

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search http://ageconsearch.umn.edu aesearch@umn.edu

Papers downloaded from **AgEcon Search** may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

Global Value Chains' Position and Value Capture: Firm Evidence in Agri-Food Industry

Kossi Messanh Agbekponou and Ilaria Fusacchia

Selected presentation for the International Agricultural Trade Research Consortium's (IATRC's) 2023 Annual Meeting: The Future of (Ag-) Trade and Trade Governance in Times of Economic Sanctions and Declining Multilateralism, December 10-12, 2023, Clearwater Beach, FL.

Copyright 2023 by Kossi Messanh Agbekponou and Ilaria Fusacchia. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.

Global Value Chains' Position and Value Capture: Firm Evidence in Agri-Food Industry

Kossi Messanh Agbekponou^{a1} Ilaria Fusacchia ^{b2}

^{a1} SMART-INRAe ^{b2} Roma Tre-Italy

RATModel

atter agri-food trade modelling for policy analysis

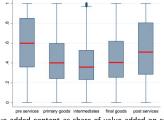
IATRC (Florida-USA) - 2023 December 10-12, 2023

Motivation

• Value creation and distribution are at the heart of GVCs

- More productive and strongest firms and those with critical resources capture more value, (Emerson, 1962; Brandenburger and Stuart, 1996; Crook and Combs, 2007; Hillman et al., 2009; Drees and Heugens, 2013)
- Property rights model (Antràs and Chor, 2013; Alfaro et al., 2019)

 \Rightarrow Final firms organize their production processes upstream, integrating or not their suppliers depending on their hold-up situation


Motivation

• Value creation and distribution are at the heart of GVCs

- More productive and strongest firms and those with critical resources capture more value, (Emerson, 1962; Brandenburger and Stuart, 1996; Crook and Combs, 2007; Hillman et al., 2009; Drees and Heugens, 2013)
- Property rights model (Antràs and Chor, 2013; Alfaro et al., 2019)

 \Rightarrow Final firms organize their production processes upstream, integrating or not their suppliers depending on their hold-up situation

- How can suppliers act strategically to counterbalancethe power of the final firms?
 - Suppliers' strategic positioning in GVCs matters
 - Upper and lower ends of the value chain provide higher value added and profit margins (the smile curve: Mudambi, 2008; Rungi and del Prete, 2018; Baldwin and Ito, 2021)

Value added content as share of value added on sales. Source: Fig. 1 from Rungi and del Prete, 2018

Literature

- Further downstream firms perform more production stages and capture more value
 - Resource dependency theory (Hillman et al., 2009; Drees and Heugens, 2013): Firms dependencies is due to ownership of critical assets in supply chain

 \Rightarrow critical assets in agri-food sector (sales space, consumption patterns, brand) are more downstream (Cox et al., 2001; Burch and Lawrence, 2005)

Self-selection mechanism (Melitz, 2003)

 \Rightarrow Productivity is higher downstream than upstream (Costinot et al., 2013)

Property rights model (Antràs and Chor, 2013; Alfaro et al., 2019)

 \Rightarrow Hold-up situation determine final producers to integrate or not these suppliers

- "Value additivity assumption": Most productive firms integrate more production stages and capture higher value (Alfaro et al., 2019; Chor et al., 2021)
- Further downstream firms monotonically create and capture more value in Italy (Giovannetti and Marvasi, 2018)

Literature

- Further downstream firms perform more production stages and capture more value
 - Resource dependency theory (Hillman et al., 2009; Drees and Heugens, 2013): Firms dependencies is due to ownership of critical assets in supply chain

 \Rightarrow critical assets in agri-food sector (sales space, consumption patterns, brand) are more downstream (Cox et al., 2001; Burch and Lawrence, 2005)

- Self-selection mechanism (Melitz, 2003)
 - \Rightarrow Productivity is higher downstream than upstream (Costinot et al., 2013)
- Property rights model (Antràs and Chor, 2013; Alfaro et al., 2019)

 \Rightarrow Hold-up situation determine final producers to integrate or not these suppliers

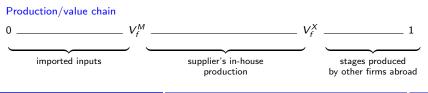
- "Value additivity assumption": Most productive firms integrate more production stages and capture higher value (Alfaro et al., 2019; Chor et al., 2021)
- Further downstream firms monotonically create and capture more value in Italy (Giovannetti and Marvasi, 2018)

• Further upstream position is monotonically associated with more value creation

- Self-selection mechanism as fixed capital stocks are higher more upstream (Ju and Yu, 2015)
- More R&D and innovations in more upstream (Mahy et al., 2021)

Outline of the presentation

Question: How does the position of suppliers (food processing firms) affect power distribution or surplus along GVCs?


- Theoretical framework
- 2 Main prediction, theoretical hypotheses and mechanisms: effect of GVC positioning
- Oata
 - Data sources
 - Bilateral bargaining power and division of surplus
 - ★ Upstreamness / position in GVC
- Test main hypotheses: OLS, Sub-sample regressions
- 6 Robustness tests
- 6 Mechanism
- Conclusion

- Timing of the game
 - (i) Exporter and importer bargain over exporter price that maximizes total rents
 - (ii) Importer and Exporter then take exporter price as given, so that:
 - * Importer maximizes its profits with respect to final price
 - * Exporter minimizes its cots by choosing inputs for a given output level
- Importer (buyer) of variety variety v of product k faces an aggregate demand in country j:

$$q_{jk}(\upsilon) = A_{jk} \left[\lambda_{fjk}(\upsilon) \right]^{\varepsilon_{jk}-1} \left[p_{jk}(\upsilon) \right]^{-\varepsilon_{jk}}$$

 Exporter (suppliers) f of k from country i performs a continuum of tasks ν in GVCs, indexed by their remoteness from final demand (upstreamness), using a CES aggregator:

$$q_{fk} = \varphi_f \, \lambda_{fjk}^{-\gamma} \left(\int_{V_f^M}^{V_f^X} x_f(\nu)^{\frac{\sigma-1}{\sigma}} du + q_{-if}^{M^{\frac{\sigma-1}{\sigma}}} \right)^{\frac{\sigma}{\sigma-1}}$$

- Solving the game via backward induction
 - (ii) suppose that Exporter supplies a compatible good to Importer $q_{fk} = q_{jk} = q_{fik}$:
 - ***** Knowing p_{fjk} , Importer maximizes π_{jk} with respect to p_{jk} , as follow:

$$\max_{\substack{p_{jk}\\p_{jk}}} \pi_{jk} = p_{jk}q_{fjk} - p_{fjk}q_{fjk}$$

Exporter minimizes cost for a given output, as follow:

$$\begin{split} \min_{q_{-if}^{M}, x_{f}(\nu)} p_{-if}^{M} q_{-if}^{M} + \int_{V_{f}^{M}}^{V_{f}^{X}} c_{f}(\nu) x_{f}(\nu) d\nu \\ s.t. \qquad \overline{q}_{fjk} = \varphi_{f} \lambda_{fjk}^{-\gamma} \left(\int_{V_{f}^{M}}^{V_{f}^{X}} x_{f}(\nu) \frac{\sigma-1}{\sigma} d\nu + q_{-if}^{M\frac{\sigma-1}{\sigma}} \right)^{\frac{\sigma}{\sigma-1}} \end{split}$$

