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Applications for risk diversification strategies in addressing conservation problems 

commonly ignore upper limits in returns, which may not reflect that these economic 

returns are often beyond the scope of what conservation assets can produce given 

constraints on species, sites, or activities. The objective of this research is to identify 

the consequences of failing to account for upper limits on returns from conservation 

in a modern portfolio theory (MPT) framework. We find that the amount of risk 

reduction conservation organizations can achieve with the same level of 

compromise in the expected return on investment is higher when returns are 

constrained. 
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Introduction 

With persistent uncertainty related to the effectiveness of conservation investments, the design 

and planning of such investments based purely on historical data may yield misleading results 

(Cho et al., 2018; Newbold, 2018; Snäll et al., 2021). Modern Portfolio Theory (MPT), a 

quantified version of “Do not put all your eggs in one basket”, developed by Markowitz (1952) 

and published in the financial literature, has been applied in recent years to help diversify risk in 

conservation investments (Shipway, 2009). This tool accounts for heterogeneities in climate and 
market uncertainty to minimize risk associated with investment portfolios that focus on 

conservation-related assets such as species, sites, and activities (Ando and Mallory, 2012; Eaton 

et al., 2019).  

Despite the merits of MPT, applications to conservation investment have not accounted for 

upper limits in returns that arise from physical limitations. In a species conservation context, 

return on conservation investment is clearly bounded by the total amount of species habitat 
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available (e.g., the forested area that can be protected for a given site). A conservation 

organization will also face an upper limit in return to conservation if individual values for species 

conservation do not scale with the number of species protected. For example, surrogate bidding 

in nonmarket valuation studies may indicate that the willingness to pay to protect 100 animals is 

no different than the willingness to pay to protect 1,000 animals (Kahneman and Knetsch 1992). 

Economic returns generated from ignoring such upper limits are not reflective of what the 

conservation assets can actually produce given constraints on species, sites, or activities and can 

lead conservation organizations to inefficiently focus investment toward certain high-return 

assets. In other words, conservation organizations may not be able to “put all their eggs in one 

basket” if the basket is not large enough to hold every egg.  

This limitation of MPT comes from its original application to financial investments, where 

the asset market is perfectly competitive and no single investor is capable of influencing the 

returns of an asset, and thus does not face an upper limit constraint. Early applications of MPT to 

conservation problems did not consider potential constraints to each asset, and most subsequent 

studies continue to overlook this issue (e.g., Figge, 2004; Ando and Mallory, 2012). For example, 

none of the 26 species-habitat MPT case studies summarized by Ando et al. (2018) considered an 

upper limit constraint in returns.  

A limited number of recent studies have sought to improve conservation related MPT 

applications by indirectly limiting returns due to physical constraints (Jin et al., 2016; Runting et 

al., 2018). For example, Jin et al. (2016) applied MPT to the implementation of an ecosystem-

based fishery management approach in different geographic regions. The authors considered the 

limited stock of each fish species available to harvest in their MPT application by constraining 

the maximum weight applied to each species’ harvest. Similarly, Runting et al. (2018) 

reformulated an integer quadratic programming MPT approach with a binary decision variable 

representing whether each site is selected for wetland protection. By using a binary decision 

variable, the authors indirectly accounted for limited returns based on each site’s limited 

availability, along with other physical considerations such as connectivity necessary for the 

landward migration of wetlands. However, it remains unclear how the benefits of risk 

diversification are impacted by physical constraints.  

The objective of this research is to identify the impacts of failing to account for upper limits 

on returns from conservation investment in an MPT framework and to understand the implications 

of accounting for these limits. To achieve the objective, we develop a MPT framework with and 

without upper limit constraints (referred to as ‘constrained MPT’ and ‘naive MPT’, respectively) 

using county-level return on investments (ROIs) for conservation of forest biodiversity in the 

central and southern Appalachian region of the United States (see Figure 1). Then, we 

conceptually illustrate the impacts of upper limits on MPT outcomes using two hypothetical 

counties with different expected ROI and associated risk levels. Next, We compare MPT 

outcomes between the two approaches using two metrics measuring the effectiveness of risk 

diversification: the slope of the efficient frontier representing risk-reward trade-offs and the 

vertical distance between the simple diversification point and the efficient frontier representing 

the difference in potential expected ROI gained by the different MPT frameworks, given the same 

risk level.   

We choose to frame the models at the county level since counties (1) provide a relevant spatial 

grain when deciding how to allocate conservation budgets, (2) are a relevant administrative and 

political unit for regional and local land-use planning in the United States, and (3) are the level of 

units our socio-economic variables are available (Le Bouille, Fargione, and Armsworth, 2023). 

Because of the covariance in returns between counties, reducing risk implies forgoing 

expected return (i.e., spreading ones bets on conservation). The extent of risk reduction 

conservation organizations can attain with the same level of compromise in expected return is 

hypothesized to be different for the two MPT approaches. Restrictions on portfolio weights with 

constrained MPT impose a degree of “bet spreading” while naïve MPT does not. Therefore, the 

constrained MPT is useful for conservation investment when a regulatory cap on budget allocation  
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Figure 1. Map of 193 counties used for naïve MPT and constrained MPT 
Notes: 53 counties are not considered for analysis since they are consolidated city-counties or counties 

with negative relative opportunity costs that do not face urban development concern 

for each site is present. Many conservation partnership programs are limited by regulatory 

constraints imposed by partnership funds. These kind of regulatory constraints would imply that 

upper limits on returns would diminish the value added from using MPT. However, if the 

constraints force conservation organizations to bet spread anyway, then it is wise to use MPT to 

allocate the bet spread in the best way possible. Our constrained MPT approach is designed to 

serve this very purpose.   

