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Abstract. We developed a command, csa2sls, that implements the complete sub-
set averaging two-stage least-squares (CSA2SLS) estimator in Lee and Shin (2021,
Econometrics Journal 24: 290–314). The CSA2SLS estimator is an alternative to
the two-stage least-squares estimator that remedies the bias issue caused by many
correlated instruments. We conduct Monte Carlo simulations and confirm that the
CSA2SLS estimator reduces both the mean squared error and the estimation bias
substantially when instruments are correlated. We illustrate the usage of csa2sls
in Stata with an empirical application.

Keywords: st0732, csa2sls, many instruments, complete subset averaging, two-
stage least squares

1 Introduction
The two-stage least-squares (2SLS) estimator is one of the most widely used methods
in applied economics. Theoretically, the optimal instrument can be achieved by the
conditional mean function of the first-stage regression. However, in practice, practition-
ers working with a finite sample face a crucial question of how many instruments one
should use, especially when there are many instruments available. This is partly due
to the well-known tradeoff between bias and variance when the number of instruments
increases. Donald and Newey (2001) show this point clearly with a higher-order Nagar
expansion and propose choosing the optimal number of instruments that minimizes the
mean squared errors (MSEs). Kuersteiner and Okui (2010) propose a model averaging
approach for the first-stage regression and show that it achieves the optimal weight.
These other approaches, however, require the practitioner to either know the order of
importance among instruments (Donald and Newey 2001) because the method chooses
the first few important instruments or estimate the optimal weights for the instruments
(Kuersteiner and Okui 2010).
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As an alternative, Lee and Shin (2021) propose a model-averaging approach that uses
all size-k subsets of the set of available instruments in a cross-sectional regression model.
This new approach is named the complete subset averaging two-stage least-squares
(CSA2SLS) estimator. One advantage of the CSA2SLS estimator is that, because it uses
all subsets, it does not require knowledge of the order of importance among instruments.
Furthermore, averaging models using equal weights reduces potential efficiency loss in
finite samples. This is because when estimated weights (instead of equal weights) are
used, these become additional parameters in the model and therefore cause inefficiency
when there are many models to be averaged.

We developed a command, csa2sls, that implements the CSA2SLS estimator. It
selects the optimal number of subset size k that minimizes the approximate MSEs.
Because the size of the complete subset grows at the order of 2K , where K is the
total number of instruments, CSA2SLS is computationally intensive. To alleviate such a
computational burden, the command csa2sls includes options for subsampling and a
fast but memory-intensive method.

The remainder of this article is organized as follows. Section 2 introduces the
CSA2SLS estimator in Lee and Shin (2021). Section 3 explains the command csa2sls.
Section 4 shows results from Monte Carlo experiments that numerically illustrate how
the CSA2SLS estimator alleviates some of the issues that arise from many instruments.
Section 5 provides an empirical application of csa2sls. Section 6 concludes.

2 CSA2SLS estimator
In this section, we explain the key idea of the CSA2SLS estimator in Lee and Shin
(2021). Heuristically speaking, we estimate the first-stage predicted value by model
averaging and apply the 2SLS estimation with those predicted values. Given a total of
K instruments, we consider all subsets composed of k instruments. We compute a simple
average of predicted values across models, and the 2SLS estimator follows immediately.
The optimal k is selected by minimizing the approximate MSEs criterion, which will be
explained in detail below.

To be concrete, consider the following model generated from an independent and
identically distributed sample:

yi = Y′
iβy + x′

1iβx + εi = X′
iβ + εi

Xi =

[
Yi

x1i

]
= f(zi) + ui =

[
E(Yi|zi)

x1i

]
+

[
ηi
0

]
, i = 1, . . . , N

where yi is a scalar outcome variable, Yi is a d1 × 1 vector of endogenous variables,
x1i is a d2 × 1 vector of included exogenous variables, zi is a vector of exogenous
variables (including x1i), f(·) is an unknown function of z, and εi and ui are error
terms uncorrelated with zi. Finally, ηi denotes an error term when we project the
endogenous regressor Yi into the space of exogenous variable zi. Note that E(ηi|zi) = 0
by construction.
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Let y = (y1, . . . , yN )′, ε = (ε1, . . . , εN )′, X = (X1, . . . ,XN )′, f = (f1, . . . , fN )′, and
U = (u1, . . . ,uN )′, where fi = f(zi). The set of instruments has the form ZK,i ≡
{ψ1(zi), . . . , ψK(zi),x1i}′, where ψk’s are functions of zi such that ZK,i is the collection
of (K + d2) instruments. Note that the total number of instruments K can increase
as N → ∞. We suppress the dependency of K on N for notation simplicity. Let
ZK = (ZK,1, . . . ,ZK,N )′ be the collection of ZK,i.