- Solving the game via backward induction
 - (ii) suppose that Exporter supplies a compatible good to Importer $q_{fk} = q_{jk} = q_{fjk}$:
 - * Result of Importer maximization problem:

$$\begin{array}{lcl} p_{jk}^{*} & = & \displaystyle \frac{\varepsilon_{jk}}{\varepsilon_{jk}-1} p_{fjk} \\ \\ q_{fjk}^{*} & = & \displaystyle A_{jk} \lambda_{fjk}^{\varepsilon_{jk}-1} \left(\frac{\varepsilon_{jk}}{\varepsilon_{jk}-1} \right)^{-\varepsilon_{jk}} p_{fjk}^{-\varepsilon_{jk}} \end{array}$$

* Result of Exporter minimization problem:

$$C_{fjk} = q_{fjk} \frac{\tau_{ijk} \lambda_{fjk}^{-\gamma}}{\varphi_f} \left(p_{-if}^{M^{1-\sigma}} + \int_{V_f^M}^{V_f^X} c_f(\nu)^{1-\sigma} d\nu \right)^{\frac{1}{1-\sigma}}$$

(i) Exporter and Importer reach the equilibrium price that solves the generalized Nash product:

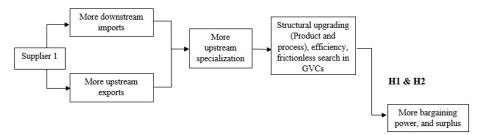
$$\max_{p_{fjk}} \left(p_{fjk} q_{fjk} - C_{fjk} \right)^{\beta_{fjk}} \left(p_{jk} q_{fjk} - p_{fjk} q_{fjk} \right)^{1-\beta_{fjk}}$$

- Solving the game via backward induction
 - (ii) suppose that Exporter supplies a compatible good to Importer $q_{fk} = q_{jk} = q_{fjk}$:
 - * Result of Importer maximization problem:

$$\begin{array}{lcl} p_{jk}^{*} & = & \displaystyle \frac{\varepsilon_{jk}}{\varepsilon_{jk}-1} p_{fjk} \\ \\ q_{fjk}^{*} & = & \displaystyle A_{jk} \lambda_{fjk}^{\varepsilon_{jk}-1} \left(\frac{\varepsilon_{jk}}{\varepsilon_{jk}-1} \right)^{-\varepsilon_{jk}} p_{fjk}^{-\varepsilon_{jk}} \end{array}$$

* Result of Exporter minimization problem:

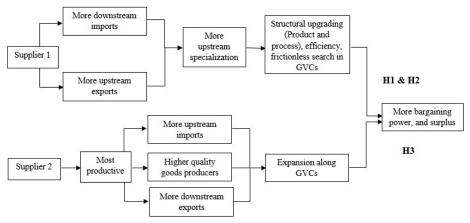
$$C_{fjk} = \frac{\tau_{ijk} q_{fjk} \lambda_{fjk}^{-\gamma}}{\varphi_f} \left(p_{-if}^{M^{1-\sigma}} + \int_{V_f^M}^{V_f^X} c_f(\nu)^{1-\sigma} d\nu \right)^{\frac{1}{1-\sigma}}$$


(i) Solving for the generalized Nash product gives the full expression of optimal prices as follows:

$$p_{fjk}^* = rac{arepsilon_{ft} - 1 + eta_{fjk}}{arepsilon_{ft} - 1} \left(p_{-if}^{\mathcal{M}^{1-\sigma}} + \int_{V_f^{\mathcal{M}}}^{V_f^{\mathcal{X}}} c_f(
u)^{1-\sigma} d
u
ight)^{rac{1}{1-\sigma}} rac{\lambda_{fjk}^{\gamma}}{arphi_f} au_{ijk}$$

4

Theoretical framework: Positioning in GVCs and bargaining power


• Mechanisms at work and theoretical hypotheses

- H1: The division of surplus of a supplier in its export market is positively affected by:
 - (i) further upstream position of its exports;
 - (ii) Further downstream position of its imports;
 - (iii) and, consequently, specialization along agri-food GVCs
- H2: The positioning and specialization effects in GVCs is more pronounced in the most upstream position of the production process.

Theoretical framework: Positioning in GVCs and bargaining power

• Mechanisms at work and theoretical hypotheses

- H3: Suppliers in most downstream position increase their surplus in export markets by: (i) exporting more downstream;
 - (ii) importing more upstream;
 - (iii) and, thus performing a larger number of production stages in GVCs. Back

Data

Necessary data (firm and country level):

- GVC bargaining power index or surplus
- \bullet upstreamness (\neg transformation) of purchased inputs and produced goods
- firm level controls
- country level controls

Data

Necessary data (firm and country level):

- GVC bargaining power index or surplus
- \bullet upstreamness (\neg transformation) of purchased inputs and produced goods
- firm level controls
- country level controls

Employed data: French agri-food firms and destination markets, 2000–2018

- AMADEUS
- French customs
- WDI and CEPII

Sample: firms in GVCs: Re-export excluded sample and All transaction sample

US input-output table (BEA)

- $+ \ {\rm US}/{\rm French} \ {\rm industry} \ {\rm correspondences}$
- + for multiple correspondences, assume equal weights for all industry pairs
- \Rightarrow an input-output table at the level of French industries

405 US industries (42 agrifood) \rightarrow 604 NACE industries (88 agrifood) NACE I-O table

GVC bargaining power index at firm-product-country-year level

 Two-stage two-tier stochastic frontier model (Polachek and Yoon, 1987, 1996; Kumbhakar and Parmeter, 2009):

$$p_{fjkt} = \mu(x) + \beta_{fjkt} \left(\overline{p_{jfkt}} - \mu(x) \right) - \left(1 - \beta_{fjkt} \right) \left(\mu(x) - \underline{p_{fjkt}} \right)$$

p_{fjkt} - export price (unit value observed in data)

