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Adaptive Truncated Estimation Applied to Maximum Entropy  
 
 

Abstract:  An adaptive estimator is proposed to optimally estimate unknown truncation points of 
the error support space for the general linear model.  The adaptive estimator is specified 
analytically to minimize a risk function based on the squared error loss measure.  It is then 
empirically applied to a generalized maximum entropy estimator of the linear model using 
bootstrapping, allowing the information set of the model itself to determine the truncation points.  
Monte Carlo simulations are used to demonstrate performance of the adaptive entropy estimator 
relative to maximum entropy estimation coupled with alternative truncation rules and to ordinary 
least squares estimation. A food demand application is included to demonstrate practical 
implementation of the adaptive estimator. 
 
Key Words: doubly truncated errors, bootstrapping, truncation points 
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1.  INTRODUCTION 

Researchers are continually expanding their use of regression models in which the support 

space of the error distribution is truncated.  Most commonly, truncated regression has been 

associated with singly truncated distributions with known truncation points (for example, see 

Maddala).  However, singly truncated error distributions with unknown truncation points, as well 

as doubly truncated error distributions with known and unknown truncation points, also arise in 

theory and practice and are receiving attention in the literature (Bhattacharya, Chaturvedi, and 

Singh; Cohen; Nakamura and Nakamura; Schneider; Golan, Judge, and Miller).  Accounting for 

truncated random variables in regression analysis is important because ordinary least squares 

estimators can be inefficient, biased, or inconsistent otherwise (Maddala).  Moreover, in many 

empirical modeling situations, it is imminently reasonable to assume that supports of the 

dependent variables and/or error terms are not unbounded, but rather are contained in a finitely-

bounded subset of real space (Malinvaud).  For example, modeling demand-share equations, as is 

done later in the empirical application of this paper, is a clear illustration of such a situation. 

 Alternative estimators have been introduced into the statistic/econometric literature that 

account for truncated distributions.  Most prevalent are maximum likelihood estimators, which 

have been specified for truncated regression models with continuous and discrete distributions 

that have known truncation points (Cohen; Schneider).  For regression models with unknown 

truncation points, order statistics have been used with limited success (Schneider).  More recently, 

generalized maximum entropy (GME) estimators have been proposed that assume compactness of 

the coefficient space and finite support of the error distribution (Golan, Judge, and Miller).  Here, 

the approach is semi-nonparameteric in nature in that a discrete error distribution of the regression 

model is not specified, but rather estimated.  In exchange for this flexibility, GME estimation 
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requires user-supplied truncation points. Yet unresolved for GME, and other estimators, is a 

criterion to optimally estimate unknown truncation points for the error distribution of the 

regression model.  In small and medium sized samples the selection of truncation points is critical 

to specification of the GME estimator, as different truncation points can lead to quantitatively 

different coefficient estimates (Fraser). 

 The objective of this paper is to propose an approach to optimally estimate unknown 

truncation points of the error support space for the general linear model.  Initially, an optimal 

estimator is specified analytically to minimize a risk function based on the squared error loss 

measure.  Then, an adaptive estimator is specified empirically using bootstrapping, allowing the 

information set of the model itself to estimate the unknown truncation points.  This adaptive 

approach is applied to a GME estimator of the general linear model.   

To evaluate the performance of alternative estimators for a range of finite sample sizes, 

Monte Carlo sampling experiments are completed.  We focus on small- to- medium sized sample 

performance of the adaptive GME estimator, and its performance relative to ordinary least 

squares (OLS) and to GME estimators coupled with alternative truncation rules.  In performing 

comparisons, we examine the impacts that the choice of truncation points has on precision of 

GME coefficient estimates and accuracy of predictive fit.  To complete the paper each estimator is 

applied to a derived demand equation for US wheat.  
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2.  ADAPTIVE TRUNCATED REGRESSION 

Consider the general linear model (GLM) with N observations * *, 1,...,i i iy x u i N⋅= β + = .  In this 

equation yi is the ith observation on the dependent variable, ix is a (1×K) row vector of exogenous 

values for each observation i, *
iβ is a (K×1) column vector of true coefficient values, and *

iu  is the 

unknown model residual associated with observation i.  It is assumed that the *
iu  are independent 

and identically distributed and that the (N×K) matrix of exogenous variables, X, has rank K and 

consists of nonstochastic elements such that the ( )1
lim '
N

X X
N→∞

= Ω  where Ω  is some (K×K) 

positive definite matrix. 

Malinvaud asserts that in practice support spaces for regression residuals can always be 

truncated in a manner that is a good approximation to the true distribution because upper and 

lower truncation points can be selected sufficiently wide to contain the true residuals of the 

model.  Nevertheless, empirical applications implementing truncated regression models are left 

with (a) little or no guidance into how to optimally choose unknown truncation parameters and 

(b) limited insight on the implications of doing so.  To select unknown truncation points, Golan, 

Judge, and Miller suggest using a three-sigma truncation rule (Pukelsheim) for GME estimation.  

