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1 Introduction

The establishment of new forestland is becoming an increasingly popular strategy in global
climate mitigation efforts by increasing the forest carbon sink. There are many climate bene-
fits associated with creating and maintaining healthy forests using either method, particularly
in their ability to store carbon and maintain healthy ecosystems in terms of light reflectivity
(albedo), water and carbon cycles, and biodiversity[1]. Forest Expansion on certain land
types, such as those used for agricultural production, can potentially improve overall envi-
ronmental outcomes through the provision of carbon sequestration and other forest-related
ecosystem services. Per unit-area, tree planting can provide substantially higher greenhouse
gas (GHG) mitigation benefits than agricultural mitigation strategies such as reduced ni-
trogen fertilizer application and switching from conventional to no-till farming. Further, in
the case of marginally productive agricultural lands and under uncertain market conditions,
tree planting projects can offer higher and more risk-neutral income sources to farmers [2–
4]. Given the climate, economic, and sociocultural benefits of tree cover expansion, there
has been a global push to design policies and raise private capital to support tree planting
programs. Initiatives such as the Trillion Tree Campaign [5] have stimulated interest and
investment in tree planting globally, and particularly in the developing world, and are sup-
ported by data exchanges such as the Reforestation Hub [6]. Recent efforts in the U.S. include
direct financial support for tree planting efforts, including sections of the Inflation Reduction
Act[7] and the Repairing Existing Public Lands by Adding Necessary Trees (REPLANT)
Act [8]. Despite the advancing policy dialog and increasing resource allocation toward global
forest expansion efforts, there is still limited information on the most cost-effective and so-
cially desirable places to plant and the associated tradeoffs of different incentive structures,
particularly in the United States (where tree planting is typically driven by market devel-
opments and occurring on privately-owned lands). Given the growth in financial resources
and policy efforts to implement tree planting programs as a GHG reduction strategy, it is

1



vital to utilize land in a way that generates the greatest climate benefits ideally at the lowest
costs, while recognizing the importance of competing policy objectives such as rural income
growth, biodiversity protection, and equity goals. Ignoring potential trade-offs between car-
bon sequestration and other policy objectives could result in inefficient financial resource
allocation and unintended negative consequences of tree planting efforts over the long-term.

Tree planting programs can be designed with different primary policy goals in mind;
one initiative might focus solely on assisted natural regeneration of forests, while another
might incentivize planting through the creation of plantation forests for timber or bioenergy
production. Incentives could also prioritize allocation of funds to underserved communities,
recognizing other important societal as well as environmental benefits. It is crucial for
policymakers to assess the potential impacts of incentives on the forest sector and human
populations more broadly. Quantifying estimated trade-offs of tree planting programs can be
complex and require on various factors such as land characteristics (soil and water quality,
feasibility for growing trees, etc.) and economic characteristics (establishment costs, market
conditions, land prices, etc.), all of which need to be considered when identifying ideal
locations for tree-planting. This highlights one difficulty in creating and executing tree
planting programs is the presence of spatial heterogeneity in land productivity, feasible tree
species, costs, and ecological qualities like soil type or elevation. Temporal considerations
also add policy complexity– goals focused on near-term carbon sequestration (within a few
decades) could prioritize different forest types and areas than efforts focused on longer-term
carbon storage goals. Similarly, goals to maximize planted area or the gross number of trees
planted will result in vastly different spatial distributions of planting, carbon effects, and
market impacts. Spatial frameworks that estimate potential distribution of forest growth
using location-specific costs, ecological characteristics, and sociodemographic factors[9–12]
can help policy-makers compare relative costs across regions and prioritize outreach efforts.
The capability to adjust model parameters provides vast opportunity for sensitivity analyses
to determine the magnitude and directionality of the simulated outcomes. For this reason,
they are also well-suited for analyzing other aspects of policy design and implementation
issues, such as addressing tradeoffs between economic, environmental, and social factors over
time. Such partial equilibrium economic models are useful tools for evaluating opportunities
under varying price incentive structures while accounting for resource competition but have
rarely addressed policy design issues and typically do not capture spatial heterogeneity on a
small scale.

The objective of this paper is to assess simulated changes in the spatial distribution of tree
planting under different policy structures, and their associated levels of carbon sequestration,
using a spatial allocation optimization framework in the contiguous United States. We
compare estimated cost efficiency, land use change, and ideal spatial allocation of investments
under policies that seek to maximize carbon storage over two different time frames (15 and 30
years) and three budget expenditures (5, 10, and 15 Billion USD). To mimic the differences
between potential policy incentives and existing offset protocols, we also compare model
outcomes when only changes in aboveground live tree carbon storage are incentivized versus
a wider range of carbon pools.
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2 Background

2.1 Forest Loss and Expansion

For decades, global forests were rapidly deteriorated and removed due to urban sprawl, in-
creased agricultural production, and the expansion of demand for forest products, resulting
in net forest area losses as well as other environmental, economic, and social losses [13].
Globally, forest loss has contributed to approximately 11 percent of global greenhouse gas
(GHG) emissions [14]. Increased focus on using forests as a climate change mitigation strat-
egy, could help slow the loss of forests and create new incentives for reforestation and forest
expansion [1, 15–19]. In many areas of the world, the historical trends of deforestation have
reversed in recent decades due, in part, to carbon-oriented incentives, driven by a combi-
nation of complementary policy goals (e.g., Great Green Wall in China [20]) and market
demands for forests and wood products. Global development initiatives have contributed to
this reversal of deforestation and the creation of new forests. Goal 15 of the United Nations
Sustainable Development Goals, for example, aims to “sustainably manage forests, combat
desertification, and halt and reverse land degradation”[21]. Further, patterns of land use
change in agricultural land provide insights into the various motivations for landowners to
undergo transformation into forestland. Frequently, intensively managed and harvested agri-
cultural land can become unprofitable or unproductive due to soil degradation and reduced
productivity [22]. In some cases, the best option may be to temporarily leave land to fallow
and allow forests to naturally regenerate [23]. Some landowners see direct economic benefits
of transforming marginal agricultural land into managed forests. For example, the southeast-
ern region of the US has seen expansion of planted pine plantations due to the comparative
advantage of the species and management approach in timber production. Growth in con-
version from marginally productive agriculture to forest plantations has also been driven
in part by technological advances, including genetic improvements for planted pine species
[24] and improved silvicultural practices [25, 26], coupled with regional shifts in forest sec-
tor infrastructure and new sources of market demand like wood pellets for bioenergy [27,
28]. These factors have created increased opportunity for high production and profitability
of managing land for forests in the Southern US, while increased plantation area has also
helped increase carbon sequestration rates in the region [29, 30]. The southeastern region
was estimated to have the fastest accumulation of tree carbon in the US in a regional 1995
study based on yield information and net ecosystem productivity [31]˙