Let M be the number of subsets (or models) with k instruments:

M =

(
K

k

)
=

K!

k!(K − k)!

We also suppress the dependency of M on K and k. Let m ∈ {1, . . . ,M} be an index
of each model and zkm,i be a vector of instruments in model m. Then the first-stage
regression of model m can be written as

X = Πk′

mZk
m + uk

m

The average predicted value of X is

X̂ =
1

M

M∑
m=1

Zk
mΠ̂k

m

where Π̂k
m is the ordinary least-squares (OLS) estimator of Πk

m. Then the CSA2SLS
estimator is defined as

β̂ =
(
X̂′X

)−1

X̂′y

Using the projection matrices, we can also write the CSA2SLS estimator as a one-step
procedure,

β̂ =
(
X′PkX

)−1
X′Pky

where Pk =M−1
∑M

m=1 P
k
m with Pk

m = Zk
m(Zk′

mZk
m)−1Zk′

m.

The optimal subset size k is chosen by minimizing the approximate MSE. Let β̃ be
a preliminary estimator and ε̃ = y −Xβ̃. The fitted value of f is given as

f̃ = Z̃k
(
Z̃k′

Z̃k
)−1

Z̃k′
X

where Z̃k consists of exogenous variables plus the preliminary selection of instruments
as described above. Let P̃Z = Z̃k(Z̃k′

Z̃k)−1Z̃k′ . The residual matrix is denoted by
ũ = X − f̃ . Define H̃ = f̃ ′ f̃/N , σ̃2

ε = ε̃ ′ ε̃/N , σ̃uε = ũ′ε̃/N , σ̃λε = λ̃′H̃−1σ̃uε, and
Σ̃u = ũ′ũ/N . Then the sample counterpart of the approximate MSE is given by

Ŝλ(k) = σ̃2
λε

k2

N
+ σ̃2

ε

(
λ̃′H̃−1ẽkfH̃

−1λ̃− λ̃′H̃−1ξ̃kfH̃
−1ξ̃kfH̃

−1λ̃
)
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where

ẽkf =
X′(I−Pk)

2X

N
+ Σ̃u

2k − tr
{(

Pk
)2}

N


ξ̃kf =

X′ (I−Pk)
2
X

N
+ Σ̃u

k

N
− Σ̃u

σ̃2
λε =

(
λ̃′H̃−1σ̃λε

)2
The preliminary estimator β̃ can be estimated either by using Mallow’s two-step crite-
rion or by adopting the one-step method. See Lee and Shin (2021) for details.

3 The csa2sls command
3.1 Syntax

The syntax for the command is as follows:

csa2sls depvar
[

varlist1
]
(varlist2 = varlist_iv)

[
if
] [

in
] [

, noconstant

hasconstant onestep r(#) vce(vcetype) level(#) first small large

noheader depname(depname) perfect
]

varlist1 is the list of exogenous variables. varlist2 is the list of endogenous variables.
varlist_iv is the list of exogenous variables used with varlist1 as instruments for varlist2.

3.2 Options

noconstant; see [R] Estimation options.

hasconstant indicates that a user-defined constant or its equivalent is specified among
the independent variables.

onestep allows the one-step preliminary method. The default is Mallow’s two-step
criterion. See Lee and Shin (2021).

r(#) specifies a positive integer for the maximum number of randomly selected subsets
when the number of subsets is bigger than #. This is useful because the number of
subsets depends exponentially on the number of instruments.

vce(vcetype) specifies the type of standard error reported, which includes types that
are robust to some kinds of misspecification (robust) and that allow for intragroup
correlation (cluster clustvar). vce(unadjusted) specifies that an unadjusted (non-
robust) variance–covariance estimate matrix be used.