Methods 

Naïve MPT framework  

Suppose a conservation organization wishes to allocate optimal portfolio weights across the 

counties. By modifying the framework developed by Runting et al. (2018) where risk 

minimization and expected return maximization are combined in a single framework, we develop 

a naïve MPT approach formatted as a quadratic programming problem without upper limit 

constraints as: 

(1) 𝑀𝑖𝑛𝑊   𝜆𝑾𝑻𝚺𝑾 − 𝑾𝑻𝚳 

 subject to 

(2) 𝟎 ≤ 𝑾 ≤ 𝜤 

(3) 𝑾𝑻𝑰 = 1  

where 𝜆 is a weight for risk minimization which represents relative emphasis on risk mitigation 

from zero to infinity, 𝑾𝑻𝚺𝑾 is the weighted sum of the variance of counties representing the 

portfolio’s variance (or risk) where 𝑾𝑻 is a vector transpose of 𝑾, a 𝑛 × 1 vector of efficient 

portfolio weights across 𝑛  counties as the decision variable, and 𝚺  is an 𝑛 × 𝑛  variance-

covariance matrix of ROIs across 𝑛 counties. The variance-covariance matrix between county i 

and county j is calculated as 𝐸[(𝑅𝑂𝐼𝑖 − 𝐸[𝑅𝑂𝐼𝑖])(𝑅𝑂𝐼𝑗 − 𝐸(𝑅𝑂𝐼𝑗)], where 𝑅𝑂𝐼𝑖 (or 𝑅𝑂𝐼𝑗) is the 

ROI for county 𝑖 (or 𝑗) under 𝑠 uncertainty scenarios. 𝚳 is an 𝑛 × 1 vector of expected ROIs, 

Counties not considered 

193 
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which are calculated as expected values of ROIs for 𝑛 counties: 𝐸[𝑅𝑂𝐼𝑖] = ∑ 𝑝 × 𝑅𝑂𝐼𝑖𝑠𝑠  where 

𝑝 is the probability of uncertainty scenario 𝑠 occurring, which is equal to 
1

𝑠
 by assuming a uniform 

probability distribution among s scenarios, and 𝑅𝑂𝐼𝑖𝑠  is the ROI for county 𝑖  under specific 

uncertainty scenario s. 𝑾𝑻𝚳 is the expected ROI of the portfolio calculated by the weighted 

average of 𝚳 with efficient portfolio weight 𝑾.  

The objective function in equation (1) maximizes expected ROI (i.e., 𝑾𝑻𝚳) or minimizes 

the portfolio’s variance (i.e., 𝑾𝑻𝚺𝑾) at a certain weight for risk minimization (𝜆). Equation (2) 

represents the minimum and maximum constraint on portfolio weights, and 𝟎 and 𝜤 are 𝑛 × 1 

vectors whose elements are equal to 0 and 1, respectively. The sum of all portfolio weights is 

always equal to 1 for any given risk level.  

Constrained MPT framework  

For constrained MPT, we consider two layers of constraints—physical limitations and total budget 

constraints under the assumption that a conservation organization wishes to allocate optimal 

portfolio weights across the counties. To account for both constraints, we replace the decision 

variable of efficient portfolio weights shown in equation (1) with a decision variable for efficient 

budget allocation across counties 𝑋 shown in equation (4) below:  

(4) 𝑀𝑖𝑛𝑋   𝜆𝑿𝑻𝚺𝑿 − 𝑿𝑻  

 subject to 

(5) 𝟎 ≤ 𝑿 ≤ 𝑪  

(6) 𝑿𝑻𝑰 = B  

where 𝑿𝑻 is a vector transpose of 𝑿, a 𝑛 × 1 vector of efficient budget allocation in dollars across 

𝑛  counties as the decision variable, 𝑪 is an 𝑛 × 1 vector of county-level physical constraints, 

whose elements are specified as the product of the size of eligible forestland (i.e., unprotected 

private forestland) as a physical constraint and unit opportunity cost for conservation as a cost 

constraint across 𝑛 counties, and B is a hypothetical total budget amount for the entire region.  

The precise knowledge of 𝑪 in the future by the conservation organization is not possible as 

the size of eligible forestland and unit opportunity cost vary under 𝑠 uncertainty scenarios. Given 

the unknown probability distribution of uncertainty scenarios, we use its average value across the 

scenarios for each county for the model. By doing so, we implicitly assume that 𝑪 is normally 

distributed, and thus its mean value is a meaningful representation of 𝑪. For the sensitivity 

analysis, we estimate the model using the upper limits on both (high and low) ends of 95% 

confidence interval of their probability density distributions since upper limits at the mean may 

not encompass the entire spectrum of potential outcomes of constrained MPT. By performing the 

sensitivity analysis, we partially encompass infrequent occurrences that can exert significant 

influence on the size of eligible forestland and unit opportunity cost.  

The objective function in equation (4) maximizes the weighted sum of expected ROIs (𝑿𝑻𝚳) 

and minimizes the portfolio’s variance (i.e., 𝑿𝑻𝚺𝑿). Equation (5) specifies the county’s physical 

constraint C across 𝑛 counties, and equation (6) constrains the hypothetical total budget B. The 

physical constraints are fixed for counties by uncertainty scenario, while hypothetical total budget 

constraints may change depending on the budget available for the entire region. The physical and 

budget constraints are specified by equations (5) and (6), respectively, as the total budget is spread 

from one county to another after meeting each county’s physical constraint C as each county’s 

expected ROI goes to 0 (represented as a step function) until exhausting total budget B.  

We calculate efficient portfolio weight 𝑾 for constrained MPT by dividing efficient budget 

allocation 𝑿 by total budget B to derive the efficient portfolio’s expected ROI and corresponding 

variance as the weighted sum of expected ROIs (𝑾𝑻𝚳) and the variance of counties (𝑾𝑻𝚺𝑾) for 
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the risk measure. In doing so, we derive efficient frontiers for naïve and constrained MPT under 

various levels of risk minimization weight 𝜆  by connecting points of expected ROIs and 

corresponding standard deviations for both MPT approaches. Because ideal funding amount for 

the forest conservation for biodiversity of the study area is unknown, we compare outcomes of 

the hypothesis found in the conceptual framework related to the impact of hypothetical total 

budget amounts on degree of deviation between naïve and constrained MPT. Specifically, we 

compare outcomes based on the two approaches under three hypothetical total budget constraints: 

low, moderate, and high total budget (i.e., $3 million, $50 million, and $1 billion).   