In practice this requires an estimate of the standard error of an individual random variable in order 

to identify upper and lower truncation points.  A limitation is that the three-sigma rule depends 

only on the empirical distribution of the random variable and it does not account for the full 

information set provided by the regression model through coefficient restrictions.  Moreover, the 

three-sigma rule is not based explicitly on any goodness of fit criteria relating to parameter 

estimation, prediction ability, or both.  Hence, for empirical application the question remains open 
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regarding how to optimally choose truncation points that depend on the entire information set of 

the proposed estimator.    

To proceed consider an error distribution such that *  for 1,...,l i uv u v i n< < =  where vl and 

vu are extended real-valued parameters.  Technically the parameter vl is the lower truncation point 

and vu is the upper truncation point of the support space for each error term.  Truncated 

estimators are commonly classified by the type of truncation: (a)  and l uv v= −∞ = ∞  ⇒  not 

truncated, (b)  and l uv v= −∞ < ∞  ⇒  singly right truncated, (c)  and l uv v−∞ > = ∞ ⇒  singly left 

truncated, and (d)  and l uv v−∞ > < ∞ ⇒  doubly truncated. If u lv v v= = < ∞ , then the support 

space is not only doubly truncated but also symmetric.   

The conceptual approach taken in this study is to define a risk function dependent upon 

the truncation points of the error support space and then choose “optimal” truncation points by 

minimizing the risk function.  Let ( )ˆ ,l uv vβ  denote a truncated estimator of *β  contingent upon 

the upper truncation point vu and the lower truncation point vl.  In the event vl and vu are known 

points of truncation, then ( )ˆ ,l uv vβ  is itself an obvious choice for the estimator of *β .  Both 

Cohen and Schneider provide excellent introductions into censored and truncated estimators with 

known boundary points.  In the event that either vl or vu are unknown points of truncation, then 

we define a risk function with squared error loss (SEL) to estimate *β  as  

       
( ) ( )( ) ( )( )

( )( ) ( )( )

* *

2

i i1 1

ˆ ˆ, E , ,

ˆ ˆ             , ,

l u l u l u

k k

l u l ui i

r v v v v v v

var v v bias v v
= =

 ′= β −β β −β 
 

 = β + β ∑ ∑
          (1) 

where ( )i
ˆ ,l uv vβ denotes the ith element of ( )ˆ ,l uv vβ  and E[] is the expectation operator.  An 

optimal truncated estimator  
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( ) ( )* *

,

ˆ ˆ,  arg min ,
l u

l u

l u

v v

v v r v v
   β = β  
  

     (2) 

is obtained by minimizing (1) with respect to either vl or vu or both depending upon whether it is 

singly or doubly truncated regression.  In practice the risk function in (1) is not observable 

because *β  is not observable, and the probability distribution required to calculate the 

expectations in (1) is unavailable as well. Consequently, empirical estimation of the optimal 

truncated estimator is generally infeasible.  

To estimate (1) we follow Hall (1992), Efron and Tibshirani, and others, and empirically 

approximate the SEL function with bootstrapping.  For the purposes of this study the 

optimization problem in (2) is simplified by assuming 0 <   -   u lv v v= = < ∞ , implying the 

support space is doubly symmetrically truncated.  This assumption is consistent with the 

estimators considered in the empirical analysis below.  The bootstrapped estimate of the risk 

function in (1) is then 

( ) ( )( ) ( )( ) n ( )( ) n ( )( ) 2

b i i1 1
ˆ ˆ ˆ ˆˆˆ E b b

k k

b b bi i
r v v v var v bias v= =

 ′  = β − β − = β + β    
∑ ∑         (3) 

where the subscript b denotes an expectation taken with respect to the bootstrapped distribution 

of ( )ˆ vβ .  Explicit details of the bootstrapping approach are discussed later in the empirical 

section of the paper.  The empirical counterpart to the optimal truncated estimator is then the 

estimator associated with the value v̂  that minimizes the bootstrap estimate of the risk function 

given in (2). The truncated estimator is defined empirically as   

 ( ) ( ){ }ˆ ˆˆ ˆ arg min b
v

v r v β = β              (4) 
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The empirical truncated estimator ( )ˆ v̂β  is an adaptive estimator that chooses the value v̂  to 

minimize the empirical estimated risk function.  

Hypothesis testing with the adaptive estimator in (4) is straightforward using either 

asymptotic standard errors or boot strapped standard errors.  In particular, if asymptotic 

properties of ( )ˆ vβ  are known for any truncation point v, then they are known for the specific case 

( )ˆ v̂β  with ˆv v= .  Further, given the use of bootstrapping for the empirical adaptive estimator in 

(4), it is straightforward to calculate bootstrapped standard errors of ( )ˆ vβ  (Hall 1992; Efron and 

Tibshirani).   