As governmental and organizations more frequently promote increasing carbon storage
through forest expansion, there is a need to determine when, where, and how to provide
financial resources. Therefore, the literature assessing cost efficiency and carbon impact of
various approaches or initiatives has grown substantially. Much of this research is retrospec-
tive, looking at the economic, carbon, and human impacts of existing initiatives to determine
what worked and what didn’t. Based on the conclusions of these various studies, there is
also a growing body of forward-looking research focused on modeling and projecting the
impact of tree-planting policies on these factors in the future [16, 32–35]. This combined
body of research aims to provide governments and landowners with a road-map for increasing
forestland area and the associated carbon sink via forest expansion efforts.
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2.2 Policy Considerations

Although protection of forests has played a part in the discussion of climate change mitigation
for decades, there has been a large recent global push for initiatives focused on the importance
of actual growth in forestland area (as opposed to protecting or managing existing forests).
Article 5 of the 2015 Paris Agreement addresses the need for conserving sinks of greenhouse
gasses, but particularly emphasizes the importance of forests and land use change in that
carbon sink [36]. Since then, interest in land-based mitigation options has grown in public
and private sectors in many regions of the world. New initiatives have been promoted and
analyzed on global [5, 36], national [37, 38] and local [39–41] scales, providing a vast array of
case studies that allow us to analyze their successes and failures. Existing research reflects the
notion that success of tree-planting efforts are highly dependent on the ecological, economic,
social, and policy environment where implementation occurs. This variability motivates the
need to determine the factors that create successful initiatives for application in current
or future programs. Thus, many studies aim to better capture these dynamic interactions
to assess outcomes of a wide range of policy objectives, incentive structures, and resource
allocation scenarios. Common outcomes of interest include an initiatives impact on the
environment, the economy, and social or political structures. This type of analysis can
ensure that new forest expansion efforts, such as the REPLANT Act of 2022, can have the
largest impact on climate change mitigation while keeping expenses low.

A common theme across the existing literature is the importance of thoughtful execu-
tion of reforestation based on lessons learned and knowledge of individual contexts. The
approaches used to increase tree planting vary and the objectives of these initiatives have
been shown to greatly impact their outcomes [42]. Common objectives in afforestation pol-
icy are (1) maximizing the number or acres of trees planted, (2) creating the largest carbon
sink through changes in management, and (3) minimizing costs of afforestation [7, 38, 43].
An approach for the first objective might be planting as many trees per acre as possible,
though this method may fail to consider the common trade-off between trees per acre and
long-term forest health. Further, not all tree species or planting locations are equal in their
carbon impacts or economic feasibility. The choice of tree species is increasingly important
as climate change continues to change the environmental conditions and viability of different
tree species in different geographic locations. Accounting for expected climate change-driven
ecosystem changes means, for example, focusing on species that are more resistant to fire,
drought, temperature changes [44], and invasive species [45, 46]. The second policy objective
aiming solely to maximize total carbon storage raises concerns about the cost-effectiveness of
implementation. Urban afforestation can provide multiple social and environmental benefits
[47], but available land is limited, and urban reforestation is often more costly than on other
land use type [48]. Another policy approach to afforestation efforts is to focus instead on
minimizing the associated costs of tree-planting or explicit carbon sequestration goals given
a fixed budget constraint. Minimizing the costs of tree-planting could become more promi-
nent as policymakers seek to determine the best allocation of public funds for afforestation.
However, this could similarly lead to lower levels of carbon storage and often ignores the
human systems involved in global forests.

Assessments on tree-planting policy look at a wide range of environmental, economic,
and social outcomes on multiple spatial scales. Much of the literature on forest expansion
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started on the ecological impacts to determine whether planting trees could even have large-
scale impacts and explore potential risks and trade-offs involved. A 2022 paper finds that
the largest ecological constraint to this transformation is the soil quality, heavily impacted
by sediments and limited nutrient availability [49]. On the other hand, Jiao et. al (2012)
suggests potential negative soil impacts in the Loess Plateau region, emphasizing the im-
portance of thoughtful planning and considering of ecological conditions[50]. Alternatively,
recent literature indicates high carbon-storage potential in regions of the US: Tian et al.
(2018) project a continuation of the U.S. forest carbon sink driven in part by new forest
planting [51]; Wade et al. (2022) illustrate how growing market demands for forest products
can increase forest area and associated carbon sinks [52], and [53] show that carbon storage
from tree-planting could increase total capacity by roughly 20 percent per year. After having
a general picture of differences in global forest expansion potential, there was new research
interest in the magnitude of this potential. A 2020 paper seeks to elucidate variations in
tree-planting potential, considering political, social, and environmental constraints[54]. The
results emphasize the high carbon impacts that are available from reforestation, while em-
phasizing roadblocks to implementation and effectiveness in regions like sub-Saharan Africa,
who experience political instability and poor tree-planting conditions. After highlighting the
restrictions of political conditions can place on tree-planting feasibility, a study argues that
these constraints can be reduced with support by governments and large stakeholders[14].
The potential for forest expansion is further reduced by limited community involvement that
results from top-down approaches [38].