Given the various ranges of expected ROI and standard deviation for each approach that are 

reflected in various lengths of the frontiers, we normalize risk level as the percent above minimum 

risk (referred to as ‘risk tolerance level’) to compare outcomes based on naïve and constrained 

MPT at the same degree of risk that conservation organizations can tolerate. If the feasible risk 

levels were different between the approaches, our comparisons would be limited. For example, if 

minimum risk levels were 0 and 3 for naive and constrained MPT, respectively, we could not 

compare the efficient portfolios at a risk level of 3, which is not the minimum risk level associated 

with naïve MPT. By drawing the efficient frontiers where the x-axis represents risk tolerance level 

normalized as stated above, efficient frontiers are comparable at every risk tolerance level and 

show expected ROIs attainable at any risk tolerance level across different MPT specifications. 

Conceptual illustration 

Suppose a conservation organization wishes to allocate optimal portfolio weights between 

counties A and B based on naïve and constrained MPT. County A has a higher expected ROI with 

higher risk than county B (𝑅𝑂𝐼𝐴 > 𝑅𝑂𝐼𝐵). The positively sloping diagonal line in the upper graph 

of Figure 2 shows the allocation of efficient portfolio weights between the two counties at 

different risk levels based on naïve and constrained MPT. The lines indicated by 𝑤𝑀and 1 −
𝑤𝑀  represent the upper limits on weights assigned to counties A and B as the total weight between 

the two cannot exceed the full capacity of available resources. The lower graph of the figure 

illustrates different areas portrayed by changes in expected ROI, 𝑤𝑅𝑂𝐼𝐴 + (1 − 𝑤)𝑅𝑂𝐼𝐵 , 

corresponding to portfolio weights between the two counties based on naïve and constrained MPT 

shown in the upper graph.  

Based on the naïve MPT outcome, a conservation organization with maximum risk level 𝑟1 

protects all conservation assets in county A (w = 1 in the upper graph of Figure 2), with the 

corresponding expected ROI being area afho in the lower graph. By comparison, consider the case 

where the constraint is binding in county A. Constrained MPT allocates weight 𝑤𝑀 to county A 

with the remaining weight, 1 − 𝑤𝑀 , distributed to county B at the maximum risk level of 𝑟2, 

corresponding to 𝑤 = 𝑤𝑀. The resulting expected ROI is shown by area af'h'o for county A and 

area g'ghh' for county B. These results suggest that constrained MPT mitigates maximum risk 

relative to naïve MPT by 𝑟1 – 𝑟2 but corrects expected ROI by area f'fgg' compared to naïve MPT.   

Conservation investment would be divided between the two counties at lower risk than risk 

level 𝑟1 based on naïve MPT. With weight assignments of  𝑤𝑄 and 1 − 𝑤𝑄  for counties A and B, 

respectively, the minimum risk level of 0 is reached. As a result, expected ROI at the minimum 

risk level for naïve MPT is shown as the sum of area aceo for county A and area dghe for county 

B. By comparison, consider the case where the constraint is binding in county B, where 

𝑤𝑀′ 𝑎𝑛𝑑 1 − 𝑤𝑀′ represent upper limits on weights assigned to counties A and B. Constrained 

MPT would allocate weight, 1 − 𝑤𝑀′, to county B and the remaining weight, 𝑤𝑀′, would be 

distributed to county A at the minimum risk level of 𝑟3. Expected ROIs are shown by area ac'e'o 

for county A and area d'ghe' for county B. These results suggest that constrained MPT sacrifices 

the minimum risk level by 𝑟3 but increases expected ROI by area cc'd'd relative to naïve MPT 

because of the added weight to the higher ROI county (i.e., county A) based on constrained MPT. 

Other cases could include a situation where county B provides both lower expected ROI and  
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Figure 2. Consequences of failing to account for an upper limit constraint in MPT.  
Notes: The upper graph of the figure shows allocations of efficient portfolio weights between two counties (𝑤𝑀 and 1 −

𝑤𝑀′ represent upper limits on weights for counties A and B, and 𝑤𝑄  and 1 − 𝑤𝑄  represent weights at the minimum risk 

level for counties A and B) at different risk levels (0 and 𝑟1 for minimum and maximum risk level based on naïve MPT 

and 𝑟2 and 𝑟3 for minimum and maximum risk levels based on constrained MPT) based on \ MPTs. The lower graph of 

the figure illustrates changes in expected ROI (ROIA as expected ROI for county A and ROI𝐵 as expected ROI for 

county B) corresponding to efficient portfolio weights between the two counties (𝑤𝑀′ 𝑎𝑛𝑑 1 − 𝑤𝑀′ represent weights 

assigned to counties A and B for the case where the constraint is binding in county B at minimum risk level, and 𝑤𝑀 and 

1 − 𝑤𝑀 represent weights for counties A and B where the constraint is binding in county A at maximum risk.) based on 

naïve and constrained MPT shown in the upper graph. 
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higher risk. In this case, budget constraints on county A could both lower the expected ROI and 

increase the risk of investing.  

At the maximum risk level, naïve MPT maximizes risk and expected ROI by allocating a 

weight above the feasibility of county A (w=1 in the upper graph) while at the minimum risk level, 

naïve MPT minimizes risk by allocating a weight above the feasibility of county B (w=wQ in the 

upper graph). However, constrained MPT prevents the over-allocation of weights to counties A 

and B, respectively, at maximum and minimum risk levels. By doing so, the optimal portfolio 

based on constrained MPT suggests high risk but high expected ROI at the minimum risk level, 

whereas it compromises expected ROI at the low risk level in comparison with the optimal 

portfolio generated based on naïve MPT.  

