
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


The Stata Journal (2023)
23, Number 4, pp. 1086–1095 DOI: 10.1177/1536867X231212453

Speaking Stata: Finding the denominator:
Minimum sample size from percentages

Nicholas J. Cox
Department of Geography

Durham University
Durham, U.K.

n.j.cox@durham.ac.uk

Abstract. Percentage breakdowns for a series of classes or categories are some-
times reported without a specification of class frequencies or even the total sample
size. This column surveys the problem of estimating the minimum sample size and
class frequencies consistent with a reported breakdown and a particular resolution.
I introduce and explain a new command, find_denom. Rounding quirks whereby
a total is reported as above or below 100% are discussed as a complication.
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1 Introduction
An old joke with many variants has the following flavor: A naïve researcher is reporting
on a project in which 33% of the sample said A and 33% said B, but the other person
refused to answer. It is immediate that the sample size was 3. However, there is a more
challenging twist: What denominator or sample size underlies a percentage breakdown
of 40, 40, and 20? That breakdown is consistent with a sample size of 5, with 2, 2, and
1 as class frequencies. It is also consistent with any multiple of 5 and, dependent on
the amount of rounding, reportably consistent with many other percentage breakdowns
too. Thus, 2001, 1999, and 1000 yields exactly 40.02, 39.98, and 20.00 as a percentage
breakdown and so rounds to 40.0, 40.0, and 20.0 when rounding to one decimal place.
So would 2002, 1998, and 1000, and so would many other possibilities.

Every researcher should know that sample size should always be reported. Every
researcher with any experience knows that does not always happen, and the culprits are
not confined to advertising, journalism, or politics. Beyond hinting at possible ethical
issues, this column concentrates on the technicalities of trying to guess the minimum
sample size consistent with a reported percentage breakdown. We assume honest and
accurate reporting, other than the sample size being suppressed or at least omitted.

The column introduces some basic tricks for calculating minimum sample sizes to-
gether with a command, find_denom. Section 2 gives some examples and a general
discussion of the problem. Section 3 shows how find_denom may be used in practice
and introduces further twists, especially the need to consider rounding quirks. Section 4
gives a more formal statement of the syntax of find_denom.
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2 The problem: Examples and previous work
The problem was discussed by Wallis and Roberts (1956, 185–189) and in much more
technical detail by Becker, Chambers, and Wilks (1988, 272–277). Two ideas arise
immediately. First, a complete set of percentages is not needed to say something about
minimum sample size. Thus, one percentage reported as 33% implies that the sample
size cannot be 2 and must be at least 3. Second, the smallest percentage reported, or,
if it is smaller, the smallest positive difference between two percentages reported, gives
another handle on the minimum sample size. Thus, with a percentage breakdown of 40,
30, and 30, the smallest positive difference is 10, and equivalently 100/10 = 10 is the
minimum sample size.

Wallis and Roberts (1956, 186) reported a fictitious percentage breakdown:

23.1
15.4
30.8
19.2
7.7
3.8

From that, both the smallest percentage and the smallest positive difference are 3.8,
suggesting a minimum sample size of 100/3.8, which rounds as an integer to 26. The
implied frequencies are thus

6
4
8
5
2
1

Wallis and Roberts (1956, 187–188) also reported percentage breakdowns of movie
ratings from Consumer Reports August 1949, page 383. In turn, the categories are
percentages reporting Excellent, Good, Fair, and Poor. Some examples are

Alias Nick Beal 6 27 47 20
Bride of Vengeance 11 22 56 11
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Becker, Chambers, and Wilks (1988, 272) reported these percentages for considering
vendors for 1986 from a personal computer magazine:

Ours 14.6
A 12.2
B 12.2
C 7.3
D 7.3

They gave an algorithm and S code for input expressed as proportions. The idea
is just to bump up the sample size until implied percentages are all consistent with
the stated results. It is this algorithm, translated from S to Stata but adapted for
percentage input, that is implemented in the find_denom command.

Becker, Chambers, and Wilks (1988, 274–277) further discussed speeding up com-
putations and allowing a certain number of outliers, essentially percentages that do not
fit, say, because they were reported incorrectly. These elaborations are not implemented
here but should be of interest for any deeper study.

Using a pie chart, Utts and Heckard (2022, 22) reported percentages from a group
of students of answers 1(1)10 given the instruction “Randomly pick a number between
1 and 10”. The percentages were 1.1 (for 1), 4.7, 11.6, 11.1, 9.5, 12.1, 29.5, 10.0, 7.4,
and 3.2 (for 10). The same chart is also given in another text by Utts and Heckard
(2006, 21).