 
3.  APPLICATION TO GME 

GME estimation is typically motivated in several ways.  For example, it is well known that 

ordinary least squares is especially attractive for Gaussian error models because it is 

asymptotically efficient.  But outside of the Gaussian error model the least squares estimator is no 

longer efficient and can be grossly inefficient (Koenker, Machado, Skeels, and Welsh).  GME 

estimation has been proposed as an alternative to least squares in the presence of small samples or 

ill-posed problems, where traditional approaches may provide parameter estimates with high 

variance and/or bias, or provide no solution at all.  Moreover, for empirical problems with 

inherent uncertainties, restrictions, or truncations, additional appeal of GME estimators is that 

they offer a systematic framework for incorporating such information into an econometric model. 

Two GME estimators are considered that account explicitly for the truncated nature of the 

error term, wherein the truncation points themselves are unknown.  The first is the data-

constrained GME estimator where the error distribution is doubly truncated in a symmetric 
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manner, which is labeled GME-D (Golan, Judge, and Miller).  Finite support of the coefficient 

space is assumed in addition to a truncated symmetric error distribution.  The parameters for the 

GME-D model are estimated via nonlinear optimization by maximizing an entropy function 

subject to data and other constraints.  Truncation points are selected using the three-sigma rule 

discussed below.  The second estimator is defined by applying the adaptive estimator in (4) to 

GME-D, which is labeled as GME-A.  In this way a quadratic risk function with bootstrapping is 

used to estimate unknown truncation points and, hence, coefficient values. 

3.1  GME Estimation 

Following the maximum entropy principle, the entropy of a distribution of probabilities 

p=(p1,..,pM)′ is defined as 

       
1

( ) ln
M

m m
m

H p p p
=

= −∑  

with adding up condition 
1

1
M

mm
p

=
=∑ .  This entropy measure is based on an axiomatic approach 

that defines a unique objective function to measure uncertainty of a collection of events (Shannon; 

Jaynes). Generalizations of the entropy function that have been examined elsewhere include the 

Cressie-Read statistic (Imbens, Spady, and Johnson), Kullback-Leibler Information Criterion 

(Kullback; KullEDFN DQG /HLEOHU�� DQG .-entropy measure (Pompe).  We restrict the analysis to 

maximum entropy, in part due to its efficiency and robustness properties (Imbens, Spady, and 

Johnson).  In the above equation, H(p) reaches a maximum when pm=1/M for m=1,...,M, which is 

the uniform distribution.  

Golan, Judge, and Miller extended the principle of maximum entropy to inverse problems 

with noise, or the principle of generalized maximum entropy.  The principle underlying the GME 

estimator of the GLM is to choose an estimate that is based on the information contained in the 
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data, the constraints on the admissible values of the coefficients (such as nonnegativity and 

normalization of the convexity weights), and the data sampling structure of the model (including 

the choice of the supports for the coefficients).   

The GME estimator of the GLM model is formulated by reparameterizing coefficients and 

error terms.  The reparameterization parameters consist of convex combinations of user-defined 

points that identify discrete support values for individual coefficients and residual terms (s i for i= 

�, �) as well as the use of unknown vectors of convexity weights ( p and w) applied to the 

support points.  Using M support points, the coefficient space is represented by the identity 

�=(�1,...,�G) where 
1

M

k km kmm
s pβ

=β =∑  for k=1,…,K.  Note that for the uniform distribution, 

1/kmp M=  with the coefficients shrinking to the mean of the support points, or 

1
/

M

k kmm
s Mβ

=β =∑ .  Residuals are defined accordingly as �=(�1,...,�N) with identity 

1

M

i im imm
s wµ

=µ =∑  for i=1,…,N.  It is clear that the GME framework inherently incorporates the 

assumption that the distribution of the residuals is doubly truncated with lower truncation point 

1isµ  and upper truncation point iMsµ .  

 Given the above identities, parameters for the data-constrained GME model are estimated 

by solving the following constrained optimization problem: 

1 1 1 1, ,
( ) ln( )

K M N M

km km im im
k m i mb p w

Max p ln p w w
= = = =

 Σ Σ − Σ Σ  
    (5) 

subject to  

1
1

, ... , 1,...,
M

k k kL kHkm k kM
m

s p b s s k K
=
Σ = = ≤ ≤ = =

A

β β ββ β      (6a) 

1
1

( ),  v ... , 1,...,
M

im im i i i i l i iM u
m

s w e y X b e b s s v i N⋅=
Σ = = − = = ≤ ≤ = =µ µ µ     (6b) 
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1 1
1, 1,...,  and 1, 1,...,

kJ J

k ip k K w i N
= =
Σ = = Σ = =

A A
A A

      (7) 

It’s assumed that the error supports are doubly truncated and symmetric about the origin with 

truncation points 0   -   u lv v v< = = < ∞ .   

The GME-D model consists of the entropy objective function defined in (5), the parameter 

and data constraints in (6a,b), and the required adding up conditions in (7).  The objective 

function defined in (5) is optimized to balance the entropy of parameters in the coefficient space 

with those in the error space for the GLM in (6a,b).  Balanced objective functions provide 

alternative estimation procedures to deal with explanatory variables that are ill-conditioned where 

traditional estimators are highly unstable and serve as an unsatisfactory basis for estimation and 

inference (Zellner 1994).  Asymptotic properties for the GME-D estimator are derived by 

Mittelhammer and Cardell. 