Although studies have suggested promising carbon impacts of global forest expansion
efforts, there is still much debate regarding how exactly to implement them. If these initia-
tives are to be successful on a large scale, many economic considerations must be made to
use resources in an efficient way. Many studies focus on the economic benefits of the timber
industry as a way to encourage tree-planting and harness existing market dynamics. A way
to work with the growing markets is to use resources to increase the returns of entering the
private sector [38]. Forest expansion has been shown to be largely impacted by agricultural
demand, economic value of the timber market, and policy efforts [39], factors which are also
found to be important determinants of forest loss as well. This corroborates the notion
of the importance of the consideration of economic conditions in the success or failure of
tree-planting. [55] finds that tree-planting profitability and execution was highly dependent
on the price put on carbon storage as an incentive. Even early research on tree-planting
highlights the array of potential outcomes that are associated with various economic con-
ditions, with a 2000 paper noting that forest suitability will be highly limited if economic
opportunities are not available to tree-growers once stands reach maturity [56].

Finally, there is emerging research in how forest expansion resources should be allocated
for the best outcomes. A 2020 study performs a retrospective analysis of the first phase
to a tree-planting initiative in Bejing, finding lower-than-expected environmental benefits
[40]. The study additionally uses optimization methods to project outcomes of different
spatial allocations of initiatives, finding large variations in carbon, economic, and other
environmental outcomes depending on the scenarios. Similarly, [57] uses ecological and socio-
economic information to establish prime locations to target resources to increase the carbon
sink and encourage economic growth simultaneously. These locations are recommended to be
those with high social and economic activity and, in urban areas specifically, will have better
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carbon impacts with little existing tree-cover. By comparing the financial outcomes of three
land-use scenarios in abandoned agricultural land in Sweden, [58] suggests explanations as to
why conversion to pastureland was the most profitable over time. They find that economic
factors such as demand for cattle, interest rates, and costs of conversion contribute the most
to choice in land use change. The importance (and difficulty) of these spatial projections
is growing as the future of climate conditions become more unclear due to climate change
[39]. For this reason, sensitivity analysis using multiple scenarios is being heavily encouraged
in the research space. Studies such as [59] use spatial analysis to assess a combination of
factors including food security, land costs, and agricultural market conditions, all of which
were suggested to be vital to consider to create context-based planning.

2.3 Literature Gap

The research interest in forest expansion implementation is growing substantially, with stud-
ies ranging from how a small-scale initiative might impact soil carbon [60] to global assess-
ments of environmental[33, 40, 50] and socioeconomic [11, 37, 59, 61] effects of increasing
forest area. However, there is still much analysis to be done, particularly given the speed
at which new tree-planting initiatives are being created and executed. The literature has
shown that although there is much opportunity for climate mitigation, there are numerous
trade-offs involved that must be assessed on multiple spatial and temporal scales. Given
the ecological, economic, and social dynamics involved, further research must consider all
of these factors in combination. More specifically, this consideration should be done on a
spatially resolute scale.

This paper combines data on afforestation potential, costs of tree-planting, existing land
use, and growth potential of prominent tree species in the US, this study is designed opti-
mizes for highest carbon potential given different budget constraints and policy objectives.
This differs from existing research in its accounting for the trade-offs of afforestation between
economic and environmental objectives. By using census tracts as spatial units, this paper
also allows for in-depth and more spatially disaggregated analysis of afforestation opportu-
nities in the United States. Given the quickly-changing state of forest management practices
and the timber industry, it is also important to recognize the impact that changes in for-
est composition have on current and future carbon storage levels. Our approach applies a
flexible modeling framework that can be applied to various contexts, policy scenarios, and
spatial scales.

3 Data and Methods

We develop a spatial allocation optimization model that integrates land cover data with forest
expansion costs, empirical growth and yield estimates for common forest types, and forest
potential estimates by different land use types. The flexibility of the model allows for different
objectives or constraints to be activated to mimic different policy objectives or targets –
e.g., we can consider maximizing carbon or forest area given a fixed budget, or the objective
function can be augmented to project a cost-minimizing spatial distribution of expansion
across regions and forest types to hit an explicit policy target (e.g., tons of additional carbon
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sequestration). The advantage of this approach in the U.S. context is that we can evaluate
the ideal spatial distribution of tree-planting investments given a narrowly defined policy
goal, and then compare the outcome of this solution to more nuanced policies that consider,
for example, equity in funds allocation or promoting rural development through tree-planting
efforts (e.g., linking tree-planting efforts with investments in mill or bioenergy infrastructure).
The following sections describe the mechanics of the model as applied in this analysis, as
well as the underlying spatial datasets used to calibrate the framework.

3.1 Model Description

In this framework, we endogenize the choice of forest area expansion, as defined by spatial
node (i), forest type (j), and current land use (k). Total expanded area for a particular
forest type within a spatial node and original land use is defined by the variable ForAreai,j,k.
Each acres of forest has an associated yield (in biomass and carbon terms) and costs. Tree
growth and yield are defined by empirically-estimated growth curves that follow a standard
Von Bertalanffy functional form and are estimated directly from U.S. Forest Inventory and
Analysis (FIA) data (see the Data Description section for additional details). Land use
classifications from 2016 data in the National Land Cover Database (NLCD) are used as the
current land use type. Economic costs of forest expansion include both establishment costs
(EstCostsi,j,k) and opportunity costs (LandCosti,j,k), defined as the foregone economic rents
from alternative land uses (e.g., economic rents from crop production). Economic costs of
tree-planting are drawn from previous studies conducted at the U.S. county- and sub-county
scales [10]. The model is structured to solve for forest acres for each census tract, land use
type, and forest type (ForAcresi,j,k).

For the various scenarios, the main policy objective in this paper is to maximize carbon
storage given different budget constraints. Formula 1 below takes the sum of each variable
for each census tract i, land use type, j, and forest type, k. Storagei,j,k is the sum of carbon
storage, which is based on the optimized forest expansion and growth and yield estimates
for each forest type. ForAreai,j,k is the acres of forest expansion and is used as the decision
variable in optimization.