Random digit choice is perhaps the most arresting of these examples, mostly for
other reasons. If people were good random-number generators, then for the reference
distribution of a discrete uniform (rectangular, flat) distribution, we would expect nearly
equal percentages of around 10% each or, equivalently, probabilities of around 0.1. I
prefer a bar chart to a pie chart, and that will come later (figure 1). If you are engaged
in teaching, you may wish to use this example as a salutary warning of the deficiencies
of people as random-number generators or as an intriguing illustration of the vagaries
of number preferences.

3 Introducing find_denom and further twists
3.1 The idea of find_denom

find_denom is intended primarily for interactive use. You start with one or more per-
centages and want to know the minimum sample size consistent with those percentages.
You must specify a tolerance through the option epsilon(). If the option name seems
cryptic, there are two motivations. The first is the mathematical use of epsilon ε since
Cauchy and Weierstrass to indicate small changes in an argument within rigorous an-
alytic proofs. The second is the use by the mathematician Paul (Pál) Erdős, who
certainly knew the first meaning, of epsilons to mean children, namely, people in small
sizes (Hoffman 1998; Schechter 1998).
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3.2 The idea of resolution

Naming the option epsilon(), a variant on the name used by Becker, Chambers, and
Wilks (1988) in their S code, sidesteps a small issue of terminology. How do we refer
to the difference in presentation produced by rounding to different particular powers
of 10, say, the nearest multiple of . . . , 10, 1, 0.1, 0.01, . . .? Talking about the “number
of decimal places” fits whenever the numbers are fractions, but not otherwise. The
expression “number of significant figures” similarly only sometimes works well. Talking
about “precision” runs into a problem where many statistical people want to use that
term to refer to the variability (reliability) of repeated measurements, a widespread if not
universal usage (see, for example, Eisenhart [1968]). I commend the term “resolution”
broadly as used by Murphy (1997) and Crowder et al. (2020). This term has the
secondary advantage that it also covers cases where the resolution is a matter of rounding
to halves, quarters, eighths, other fractions that are powers of 2, or even to yet more
unusual fractions. That said, such cases are not further discussed here.

3.3 Supposedly random digits

Let us now focus on the data example of supposedly random digits. We just type the
reported percentages on the command line, but we must specify the option epsilon(),
which can be abbreviated eps(), to be interpreted this way: eps(0.05) implies, for
example, that 1.1, if known in more detail, would be somewhere between 1.05 and
almost 1.15. The argument fed to epsilon() is thus half the resolution.

. find_denom 1.1 4.7 11.6 11.1 9.5 12.1 29.5 10.0 7.4 3.2, epsilon(0.05)

The command loops through possible sample sizes until it finds the smallest size
consistent with all the information.

total of percentages is 100.2
minimum sample size is 190
minimum frequencies are 2 9 22 21 18 23 56 19 14 6

Immediately, we see that the total of the percentages is not exactly 100.0%. We will
come back to this puzzle shortly.
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The results match an accompanying histogram and most crucially the frequencies
later listed by Utts and Heckard (2006, 241; 2022, 271). Here is a bar chart (figure 1).

2

9

22 21
18

23

56

19

14

6

fre
qu
en
cy

1 2 3 4 5 6 7 8 9 10
digit

Figure 1. Frequencies of digit choice in data cited by Utts and Heckard in various texts

Incidentally, we can now get a chi-squared test or any other desired test that depends
on knowing exact frequencies. One way to get a chi-squared test directly is to treat Mata
as a convenient calculator. A null hypothesis of uniform distribution implies that each
digit between 0 and 9 has an expected frequency of 190/10 = 19. The chi-squared
statistic is thus, for observed frequencies, fj :

10∑
j=1

(fj − 19)2

19
=: X2

Here the notation X2 (following, for example, Bishop, Fienberg, and Holland [1975];
Agresti [2013]) matches a strong convention to reserve Greek letters for population or
theoretical quantities and to use Roman letters for sample statistics.
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The number of degrees of freedom is the number of cells, 10, minus 1. The p-value is
minute, which should seem unsurprising with such a marked departure from uniformity.

. mata
mata (type end to exit)

: observed = (2, 9, 22, 21, 18, 23, 56, 19, 14, 6)
: expected = rowsum(observed) / 10
: chisq = rowsum((observed :- expected):^2 :/ expected)
: chisq

104.3157895
: chi2tail(9, chisq)

2.10204e-18
: end

If you are new to Mata, the least predictable detail here is that :-, :^2, and :/
are syntax for various elementwise operations: elementwise subtraction, squaring, and
division, respectively.

Oddly, or otherwise, there is no official command in Stata for this test for a one-
way table. However, chitesti from the community-contributed package tab_chi (Cox
1999) on the Statistical Software Components Archive is available.