3.2  Parameter Restrictions 

For the purposes of this study, it is assumed that truncation points of the coefficient and 

error support spaces are selected independent of one another.  In other words, we assume the 

truncation points of the coefficient space are known or specified in a Bayesian manner in that 

prior information or uncertainties guide the selection of truncation points on support spaces of 

coefficient values.  Effectively, the coefficient truncation points are held constant while widening 

or narrowing the truncation points of the error support space.  See Preckel for a discussion of 

simultaneously adjusting the truncation points of the coefficient and error support spaces.   

Imposing doubly truncated support spaces on coefficients has several implications for 

GME estimation.  It provides an effective and computationally efficient way to restrict coefficients 

of the GME-D estimator. If knowledge is limited about unknown coefficients, wider truncation 
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points may be used in an effort to ensure the support space contains the true *β .  If knowledge is 

known about, say, the sign of a specific coefficient from economic theory, then narrower support 

points may be more confidently imposed.  Perhaps most important is a bias-efficiency tradeoff that 

arises when coefficient support spaces are specified.  Truncated coefficient support spaces not 

centered on the true coefficient values introduce bias into the GME-D estimator.  However, in 

extensive Monte Carlo analysis (Mittelhammer and Cardell), it has been demonstrated that bias 

introduced by truncation in the GME-D estimator can be offset by substantial decreases in 

efficiency.  Although the impact of truncating coefficient space plays an important role in 

estimation, the primary focus of the current paper is to examine the implications of truncating the 

error support space given the truncation points of the coefficient space are known.   

3.3 Truncating Error Supports 

 Selecting truncation points for the error support space plays a key role in specifying the 

GME-D estimator.  In the limit, wider truncation points for GME estimators imply the discrete 

distribution of the errors tends to an empirical distribution that is more uniform.  Alternatively, 

narrowing the width of truncation points to zero will lead to an infeasibility.  Further, 

appropriately specifying error truncation points for the GME regression model can lead to least 

squares like behavior.  We emphasize that given the nature of the objective function and 

constraints in (5)-(7), the choice of truncation points for the error support depends on the entire 

information set including the underling data and user-supplied support points for the coefficients.  

Given ignorance regarding the error distribution, Golan, Judge, and Miller suggest using 

the three-sigma rule to determine error bounds.  The three-sigma rule for random variables states 

that the probability for a unimodal random variable falling away from its mean by more than three 

standard deviations is at most 5% (Vysochanskii and Petunin; Pukelsheim).  The three-sigma rule 
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is a special case of Vysochanskii and Petunin’s bound for unimodal distributions.  Let Y be a real 

random variable with mean µ and variance σ2, then the bound is given as   

( )
2

2

4
Pr

9
Y r

r

σ−µ ≥ ≤      (8) 

where r>0 is the radius of an interval centered at µ.  For r=3σ it yields the three-sigma rule and 

more than halves the Chebyshev bound.  In more general terms the above bound can yield a j-

sigma rule with r=jσ for j={1,2,3, …}.  In the empirical applications below the Vysochanskii and 

Petunin bound is used in estimation of the GME-D model.  

 Before turning to the empirical analysis, it is useful to examine the gradient of the GME-D 

estimator.  This provides important insight into properties of GME-D estimation and the impact 

of truncating the support spaces.  Mittelhammer and Cardell derive the gradient of the GME 

estimator defined by (5)-(7) (see Appendix), which is given by 

( ) ( ) ' ( ( ))G b b X e b= −η + γ       (9) 

where ( )bη  and ( ( ))e bγ  are K×1 and N×1 vectors representing optimal values of the Lagrangian 

multipliers defined in the GME optimization problem, e(b) is a N×1 vector of estimated residuals 

of the GLM, and b is a K×1 element of the coefficient space.  The first term on the right hand side 

of (9), ( )bη , is the component of the entropy objective function linked to coefficient support 

points.  As a result, this term plays an integral role in estimation of small and medium sized 

samples.  However, because ( )bη  is independent of N, it is asymptotically uninformative. The 

second term on the right hand side, ( ( ))ie bγ , is the component of the entropy objective function 

linked to error support points.  It depends on the sample size N and is asymptotically informative, 

playing a key role in GME estimation of all sample sizes and in establishing asymptotic properties.  
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The terms of the GME gradient, and its relationship to the OLS gradient, provide 

guidance in setting truncation points for support spaces on the error terms in empirical 

applications.  An important insight is that the OLS estimator can be thought of in some sense as a 

special case of GME estimation.  That is, in the event that ( ( ))e bγ ≈  e(b) = y - X b, the gradient 

of the GME estimator is effectively that of OLS.  Because the GME and OLS gradients can be 

approximately equivalent, then so are the coefficient estimates.    