Max Carbon =
∑
i,j,k

Storagei,j,k ∗ ForAreai,j,k (1)

3.2 Constraints

There are several optimization constraints needed to depict more accurately some ecologi-
cal, economic, and policy factors. First, planting cannot occur where it is not feasible, as
determined by TNC reforestation potential estimates. Similarly, we cannot allocate more
trees on one acre than is ecologically feasible.

The cost of tree-planting, which is the limiting constraint on the optimization problem, is
broken down into two parts– the establishment costs, EstCostsi,j,k, and the foregone income
(opportunity cost) from the current land use, LandCosti,j,k. Total costs of forest expansion
is the sum product of expansion area and total costs by tract, forest type and current land
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use. Total costs are restricted by an exogenous (policy-driven) budget constraint represented
by equation 2. ∑

i,j,k

(EstCostsi,j,k + LandCosti,j,k) ∗ ForAreai,j,k ≤ Budget (2)

The final two constraints limit forest expansion at each census tract to align with the
Reforestation Hub limits on potential by original land use (Equation 3), as well as limiting
total forest expansion to be less than or equal to total land available on each tract (Equation
4). ∑

i,j

ForAreai,j,k ≤ Potentialk (3)

∑
i,j,k

ForAreai,j,k ≤ TotalPotential (4)

Although this study focuses solely on the United States on a census-tract level, the simple
yet comprehensive model structure allows for applications at different scales, environmental
and economic conditions, and policy intensity. There are also several potential insights that
could be drawn from this work that are outside the scope of this paper, such as the distri-
butional variation in outcomes of forest expansion across different socio-economic groups.
Similarly, one could adjust the constraints to provide sensitively analysis for different bud-
gets, interest rates, and targeted land use types.

3.3 Data Description

We merge different datasets into a common database using data on the 83,343 U.S. Census
tracts in the CONUS as a common template using RStudio [62] to capture the complexity
and trade-offs associated with different forest expansion policies. First, 2016 land use cover
data is extracted from the USGS National Land Cover Database (NLCD), which provides
a count of land use in 20 different categories at a 30x30m resolution [63]. RStudio is used
to develop limits for each land use type of interest based on NLCD data. The following
packages are used to perform spatial data analysis within R: ’sp’ [64], ’sf’ [65], ’raster’ [66],
’rdgal’ [67], and ’exactextractr’ [68]. This provides the number and location of 30x30m
pixels for each land use type in 2016, which is converted to acres and used as the base-level
land usage. To aggregate the NLCD data to a census tract level, we use the ’exactextract’
function to extract NLCD data within each census tract boundary. This output provides the
coverage area, in square meters, which is then grouped by census tract and land use type
and converted to acres by dividing by the conversion factor of 4047. We focus on four land
use categories: cropland, pastureland, rangeland, and shrubland. Table 1 provides the land
use categories and their labels and definitions from NLCD and Reforestation Hub data.

Data from the Reforestation Hub [6] is used, which provides an estimate for the acres of
different land uses that are suitable for tree planting at a US county level for non-working
lands. The estimates for reforestation potential are based on variations in carbon capture
ability, costs, co-benefits of tree planting, and ecological feasibility [9]. The potential for
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Land Use NLCD Reforestation Hub

Crop

Cultivated Crops: areas used for the
production of annual crops and
perennial woody crops such as
orchards and vineyards

Marginal Cropland: croplands
with soil types that constrain
production

Pasture
Pasture/ Hay: areas of grasses, legumes, or grass-legume mixtures planted
for livestock or production of seed or hay crops

Shrub

Shrub/ scrub: areas dominated by
shrubs; less than 5 meters tall with
shrub canopy typically greater than
20% of total vegetation

Shrub: areas dominated by shrubs
and/or young trees in an early
successional stage or trees stunted
by environmental conditions

Range

Grassland/ Herbaceous: areas
dominated by gramanoid or
herbaceous vegetation,
generally greater than 80%
of total vegetation

Grassy areas: areas with more
than 25% grass coverage that
cannot be used for crop production
but can be used for grazing

Table 1: Four land use types eligible for tree-planting under this model and their equivalent
classifications in NLCD and Reforestation Hub data

reforestation by county is disaggregated to a census tract-level scale using formula 3 below
where l represents the county that each tract resides in, TotalAcresi,j is the number of acres
for each land use in a census tract, and TotalAcresj,i is the acres of each land use for the
whole county.

Potentiali,j =
TotalAcresi,j
TotalAcresj,l

∗ Potentialj,l (3)

Data on establishment costs by county and land type from [10] reflect both technoeco-
nomic costs of tree planting, as well as opportunity costs of land use change on working
agricultural lands. The county-level data are broken down to a census tract level using
RStudio. Establishment costs are assumed the same across land types, and the land costs
are available for three of the six land land use types of interest: cropland, pastureland, and
rangeland. For existing forestland, we assume no opportunity costs of land and no establish-
ment costs. For shrubland and urban areas, we assume the existence of establishment costs,
but no opportunity cost of land. Although opportunity costs of urban land exist and can
be substantial, there is no recent data to our understanding that provides appropriate esti-
mates for open urban space. We account for this by placing a strict restriction on the acres
of urban land that can be allocated for tree-planting. Using the ‘tidyr’ package [69], these
datasets are merged to create data giving current land use, forest expansion potential, and
establishment costs for each census tract in the CONUS. We depict spatial heterogeneity in
carbon and biomass yield potential of planted stands for 13 forest types including: natural
and planted Oak-Pine, Maple, Aspen, natural and planted Doug-fir, natural and planted
Pine, natural and planted softwood, Juniper, Hardwood, and Oak.