Other cases are also possible. For example, in a situation where county B provides both lower 

expected ROI and higher risk, any upper limit constraint on the weight that can be assigned to 

county A will both lower the expected ROI and increase the associated risk. More generally, we 

can then see that adding upper limit constraints on how much investment can be directed to each 

asset is ambiguous in terms of whether it will increase or decrease expected ROI and associated 

risk.   

The overall budget to be invested in conservation also matters. If the overall budget is small 

relative to the level of investment each asset can receive, accounting for upper limits on how much 

investment is possible for each asset is irrelevant. In contrast, when the overall program budget is 

large enough that the constraints may be binding, accounting for this in the optimization approach 

becomes more important. Risk and expected ROI corrections made by constrained MPT, relative 

to naïve MPT, intensify with a greater hypothetical total budget because the share of the budget 

assigned to each county, constrained by its upper limit, decreases with a higher hypothetical total 

budget. Thus, we hypothesize that the total budget available to a conservation organization 

influences the degree of deviation of risk level and corresponding expected ROI between the two 

approaches. 

Before developing a fuller empirical application, we first consider a simple two-county case 

as an example to illustrate the effects of risk level and expected ROI on naïve and constrained 

MPT. While these comparisons are sufficient to build intuition for changes in return and risk, the 

notion of upper limits on return is grounded in the assumption of a linear relationship between 

risk and return, implying a clear and consistent trade-off between the two. However, real-world 

dynamics render the risk-return relationship more intricate, subject to fluctuations over time and 

diverse scenarios. Notably, factors like the physical constraints for conservation could also be 

influenced by climate and market uncertainties. Besides, we do not consider richer patterns of 

covariance. Accounting for covariance structure differences is where the strength of MPT reveals 

itself, and we next examine this with our empirical application. Furthermore, we assume the two 

counties are not perfectly correlated with each other, and thus the risk diversification strategy used 

has a feasible solution for both MPT approaches. 

Illustrative example: Forest conservation in Central and Southern Appalachia 

To illustrate our framework, we apply MPT to forest conservation in a biodiversity hotspot – 

central and southern Appalachia. We select the central and southern Appalachian region as the 

study area because it provides critical habitat and a corridor for biodiversity (Zhu et al., 2021), 

and the region is expected to experience further climate change impacts and urban development 

pressure (Rogers et al., 2016). For both MPT approaches, we use expected ROIs for biodiversity 

conservation in 2050, which is far enough into the future to observe the impact of climate and 

market uncertainty on benefits and costs. The benefit component for expected ROI is calculated 

by estimating future species ranges using species distribution models. The conservation cost 

component for expected ROI is proxied as urban return minus forestland return (referred to as 

“relative opportunity cost”) under the assumption that urban development is the dominant 
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competing land use for forestland. This assumption is based on evidence that urbanization is the 

main driver of forest loss in the study region (Wear and Greis, 2013; Keyser et al., 2014).  

Estimating scenario specific ROI 

Scenario-specific expected ROIs are structured by combining predicted future benefit scenarios 

and relative opportunity cost scenarios at the county level for 193 of 246 total counties in our 

study area. Fifty-three counties are not considered in our analysis since they are either 

consolidated city-counties or counties where urbanization is not a primary concern (see Figure 1). 

Scenarios for predicting future biodiversity benefits are only related to climate change, and 

multiple climate scenarios are considered. In comparison, relative opportunity costs are projected 

under various climate and market scenarios associated with different climate, land use, and market 

conditions.  

Multiple sources of uncertainty associated with benefits and costs derived from climate and 

market scenarios may have (i) different forms of variability and covariance structures (ii) different 

patterns of covariance structure across county within each type of uncertainty, and (iii) different 

patterns of covariance structure between each type of benefit and cost uncertainty. Due to these 

covariance structure differences, efforts to diversify market-induced risk may undermine or 

complement efforts to diversify climate-induced risk.  

The benefit component for biodiversity ROI was taken from Zhu et al. (2021) which 

estimated species distributions for 258 forest-dependent vertebrates of policy concern as 

determined by US Fish and Wildlife Service (2020) and Landscape Conservation Cooperative 

Network (2020). Future species distributions in 2050 were specified as the benefit component for 

biodiversity since they are direct representations of areas where species can be found and 

protected (Fuentes-Castillo et al., 2019). The species distribution model (SDM) Maxent was used 

to forecast future species distributions under future climate scenarios for two representative 

concentration pathways (RCPs; RCP4.5 and RCP 8.5) and six General Circulation Models 

(GCMs; ACCESS1-0, CanESM2, CCSM4, CNRM-CM5, CSIRO-Mk3, and INM-CM4) 

(Phillips, 1956; Flato et al., 2014) using the ClimateNA database (Wang et al., 2016).  

Maxent was used to estimate probabilities of climatic suitability for species at the 1-km2 pixel 

level under 12 future climate scenarios (i.e., 6 GCMs, each associated with RCP 4.5 and 8.5). 

Then, probabilities were converted into binary variables using a 10% training presence threshold, 

which allows the top 90% of predicted probabilities to be considered as suitable habitat and the 

remaining 10% as unsuitable habitat (Peterson et al., 2011). Next, pixel areas from the suitability 

binary variables are aggregated for all 258 species at the county level, and these estimates were 

specified as the benefit component of species distributions for all species under 12 future climate 

scenarios. See Zhu et al. (2021) for more details related to the methodology used to project future 

species distribution. 

For future urban return needed to estimate relative opportunity cost, annualized median 

assessed land value was determined by broadly emulating Lubowski et al. (2006) using the 

following procedure. First, land value ratios per hectare were estimated by dividing assessed land 

value per hectare by total assessed value at the parcel level for sample counties where data were 

available. Second, land value ratios at the parcel level were converted to the census block group 

(CBG) level by regressing land value ratio per hectare against socioeconomic and location 

variables at the CBG level (see Liu et al., 2019 for more details). Third, median housing price in 

2050 under three real estate market conditions (upturn, moderate, downturn) was projected based 

on recent real estate growth cycles to account for the effect of real estate market uncertainty on 

urban return. Finally, median assessed land value per hectare was estimated by multiplying 

median housing price under the three real estate market conditions by land value ratio per hectare, 

which was then annualized (see Mingie and Cho, 2020 for details).  