3.4  Adaptive GME Estimation 

The adaptive estimator of the GME-D model is based on the empirical SEL function in (4) 

with bootstrapping.  A balanced bootstrap procedure is used for generating an estimate of (4) as a 

function of v.  Balanced bootstrapping can reduce simulation error without necessarily increasing 

the observed sample size (Davison, Hinkley, and Schechtman; Gleason; Graham, Hinkley, John, 

and Shi; Hall 1990). To implement this approach we collect bn  copies of the sample observation 

indices 1, ... , N, and then draw bn  size-n random samples of these indices, without replacement, 

from the assembled set of bN×n indices. The actual sampling scheme can be accomplished by 

randomly permuting the bN n× indices, and then grouping the resulting list into bn  sequential 

blocks of n indices each. In this permutation sampling scheme, each sample observation is 

guaranteed to appear across the bn  resamples exactly bn  times. Then the value of ( )ˆ vβ  is 

recalculated bn  times from the resamples of the original data identified by the bn  samples of 

indices. The result is a balanced bootstrap distribution of outcomes for the estimator ( )ˆ vβ , which 

can then be used to form bootstrapped empirical bias and variance estimates based on empirical 

moments relating to the bootstrapped distribution of ( )ˆ vβ . 
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Given the discussion above we also calculate the bootstrapped standard errors of ( )ˆ vβ .  

For a specific truncation point v̂ , the bootstrapped estimate of the standard error for ( )ˆ v̂β is  

1/ 2
2

1

ˆˆ ˆ ˆ( ) ( ) /( 1)
bn

i
b b

i

s v v n
=

  = β −β −   
∑   

where ( )ˆ ˆi vβ  is the ith bootstrap resample and 
1

ˆˆ ˆ( ) ( ) /
bn

i
b

i

v v n
=

β = β∑ . 

4.  MONTE CARLO EXPERIMENTS 

For the sampling experiments we define a single equation model with truncated error structure 

that is similar to the general linear model experiments used in Mittelhammer and Cardell.  In this 

study we focus on both small and medium size sample performance of the OLS, GME-D, and 

GME-A estimators.  Performance measures used are the prediction squared error (PSE) between 

the estimated and actual observations of the dependent variable and the mean square error (MSE) 

between the estimated and true parameter values.    

 The linear model is specified as 1 2 32 1 1 3i i i i iy x x x u= + − + +  where ui is a discrete random 

variable, , 1,...,ilx i N=  are iid Bernolli(.5), and the pair of explanatory variables 2ix  and 3ix  are 

generated as  iid outcomes from   

2 1 .5
,

5 .5 1
N

    
        

 

that is then truncated at ±3 standard deviations.  The disturbance terms are drawn from a N(0,)2) 

distribution, that is truncated at ±3 standard deviations and )2 = 1. Thus, the true support of the 

disturbance distribution in this Monte Carlo experiment is truncated normal, with lower and upper 

truncation points located at -3 and +3, respectively.   
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To investigate the impact of coefficients restrictions on the choice of error truncation 

points, three different sets of supports for the coefficients are defined by 

2 2 6

3 1 5
1

5 1 3

1 3 7

Z

− 
 − =
 − −
 − 

, 

3 1 5

4 0 4
2

4 0 4

0 4 8

Z

− 
 − =
 −
 
 

, and 

10 0 10

10 0 10
3

10 0 10

10 0 10

Z

− 
 − =
 −
 − 

 

In the support matrices above, Z1 defines supports that are symmetrically centered about the true 

values of the coefficients and relatively narrow in width, Z2 defines supports that are asymmetric 

but with the same width as Z1, and Z3 represents supports that are asymmetric and wider than the 

two previous support sets with an upper and lower truncation points at –10 and 10 respectively.  

The supports given by Z3 are used to illustrate the case where less information is known about the 

true parameter values. 

To estimate the GME models additional information is necessary.  The GME-D estimator 

is coupled with the three-sigma rule, which we term the GME-3σy estimator. The truncation value 

for the error support based on the three-sigma rule is defined as ˆ3 yv = σ  where ˆ yσ  is the sample 

standard deviation of the dependent variable.  The GME-A model is estimated by searching over a 

grid of truncation points { }| 4, 6, 10, 12, 14V v v= =  to find the value v̂  that minimizes the risk 

function.  The grid effectively nests the two-, three-, four-, and five-sigma rules defined in the set 

{ }ˆ| , 2,3, 4,5yv v j jΣ = = σ = .  Finally, we choose the unbiased and consistent OLS estimator, b̂ , 

to provide a common estimate of the coefficient b specified in (3).  

 The statistical analysis was conducted using the GAUSS computer package (Aptech 

Systems, Inc. 1995).  Specifically, GME estimators were estimated using the nonlinear 

optimization module (OPTMUM). Mittelhammer, Judge, and Miller (2000) provide a 
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comprehensive discussion of alternative information theoretic estimators and their statistical 

properties, a review of Monte Carlo experiments, and empirical examples including supporting 

GAUSS code on CD-ROM. 

4.1  Point Estimate Results 

The mean square error (MSE), prediction squared error (PSE), and mean truncation 

points are presented in Table 1 based on 25, 50, and 100 observations for OLS, GME-3σy, and 

GME-A.  In the analysis, we used 1000 Monte Carlo simulations for each sample size.  For the 

GME-A estimator 100 bootstrap samples were generated at each grid point for each Monte Carlo 

simulation.   