 $\overline{p_{jfkt}}$ – highest import price that the importer is willing to pay

• Based on log price equation from the theoretical framework:

$$\begin{split} &\ln p_{ijkt} = \mu(x) + \xi_{ijkt}, \\ &\mu(x) = \text{Controls}_{ft} + \text{Controls}_{jt} + \alpha_b b_{ijkt} + \alpha_s s_{ijkt} + FE_t + FE_k + FE_r + FE_j \\ &\xi_{ijkt} = \omega_{ijkt} - u_{ijkt} + e_{ijkt} \\ &e_{ijkt} \sim i.i.d. \ N(0, \delta_e^2) \\ &\omega_{ijkt} \sim i.i.d. \ Exp(\delta_\omega, \delta_\omega^2) \\ &u_{ijkt} \sim i.i.d. \ Exp(\delta_\omega, \delta_\omega^2) \end{split}$$

• Construction of IVs for the bilateral shares (Alviarez et al., 2023)

Buyer share – purchases of f 's other importers from exporters other than fSupplier share – sales of j's other exporters to importers other than j

Estimation of ln p_{fikt} by the maximum likelihood (ML) method

$$NS_{fjkt} = \omega_{fjkt} - u_{fjkt}$$

Agbekponou • Fusacchia

GVC bargaining power index at firm-product-country-year level

Estimation results

Sample	Panel A: Re-exports excluded					
Summary	# observations= 178,805					
	$\omega_{\textit{fjkt}}$ (Firms)	u _{fjkt} (Countries)	NS _{fjkt}			
Mean	56.71	41.93	14.78			
Q1	29.37	25.77	-16.49			
Q2	40.39	31.82	8.56			
Q3	65.01	45.86	39.24			
	Variance analysys					
$\delta_{\omega}^2 + \sigma_{\mu}^2 + \delta_{\nu}^2$		66.59				
$ \begin{array}{c} (\delta_w^2 + \delta_u^2) / (\delta_\omega^2 + \delta_u^2 + \delta_\nu^2) \\ \delta_w^2 / (\delta_\omega^2 + \delta_u^2) \end{array} $		74.70				
$\delta_w^2/(\delta_w^2+\delta_u^2)$		64.66				
$\delta_{\mu}^2/(\delta_{\omega}^2+\delta_{\mu}^2)$		35.34				

Table: Summary of surplus extracted and variance analysis- Two-stage Two-tier frontier

Notes: Value expressed in percent.

Upstreamness and position in GVC

- Follow Fally (2012), Antràs et al. (2012), Antràs and Chor (2013)
- Industry upstreamness = weighted average of the number of production stages from final demand for which the industry provides inputs:

$$\boldsymbol{U}_{r} = 1 \cdot \frac{F_{r}}{Y_{r}} + 2 \cdot \frac{\sum_{s} b_{rs} F_{s}}{Y_{r}} + 3 \cdot \frac{\sum_{s} \sum_{k} b_{rk} b_{ks} F_{s}}{Y_{r}} + \dots \quad \in [1, \infty]$$

 F_r , Y_r , and b_{rs} from a highly disaggregated input-output table

high U_r : close to production factors; low U_r : close to final demand

• Firm-level upstreamness: combine industry-level upstreamness with the product composition of firm's imports and exports

Upstreamness of imports:	$U_f^M = \sum_r \frac{M_{fr}}{M_f} U_r \Rightarrow V_f^M = \frac{1}{U_f^M}$	purchased inputs
Upstreamness of exports:	$U_f^X = \sum_r \frac{X_{fr}}{X_f} U_r \Rightarrow V_f^X = \frac{1}{U_f^X}$	produced output
Position in GVC:	$GVC_f = V_f^X - V_f^M$	span of in-house production stages

Details upstreamness indicators

Empirical strategy

• Setting of linear forms:

$$NS_{fjkt} = \alpha_0 + \alpha_{\nu} \{ \{ \mathbf{V}_{ft}^{\mathsf{X}}, \mathbf{V}_{ft}^{\mathsf{M}} \}, \mathbf{V}_{ft}^{\mathsf{X}} - \mathbf{V}_{ft}^{\mathsf{M}} \} + \alpha_c \text{Controls}_{ft} \\ + FE_f + FE_{rt} + FE_{rj} + FE_{jk} + \epsilon_{fjkt}$$

NSau	_	GVC bargaining power index (division of surplus)
M		
$V_{ft}^{N}(V_{ft}^{\wedge})$	=	inverse of upstreamness of imports (exports) of firms
$egin{aligned} & NS_{fjkt} \ & V^M_{ft} \ (V^X_{ft}) \ & V^M_{ft} - V^X_{ft} \end{aligned}$	=	Intensity of GVC participation
Controls _{ft}	=	time-varying firm characteristics (productivity and size group)
FEi	-	industry-by-year dummies (firm's main activity NACE Rev.2 4-digit), firm,
		industry-by-country and product-by-country fixed effects
ϵ_{fjt}	-	error term

• OLS estimates and sub-sample regressions

Baseline results

Sample		Re-exports ex	cluded	
Variable	(1)	(2)	(3)	(4)
V _{ft}	-0.2533***	-0.2258***		
11	(0.0547)	(0.0528)		
V_{fr}^M	0.0375**	0.0431* [*]		
n	(0.0169)	(0.0175)		
$(V_{\alpha}^{X} - V_{\alpha}^{M})$	((****** /	-0.0659***	-0.0672***
(• π • π)			(0.0158)	(0.0167)
In Productivity _{ff}		0.0919***	(0.0923***
		(0.0084)		(0.0084)
Firm size:		· /		· /
Small _{ft}		reference		reference
Medium _{ft}		0.1070***		0.1084***
		(0.0082)		(0.0084)
Largeft		0.1892* ^{***}		ò.1909* ^{***}
0.11		(0.0137)		(0.0138)
Fixed effects	firm, indu	ıstry-year, indu	stry-country, pr	oduct-country
Observations	107,994	107,994	107,994	107,994
R^2	0.684	0.685	0.684	0.685

Table: Firm's position in GVCs and division of surplus

** p < 0.05, *** p < 0.01.

Baseline results: Sub-sample regressions

Table: Firm's position in GVCs and division of surplus – low versus high level of upstreamness of the core activity of firms

Sample	Re-exports excluded								
Sub-sample	More downstream firms		More Uptream firms		More downstream firms		More Uptream firms		
Variable	(1)	(2)	(3)	(4)	(1)	(2)	(3)	(4)	
V_{ft}^{χ}	0.0052 (0.0536)	0.0131 (0.0540)	-0.5522*** (0.0969)	-0.4988*** (0.0931)					
V_{ft}^M	0.0177 (0.0205)	0.0040 (0.0208)	0.0465	0.0743*** (0.0277)					
$(V_{ft}^X - V_{ft}^M)$	(0.0203)	(0.0200)	(0.0203)	(0.0211)	-0.0149 (0.0169)	-0.0020 (0.0177)	-0.1115*** (0.0247)	-0.1293*** (0.0245)	
In Productivity _{ft}		0.1029*** (0.0140)		0.0869*** (0.0082)	(0.0100)	0.1029*** (0.0140)	(0.0211)	0.0892*** (0.0085)	
Firm size:		(0.02.00)		(0.000-)		(0.02.00)		()	
Small _{ft} Medium _{ft}		reference 0.1004*** (0.0103)		reference 0.1232*** (0.0123)		reference 0.1004*** (0.0103)		reference 0.1285*** (0.0131)	
Large _{ft}		(0.0103) 0.1947*** (0.0166)		(0.0123) 0.1995*** (0.0225)		0.1948*** (0.0166)		0.2111*** (0.0238)	
Fixed effects			firm, indust	ry-year, indust	ry-country, p	roduct-country	,		
Observations R ²	52,725 0.735	52,725 0.736	52,977 0.684	52,977 0.685	52,725 0.735	52,725 0.736	52,977 0.683	52,977 0.685	

Notes: Standard errors clustered by country in parentheses. Removal of 2% from the distribution tails of the GVC bargaining power index. * p < 0.10, ** p < 0.05, *** p < 0.01.