The effect of climate and market uncertainty on forestland return was considered by 

projecting future harvest volume and timber price to estimate future annualized forest return using 
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Soil Expectation Value (SEV). County-level harvest volume projections were created for three 

Special Report on Emission Scenarios (SRES; A1B, A2, and B2). State-level timber prices were 

estimated based on a stochastic modeling approach using regional stumpage price datasets from 

Timber Mart-South (2015) and other timber price reports. Three timber price scenarios were 

estimated: high (2050 mean plus standard deviation), moderate (2050 mean), and low (2050 mean 

minus standard deviation). 

Scenarios have been represented slightly differently across climate change assessment reports 

and our study draws on products that span different reports. The A1B and A2 scenarios in the 

SRES correspond better with the RCP8.5 scenario. Meanwhile, the B2 scenario in the SRES 

corresponds better with RCP4.5. The full set of scenarios we consider in our analyses are 

generated by cross-factoring an emissions scenario with a GCM for making climate predictions 

and an assumption about timber volume, timber price and the real estate market. Under the more 

intensive emissions situation (RCP 8.5), we include 324 possible futures were developed (2 SRES 

* 6 GCMs * 3 timber volume scenarios * 3 timber price scenarios * 3 real estate market scenarios). 

In addition, under an assumption of more moderate future emissions (RCP4.5), we include a 

further 162 possible futures (1 SRES * 6 GCMs * 3 timber volume projections * 3 timber price 

scenarios * 3 real estate market scenarios).  

A shared-based land use model was applied at the county level using historical land use data 

from the National Land Cover Database (NLCD, 2016) and the historical relative opportunity cost 

data. We forecasted forestland area in each county under diverse scenarios in 2050 using the 

parameters from the land use model and the forecasts of the relative opportunity costs under 

different scenarios. While the land use change model predicts the forest area that will remain in 

the county in 2050 with or without investment, it does not forecast where exactly this forest area 

will be located within the county. The improvements in the persistence probabilities for species 

resulting from protecting forestland in different counties do not consider the proximity of counties 

to one another.   

We also needed to make an additional assumption to convert changes in forest within 

climatically suitable areas for a species into a statement about region-wide species persistence in 

2050. Following Armsworth et al. (2020), the probability of persistence function was assumed as 

a linear, piecewise continuous, hockey-stick function, which allowed the persistence probability 

to equal zero when no forest remained but increase linearly when forest area in the county 

increased until a saturation threshold at 1 was reached. We also considered the difference of 

ecological quality between protected forest and private forest, treated as intermediate usable 

habitat, and differentiated the land use types by assigning two weights (i.e., 1 or 0.25) to protected 

forest and private forest, respectively (see Armsworth et al., 2020 for more details).  

Based on the probability of persistence function and average opportunity cost, the marginal 

benefit to cost ratio in each county was estimated, which was optimized by both naïve and 

constrained MPT. Finally, expected marginal ROI under each scenario was defined as the change 

in species richness (i.e., number of species) by aggregating relevant probabilities for 258 species, 

which was optimized by both naive and constrained MPTs (Kang, Sims, and Cho, 2022). 

Empirical Results 

Figure 3 shows four efficient frontiers indicating the expected ROI-risk tolerance relationship for 

portfolios generated from naïve MPT and constrained MPT with three hypothetical total budget 

constraints with upper limits at the mean. The four efficient frontiers are upward sloping implying 

higher return (i.e., expected ROI) with higher risk. The four frontiers are also concave-shaped 

implying that risk diversification becomes more costly (i.e., more return is sacrificed) as portfolio 

risk is reduced.  



10 Preprint Journal of Agricultural and Resource Economics 

 

Figure 3. Four efficient frontiers of the expected ROI-risk tolerance relationship for 

portfolios from naïve MPT and constrained MPT with three budgets ($3 million, $50 

million, and $1 billion) with upper limits at the mean. (A) Constraints on asset returns 

lower the slope of the frontier at many reasonable risk tolerance levels implying less 

expected ROI must be forfeited to reduce risk. (B) Constraints on asset returns also reduce 

the increase in expected ROI that can be achieved through risk diversification.   
Notes: Points a, b, c, and d are the points on the efficient frontiers for naïve MPT, and constrained MPT 

with $3 million, $50 million, and $1 billion, respectively, with the same standard deviation as point X. 

Figure 3 illustrates how constraints on returns impact the effectiveness of risk mitigation in 

two ways. First, the constraints reduce how much expected ROI must be foregone to achieve the 

same level of risk reduction (see Figure 3A). The slope of the frontier is smaller under constrained 

MPT than under naïve MPT especially at higher budget amounts where constraints are binding 

for more counties. These findings imply that when a conservation organization will have to spread 

more investment around due to a larger total budget, it can reduce risk with less loss in expected 

return with constrained MPT than with naïve MPT.  

Figure 3B also shows how constraints on returns could force land managers in the 

Appalachian region to spread their bets by spreading the budget to a greater number of counties. 