Several general implications are apparent from the Monte Carlo analysis.  First, OLS is 

predominately larger in MSE than either GME-A or GME-3σy.  In contrast, OLS is lower in PSE 

than GME-A that is in turn lower than GME-3σy.  This reflects a tradeoff between precision of 

coefficient estimates and accuracy of predictive fit among the three estimators.  Second, GME-A 

is often a compromise between OLS and GME-3σy.  This is because the truncation point for 

GME-A is chosen by minimizing a risk function with an incentive for “closeness” to the OLS 

estimator.  As a result, GME-A is lower in PSE and higher in MSE than GME-3σy for supports 

defined by Z1 and Z3.  However, this is not always the case.   

Focusing further on MSE, as the sample size increases, the MSE decreases for each 

estimator.  This is not surprising as each is an asymptotically consistent estimator of *β . For Z1 

the MSE is lower for both GME-A and GME-3σy relative to OLS, as expected.  For Z2 the MSE 

is lowest for GME-A, followed by OLS and GME-3σy respectively. For Z3 the MSE is lowest for 

GME-3σy, followed by GME-A and OLS.  These results demonstrate that GME-3σy 
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outperformed OLS and GME-A in MSE for two out of the three experiments.  However, they 

also demonstrated that GME-3σy is less flexible relative to narrow and asymmetric support points 

of Z2 on the coefficients. 

Mean truncation points are also reported in Table 1 for GME-A and GME-3σy.  The 

reported value for the GME-A estimator is the mean of the truncation points from the grid 

defined by {v|v = 4, 6, 8, 10, 12} that minimize (6) for 1000 Monte Carlo simulations. The 

reported value for the GME-3σy estimator is the mean of ˆ3 yv = σ  from the empirical distribution 

generated with 1000 Monte Carlo simulations. Truncation points are somewhat similar for 

experiments with Z1 and Z3, which is consistent with the MSE results.  In contrast the truncation 

point for GME-A is almost one half of that for GME-3σy when supports are defined by Z2, 

reflecting “tighter” truncation points better minimized the loss function.  Hence, this reflects that 

the optimal truncation rule is sensitive to support points as well as data of the regression model.  

 The Monte Carlo experiments demonstrated that the performance of the GME-D 

estimator coupled with the three-sigma rule has important limitations.  Its performance diminished 

relative to the other estimators in the presence of asymmetric coefficient supports.  In practical 

applications true coefficient values will always be unknown, leading to asymmetric supports.  

Moreover, it is easy to envision circumstances under which coefficient supports are narrowly 

specified.  In contrast, these issues highlight the advantage of the adaptive GME estimator.  It 

optimizes the choice of error truncation points in a manner that balances the precision of 

coefficient estimates and accuracy of predictive fit while taking into account the entire information 

set of the model. 
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5.  EMPIRICAL APPLICATION 

To illustrate implementation of the GME-A estimator, we examine a derived demand relationship 

for US soft red winter (SRW) wheat.  The SRW equation is of particular interest because 

reported estimates of own-price and cross-price elasticities are not consistent in magnitude nor 

sign (Terry 2000; Barnes and Shields 1998).  Robust measurements of elasiticities are important 

to USDA food policy (Barnes and Shields 1998), university wheat research programs (Boland, 

Johnson, and Schumaker), and the milling industry (Milling and Baking News). Annual price and 

quantity data that span 1981 to 1997 for each of the wheat classes were obtained from USDA-

ERS and the Milling and Baking News.  Price data are average prices at the farm level ($/bu).  

Quantity data represent domestic disappearance of wheat by class for food use (million bu).  

Limited data observations, high correlation among price variables, and lack of robustness of the 

estimates from standard regression methods make this an ideal example for GME estimation.   

 A restricted cost function approach is used to derive factor demand equations for the flour 

milling industry.  The cost function is a function of input prices of wheat by class for a given 

output level of flour.  A translog functional form is assumed (see Berndt): 

( )2

0
1 1 1 1

ln ln ln .5 ln ln ln .5 ln ln ln
m m m m

i i ij i j Y YY iY i
i i j i

C w w w Y Y w Y
= = = =

= α + α + γ +α + γ + γ∑ ∑∑ ∑  

where wi are the input prices of wheat ($/bu), Y represents total flour output (10,000 lbs), and �i, 

�ij are parameters to be estimated.  The translog share equations derived from Shepard’s Lemma 

can be written as 

1 1ln ... ln ln    for i=1, ... ,mi i i mi m iYs w w Y= α + γ + + γ + γ  

where si is the cost share of input i.  The own-price and cross-price elasticities are given by 
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The single factor demand equation examined in this application relates the share of soft red winter 

wheat (SRW) to its own-price, the price of other wheat, and quantity of flour output. The other 

wheats considered are hard red winter (HRW), hard red spring (HRS), soft white (SWW), hard 

white (HW), and durum (DUR).  

