimo et alii (2001b) 

and it is now adopted by CEPR in order to provide its composite coincident indicator for the Euro 

area (Eurocoin), which is the single factor estimated fro a panel of nearly 1000 economic series. To 

                                                 
4 SW (2005a) use the expression “Weighted static PCA” to describe this approach. 
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construct n-step ahead predictions of the coincident index (Altissimo et al., 2001a) one may project 

it n-step ahead on its current and past values and on simple averages of the common components of 

the leading variables contained in the dataset, endogeneously selected on the basis of their lead 

relation with respect to the coincident index. 

A one-sided version of the FHLR filter is used by Giannone, Reichlin and Sala (2004) to produce 

factor-based predictions of US GDP growth and inflation rate, aimed at miming the US Grenbook 

forecasts. 

 

Dynamic Factor Models have been extensively used in many different frameworks of analysis as 

well as the macroeconomic one.  

As for high frequency data, as those typical of the electric market, it is possible to find a large 

number of applications (Connor and Korajczyk, 1988) using factor model methods to estimate 

unobserved factors and test their consistency with the indications coming from the arbitrage pricing 

theory. Other works address the analysis of asset prices using approximate factor structures: a 

survey is in Campbell, Lo and MacKinlay (1996). Recent developments tried to joint macromodels 

on business cycles and finance models in order to provide both a comprehensive analysis of the 

term structure of interest rates (Diebold, Piazzesi and Rudebush, 2005) and an inspection of the 

contribution of the financial system to US business cycles (Compton and da Costa e Silva, 2005)  

 

Nevertheless empirical DFM based applications addressing the analysis of the electricity market, as 

far as we know, do not seem to exist. 

 

3.3. Concluding Remarks and… a New Proposal 

The analysis of the theoretical and empirical literature on the electricity market has confirmed the 

potential utility of proceeding through lines of research not yet explored, leaving the continuous 

refinements of models that have already been extensively used.  

In the near future we intend to proceed with the analysis and forecasting of electricity prices 

pursuing a new approach: we will adopt a (time varying parameters) FAVAR model based on an 
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exact DFM, according to the scheme proposed by SW05b, and fostered by a large dataset 

containing all measurable variables that, by determining demand and supply of electricity, influence 

in the short, medium and long run the behaviour of electricity prices. 

Once the model is estimated through static PCA, we will identify in both formal and economic 

sense the unobservable factors, isolating in particular demand and supply of electricity. 

This approach will enable us to produce short and medium run forecasts of price trends, eventually 

classifying them by time slot as well as times of week and times of year. Moreover, we will have 

the possibility of simulating the impact that shocks caused by mismatches between demand and 

supply have over the market and over the price variable, evaluating if congestion or saturation of 

the network, leading black out phenomena, trigger price reactions that can be considered as real 

warning mechanisms. We will then compare the performance of this new approach to those of well 

known and previously used models. 
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