This bet spreading behavior yields an expected ROI closer to what would be achieved if the budget 

was to be divided evenly among all counties (i.e., simple diversification; point marked as an X in 

Figure 3B). Specifically, the difference in expected ROI at the same risk level between the 

constrained efficient frontiers and the simple diversification point decreases as the budget 

increases.1 Points a, b, c, and d are points on the efficient frontier for naïve MPT and constrained 

MPT with $3 million, $50 million, and $1 billion budgets, respectively, at the same standard  

  

 
1 We make comparisons using the expected ROI-standard deviation frontiers, instead of the expected ROI-

risk tolerance frontiers because the simple diversification portfolio cannot be normalized. 
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Table 1. Portfolio expected ROI for biodiversity conservation, portfolio risk reflected in its 

standard deviation, number of counties selected, number of counties bound by upper limit 

constraints, and average costs of selected counties from naïve MPT and constrained MPT 

with three total budgets under four risk levels with upper limits at the mean 

 

Naïve MPT 

Constrained MPTs 

 $3 million $50 million $1 billion 

Minimu

m risk 

level  

Portfolio’s expected 

ROI 

0.00173 0.00119 0.00104 0.00091 

Portfolio’s standard 

deviation 

0.00005 0.00004 0.00004 0.00004 

# of counties 

selected 

12 12 12 16 

# of counties bound 

by its upper limit 

constraint  

- 0 1 9 

Average cost of 

selected counties 

$90,762,849 $90,762,849 $90,762,849 $92,585,968 

15% risk 

level 

Portfolio’s expected 

ROI 

0.03792 0.03760 0.01174 0.00372 

Portfolio’s standard 

deviation 

0.01607 0.01617 0.00185 0.00040 

# of counties 

selected 

3 4 8 35 

# of counties bound 

by its upper limit 

constraint 

- 1 4 27 

Average cost of 

selected counties 

$8,386,061 $7,200,854 $17,481,817 $32,823,862 

25% risk 

level 

Portfolio’s expected 

ROI 

0.04996 0.04902 0.01534 0.00474 

Portfolio’s standard 

deviation 

0.02667 0.02735 0.00307 0.00065 

# of counties 

selected 

3 4 9 43 

# of counties bound 

by its upper limit 

constraint 

- 1 3 38 

Average cost of 

selected counties 

$3,253,555 $7,200,854 $10,461,209 $24,450,516 

Maximu

m risk 

level  

Portfolio’s expected 

ROI 

0.12324 0.12324 0.02744 0.00691 

Portfolio’s standard 

deviation 

0.10734 0.10734 0.01234 0.00228 

# of counties 

selected 
1 1 9 59 

# of counties bound 

by its upper limit 

constraint 

- 0 8 58 

Average cost of 

selected counties 

$3,645,232

… 

$3,645,232

… 

$5,588,646

… 

$17,942,059

. 
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deviation as point X. The vertical distances from simple diversification portfolio X to a, b, c and 

d represent differences in potential expected ROI gained by the different MPT frameworks, given 

the same risk level. The longer vertical distance from X to a compared to distances from X to b, 

c, and d reinforces the notion that MPT is less efficient with constrained MPT since constraints 

direct more investment to counties with a smaller ROI. 

Table 1 shows optimal portfolio expected ROI for biodiversity conservation and risk, 

reflected in its standard deviation, at four risk levels from naïve MPT and constrained MPT with 

three hypothetical total budget scenarios with upper limits at the mean. At the maximum risk level, 

the results show that constrained MPT compromised expected ROI while improving risk 

mitigation to a greater extent compared to naïve MPT. At the minimum risk level, constrained 

MPT gained higher expected ROI by reducing risk mitigation more than naïve MPT. These 

findings imply that constrained MPT corrects misallocated portfolio weights, and based on this 

correction, the tradeoff between risk and expected ROI at maximum and minimum risk levels, 

respectively.   

Deviations in risk level and expected ROI between naïve and constrained MPT depend on 

how efficiently county portfolio weights are bound by upper limits. For example, portfolio 

weights for constrained MPT with a $3 million total budget did not deviate much from those from 

naïve MPT since counties with optimal budgets above county-level physical constraints (e.g., 1 

of 16 counties selected at four risk tolerance levels) were rare. No correction of risk and expected 

ROI is made by constrained MPT with a $3 million budget at the maximum risk level since the 

efficient portfolios between the two models are the same: all investment is allocated to a single 

county, Coosa County (AL). The upper limit constraint of Coosa County (AL) is less than the 

total budget of $3 million. Thus, the efficient portfolio weight of the county is not bound by its 

upper limit. Similarly, efficient portfolio weights between the approaches are the same at the 

minimum risk level (see Table S1 for details on portfolio weight allocations) since all efficient 

portfolio weights do not reach their upper limits. As a result, the efficient portfolio is the same 

regardless of whether the upper limit is considered or not. In contrast, deviation was much more 

apparent if the total budget for constrained MPT increased to $1 billion since counties with 

optimal budgets above county-level budget constraints (e.g., 81 of 85 counties selected at four 

risk tolerance levels) were much more numerous (see Table 1). These findings show that the 

degree of correction in risk and expected ROI made by constrained MPT is greater with higher 

total budgets, and greater diversification of counties is achieved regardless of risk mitigation 

especially when higher total budgets are considered.  

Table 2 illustrates heterogeneity in different aspects of sixteen selected counties, among 

which three counties are chosen twice in different risk levels, from naïve MPT. Ten of the sixteen 

counties are categorized as rural counties. The sizes of the counties display considerable 

disparities. For example, Randolph, WV, the largest county among the sixteen counties (402,033 

hectares), is almost five times in size relative to Jefferson, WV, the smallest county among the 

sixteen counties (82,416 hectares). Forestland area generally reflects the size of the county, and 

the ratio of public to private forestland on average over the 486 uncertainty scenarios ranges 

between 0 and 16 across the sixteen counties. The average species ranges for 258 species vary 

from 10.5 million to 55.4 million hectares across the counties over the uncertainty scenarios. The 

scale and variation of the urban return is greater than the forest return. As a result, the discrepancy 

of relative opportunity costs is determined more by the urban return than the forest return. A 

noticeable disparity is found in the ROIs across the counties. In particular, a $1 million investment 

would allow persistence of 0.1232 additional species in Coosa, AL, which is more than three 

hundred times greater than the expected ROI in Buncombe County, NC (0.0004) in average over 

the uncertainty scenarios. 
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Table 2. Summary of the sixteen selected counties from naïve MPT under four risk levels.  