 Applying truncated regression techniques to this empirical example is appealing for several 

reasons.  First, the dependent variable of a share equation is bounded between 0 and 1, implying 

the error terms are inherently small and bounded in magnitude.  Hence, there is potential for 

increasing econometric estimator efficiency by truncating the error distributions when using both 

the GME-D and GME-A estimators.  Second, the GME models allow parameter restrictions to be 

relatively easily imposed that in turn can be utilized to impose negativity of the own-price 

elasticity.  Given the findings of Terry (2000), and others, the own-price elasticity is restricted to 

be negative. Third, the sample is limited to 17 observations and the price data are highly 

correlated.  This provides an interesting comparison between the OLS estimator and the GME 

estimators, which have been shown in small samples to be superior in MSE to OLS (Golan, 

Judge, and Miller; Mittelhammer and Cardell). 

 The information set for the GME estimators expands that of OLS.  The three-sigma 

truncation rule is imposed for GME-D and coefficient restrictions are imposed for both GME-D 

and GME-A estimates.  Coefficient restrictions were {-5,0,5}, {-.2,0,.14},{-5,0,5}, {-5,0,5},     

{-5,0,5}, and {-5,0,5} respectively for the intercept, SRW, HRW, HRS, SWW, and DUR 

variables.  This effectively restricted the own-price elasticity estimates to be between (-2, 0) for 

SRW.  For the purposes of this example, cross-price elasticities for HRW, HRS, SWW, and DUR 
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variables were not constrained other than by the relatively wide truncation points of the 

coefficient space.  The grid used for the truncation point was defined by {v|v = .03, .05, …,.43}, 

which is incremented by .02 and covered the truncation point for the three-sigma rule 

ˆ3 yv = σ =.055. 

 Coefficient estimates, t-values, and summary statistics for GME-A, GME-3σ y, and OLS 

are presented in Table 2.  Not surprisingly, the sum squared error between the observed and 

predicted shares is lowest for OLS, followed by GME-A and GME-3σ y respectively.  The R2 

goodness of fit measures are consistent with these results.  At the .05 level the significant 

variables in the OLS equation are the intercept, prices of HRW and SRW, and quantity of output.  

In the GME-3σy equation the intercept and quantity of output are significant.  And, in the GME-A 

equation the significant variables are the intercept, price of SRW, and output quantity.  The 

truncation point selected by the adaptive estimator for this empirical example was ˆ .03v = . 

 The price elasticities statistics for GME-A, GME-3σy, and OLS are also presented in 

Table 2.  Similar to Terry (2000) the own-price elasticity from OLS is positive and elastic, which 

conflicts with economic theory.  For the GME estimators own-price elasticities are negative (by 

constraint) and inelastic.  The HRW cross-price elasticities is negative for OLS, while HRS is 

negative for GME-D.  HRS is the only negative cross-price elasticity for GME-A.   

In all, the empirical example illustrates advantages that GME estimators have over OLS in 

imposing restrictions on coefficients and in small sample situations.  Furthermore, the example 

demonstrates the improvement of the GME-A estimator over GME-3σy.  That is, GME-A has a 

higher R2, lower sum square error between observed and predicted shares, and higher significance 
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on the own-price coefficient relative to GME-D.   The inferior performance of GME-3σy clearly 

illustrates the information limitation of the three-sigma rule for truncation.   

 

6.  CONCLUSIONS 

Circumstances often arise in empirical applications under which restricting parameter 

spaces and/or truncating regression models can be beneficial to the efficiency of parameter 

estimates.  We analyzed, identified, and illustrated some theoretical and practical issues relating to 

optimally truncated regression models and provided an example using generalized maximum 

entropy.  

 Performance of ordinary least squares (OLS), data-constrained generalized maximum 

entropy (GME-D) estimators, and adaptive generalized maximum entropy (GME-A) estimators 

were examined based on a particular set of Monte Carlo experiments.  The Monte Carlo analysis 

demonstrated the linkage of truncation points with tradeoffs between prediction squared error 

(PSE) among the estimated and actual observations of the dependent variable and the mean 

square error (MSE) among the estimated and true parameter values.  In small sample situations 

GME-A was MSE superior to OLS, while OLS was superior in PSE.  Size and power of t-tests 

were also examined in the Monte Carlo analysis.   

Overall, GME-A was quite flexible when estimating truncation points that inherently 

depend on the entire information set of the model.  GME-A provided a systematic means to 

optimally estimate truncation points in a manner that balanced the precision of coefficient 

estimates with the accuracy of predictive fit.  GME-D coupled with the three-sigma truncation 

rule was not as flexible.  It improved the MSE measure relative to OLS for wide truncation 

points.  But, in circumstances with narrow and asymmetric coefficient supports, it exhibited stark 
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limitations relative to GME-A.  This illustrates the advantages of the GME-A approach over the 

“hit or miss” of the GME-D approach in practical applications, wherein narrow or asymmetric 

coefficient supports are likely the rule and not the exception.   

An empirical example was included to demonstrate practical application of the GME-A 

estimator.  Factor share functions for soft red winter wheat were reported for each estimator.  

GME-A outperformed GME-D coupled with the three-sigma truncation rule.  As expected, OLS 

predicted better the shares values of the dependent variable than either GME-A or GME-D.  