Biomass and carbon baselines are made with the derivation of empirical growth curves for
each Forest Inventory and Analysis (FIA) plot as outlined in [70]. An average for each census
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tract is then calculated weighted by inverse distance in miles of all FIA plots within a 0.5
decimal degree radius of the tract midpoint. The spatial allocation framework is built using
GAMS Studio optimization software [71]. For each scenario we maximize carbon sequestered
subject to physical and policy constraints, we assess the spatial allocation, mitigation po-
tential and total costs associated with each allocation for a direct comparison of incentive
structures. We maximize this subject to three budget constraints of 5, 10, and 15 billion
USD cumulative expenditure over 15- and 30-year simulation periods. We consider natu-
ral regeneration only by prioritizing hardwoods and locations with limited forest product
mill capacity. We assume purpose-driven tree planting on monoculture plantations (namely,
planted pine and douglas fir) in areas that are suitable for growth of plantation-species and in
close proximity to forest product mills, and use [10] cost estimates scaled to include harvest
revenue. Finally, we analyze the impact of which carbon pools are included in carbon esti-
mates with two different incentive structure scenarios. In the first, we account for all pools of
forest carbon soils, litter, and belowground pools. Alternatively, we represent a production-
focused incentive directed towards private-landowners where only the merchantable pools of
biomass are accounted for, excluding soil, litter, deadwood, and underground carbon pools.
This limited pools scenario is more consistent with current voluntary carbon offset markets.

3.4 Scenarios

We run 12 simulations consisting of 2 simulation periods, 3 budgets, and 2 carbon calcu-
lations. Table 2 provides the parameters of each scenario. We assess the distribution of
forest types by using 15 and 30 year time-frames, based on the varying speeds of growth
for different tree species. For example, softwood trees will have high levels of growth early
in their life and that slows as they age. On the other hand, hardwood species have slower
growth early in life but grow to be larger over time. The models has three budget constraints
of 5, 10, and 15 billion dollars. These comparisons can assess the extent to which carbon
storage increases in response to increased resources. Lastly, we have two carbon calculation
approaches to assess the sensitivity of carbon storage to the inclusion of below ground, non-
harvested carbon pools. The ”All” carbon scenario consists of the following carbon pools:
down deadwood, litter, standing deadwood, above-ground under-story, below ground under-
story, boles, stumps, and saplings. The alternative carbon calculation removes the carbon
pools that aren’t related to harvesting including down deadwood, litter, standing deadwood,
above-ground under-story, below ground under-story. We expect that the inclusion of all
carbon pools will increase the total carbon pool and reduce the overall cost of carbon.

4 Results

Using the combination of data from FIA [72], NLCD[63], Reforestation Hub[6], and data on
the expansion costs[10], we simulate potential for future carbon storage from tree-planting
under multiple combinations of budget constraints, time horizons, forest types, and land
use types. This allows us to see the impact of these factors on the potential distribution of
tree-planting. For each simulation scenario, we estimated levels of cumulative carbon, total
acres, and total costs by optimizing for carbon storage under different scenarios on a census
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Scenario Time Budget C Pools

1 15 years

$5 billion
All

2 30 years
3 15 years

AG
4 30 years
5 15 years

$10 billion
All

6 30 years
7 15 years

AG
8 30 years
9 15 years

$15 billion
All

10 30 years
11 15 years

AG
12 30 years

Table 2: Model scenarios with two simulation periods (15 and 30 years), three budget con-
straints ($5, $10, and $15 billion), and two carbon pool definitions. The ”All” carbon
pool includes: down deadwood, litter, standing deadwood, above-ground under-story, below
ground under-story, boles, stumps, and saplings. The above-ground (”AG”) carbon pool
includes only boles, stumps, and saplings.

tract level. On a national level, we estimate both the cost of planted acres and the cost per
ton of CO2. We present and discuss maps of carbon, costs, and area allocation under chosen
scenarios. Finally, we break these values down by initial land use and projected forest type.

4.1 Forest Expansion

Table 3 below provides summaries of projected area, total CO2 storage, and the cost per
ton of CO2 for each scenario. The extreme values for each outcome exist within the $5 and
$15 billion budget scenarios. The highest projected expansion and associated carbon storage
occurs in scenario 10, which has a 15 billion dollar budget, a 30 year simulation period, and
includes all carbon pools. This scenario has an estimated forest expansion of 28.14 million
acres, which will yield 662.84 million tons of CO2. The price of carbon associated with this
scenario is $25.27 Alternatively, scenario 3 ($5 billion budget, 15 year simulation period, and
only aboveground carbon pools) has the lowest projected area of forest growth and total
carbon storage of 17.94 million acres and 393.9 million tons, respectively. Scenario 2 has
the lowest projected cost of CO2 storage ($11.19 per ton), while scenario 11 has the highest
costs ($25.27 per ton).

The projected area of forest growth ranges from 17.94 to 28.14 million acres. For all
scenarios, growth area increases with the simulation period and is not sensitive to the carbon
pools included in carbon estimates. Similarly, increasing the budget results in increased forest
growth. Figure 1 maps the spatial allocation of forest expansion, in acres, for simulation
periods of 15 and 30 years on census-tract level. These maps further support the notion
that longer simulation periods result in higher levels of forest growth. It is important to
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Scenario Budget Acres CO2 $/ ton

1 $5 billion 17.943 394.00 $ 12.69
2 $5 billion 19.174 446.88 $ 11.19
3 $5 billion 17.943 393.89 $ 12.69
4 $5 billion 19.174 446.79 $ 11.19
5 $10 billion 22.194 507.31 $ 19.71
6 $10 billion 24.131 568.83 $ 17.58
7 $10 billion 22.194 507.18 $ 19.72
8 $10 billion 24.131 568.71 $ 17.58
9 $15 billion 25.766 593.78 $ 25.26
10 $15 billion 28.138 662.84 $ 22.63
11 $15 billion 25.766 593.62 $ 25.27
12 $15 billion 28.138 662.70 $ 22.63

Table 3: Millions of acres of forest expansion, total accumulated Mt of CO2, Mt of storage
per year, and the cost per ton of CO2 storage for each scenario.

note that although these maps suggest large levels of expansion across all regions on the US,
they do not account for the size of each census tract. For example, trees in a census tract in
Nevada that contains 4 million acres may be projected to expand by 1,000 acres. However,
this is a relatively low level of forest growth compared to a census tract with 100,000 acres
that experiences the same acreage of growth. Another important point is the range of forest
growth that exists across US census tracts. A tract having forest growth of less than an
acre may seem counter-intuitive, but this trends reflects the potential for micro-financing of
forest expansion for small-scale landowners. Lastly, comparing the 15 year simulation to the
30 year simulation, we see expansion of growth further into the Western regions.
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Figure 1: Distribution of Forest Expansion Area (acres) for a $15 billion budget, all carbon
pools, for a 15 year simulation (top) and 30 year simulation (bottom).