Return

Mechanism test: role of upgrading of product mix Theoretical framework

- Estimate of the quality-adjusted GVC bargaining power index , NS fikt
- Use it as an explained variable

Sample		Re-exports ex	cluded	
Variable	(1)	(2)	(3)	(4)
V_{ft}^X	-0.1470***	-0.1303***		
	(0.0477)	(0.0465)		
V_{ft}^M	0.0102	0.0138		
	(0.0144)	(0.0141)		
$(V_{\hat{\pi}}^X - V_{\hat{\pi}}^M)$			-0.0286*	-0.0294**
			(0.0150)	(0.0146)
In Productivity _{ft}		0.0302***		0.0307***
		(0.0049)		(0.0049)
Firm size:				
Small _{ft}		reference		reference
Medium _{ft}		0.0631***		0.0641***
		(0.0095)		(0.0096)
Large _{ft}		0.1067***		0.1078***
		(0.0110)		(0.0110)
Fixed effects	firm, indu	ıstry-year, indu	stry-country,	product-country
Observations	104,656	104,656	104,656	104,656
R^2	0.457	0.458	0.457	0.458
the distrib		he GVC bargai		Removal of 2% from ndex. $p^* < 0.10$,

Table: Firm's position in GVCs and quality-adjusted surplus

Compared to to baseline results from the whole samples

Mechanism test: role of upgrading of product mix

Table: Firm's position in GVCs and quality-adjusted surplus – low versus high level of upstreamness of the core activity of firms

Sample			F	Re-exports exclu	ded				
Sub-sample	More downstream firms		More Uptream firms		More downstream firms		More firms	Uptream	
Variable	(1)	(2)	(3)	(4)	(1)	(2)	(3)	(4)	
V_{ft}^{χ}	-0.1446* (0.0783)	-0.1408* (0.0763)	-0.1353*** (0.0410)	-0.1036** (0.0406)					
V_{ft}^M	0.0222 (0.0287)	0.0148 (0.0281)	0.0100 (0.0194)	0.0218 (0.0200)					
$(V_{ft} - V_{ft}^M)$					-0.0365 (0.0280)	-0.0295 (0.0272)	-0.0273 (0.0174)	-0.0332* (0.0179)	
In Productivity _{ft}		0.0418*** (0.0100)		0.0244 ^{***} (0.0059)	()	0.0418 ^{***} (0.0100)	(0.0251*** (0.0059)	
Firm size:		(,		()		()		(,	
Small _{ft} Medium _{ft}		reference 0.0708***		reference 0.0594***		reference 0.0710***		reference 0.0605***	
Large _{ft}		(0.0120) 0.1136*** (0.0172)		(0.0095) 0.1085*** (0.0125)		(0.0120) 0.1129*** (0.0172)		(0.0096) 0.1108*** (0.0124)	
Fixed effects			firm, indust	ry-year, industry	/-country, pr	oduct-country			
Observations R ²	50,396 0.465	50,396 0.466	51,911 0.514	51,911 0.514	50,396 0.465	50,396 0.466	51,911 0.513	51,911 0.514	

power index. * p < 0.10, ** p < 0.05, *** p < 0.01.

Compared to to baseline results from the sub-sample regressions

Conclusion

Main findings:

- More upstream position of production process and specialization along GVCs is associated with a higher bargaining power, thus more value capture in agri-food GVCs
- The effects are mainly due to the upgrading of the product mix
- Weak support, mainly downstream, of the "smile curve" hypothesis using the "in-within" upstream/midstream sectors (agri-food sector) and firms (food processors)

Conclusion

Main findings:

- More upstream position of production process and specialization along GVCs is associated with a higher bargaining power, thus more value capture in agri-food GVCs
- The effects are mainly due to the upgrading of the product mix
- Weak support, mainly downstream, of the "smile curve" hypothesis using the "in-within" upstream/midstream sectors (agri-food sector) and firms (food processors)

What strategies for food processors firms?

- Develop dominant positions by specializing further upstream in the value chain.
- Upgrade product quality (position themselves in niche markets)
- Characteristics of each economy, industry and in particular of tasks matters in the design of industrial policies

Conclusion

Main findings:

- More upstream position of production process and specialization along GVCs is associated with a higher bargaining power, thus more value capture in agri-food GVCs
- The effects are mainly due to the upgrading of the product mix
- Weak support, mainly downstream, of the "smile curve" hypothesis using the "in-within" upstream/midstream sectors (agri-food sector) and firms (food processors)

What strategies for food processors firms?

- Develop dominant positions by specializing further upstream in the value chain.
- Upgrade product quality (position themselves in niche markets)
- Characteristics of each economy, industry and in particular of tasks matters in the design of industrial policies

Perspectives:

- Building a theoretical framework that endogenizes bilateral bargaining power, by analyzing suppliers in GVCs
- Take into account the selection bias that can potentially arise from focusing on GVC firms.