Estimated own-price elasticity results from GME-A were strikingly different to those from OLS. 

 The results in this study highlight the importance of rigorous examination of truncated 

estimators.  It furnishes insight for empirical economists desiring to apply truncation rules to 

GME estimators in the general linear model context.  Further research is needed that provides 

deeper understanding of the role of truncation assumptions for various loss functions and that deal 

with developing guidelines for setting informative constraints on parameter spaces and error 

distributions. 
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APPENDIX  

Define the maximized entropy function, conditional on b = τ, as 

1 1 1 1, :
(6) (7)

( ) ln( ) ln( ) .
K M N M

km km im im
k m i mp w b

F Max p p w w
= = = ==

−

 = − Σ Σ − Σ Σ  τ
τ     (A.1) 

The optimal value of 1( ,..., )i i iMw w w′ ′ ′=  in the conditionally-maximized entropy function is given 

by 
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which is the maximizing solution to the Lagrangian 
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where ( ( ))ieγ τ is the optimal value of the Lagrangian multiplier iγ  under the condition 
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Similarly, the optimal value of 1( ,... , )k k kMp p p ′= in the conditionally-maximized entropy function 

is given by 
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which is the maximizing solution to Lagrangian 



 25 

1 1 1
ln( ) 1 .

k

M M M
p

p km km km k km kk km
m m m

L p p p s p
= = =

   = − Σ + Σ − + Σ −      
βλ η τ  

The optimal value of kp
A
is then 

( )

( )

1

( ) , 1,..., ,
k k k

k k km

s

k k M
s

m

e
p k K

e
=

= =
Σ

A

A

β

β

η τ

η τ
τ  

where ( )k kη τ is the optimal value of the Lagrangian multiplier kη  under the condition .k kb τ=  

 Substituting the optimal solutions for the 's and 'sk ip w
A A

 into (A.1) obtains the conditional 

maximum value function 
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Define the gradient vector of 
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and thus  

( ) ( ) ( ( ))G X e′= − +τ η τ γ τ      (A.3) 

where ( ) and ( ( ))eη τ γ τ are 1 and 1K N× × vectors of Lagrangian multipliers. 
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Table 1.  Results from Monte Carlo experiments for OLSa, GME with three-sigma rule (GME-3σy)
a, and 

adaptive GME estimation (GME-A)b. 

  Mean Square Error Prediction Squared Error Mean Truncation Point 

Sample Size  OLS GME-A GME-3σy OLS GME-A GME-3σy GME-A  GME-3σy  

Z1          

 25  1.748 0.389 0.129 21.046 21.569 22.062 7.254 8.516 

 50  0.735 0.274 0.111 45.489  45.815 46.104 8.912 8.490 

100  0.377 0.183 0.099 96.429  96.669 96.813 10.162 8.598 

Z2          

 25  1.556     0.852 1.209 21.048 21.935 24.544 4.522 8.597 

 50  0.726  0.540 0.826 45.904 46.596 48.937 4.828 8.590 

100  0.360  0.328 0.504 95.369  95.840 97.878 4.848 8.559 

Z3          

 25  1.588  1.202 0.922 21.051 21.471 21.793 7.390 8.496 

 50  0.729  0.703 0.549 46.113 46.446 46.556 8.132 8.552 

100  0.356  0.406 0.315 95.675  95.897 95.924 8.426 8.565 

a 1000 Monte Carlo simulations.  

b 1000 Monte Carlo simulations with 100 bootstrap samples generated at each grid point.          
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Table 2.  Coefficient and elasticity estimates of soft red winter wheat share equation for 
OLS, GME, and GME-A.  Standard errors are reported in parenthesis.  
  Coefficient Input Price Elasticities  
Variable  OLS  GME-3σy GME-A b  OLS  GME-3σy GME-A b  

           
Intercept 1.572*  1.367* 1.473*  ---  --- ---  
 (0.201) 

 
 (0.301) (0.411)       

PHRW -0.203*  0.033 -0.030  -0.724   0.589 0.237  
 (0.078)  (0.117) (0.139)       

PHRS -0.028  -0.098 -0.082  0.096   -0.290 -0.202  
 (0.050)  (0.077) (0.098)       

PSRW 0.249*  -0.019 0.079*  0.563  -0.713 -0.382  
 (0.043)  (0.062) (0.028)       

PSWW 0.011  0.012 0.014  0.139  0.142 0.155  
 (0.045)  (0.067) (0.091)       

PDUR -0.007  -0.008    -0.005  0.047  0.042 0.056  
 (0.014)  (0.021) (0.026)       

QFlour -0.111*  -0.089*   -0.099*  ---  --- ---  
 (0.016)  (0.024) (0.032)       
           
           
           
           

R2 0.923  0.695 0.800       
 
SSEa 

 
0.00042 

  
0.00165 

 
0.00108 

      

a Sum square error between observed and predicted shares. 
b  Standard error was calculated from 300 bootstrap samples with truncation point v=0.03.
* Significant at the .05 level. 
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