  County Type Size 

(hectare) 

Size of 

forestland 

(hectare) 

Private 

forestland 

(hectare) 

Public 

forestland 

(hectare) 

Species 

ranges of 

258 

species 

(hectare) 

Forest 

return 

($/hectare) 

Urban 

return 

($/hectare) 

Relative 

opportunity 

cost 

($/hectare) 

Minimum 

risk level 

Buncombe, 

NC 

Urban 244,890  162,436  128,962  33,474 33,554,911 87  1,959  1,872 0.0004 

Haywood, NC Rural 205,647  163,698  55,369  108,329 29,633,914 76  1,057  981 0.0011 

Henderson, 

NC 

Urban 138,699  86,721  70,874  15,847 19,234,632 65  1,824  1,758 0.0006 

Jackson, NC Rural 182,754  154,343  8,906  145,437 26,604,084 104  901  797 0.0008 

Transylvania, 

NC 

Rural 140,519  119,281  34,785  84,496 19,626,066 91  952  862 0.0010 

Greenville, 

SC 

Urban 292,390  151,886  151,886  - 38,557,472 55  1,731  1,676 0.0009 

Sevier, TN Rural 222,275  161,512  88,767  72,745 29,947,641 65  1,015  950 0.0005 

Roanoke, VA Urban 95,201  66,524  61,410  5,115 12,886,994 130  1,438  1,308 0.0005 

Fayette, WV Rural 255,761  219,338  200,872  18,467 36,137,436 60  390  330 0.0023 

Jefferson, 

WV 

Urban 82,416  23,413  23,167  246 10,526,362 62  1,544  1,482 0.0008 

Nicholas, WV Rural 251,337  203,827  175,096  28,730 35,744,704 20  226  206 0.0049 

Randolph, 

WV 

Rural 402,033  353,349  156,814  196,535 55,448,499 68  552  484 0.0035 

15% risk 

level 

Clay, AL Rural 218,645  157,964  124,256  33,708 27,414,832 45  85  40 0.0415 

Wolfe, KY Rural 84,926  67,963  53,030  14,933 11,480,003 47  69  22 0.0463 

Preston, WV Rural 254,289  193,619  186,693  6,925 36,454,081 17  119  102 0.0185 

25% risk 

level 

Clay, AL Rural 218,645  157,964  124,256  33,708 27,414,832 45  85  40 0.0415 

Coosa, AL Rural 239,645  171,112  171,112  - 30,449,521 46  68  21 0.1232 

Wolfe, KY Rural 84,926  67,963  53,030  14,933 11,480,003 47  69  22 0.0463 

Maximum 

risk level 

Coosa, AL Rural 239,645  171,112  171,112  - 30,449,521 6 8 1 0.1232 

Notes: Species ranges are average values of 258 species over 486 uncertainty scenarios, and private forestland, forest return, urban return, relatively opportunity cost, and 

ROI are average values over 486 uncertainty scenarios. 
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Figure 4. Spatial distributions of portfolio weight allocations from naïve MPT and 

constrained MPT with $3 million and $1 billion total budgets at four risk tolerance levels 

(i.e., minimum, 15%, 25%, and maximum risk tolerance levels) with upper limits at the 

mean 

 

Figure 4 shows the spatial distributions of portfolio weight allocations from naïve MPT and 

constrained MPT with $3 million and $1 billion total budgets at four risk tolerance levels (i.e., 

minimum, 15%, 25%, and maximum risk tolerance) with upper limits at the mean. At minimum 

risk tolerance, we observe that a portfolio weight of 0.12 is assigned to Henderson County (NC) 

based on constrained MPT with a $1 billion total budget, whereas the same county’s portfolio 

weight is 0.24 for naïve MPT. The portfolio weight of 0.24 without an upper limit constraint does 

not exceed the county-level budget constraint of $120 million if the total budget constraint was 

$3 million. Consequently, the portfolio weight of 0.24 remains the same between naïve MPT and 

constrained MPT at minimum risk tolerance when a $3 million total budget is considered. (See 

S1 and Table S1 in the Supplementary Material for discussion on portfolio weights between the 

two MPT approaches with three hypothetical total budgets and four risk levels.) These findings 

suggest that correction of misleading portfolio weights by constrained MPT occurs only if the 

optimal budget assigned to a county without a total budget constraint is above the county’s budget 

constraint. 

Figures S1 and S2 and Tables S2 and S3 in the Supplementary Material, respectively, show 

1) the expected ROI-standard deviation frontiers and 2) optimal portfolio expected ROI for 

biodiversity conservation and risk under four risk levels between naïve MPT and constrained MPT 

with three hypothetical total budget scenarios using upper limits on both ends of 95% confidence 

interval of their probability density distributions. These consistent findings with different size of 

upper bound constraints reaffirm the robustness of characteristics discussed on 1) and 2) 

regardless of the size of upper limit constraints used in the constrained MPT.  

Discussion 

The comparison of MPT outputs with and without upper limit constraints shows that the change 

in portfolio risk that conservation organizations can achieve with the same level of compromise 

in expected ROI is higher with constrained MPT than with naïve MPT. This finding has 
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implications for conservation strategies with different objectives. Constrained MPT is useful 

when seeking to protect species that are habitat specialists, such as several highly endemic 

salamanders in our case study region. It is also useful when prioritizing land that is only available 

for conservation acquisition occasionally because there may only be a few properties available in 

a desirable location during a period when the conservation program must allocate its budget.  

Other possible circumstances that fit well for constrained MPT is when additional capacity 

constraints might be limiting (e.g., if the conservation program relies on partners for long-term 

management of the site). For example, the Critical Ecosystem Partnership Fund (CEPF, 2022) 

supports protecting natural areas essential to biodiversity with designated budget amounts. There 

are state programs also that cap how much any one state can receive. For example, the Cooperative 

Endangered Species Conservation Fund supports section 6 of the ESA (Pittman-Robertson 

Wildlife Restoration Act, 1937; US Fish and Wildlife Services, 2021) and provides grants to 

States and Territories for species and habitat conservation actions on non-federal land. State 

allocations from this fund are derived from an established formula and specific constraints. The 

funding proportion given to each state does not change from year to year since these 

appropriations are based on the program’s formula.  