Results two-stage two-tier stochastic frontier Back

Sample	Re-exports	excluded		All		
	Fist stage		Second stage	Fist stage		Second stage
Variables	ln (x _{fjkt}) (1)	$ln(s_{fjkt})$ (2)	In p _{fjkt} (3)	$\frac{\ln(x_{fjkt})}{(1)}$	ln (s _{fjkt}) (2)	In p _{fjkt} (3)
ln $Inst_{fjkt}(x_{fjkt})$	-0.3288*** (0.0026)	0.0989*** (0.0026)		-0.3488*** (0.0021)	0.1023*** (0.0021)	
In Inst _{fjkt} (s _{fjkt})	0.1118**** (0.0024)	-0.4017**** (0.0026)		0.1276*** (0.0018)	-0.4250 ⁺⁺⁺ (0.0020)	
In Productivity _{ft ft}	-0.0500**** (0.0073)	0.3408**** (0.0080)	-0.0927*** (0.0028)	-0.0364*** (0.0055)	0.4437**** (0.0061)	-0.0894*** (0.0022)
Small _{ft}	reference	reference	reference	reference	reference	reference
Medium _{ft}	-0.2707*** (0.0119)	0.4584*** (0.0131)	-0.0672*** (0.0047)	-0.2938*** (0.0095)	0.6497*** (0.0104)	-0.0759*** (0.0038)
Large _{ft}	-0.6613*** (0.0160)	0.9529*** (0.0175)	-0.0736*** (0.0067)	-0.7773*** (0.0113)	1.4124*** (0.0124)	0.0349*** (0.0053)
In GDP per capita	-0.0916* (0.0469)	-0.8456*** (0.0514)	-0.0271 (0.0181)	0.0550* (0.0332)	-0.6976*** (0.0364)	-0.0651*** (0.0126)
Share of industrial value added in GDP	-0.0004 (0.0028)	0.0066** (0.0031)	-0.0030*** (0.0011)	0.0004 (0.0020)	0.0084*** (0.0022)	-0.0002 (0.0007)
Share of agricultural value added in GDP	0.0142* (0.0082)	0.0011 (0.0090)	-0.0144*** (0.0032)	-0.0040 (0.0055)	-0.0067 (0.0060)	-0.0090*** (0.0021)
In Buyer share (<i>b</i> _{fjkt})			0.0825*** (0.0030)			0.1179*** (0.0022)
In Supplier share (s _{fjkt})			-0.0946*** (0.0022)			-0.0888*** (0.0016)
Error term decomposition						
ω fjkt			0.5671 **** (0.0000)			0.5988**** (0.0000)
u _{fjkt}			0.4193*** (0.0000)			0.4190*** (0.0000)
ν _{fjkt}			0.4105*** (0.0000)			0.4054*** (0.0000)
Year fixed effects	YES	YES	YES	YES	YES	YES
Firm's main activity fixed effects	YES	YES	YES	YES	YES	YES
Country fixed effets	YES	YES	YES	YES	YES	YES
4-digit product fixed effets	YES	YES	YES	YES	YES	YES
Observations R ²	181,571	183,165 0.341	181,562	329,652	331,762	329,638
	0.279	0.341		0.312	0.372	
Partial R ²	0.0825			0.0801		
F-stat	6007.1002			11457.0474		
Endogeneity test p-value Notes: Small: 1 to 49 employees: Mediu	6922.0862 0.0000			15743.7082 0.0000		

Notes: Small: 1 to 49 employees; Medium: 50 to 499 employees; Large: 500 employees or more. The sample comprises all importers and all exporters of French agri-food industry firm-year observations between 2002-2017. Standard errors in brackets. * p < 0.10, ** p < 0.05, *** p < 0.01</p>

Build a detailed input-output table for France

	Used in	outs and valu	ie added	Final	Total		/	FR NACE ind 1
	US IO ind 1	US IO ind 2	US IO ind 3		use	US IO ind 1	\leftarrow	FR NACE ind 2
of US IO	<i>a</i> ₁₁	<i>a</i> ₁₂	<i>a</i> ₁₃	F ₁	Y_1			FR NACE ind 3
nter-USIO nedi-ind 2 ate	<i>a</i> ₂₁	<i>a</i> ₂₂	<i>a</i> ₁₃	F ₂	Y_2			FR NACE ind 3
inputs US IO	<i>a</i> ₃₁	<i>a</i> ₂₁	<i>a</i> ₃₃	<i>F</i> ₃	<i>Y</i> ₃	US IO ind 2		FR NACE ind 4
alue added otal output	VA_1 Y_1	VA_2 Y_2	VA_3 Y_3			US IO ind 3		FR NACE ind 5

(a) US input-output table

(b) Multiple industry correspondences

Figure: US input-output table structure and correspondences with NACE Rev.2

Data

Build a detailed input-output table for France

			US IO ind 1		US IO	US IO ind 3	
		FR NACE ind 1	FR NACE ind 2	FR NACE ind 3	FR NACE ind 3	FR NACE ind 4	FR NACE ind 5
	FR NACE ind 1	$\frac{1}{9} \alpha_{11}$	$\frac{1}{9} \alpha_{11}$	$\frac{1}{9} \alpha_{11}$	$\frac{1}{6} \alpha_{12}$	$\frac{1}{6} \alpha_{12}$	$\frac{1}{3} a_{13}$
US IO ind 1	FR NACE ind 2	$\frac{1}{9} a_{11}$	$\frac{1}{9} \alpha_{11}$	$\frac{1}{9} \alpha_{11}$	$\frac{1}{6} a_{12}$	$\frac{1}{6} \alpha_{12}$	$\frac{1}{3} a_{13}$
	FR NACE ind 3	$\frac{1}{9} \alpha_{11}$	$\frac{1}{9} \alpha_{11}$	$\frac{1}{9} \alpha_{11}$	$\frac{1}{6} \alpha_{12}$	$\frac{1}{6} \alpha_{12}$	$\frac{1}{3} a_{13}$
US IO	FR NACE ind 3	$\frac{1}{6} \alpha_{21}$	$\frac{1}{6} \alpha_{21}$	$\frac{1}{6} \alpha_{21}$	$\frac{1}{4} a_{22}$	$\frac{1}{4} a_{22}$	$\frac{1}{2} a_{13}$
ind 2	FR NACE ind 4	$\frac{1}{6} \alpha_{21}$	$\frac{1}{6} a_{21}$	$\frac{1}{6} \alpha_{21}$	$\frac{1}{4} a_{22}$	$\frac{1}{4} a_{22}$	$\frac{1}{2} a_{13}$
US IO ind 3	FR NACE ind 5	$\frac{1}{3} a_{31}$	$\frac{1}{3} a_{31}$	$\frac{1}{3} a_{31}$	$\frac{1}{2} a_{21}$	$\frac{1}{2} a_{21}$	a ₃₃

Figure: Equal weights for all correspondences within each pair of industry codes

Data

Build a detailed input-output table for France

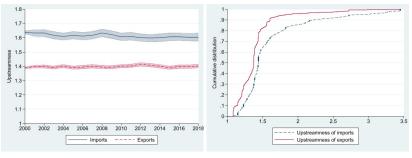
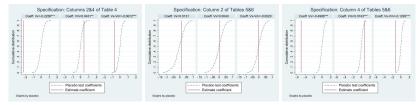

