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Abstract. “Simpler standard errors for two-stage optimization estimators” (Terza,
2016a, Stata Journal 16: 368–385) offers an analytic simplification of the daunting
textbook formulations of the asymptotic variance–covariance matrix of a class of
two-stage optimization estimators. Here I revisit that simplification and show that
it applies to a much broader class of estimators than was originally considered.
I also offer a correction that further enhances the generality of this asymptotic
variance–covariance matrix formulation. These points are illustrated via a real-
data application.
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1 Introduction
In a previous article (Terza 2016a), I offered an analytic simplification of the daunt-
ing textbook formulation of the asymptotic variance–covariance matrix (AVAR) of the
class of two-stage optimization estimators (2SOE) for which the second-stage objective
function has either a least-squares or a log-likelihood formulation (I henceforth refer
to this class of estimators as LS-LL-2SOE). An important condition established in that
article holds for a much more general class that subsumes LS-LL-2SOE. I also correct a
subtle but potentially important error in the AVAR formulation of Terza (2016a); the
correction serves to enhance the generality of the AVAR simplification.

2 A generalization and a correction
The null condition given in (10) of Terza (2016a) greatly simplifies the AVAR formulation
for LS-LL-2SOE as detailed in (11) and (12). For the remainder of this discussion, we use
the notation and equation numbers from Terza (2016a). In appendix A, which will be
made available by the Stata Journal as online supplementary material, I show that this
null condition holds for a broader class of two-stage estimators in which the relevant
objective functions, q1 and q2, are formulated as conditional random functions.

Terza (2016a) considered applications of LS-LL-2SOE via packaged commands in
Stata, with supplementary Mata code for the calculation of the estimates of relevant
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AVAR and the implied asymptotic standard errors (ASE). The two highlighted cases were
those in which the second-stage estimator is implemented using a nonlinear least-squares
command (for example, glm with the appropriate options) or a maximum likelihood
(ML) command (for example, probit or poisson). The discussion of the former offered
in Terza (2016a) warrants no comment, revision, or correction. The explication therein
of the latter is, however, flawed.

Terza (2016a) claims that, when the second-stage estimator is implemented via an
ML command, the following conditions hold:

E (∇ββq2) = −E (∇βq
′
2∇βq2) (7)

E (∇βαq2) = −E (∇βq
′
2∇αq2) (8)

These conditions would provide a further simplification in the implementations of (11)
and (12) in that the researcher would only be required to supply first-order analytic
derivatives and coding for the estimation of the related components of the relevant
AVAR estimator [see (13) and (14)]. Unfortunately, although q2 may take the form of
a log-likelihood function, it is not necessarily either the true joint full-information log
likelihood for both α and β or the true conditional log likelihood for β (Vuong 1984).
Therefore, (7) and (8) do not necessarily hold. In which case, (11) and (12) would be
replaced by

D12 = AVAR∗ (α̂)E(∇βαq2)
′AVAR∗

(
β̂
)

(11’)

D22 = AVAR∗
(
β̂
)
E(∇βαq2)AVAR∗ (α̂)E(∇βαq2)

′AVAR∗
(
β̂
)

+ AVAR∗
(
β̂
)
E(∇βq

′
2∇βq2)AVAR∗

(
β̂
)

(12’)

By the same token, however, this discussion clarifies that (11’) and (12’) [without im-
posing (7) and (8)] are valid for a much broader class of estimators that subsumes
LS-LL-2SOE.

3 Example: Smoking and infant birthweight
Here I consider the same model (regression of infant birthweight on endogenous smoking
during pregnancy) data and variables (Mullahy 1997) and estimator (two-stage residual
inclusion [2SRI]—Terza, Basu, and Rathouz [2008]) discussed in Terza (2016a) with one
change: in this treatment, I implement an ML command (the streg command with
the distribution(lognormal) option). In this version of the model, the unobservable
confounder (Xu) is included as a regressor in the specification of the location parameter
of the lognormal. See Terza (2016a) for a discussion of Xu in the present context.