3.4 Taking account of rounding

As already implied, find_denom has really only one idea. Essentially, it is optimistic
that reported percentages are correct and consistent. However, we already have run
into a small but fundamental problem. Rounded percentages need not sum to exactly
100, even with careful and consistent calculation. Our detailed example discussed just
now showed that straight away. The phenomenon is familiar to experienced researchers.
For incisive discussion and analysis, see Mosteller, Youtz, and Zahn (1967) and Diaconis
and Freedman (1979).

We can look at the fine structure of our example again using Mata. We transpose the
vector of observed counts for convenience because a table with more rows than columns
is easier to work with than its transpose. We align the column of observed counts with
percentage displays for resolutions 1, 0.1, and 0.01.
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: observed = (2, 9, 22, 21, 18, 23, 56, 19, 14, 6)
: observed' , round(100 * observed' :/ 190, (0.1, 0.01, 0.001))

1 2 3 4

1 2 1.1 1.05 1.053
2 9 4.7 4.74 4.737
3 22 11.6 11.58 11.579
4 21 11.1 11.05 11.053
5 18 9.5 9.47 9.474
6 23 12.1 12.11 12.105
7 56 29.5 29.47 29.474
8 19 10 10 10
9 14 7.4 7.37 7.368
10 6 3.2 3.16 3.158

: colsum(round(100 * observed' :/ 190, (0.1, 0.01, 0.001)))
1 2 3

1 100.2 100 100.001

There is nothing untoward here. It just happened that with a resolution of 0.1,
there was more rounding up than rounding down. With a resolution of 0.01, the total
would have appeared exactly correct, but with a resolution of 0.001, the total would
have appeared off by 0.001.

In general, you should check that the total looks plausible, but note that—as in this
example—the command does not throw you out if the total is not exactly 100%. Not
only could it easily fall above or below as a matter of rounding quirks, but there also
could be precision problems from holding decimals using binary representations. If the
latter are unfamiliar to you, type search precision for pointers to many resources. I
particularly recommend blog posts on precision by William Gould.

For more on rounding and its cousin binning in Stata, see Cox (2018).

3.5 Further cautionary notes

Hence, although find_denom is offered as a tool that may be useful, you need to be on
the lookout for rounding quirks. Let me add some further cautions:

1. The user can and should flag that percentages are partial or incomplete if they
are. The option partial is intended for this purpose.

2. On occasion, the algorithm converges on an inconsistent solution, in which case
there will be a report to that effect.

3. The dots option is provided to show progress and may indirectly indicate an
insoluble problem.
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3.6 Other examples

If interested, you can run the command for the other examples given previously. Note
the simple but crucial detail that epsilon() will vary according to the resolution of the
data.

. find_denom 23.1 15.4 30.8 19.2 7.7 3.8, epsilon(0.05)

. find_denom 6 27 47 20, epsilon(0.5)

. find_denom 11 22 56 11, epsilon(0.5)

. find_denom 14.6 12.2 12.2 7.3 7.3, epsilon(0.05)

4 The find_denom command
4.1 Syntax

find_denom #1
[

#2 . . .
]
, epsilon(#)

[
partial dots

]
4.2 Description

find_denom reports minimum sample size and minimum frequencies given one or more
percentages rounded to some precision or resolution.

4.3 Options

epsilon(#) is a required option indicating half the perceived resolution. Thus, if
percentages are rounded to integers, specify epsilon(0.5); if they are rounded to
1 decimal place, specify epsilon(0.05). The thinking is that a report of # means
that the true value is between # − epsilon and (almost) # + epsilon.

partial is a flag that you know that the specified percentage or percentages are partial
or incomplete. For example, find_denom 33.3, eps(0.05) partial is allowed
(and required) as a test that will show one percentage of 33.3 to be consistent with
a class frequency of 1 and a total frequency of 3.

dots calls up minor entertainment in the form of a dot or period for every sample size
tried and a printout of the sample size at every multiple of 50. This option may also
be useful for showing that a solution cannot be found.

5 Conclusion
Suppression or omission of percentages in a report can be troublesome, whether it
was just careless or even raises questions of malpractice. Whatever the circumstances,
find_denom is offered as a small and simple command for analysis.



1094 Speaking Stata

A point of likely interest to programmers is that I first translated from another
language (S) to Mata and then wrote the command as a wrapper around the Mata
code. More generally, examples here are intended to underline the utility of Mata as an
online calculator and display tool.

6 Programs and supplemental materials
To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 23-4

. net install st0737 (to install program files, if available)

. net get st0737 (to install ancillary files, if available)
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