	FR NACE ind 1	FR NACE ind 2	FR NACE ind 3	FR NACE ind 4	FR NACE ind 5
FR NACE ind 1	$b_{11} = \frac{1}{9} a_{11}$	$b_{12} = \frac{1}{9} a_{11}$	$b_{13} = \frac{1}{9} \alpha_{11} + \frac{1}{6} \alpha_{12}$	$b_{14} = \frac{1}{6} a_{12}$	$b_{15} = \frac{1}{3} a_{13}$
FR NACE ind 2	$b_{21} = \frac{1}{9} a_{11}$	$b_{22} = \frac{1}{9} a_{11}$	$b_{23} = \frac{1}{9} \alpha_{11} + \frac{1}{6} \alpha_{12}$	$b_{24} = \frac{1}{6} a_{12}$	$b_{25} = \frac{1}{3} a_{13}$
FR NACE ind 3	$b_{31} = \frac{1}{9} a_{11} + \frac{1}{6} a_{21}$	$b_{32} = \frac{1}{9} \alpha_{11} + \frac{1}{6} \alpha_{12}$	$b_{33} = \frac{1}{9} a_{11} + \frac{1}{6} a_{12} + \frac{1}{6} a_{21} + \frac{1}{4} a_{22}$	$b_{34} = \frac{1}{6} a_{12} + \frac{1}{4} a_{22}$	$b_{35} = \frac{1}{3} a_{13} + \frac{1}{2} a_{13}$
FR NACE ind 4	$b_{41} = \frac{1}{6} a_{21}$	$b_{42} = \frac{1}{6} a_{21}$	$b_{43} = \frac{1}{6} \ a_{21} + \frac{1}{4} \ a_{22}$	$b_{44} = \frac{1}{4} a_{22}$	$b_{45} = \frac{1}{2} a_{13}$
FR NACE ind 5	$b_{51} = \frac{1}{3} a_{31}$	$b_{52} = \frac{1}{3} a_{31}$	$b_{53} = \frac{1}{3} a_{31} + \frac{1}{2} a_{21}$	$b_{54} = \frac{1}{2} a_{21}$	$b_{55} = a_{33}$

Figure: Group weights across NACE industries

Data

Upstreamness and position in GVC back

NACE industry	Upstreamness
Seed processing for propagation	3.61
Growing of cereals (except rice), leguminous crops and oil seeds	3.45
Raising of dairy cattle	2.98
Manufacture of oils and fats	2.72
Manufacture of starches and starch products	2.16
Processing of tea and coffee	1.47
Processing and preserving of meat	1.44
Manufacture of wine from grape	1.23
Manufacture of prepared meals and dishes	1.20
Manufacture of bread; manufacture of fresh pastry goods and cakes	1.10
Retail sale of bread, cakes, flour confectionery and sugar confectionery in specialised stores	1.01
Retail sale of fruit and vegetables in specialised stores	1.01



(a) Sector-level average

(b) Cumulative distribution of French firms

Placebo test

- 2 All transaction sample
- Opstreamness from GTAP input-output table of France
- Sub-sample regressions using upstreamness of exports

(a) Regressions with whole Re-export excluded sample

downstream firms in the Re-export excluded sample

(b) Sub-sample regressions on more (c) Sub-sample regressions on more upstream firms in the Re-export excluded sample

Figure: Distribution of V_{ft}^X and V_{ft}^M , and $V_{ft}^X - V_{ft}^M$ placebo coefficients versus estimated coefficients

- Placebo test
- ② All transaction sample
- Opstreamness from GTAP input-output table of France
- Sub-sample regressions using upstreamness of exports

Table: Robustness test II: Firm's position in GVCs and division of surplus

Sample		All trans	actions	
Variable	(1)	(2)	(3)	(4)
V _{ft} ^X	0.0755	0.0816		
	(0.0576)	(0.0560)		
V_{ft}^M	0.0053	0.0130		
. Y M.	(0.0165)	(0.0177)		
$(V_{ft}^X - V_{ft}^M)$			0.0058	-0.0000
			(0.0175)	(0.0183)
In Productivity _{ft}		0.1028***		0.1028***
Firm size:		(0.0033)		(0.0033)
Small _{ft}		reference		reference
Medium _{ft}		0.1369***		0.1366***
		(0.0048)		(0.0048)
Large _{ft}		0.1452***		0.1444***
		(0.0087)		(0.0087)
Fixed effects	firm, in	dustry-year, in	dustry-count	ry, product-country
Observations	258,160	258,160	258,160	258,160
R ²	0.660	0.662	0.660	0.662
the distrib		the GVC bar		. Removal of 2% from r index. * $p < 0.10$

- Placebo test
- 2 All transaction sample
- Opstreamness from GTAP input-output table of France
- Sub-sample regressions using upstreamness of exports

Table: Robustness test II: Firm's position in GVCs and division of surplus – low versus high level of upstreamness of the core activity of firms

Sample		All transactions										
Sub-sample	More downstream firms		More Uptream firms		More downstream firms		More Uptream firms					
Variable	(1)	(2)	(3)	(4)	(1)	(2)	(3)	(4)				
V_{ft}^X	0.2520*** (0.0574)	0.2453*** (0.0567)	-0.1920** (0.0879)	-0.1723** (0.0823)								
V_{ft}^M	-0.0329** (0.0146)	-0.0345** (0.0155)	0.0398 (0.0314)	0.0745**								
$(V_{ft}^X - V_{ft}^M)$				(0.0591*** (0.0164)	0.0600*** (0.0169)	-0.0633** (0.0295)	-0.0896** (0.0299)				
In Productivity _{ft}		0.0947*** (0.0063)		0.1063*** (0.0051)		0.0954*** (0.0063)		0.1066*** (0.0052)				
Firm size:												
Small _{ft} Medium _{ft}		reference 0.1100*** (0.0078)		reference 0.1673*** (0.0084)		reference 0.1087*** (0.0078)		reference 0.1672*** (0.0084)				
Large _{ft}		0.1425*** (0.0099)		0.1546*** (0.0154)		0.1397*** (0.0098)		0.1548*** (0.0154)				
Fixed effects			firm, indust	ry-year, indust	ry-country, pro	duct-country						
Observations	120,880	120,880	133,401	133,401	120,880	120,880	133,401	133,401				
R^2	0.727	0.728	0.641	0.643	0.727	0.728	0.641	0.643				

- Placebo test
- 2 All transaction sample

O Upstreamness from GTAP input-output table of France

Sub-sample regressions using upstreamness of exports

Sample	Panel A: Re-	exports exclu	ıded		Panel B: /	411		
Variable	(1)	(2)	(3)	(4)	(1)	(2)	(3)	(4)
$egin{aligned} V^X_{ft} & & \ V^M_{ft} & & \ (V^X_{ft} - V^M_{ft}) \end{aligned}$	-0.2207*** (0.0713) 0.0357 (0.0221)	-0.1326* (0.0714) 0.0405* (0.0219)	-0.0531** (0.0208)	-0.0491** (0.0204)	-0.1685 (0.1073) 0.1626*** (0.0308)	0.0132 (0.1090) 0.1631*** (0.0298)	-0.1631*** (0.0326)	-0.1493*** (0.0314)
Controls _{ft}	NO	YES	NO	YES	NO	YES	NO	YES
Fixed effects Observations R ²	107,994 0.684	107,994 0.685	firm, indus 107,994 0.684	stry-year, indu 107,994 0.685	stry-country, p 258,160 0.660	roduct-country 258,160 0.662	258,160 0.660	258160 0.662