Despite our study’s contribution, conservation organizations should be mindful of the 

limitations associated with solely relying on upper limits on returns from conservation using a 

constrained MPT. The precise projections of the upper limits are not possible given the unknown 

probability distribution of uncertainty scenarios. Instead, we use average values of upper limits 

on returns across the scenarios for the main finding and vary their values as a sensitivity analysis. 

This type of approach offers layers of optimal solutions and allows a comparison of their 

implications for conservation decisions. Yet, conservation organizations need to go beyond 

comparing outcomes using multiple upper limits as they have little reference for which upper 

limits are most relevant to their conservation decision making. Furthermore, the unexpected 

economic, political, and technological shifts may result in the upper limits beyond what are 

covered by the scenario-specific projections. The potential occurrence of such extreme conditions 

hinders the application of the constrained MPT.  

Another aspect of limitation lies on the influences of behavioral and social factors on 

conservation decisions. Conservation decision-making and behavior can deviate from rational 

expectations as they can be linked to social, psychological and behavioral factors. For example, 

emotion, habit, culture and involvement are found to have significantly and positively associated 

with conservation behavior (Singha et al., 2022), resulting in overreactions or underreactions to 

conservation commitment. As a result of these influences, conservation organizations may deviate 

from the optimal risk-diversification strategies with their decision-making processes. 

Consequently, their portfolios of conservation practices might exceed the projected upper limits 

on return, which in turn can shape dynamics of conservation behaviors. Likewise, we modeled a 

range of future scenarios, but obviously our models would not perform well if future black swan 

like events fall well outside the range that we consider. 

It is also worth mentioning caveats for identifying future research needs. Our constrained 

MPT models focus on upper limits in returns that arise from physical limitations of conservation 

investments, while a conservation organization also faces upper limits due to diminishing returns. 

For example, a conservation organization attempting to protect species habitat for a specific target 

site faces diminishing returns at each target site since the number of species preserved per unit 

area will monotonically decrease as each additional unit area is protected if the response of each 

species to protection is not convex (Popov et al., 2022). In a way, our constrained MPT takes 

account of marginal returns with a step function where ROI goes to 0 when the weight crosses a 

threshold of the physical constraint in equations (5) and (6). The use of a step function reflects the 

fact that practitioners may only be able to coarsely estimate diminishing returns since data on the 

marginal effect of conservation investment is limited. Thus, future research could explore 

developing another modified constrained MPT framework accounting for upper limits in returns 
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that arise from both physical limitations and diminishing returns when data on the marginal effect 

of conservation investment is viable.   

We recognize there are other limitations to existing applications of MPT (both naïve and 

constrained MPT) in conservation. As with any approach, assumptions must be made. For 

example, applications of MPT in conservation typically assume static, one-off decisions which 

are relevant to some conservation programs (e.g., those needing to allocate funds during fixed 

windows of time), but not others (e.g., those planning acquisition strategies that are to be 

implemented gradually over a couple of decades). In reality, conservation agencies typically face 

scenarios in which building conservation programs at different sites takes time. In the interim, 

they accumulate new information relevant for final decision making (Pressey et al. 2013). To 

address this challenge, future research will have to develop a dynamic counterpart to the MPT 

approach to conservation planning and use it to determine a time series of portfolios of target sites 

for conservation that accommodates future spatial and temporal uncertainties. 

Also, applications of MPT (both naïve and constrained MPT) are limited in the number of 

assets they can consider, which can result in a reliance on relatively coarse units such as counties 

in our empirical analysis. Specifically, the MPT cannot determine optimal solutions when the 

number of scenarios available is equal to or smaller than the number of assets considered because 

in such case the information needed to calculate the variance-covariance matrix for the solution 

of portfolio weights would not be sufficient (Mallory and Ando 2014). We have not yet compared 

the relative importance of accounting for upper limit constraints on how much investment can be 

directed to different assets to the relative importance of accounting for other refinements of MPT. 

We chose to focus here on the role of upper limit constraints on potential targets for investment 

because these constraints have the potential to induce some degree of risk spreading, which has 

been touted as a prevailing benefit of MPT. In our empirical application, we find that including 

these constraints enhanced the benefits of applying MPT. In essence, if a conservation 

organization must spread investment around anyway, it would be wise to use MPT to maximize 

the benefits of doing so. 

Conclusion 

The constrained MPT model is structured to correct potentially misleading portfolio weights from 

naïve MPT that does not account for upper limits in returns from conservation investments. We 

find that the amount of reduction in risk conservation organizations can achieve with the same 

level of compromise in expected ROI is higher with constrained MPT than with naïve MPT. 

However, our findings also suggest that improvement can be made only if the total budget 

assigned to a conservation organization is large enough so that portfolio weights from naïve MPT 

allocate beyond physical limitations determined by upper limits of potential target sites or regions 

that trigger misallocation of portfolio weights for target sites. For this reason, divergences between 

each approach’s outcomes becomes more evident if the total budget for constrained MPT is 

higher, and the degree of divergence depends on how physical limitations bind and correct for 

misleading portfolio weights.  

Constrained MPT can help conservation organizations by providing risk-mitigating portfolios 

of conservation targets that consider each target site’s upper limit constraint. Comparing naïve 

and constrained MPT outcomes under various total budget constraint levels illustrate the 

vulnerability of naïve MPT and can help conservation organizations evaluate risk-diversifying 

strategies that are specific to different available total budget levels. Constrained MPT for a given 

risk tolerance level and specific total budget can identify a risk- and budget-specific portfolio of 

target sites for biodiversity conservation. This implication suggests that the portfolio weights 

associated with the risk-mitigating allocation of conservation investment can be adjusted by a 

conservation organization’s risk tolerance and the total budget it manages.  

[First submitted May 2023; accepted for publication December 2023.] 
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