The level of CO2 storage from forest expansion range from 393.9 million tons in scenario
3 to over 660 million tons in scenario 10. CO2 projections increase with the budget and
when including all carbon pools. Increasing the simulation period results in increased levels
of CO2. Figure 2 maps the spatial distribution of CO2 storage for scenarios 9 and 10. In a
longer simulation, we see a denser CO2 distribution in the eastern US and expansion of CO2

13



into the midwest and western regions. In both scenarios, the highest amount of storage in a
census tract occurs in Gregg County, Texas and accounts for 12.3 million and 17.8 million
tons in scenarios 9 and 10, respectively. However, this is one of only 123 (scenario 9) and 143
(scenario 10) census tracts with projections higher than 1 million tons of additional carbon
storage over the simulation horizon.

Figure 2: Distribution of CO2 growth for a $15 billion budget, all carbon pools, for a 15 year
simulation (top) and 30 year simulation (bottom).
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The cost of CO2 was estimated as the cost per ton of storage and ranges from $9.79 to
$22.35. All other factors constant, an increased simulation period results in lower per-unit
cost of storage and a higher budget leads to higher costs per unit. This indicates marginal
returns of increased spending, although the cost more than doubles from $11.13 to $22.39
between the lowest and highest budget scenarios. Like the projections for expansion area
and resulting CO2, accounting for only aboveground carbon pools has minimal impact on
the cost of storage. Figure 3 maps spatial variations in the cost of forest expansion by census
tract for scenarios 9 and 10.
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Figure 3: Spatial variation in the costs of forest expansion for a $15 billion budget and all
carbon pools for 15 year (top) and 30 year (bottom) simulations.

4.2 Forest Expansion by Initial Land Use

To further dissect and understand these results, we compare model outcomes for different
initial land uses and forest types. Table 4 gives the number of acres by current land use,
specifically looking at crop, pasture, range, and shrubland. It is important to note that
Reforestation Hub data only includes cropland classified as ”marginal”, meaning that all
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cropland is not eligible. This allows for deeper insight into the remaining three land use
types and avoids the trade-offs that exist between tree-planting and food security. This
restriction to marginal croplands is shown in the fact that the lowest amount of planting is
occurring on cropland in all scenarios. Rangeland is the next lowest land type, but it’s lowest
projection of of 6.2 million acres (Scenario 3) greatly exceeds the highest projection of 1.1
million acres on cropland (Scenarios 10 and 12). For the $5 billion budget scenarios (1-4), the
largest amount of planting occurs on shrubland, but this changes for the $10 and $15 billion
scenarios where more occurs on pastureland. A potential reason for this is the assumption of
zero land costs on shrubland and the high carbon storage potential of pastureland. If there
is a smaller budget, planting will occur where the costs are lowest. However, as available
resources increase the carbon potential of pastureland starts to outweigh the additional costs.
This is also supported by pastureland having the greatest variation in projected expansion,
with a 5.4 million acre difference between the highest projection (Scenario 10) and lowest
projection (Scenario 2).

Scenario Crops Pasture Range Shrub

1 0.58 6.32 4.02 7.02
2 0.47 6.20 4.65 7.85
3 0.58 6.32 4.02 7.02
4 0.47 6.21 4.65 7.85
5 0.83 8.85 5.14 7.37
6 0.91 9.16 5.90 8.16
7 0.83 8.85 5.14 7.37
8 0.91 9.16 5.90 8.16
9 1.07 11.06 6.12 7.52
10 1.14 11.57 6.86 8.56
11 1.07 11.06 6.12 7.52
12 1.14 11.57 6.86 8.56

Table 4: Acres of tree expansion (millions) by initial land type for each scenario.

4.3 Forest Expansion by Forest Type

We continue the analysis by breaking down the optimized allocation by forest type for each
scenario. Table 5 gives the millions of acres of expansion for natural and planted Pine,
natural and planted Softwood, Juniper, Hardwood, and Oak forest types. Table 6 gives
projected acres (in thousands) of the remaining forest types including Oak-Pine, Planted
Oak-Pine, Maple, Aspen, natural and planted Doug-Fir, and Misc Pine forests. Planted
pine species are estimated to experience the largest growth in land area across all scenarios,
ranging from 5.2 million acres over 30 years with a 5 billion dollar budget to 12.6 million
over 30 years and 15 billion dollar budget. The significant level of planting for this type of
forest follows economic and ecological reasoning due to the lower costs of management and
their fast-growing nature. However, the trend in planted pine acres differs from the other
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species. Whereas most forest types are projected to increase with a longer simulation period,
planted pines experience a decrease when running a 30 year simulation.

Although potentially counter-intuitive, this speaks to the nature of the fast-growing for-
est type. Pine species tend to grow substantially in the first two decades after planting
before slowing down to see negative marginal growth. Consequently, these species are often
harvested earlier for market use, and consequently the FIA data on planted loblolly pine
yield for ages greater than 30 years are limited (hence, the asymptote for the loblolly pine
growth function may under-value total growth potential for older stands) to use the land for
more pine growth. The same trend is seen in natural softwood forests. On the other hand,
hardwood species take longer to mature, but store larger amounts of carbon over time. Hard-
woods will continue to grow and store more carbon after pine species hit their peak volume.
Relatively close to hardwoods in growth projections, oak species are estimated to account
for between 1.13 and 2.26 million acres of expansion. Juniper and planted Softwood forests
are similar in estimates ranging from 0.43 to 1.3 million acres and 0.94 to 1.3 million acres,
respectively.