Table: Robustness test III: Firm's position in GVCs and division of surplus

- Placebo test
- 2 All transaction sample
- **O Upstreamness from GTAP input-output table of France**
- Sub-sample regressions using upstreamness of exports

Table: Robustness test III: Firm's position in GVCs and division of surplus – low versus high level of upstreamness of the core activity of firms

Sample	Panel A: Re-	exports exclud	led		Panel B: All				
Sub-sample	More downstream firms		More Uptream firms		More downstream firms		More firms	Uptream	
Variable	(1)	(2)	(3)	(4)	(1)	(2)	(3)	(4)	
V_{ft}^{χ} V_{ft}^{M}	-0.3688*** (0.1274) -0.0225 (0.0320)	-0.2472** (0.1203) 0.0028 (0.0299)	-0.1188 (0.1161) 0.1151*** (0.0400)	-0.0997 (0.1159) 0.1232*** (0.0390)	-0.1565 (0.1567) 0.1135*** (0.0324)	0.1496 (0.1576) 0.1033*** (0.0319)	-0.0480 (0.1801) 0.2748*** (0.0562)	-0.0356 (0.1800) 0.2940*** (0.0528)	
Controls _{ft}	NO	YES	NO	YES	NO	YES	NO	YES	
Fixed effects Observations R ²	43,278 0.751	43,278 0.752	firm, indust 63,305 0.646	ry-year, indust 63,305 0.648	ry-country, pro 112,362 0.738	duct-country 112,362 0.739	143,654 0.613	143,654 0.615	

- Placebo test
- 2 All transaction sample
- **O** Upstreamness from GTAP input-output table of France
- Sub-sample regressions using upstreamness of exports

Table: Robustness test III: Firm's expansion along GVCs and division of surplus – low versus high level of upstreamness of the core activity of firms

Sample	Panel A: F	Re-exports e>	cluded		Panel B: All				
Sub-sample	More downstream firms		More L firms			More downstream firms		lptream	
Variable	(1)	(2)	(3)	(4)	(1)	(2)	(3)	(4)	
$(V_{\rm ft}^X-V_{\rm ft}^M)$	-0.0044 (0.0308)	-0.0190 (0.0287)	-0.1155*** (0.0397)	-0.1203*** (0.0399)	-0.1160*** (0.0330)	-0.0891*** (0.0329)	-0.2486*** (0.0591)	-0.2640*** (0.0560)	
Controls _{ft}	ΝO ΄	YES	NO	YES	ŇO	YES	NO	YES	
Fixed effects			firm, ind	ustry-year, indu	stry-country, p	roduct-country			
Observations R ²	43,278 0.751	43,278 0.752	63,305 0.646	63,305 0.648	112,362 0.738	112,362 0.739	143,654 0.613	143,654 0.615	

- Placebo test
- 2 All transaction sample
- Opstreamness from GTAP input-output table of France
- **③** Sub-sample regressions using upstreamness of exports

Table: Robustness test IV: Firm's position in GVCs and division of surplus – low versus high level of upstreamness of exports

Sample	Panel A: F	Re-exports exc	luded		Panel B	All		
Sub-sample	ub-sample More downstream firms		More Uptream firms		More downstream firms		More Uptream firms	
Variable	(1)	(2)	(3)	(4)	(1)	(2)	(3)	(4)
V_{ft}^X	-0.3327 (0.2832)	-0.3736 (0.2700)	-0.4498*** (0.1241)	-0.3573*** (0.1271)	0.0743 (0.2264)	-0.1570 (0.2163)	-0.4182*** (0.0980)	-0.0851 (0.1045)
V ^M _{ft}	-0.0356 (0.0321)	-0.0613** (0.0302)	0.1937*** (0.0386)	0.1903*** (0.0385)	0.0066 (0.0210)	0.0039 (0.0216)	0.1443*** (0.0539)	0.1160** (0.0521)
Controls _{ft}	NO	YES	NO	YES	NO	YES	NO	YES
Fixed effects			firm, indu	stry-year, indus	try-country,	product-coun	try	
Observations R ²	18,055 0.729	18,055 0.730	21,476 0.741	21,476 0.741	41,802 0.715	41,802 0.717	53,414 0.725	53,414 0.726

- Placebo test
- 2 All transaction sample
- Opstreamness from GTAP input-output table of France
- Sub-sample regressions using upstreamness of exports

Table: Robustness test IV: Firm's expansion along GVCs and division of surplus – low versus high level of upstreamness of exports

Sample	Panel A: F	Re-exports e>	cluded		Panel B: All			
Sub-sample	More downstream firms		More Uptream firms		More downstream firms		More Uptream firms	
Variable	(1)	(2)	(3)	(4)	(1)	(2)	(3)	(4)
$(V_{ft} - V_{ft}^M)$	0.0250 (0.0322)	0.0494 (0.0299)	-0.2271*** (0.0339)	-0.2112*** (0.0353)	-0.0063 (0.0209)	-0.0046 (0.0214)	-0.2016*** (0.0451)	-0.1101** (0.0446)
Controls _{ft}	ŇO	YES	ŇO	YES	ŇO	YES	NO	YES
Fixed effects			firm, ind	ustry-year, indu	stry-country	product-cou	ntry	
Observations	18,055	18,055	21,476	21,476	41,802	41,802	53,414	53,414
R ²	0.729	0.730	0.741	0.741	0.715	0.717	0.725	0.726

Quality-adjusted GVC bargaining power Back to results

- Purge of the export unit prices, and thus the division of surplus from quality components Khandelwal et al., 2013; Fan et al., 2015
 - 1: Estimate the the following linear form with OLS, using the demand elasticities from Ossa (2015)

$$\ln q_{fjkt} + \varepsilon_k \ln p_{fjkt} = FE_{jkt} + e_{fjkt}$$

2: Recover the quality measure from residual e_{fjkt} as follow

$$\ln \widehat{\lambda}_{fjkt} = \frac{\widehat{e}_{fjkt}}{\varepsilon_k - 1} \tag{1}$$

3: Compute the quality-adjusted prices

$$\ln \tilde{p}_{fjkt} = \ln p_{fjkt} - \ln \hat{\lambda}_{fjkt}$$

4: Estimation of quality-adjusted GVC bargaining index, \tilde{NS}_{fjkt} , using ln \tilde{p}_{fjkt}

Quality-adjusted GVC bargaining power Back to results

• Two-stage two-tier stochastic frontier model (Polachek and Yoon, 1987, 1996; Kumbhakar and Parmeter, 2009):

$$p_{fjkt} = \mu_{fjkt}(x) + \beta_{fjkt} \left(\overline{jfkt} - \mu_{fjkt}(x) \right) - \left(1 - \beta_{fjkt} \right) \left(\mu_{fjkt}(x) - \underline{p_{fjkt}} \right)$$