level(#); see [R] Estimation options.
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first requests that the first-stage regression results be displayed.

small requests that the degrees-of-freedom adjustment N/(N − k) be made to the
variance–covariance matrix of parameters and that small-sample F and t statistics
be reported, where N is the sample size and k is the number of parameters estimated.
By default, no degrees-of-freedom adjustment is made, and Wald and z statistics are
reported. Even with this option, no degrees-of-freedom adjustment is made to the
weighting matrix when the generalized method of moments estimator is used.

large turns on the large-sample estimation program. When the sample size is large,
the average projection matrices may require a large memory size. The large option
must be turned on to avoid an insufficient memory issue. The default is not using
this option.

noheader suppresses the display of the summary statistics at the top of the output,
displaying only the coefficient table.

depname(depname) specifies to substitute the dependent variable name.

perfect requests that csa2sls not check for collinearity between the endogenous re-
gressors and excluded instruments, allowing one to specify “perfect” instruments.
This option may be required when using csa2sls to implement other estimators.

3.3 Stored results

csa2sls stores the following in e():

Scalars
e(N) number of observations
e(df_m) model degrees of freedom
e(chi2) χ2

e(rank) rank of e(V)
e(rss) residual sum of squares
e(optimal_k) optimal subset size of instruments
e(rmse) root MSE
e(mss) model sum of squares
e(r2) R2

e(r2_a) adjusted R2

Macros
e(cmd) csa2sls
e(cmdline) command as typed
e(depvar) name of the dependent variable
e(title) title in estimation output
e(clustvar) name of cluster variable
e(properties) b V
e(predict) program used to implement predict
e(footnote) program used to implement footnote display
e(exogr) name of the exogenous variables
e(insts) name of the instruments
e(instd) name of the instrumented variables
e(constant) noconstant or hasconstant if specified
e(Premethod) Mallows Criterion or One Step
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Matrices
e(b) coefficient matrix
e(V) variance–covariance matrix

Functions
e(sample) marks estimation sample

4 Monte Carlo experiments
In this section, we conduct Monte Carlo simulation studies focusing on the effect of
correlated instruments. An independent and identically distributed sample (yi, Yi, zi)
is generated from the following simulation design:

yi = β0 + β1Yi + εi

Yi = π
′zi + ui

where Yi is a scalar endogenous regressor, (β0, β1) is set to be (0, 0.1), and zi is a K-
dimensional vector of instruments generated from a multivariate normal distribution
N(0,Σz). The diagonal elements of Σz are set to be 1, and the off-diagonal elements
are ρz. We set each element of π to be

√
0.1/{K +K(K − 1)ρz(1− 0.1)}, where 0.1 is

the R2 in the first-stage regression. The vector of error terms (εi, ui) follows a bivariate
normal distribution whose means are zeros and variances are ones. The covariance
between εi and ui is set to be 0.9. In these simulation studies, K varies in {5, 10, 15, 20}
and ρz varies in {0, 0.5, 0.9}. The sample size is set to be n = 100, and the results are
from 1,000 replications.

Figure 1 summarizes the simulation results. We report the mean bias and MSE of
CSA2SLS along with the performance of the OLS estimator and the 2SLS estimator. First,
the CSA2SLS estimator reduces the bias substantially when instruments are correlated
(ρz = 0.5, 0.9). As predicted by theory, the bias of 2SLS increases as K increases. Note
that when instruments are independent (ρz = 0.0), the difference in the bias between
the CSA2SLS estimator and the 2SLS estimator is small. Lee and Shin (2021) prove
that the performance of CSA2SLS will be asymptotically equivalent to that of 2SLS when
ρz = 0.

Second, the efficiency loss of CSA2SLS is modest. When instruments are correlated,
CSA2SLS achieves lower MSEs whenK ≥ 10. Like the bias, the MSE gap between CSA2SLS
and 2SLS increases as K increases. It is also worthwhile to note that the MSE of CSA2SLS
does not change much over different values of K. Finally, the OLS estimator performs
the worst in these simulation designs.

To summarize, the CSA2SLS estimator shows a good finite sample performance as
predicted by theory. We also observe the increased bias of 2SLS when there are many
instruments. We recommend practitioners use the CSA2SLS estimator when they have
many correlated instruments.
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Figure 1. Mean bias and MSE
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5 Empirical illustration
In this section, we illustrate the usage of csa2sls with an empirical application. In this
example, we revisit Berry, Levinsohn, and Pakes (1995) and estimate a logistic demand
function for automobiles based on pooled cross-sectional data over different markets.