The remaining six forest types trail significantly behind in projected growth, with only 30-
year scenarios showing any level of growth in natural Douglas-fir forests. Similarly to planted
pine and softwood forests, natural oak-pine stands are projected to have less expansion in
the longer simulation scenarios. Another interesting trend is in the difference in Maple forest
growth between 15 and 30 year simulations. All 15-year simulations project between 2.28
and 4.35 thousand acres of expansion but the 30-year scenarios range between 71.3 and 89.2
thousand acres.

Scenario Pine
Planted
Pine

Softwood
Planted
Softwood

Juniper Hardwood Oak

1 2.30 7.64 3.56 0.94 0.34 1.04 1.13
2 4.77 5.20 3.11 1.09 0.55 2.14 1.56
3 2.30 7.64 3.56 0.94 0.34 1.04 1.13
4 4.77 5.20 3.11 1.09 0.55 2.14 1.56
5 2.37 10.54 3.96 1.17 0.49 1.29 1.33
6 6.13 6.82 3.55 1.18 0.91 2.69 2.03
7 2.37 10.55 3.96 1.17 0.49 1.29 1.33
8 6.13 6.82 3.55 1.18 0.91 2.69 2.03
9 2.63 12.62 4.45 1.30 0.59 1.52 1.46
10 6.84 8.44 3.87 1.27 1.04 3.36 2.26
11 2.63 12.63 4.45 1.30 0.59 1.52 1.46
12 6.84 8.44 3.87 1.26 1.04 3.36 2.26

Table 5: Millions of acres of expansion for natural and planted Pine, natural and planted
softwood, Juniper, Hardwood, and Oak forest types by scenario.
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Scenario Oak-Pine
Planted
Oak-Pine

Maple Aspen Doug-Fir
Planted
Doug-Fir

Misc
Pine

1 379.03 11.63 2.28 435.81 - 161.51 0.00
2 331.91 10.82 71.30 67.33 0.07 266.85 0.02
3 379.03 11.63 2.28 434.91 - 161.51 0.00
4 331.91 10.82 71.30 67.33 0.07 266.85 0.02
5 381.98 11.63 2.29 460.75 - 180.36 0.05
6 335.22 10.82 75.14 73.78 0.07 324.94 3.61
7 381.98 11.63 2.29 459.85 - 180.36 0.05
8 335.22 10.82 75.14 73.78 0.07 324.94 3.61
9 391.28 11.63 4.35 586.67 - 190.02 2.59
10 412.95 10.82 89.21 126.92 0.07 390.26 31.91
11 391.28 11.63 4.35 585.56 - 190.02 2.59
12 412.95 10.82 89.21 126.92 0.07 390.26 31.91

Table 6: Thousands of acres of expansion of natural and planted Oak-Pine, Maple, Aspen,
natural and planted Doug-fir, and Misc Pine forest types for each scenario. The Misc Pine
category represents Pine species that account for small areas of land across different eco-
provinces.

Although levels of planting in each forest type are mostly consistent across scenarios,
much less consistency is expected on a spatial scale due to differences in costs, ecological
conditions, and species suitability. For example, we would expect significantly more planted
pine expansion in the southern region of the US, where they are more economically and
environmentally suitable, as compared to the northwest region. Figure 4 further illustrates
this point by mapping the spatial distribution of forest expansion by forest types for scenarios
9 (top) and 10 (bottom). There are large variations in the distribution by forest type between
15 and 30 year simulations, with some regions showing complete changes in prominent forest
types. This is highlighted by the distribution of planted and natural pine in the southeastern
region. Similarly, the type of forests planted in the Great Lake states switches from mostly
Aspen to planted Pine between scenarios 5 and 10.

If incentives are based on shorter time-frames, this will encourage planting of fast-growing
species such as planted pine plantations that are heavily managed for timber production.
However, incentives for longer-term carbon storage will reduce the need for this fast growth.
This results in the planting of less heavily-managed forest types that have slower growth
rates, such as natural pine forests. Similarly, large concentrations of softwood tree species
are projected across the northeast for a 15-year simulation period. With a 30-year simulation,
much of this area is instead planted with oaks and hardwoods, which have lower yields at
early ages but more growth and, thus, carbon storage, over a longer time-frame. Further, an
increased simulation period resulted in expansion of hardwood forests in the midwest and
California.
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Figure 4: Distribution of forest expansion by forest type for a $15 billion budget and all
carbon pools for 15 (top) and 30-year (bottom) simulation periods.
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5 Discussion and Conclusions

This study utilizes data from the NLCD, Reforestation Hub, and Nielson et. al (2014) on
a census tract level to project forest growth and associated CO2 and costs by optimizing
for carbon storage given various budget constraints, carbon pool definitions, and simulation
periods. The scenario with highest total forest growth and CO2 storage, was projected to be
over 28 million acres with an associated 662.8 million tons in a scenario with a $15 billion
budget and a 30-year simulation period. Alternatively, the lowest levels of expansion and
CO2 occur in a simulation with a $5 billion budget and 15-year simulations. We assess the
spatial distribution of these outcomes on a census-tract level with a $15 billion budget for
both 15 and 30-year simulation periods. We find that the longer simulation period results
in denser levels of forest area and CO2 storage in the eastern region of the country and an
increased level of growth in the midwest and northeast.

These projections are further broken down by initial land use and forest type. The most
expansion occurs on pastureland in all scenarios, followed by shrubland, rangeland, and
cropland. The maximum expanded area on each of these land use types are projected to
be 11.57, 8.56, 6.86, and 1.14 million acres, respectively. The most prominent forest types
across all scenarios are planted pine and the least are natural Doug-fir. Across scenarios, we
project that increasing the simulation period changes the species makeup to favor slower-
growing forest types that require less active management. We show the spatial distribution
of forest type growth, finding some interesting trends in forest type make-up as simulation
periods increase. For example, almost all of the southeast was projected to increase pine
plantations over 15 years, but a large portion of that area is covered in natural pine forests
over 30 years. Similarly, there was a large shift from natural softwood species to oak forest
types in the northeastern US.