Based on price equation from the theoretical framework:

$$\begin{split} \ln \tilde{p}_{fjkt} &= \tilde{\mu}_{fjkt}(x) + \tilde{\xi}_{fjkt}, \\ \tilde{\mu}_{fjkt}(x) &= \text{Controls}_{ft} + \text{Controls}_{jt} + \alpha_b b_{fjkt} + \alpha_s s_{fjkt} + FE_t + FE_k + FE_r + FE_j \\ \tilde{\xi}_{fjkt} &= \tilde{\omega}_{fjkt} - \tilde{u}_{fjkt} + \tilde{e}_{fjkt} \\ & \tilde{\epsilon}_{fjkt} \sim i.i.d. \ N(0, \delta_e^2) \\ & \tilde{\omega}_{fjkt} \sim i.i.d. \ Exp(\delta_{\omega}, \delta_{\omega}^2) \\ & \tilde{u}_{fjkt} \sim i.i.d. \ Exp(\delta_{\omega}, \delta_{\omega}^2) \end{split}$$

- Construction of IVs for the bilateral shares (Alviarez et al., 2023)
 - Buyer share purchases of f 's other importers from exporters other than fSupplier share – sales of j's other exporters to importers other than j
- Estimation of $\ln \tilde{p}_{fjkt}$ by the maximum likelihood (ML) method

$$ilde{\mathsf{NS}}_{\mathit{fjkt}} = ilde{\omega}_{\mathit{fjkt}} - ilde{u}_{\mathit{fjkt}}$$

Mechanism test: role of upgrading of product mix Theoretical framework

- Estimate of the quality-adjusted GVC bargaining power index , NS fikt
- Use it as an explained variable

Table: Firm's position in GVCs and quality-adjusted surplus

Sample	Panel A: Re-	exports exclude	ed		Panel B:	All		
Variable	(1)	(2)	(3)	(4)	(1)	(2)	(3)	(4)
V_{ft}^X	-0.1470***	-0.1303***			0.0159	0.0343		
	(0.0477)	(0.0465)			(0.0353)	(0.0353)		
V_{ft}^M	0.0102	0.0138			0.0073	0.0214		
14	(0.0144)	(0.0141)			(0.0163)	(0.0162)		
$(V_{ft}^X - V_{ft}^M)$	· · · · ·		-0.0286*	-0.0294**			-0.0040	-0.0134
(• π • π)			(0.0150)	(0.0146)			(0.0163)	(0.0162)
In Productivity _{ff}		0.0302***	()	0.0307***		0.0469***	()	0.0468***
		(0.0049)		(0.0049)		(0.0030)		(0.0030)
Firm size:		(,		((,		()
Small _{ft}		reference		reference		reference		reference
Medium		0.0631***		0.0641***		0.0899***		0.0897***
		(0.0095)		(0.0096)		(0.0059)		(0.0059)
Large _{ft}		0.1067* ^{***}		0.1078* ^{***}		0.1471* ^{***}		0.1466* ^{***}
		(0.0110)		(0.0110)		(0.0063)		(0.0063)
Fixed effects		1	firm, industry	-year, industry-	-country, pro	duct-country		
Observations	104,656	104,656	104,656	104,656	250,451	250,451	250,451	250,451
R^2	0.457	0.458	0.457	0.458	0.415	0.416	0.415	0.416

Mechanism test: role of upgrading of product mix

Table: Firm's position in GVCs and quality-adjusted surplus – low versus high level of upstreamness of the core activity of firms

Sample	Panel A: R	e-exports exclu	ıded		Panel B:	All		
Sub-sample	More downstream firms		More Uptream firms		More do firms	wnstream	More firms	Uptream
Variable	(1)	(2)	(3)	(4)	(1)	(2)	(3)	(4)
V_{ft}^X	-0.1446* (0.0783)	-0.1408* (0.0763)	-0.1353*** (0.0410)	-0.1036** (0.0406)	0.0265 (0.0596)	0.0367 (0.0590)	0.0196 (0.0560)	0.0386 (0.0525)
V_{ft}^M	0.0222 (0.0287)	0.0148 (0.0281)	0.0100 (0.0194)	0.0218 (0.0200)	-0.0128 (0.0194)	-0.0065 (0.0192)	0.0404 (0.0270)	0.0672** (0.0266)
In Productivity _{ft}		0.0418*** (0.0100)		0.0244*** (0.0059)		0.0526*** (0.0055)		0.0453*** (0.0037)
Firm size:		. ,		. ,		. ,		
Small _{ft} Medium _{ft}		reference 0.0708***		reference 0.0594***		reference 0.0847***		reference 0.0985***
Large _{ft}		(0.0120) 0.1136*** (0.0172)		(0.0095) 0.1085*** (0.0125)		(0.0093) 0.1412*** (0.0115)		(0.0077) 0.1610*** (0.0143)
Fixed effects			firm, industr	y-year, industr	-country, pro	oduct-country		
Observations	50,396	50,396	51,911	51,911	116,225	116,225	130,249	130,249
R^2	0.465	0.466	0.514	0.514	0.445	0.447	0.450	0.452

Mechanism test: role of upgrading of product mix

Table: Firm's expansion along GVCs and quality-adjusted surplus – low versus high level of upstreamness of the core activity of firms

Sample	Panel A: F	Re-exports exc	luded		Panel B:	All		
Sub-sample Variable	More downstream firms		More firms	Uptream	More downstream firms		More firms	Uptream
	(1)	(2)	(3)	(4)	(1)	(2)	(3)	(4)
$(V_{ft} - V_{ft}^M)$	-0.0365 (0.0280)	-0.0295 (0.0272)	-0.0273 (0.0174)	-0.0332* (0.0179)	0.0145 (0.0194)	0.0104 (0.0191)	-0.0304 (0.0249)	-0.0496** (0.0248)
In Productivity _{ft}		0.0418*** (0.0100)		0.0251*** (0.0059)		0.0527*** (0.0056)	0.0447*** (0.0037)	
Firm size:		. ,		. ,		· /	· · · ·	
Small _{ft}		reference		reference		reference		reference
Medium _{ft}		0.0710***		0.0605***		0.0846***		0.0984***
Large _{ft}		(0.0120) 0.1129***		(0.0096) 0.1108 ^{***}		(0.0092) 0.1408 ^{****}		(0.0077) 0.1605***
20.801		(0.0172)		(0.0124)		(0.0114)		(0.0142)
Fixed effects			firm, indu	ıstry-year, indu	stry-country	product-count	try	
Observations	50,396	50,396	51,911	51,911	116,225	116,225	130,249	130,249
R^2	0.465	0.466	0.513	0.514	0.445	0.447	0.450	0.452