The model is specified as

log(Si)− log(S0) = α0Pi +X′
iβ0 + εi

Pi = Z′
iδ0 +X′

iρ0 + ui

where Si is the market share of product i with product 0 denoting the outside option, Pi

is the endogenous price variable, Xi is a vector of included exogenous variables, and Zi

is a set of 10 instruments. The parameter of interest is α0, from which we can calculate
the price elasticity of demand. Note that the optimal subset size k is 9 in this empirical
example.

. set seed 2022

. insheet using blp.csv, comma
(54 vars, 2,217 obs)
. csa2sls y hpwt air mpd space (price = sumother1 sumotherhpwt sumotherair
> sumothermpd sumotherspace sumrival1 sumrivalhpwt sumrivalair sumrivalmpd
> sumrivalspace)
Complete Subset Model Averaging 2SLS Regression Number of obs = 2,217

Wald chi2(5) = 820.64
Prob > chi2 = 0.0000
R-squared = 0.3373
Root MSE = 1.1245

y Coefficient Std. err. z P>|z| [95% conf. interval]

price -.142563 .0117095 -12.18 0.000 -.1655131 -.1196128
hpwt 1.422452 .414676 3.43 0.001 .6097024 2.235202
air .5620958 .1379201 4.08 0.000 .2917772 .8324143
mpd .1579617 .0471821 3.35 0.001 .0654864 .2504369

space 2.284253 .1289588 17.71 0.000 2.031499 2.537008
_cons -2.342198 .2673599 -8.76 0.000 -2.866214 -1.818182

Endogenous: price
Exogenous: hpwt air mpd space sumother1 sumotherhpwt sumotherair

sumothermpd sumotherspace sumrival1 sumrivalhpwt sumrivalair
sumrivalmpd sumrivalspace
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. correlate sumother1 sumotherhpwt sumotherair sumothermpd sumotherspace
> sumrival1 sumrivalhpwt sumrivalair sumrivalmpd sumrivalspace
(obs=2,217)

sumoth~1 sumoth~t sumoth~r sumoth~d sumoth~e sumriv~1 sumriv~t

sumother1 1.0000
sumotherhpwt 0.9791 1.0000
sumotherair 0.6948 0.7039 1.0000
sumothermpd 0.9309 0.9341 0.7914 1.0000
sumothersp~e 0.9902 0.9747 0.6335 0.8862 1.0000

sumrival1 -0.3873 -0.3552 0.0832 -0.1527 -0.4667 1.0000
sumrivalhpwt -0.2744 -0.2163 0.1680 -0.0271 -0.3487 0.9532 1.0000
sumrivalair -0.0227 0.0089 0.3275 0.2013 -0.1035 0.8830 0.9168
sumrivalmpd -0.1400 -0.0923 0.2531 0.1132 -0.2131 0.9053 0.9456
sumrivalsp~e -0.5178 -0.4797 -0.0277 -0.2790 -0.5909 0.9823 0.9356

sumriv~r sumriv~d sumriv~e

sumrivalair 1.0000
sumrivalmpd 0.9281 1.0000
sumrivalsp~e 0.8144 0.8576 1.0000

We also report correlation coefficients among the instruments. We can confirm that
the instruments are divided into two groups and that each group’s instruments are
highly correlated with each other.

6 Conclusion
In this article, we presented the CSA2SLS estimator and the corresponding command,
csa2sls. The usage of csa2sls was illustrated with an empirical application. The
Monte Carlo experiments show that 2SLS is biased when there are many instruments
and that CSA2SLS outperforms 2SLS when instruments are correlated with each other.
Because CSA2SLS is computationally intensive, an interesting future research question
would be to develop a more efficient computation algorithm. An approach based on
the stochastic gradient descent (see, for example, Lee et al. [2022]) can be a possible
solution.
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8 Programs and supplemental material
To install the software files as they existed at the time of the publication of this article,
type

. net sj 23-4

. net install st0732 (to install program files, if available)

. net get st0732 (to install ancillary files, if available)
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