I consider two different approaches to estimating the AVAR of the 2SRI second-stage
estimator, β̂: a) with the incorrect conditions (7) and (8) imposed [so the AVAR esti-
mator is based on (14) in Terza (2016a)], and b) without (7) and (8) imposed [with
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the AVAR estimator based on (12’) above]. The .do and .dta files for both estimation
protocols are published as part of the online Stata Journal package for this article. The
suffixes incorrect and correct in the titles of the do-files are indicative of estimation
approach (a) versus (b), respectively, for the AVAR of the 2SRI second-stage estimator.
The requisite matrix calculus formulations for estimation of the components of (14) and
(12’) are given in appendix B, which will be made available by the Stata Journal as
online supplementary material. The results are shown in table 1.

Table 1. 2SRI second-stage estimates

Correct 2SRI Incorrect 2SRI
Parameter [(7) and (8) not [(7) and (8) Raw streg

Variable estimate imposed] imposed] output
ASE t stat ASE t stat ASE t stat

1 2 3 4 5 6

CIGSPREG −0.014 0.00441 −3.169 0.00424 −3.30 0.00385 −3.63
PARITY 0.018 0.00585 3.034 0.00598 2.97 0.00568 3.12
WHITE 0.060 0.01473 4.045 0.01385 4.30 0.01221 4.88
MALE 0.030 0.01031 2.872 0.01078 2.75 0.01009 2.93
Xu 0.010 0.00447 2.218 0.00432 2.29 0.00396 2.51
Constant 1.926 0.01991 96.744 0.01832 105.17 0.01701 113.25
ln(σ) −1.683 0.04501 −37.392 0.02158 −78.00 0.01898 −88.68

ASEs and t statistics for the universally correct approach [(12’), which does not
impose (7) and (8)] are shown in columns 1 and 2. Columns 3 and 4 display the
results obtained using (14), which incorporates conditions (7) and (8). Results from
the raw streg output are shown in columns 5 and 6. As can be seen from comparing
columns 1 and 2 with 3 and 4, dropping conditions (7) and (8) makes a difference, albeit
an apparently small one in this application. As expected, the raw streg results yield
uniformly smaller (larger [in absolute value]) standard errors (t statistics) compared
with the correct results (columns 3 and 4).

Without further comprehensive study, it is difficult to assess (generally) how, in
application, results and conclusions may differ because of the use of the universally
correct approach based on (12’). It is even less clear how that difference might weigh
against the simplification in the implementation of (14) that conditions (7) and (8)
afford. These are topics for future research.

One way to think about the divergence or similarity between the ASEs (or t statistics)
from the two approaches is to note that, for a 2SOE protocol with an ML second stage
that is designed to account for endogeneity (for example, 2SRI), the less pronounced the
unobservable confounding problem is, the more likely it will be that (7) and (8) hold.
In the extreme, if there is no endogeneity, then the second-stage objective function (q2)
[see (B-8) in appendix B] is indeed the correct conditional log-likelihood function for β
[in which case, of course, conditions (7) and (8) hold].
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In our example, as is usual in the 2SRI context, we turn to the coefficient of Xu

(the latent variable that comprises the unobservable confounders) to draw inference
regarding the severity of the endogeneity problem. As we see in table 1, this coefficient
is marginally statistically significant (p-value > 0.01). Hence, in this example, it may
be the case that the q2 function is serving as a good approximation to the true log
likelihood—that is, imposing (7) and (8) does not distort inference.

4 Conclusions
I revisited the derivation of the AVAR formulation offered in Terza (2016a) with a view
toward greater generality. Moreover, I offered a correction to the AVAR formulation
that serves to broaden the applicability of the analytic and computational simplification
suggested by Terza (2016a). These points were illustrated via a real-data application.

To free users from the requisite Mata coding in this context, future Stata versions
could include a packaged command for the generic 2SOE that incorporates the analytics,
coding details, and simplifications offered in this article and in Terza (2016a). As a first
step in this direction, a command implementing the widely used 2SRI estimator could
be developed. In the meantime, substantial simplification or elimination of the Mata
coding demands for the ASEs of 2SOEs (as detailed in the present article and in Terza
[2016a]) can be achieved using the Mata deriv() function (Terza 2023a). Moreover,
the margins command could be correspondingly extended to cover predictive margins
(for example, causal effect parameters) and their ASEs in the 2SOE/2SRI context (Terza
2016b, 2017). Here, again, implementation of the deriv() function would serve to
greatly reduce analytic and coding demands (Terza 2023b).
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6 Programs and supplemental material
To install the software files as they existed at the time of publication of this article,
type

. net sj 23-4

. net install st0736 (to install program files, if available)

. net get st0736 (to install ancillary files, if available)
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