There are several conclusions regarding the dynamics of forest expansion policy that can
be drawn from this study. First, higher budget constraints result in higher levels of forest
expansion, but at a decreasing marginal rate. For this reason, the marginal cost of CO2

storage from forest expansion increases with the budget as well. This is reflected by the cost
of abatement from forest expansion ranging from $11.19 per ton of CO2 to $25.27 as forest
expansion budgets increase.

Next, we find that the time-frame of forest expansion policy has a significant impact on
levels of growth and forest type distribution. Specifically, when the goal is to store the most
carbon as quickly as possible, the carbon-maximizing species distribution favors larger areas
of heavily-managed and faster growing forest types, such as pine plantations. Alternatively,
a longer time horizon results in higher expansion species, such as hardwoods, that take longer
to mature but are less heavily managed and store more carbon over time. We additionally
find that the initial land use type of converted lands is spatially variant across budgets and
policy timescales, with pastureland conversion to forests accounting for the largest area of
forest expansion in all scenarios. The levels of conversion from crop and pastureland decrease
for longer simulation periods, while planting on range (or grasslands in the Eastern U.S.)
and shrubland conversion increase with time.

Lastly, we find evidence of highly variable spatial allocation of forest expansion with
respect to economic, ecological, and policy assumptions and dynamics. These results can
inform policy related to forest expansion and emphasize the importance of spatially planning

21



allocation of tree-planting efforts. This optimization framework can be used to support
research and outreach in other contexts, scales, and policy environments. Future research
will incorporate other policy objectives such as distributing forest expansion payments to
underrepresented or environmental justice communities, limiting water scarcity concerns
from tree planting, and supporting climate change adaptation/resilience goals.

There are some limitations to this study that should be recognized addressed in future
research. The first of which is related to the handling of cropland, forestland, and urban
land. Although transitions from the included land use types are highly informative, there
are transitions from crop, clear-cut forests, and open urban space for housing and industrial
development that do and will occur and should be assessed in future studies. However,
there are benefits to the simplified land use classifications including allowing us to ignore
major trade offs between forest expansion and factors like food security and urban land
rents. Additionally, there is no accounting for the large potential carbon sink that is likely
to grow with increased use of timber for building, energy, and wood products. Instead, we
assume that these new forests will remain untouched for the entire simulation. This is not,
however, reflective of the growing timber market landscape that is prevalent in regions like
the southeastern US. By accounting for the value, production, and use of wood products,
future studies will likely higher levels of projected carbon storage created by forest expansion.
Partial equilibrium models an effectively capture this dynamic, but miss nuanced spatial
information that could limit forest expansion investments at a local scale. However, including
timber production potential potential could result in a larger distribution of faster-growing
forest types that are managed for harvesting and re-planting.

Lastly, the effects of climate change and the impact of the forest carbon sink will only grow
more important over time. It will be important moving forward to expand the time frame
of these simulations and to account for potentially offsetting effects of CO 2 fertilization
from higher atmospheric concentrations and lower productivity/higher tree mortality from
temperature and precipitation changes. However, given the near-term focus of existing forest
expansion policies, this is still quite reflective of the current policy landscapes.

Despite these limitations, this study significantly contributes to the literature on forest
expansion efforts by spatially optimizing carbon storage given 12 different scenarios on a
census-tract level. To the best of our knowledge, attempts have not been made to spatially
project forest expansion by forest type and initial land use at such a small resolution. Fur-
ther, the model framework provides a road-map for future studies aiming to assess spatial
and temporal outcomes of forest expansion. Studies should expand on these methods and
findings by building on this optimization framework to address additional policy considera-
tions such as social equity, economic growth, and forest management practices. By delving
into these important policy topics, this field of research has potential to significantly increase
the contribution of forests in the global carbon sink and increase the effectiveness of vital
efforts to reduce the effects of global climate change.
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State Pine
Planted
Pine

Softwood
Planted
Softwood

Juniper Hardwood Oak

AL - 1,094,348.89 - - - - -
AR 3,119.26 822,649.54 148,422.96 - - 7,296.36 -
AZ - - - - 91,956.36 - -
CA - - 0.01 - - 570,313.79 0.36
CO - - - - 230,367.57 307.41 -
CT - - 67,608.77 - - - -
DE 3,461.93 80,357.98 - - - - -
FL 77.27 1,097,225.09 178.81 598,943.39 - 138,731.54 48,419.00
GA 1,674.10 1,778,692.58 - 83,372.43 - - -
IA - - - 189.28 - 112,559.71 19,266.24
ID 11,320.23 - - - 136,793.24 5,748.29 -
IL - 7,554.90 91,319.35 42,350.58 - 168,589.59 164,651.96
IN - - 168,872.03 70,786.26 - 40,317.06 128,347.24
KS - - 996.24 - - 47,285.39 9,809.35
KY - 109,529.20 486,151.00 - - 7.48 -
LA 2,779.19 894,781.49 15,267.96 119,488.35 - 5,895.01 10,099.21
MA - - 92,520.38 - - 431.66 430.48
MD 351,515.31 253,339.36 157,261.18 - - 431.12 -
ME - - 345,339.78 - - - -
MI - 23,212.89 14,191.98 36,784.51 - - 233,261.55
MN - 243.60 - 18,534.16 - 20,614.80 20,952.11
MO - 42.97 255,183.51 - - 164,480.21 -
MS 17.93 736,300.67 33,334.85 40,177.24 - 313.73 -
MT - - - - 15,176.95 0.00 -
NC 10,220.90 1,494,075.91 2,169.01 3.92 - - -
ND - - - - - 20,483.95 39.25
NE - - - - - 65,491.39 4,360.23
NH - - 215,925.65 - - - 3,547.58
NJ 160,142.26 72,576.34 8,216.10 - - - -
NM - - - - 33,418.87 - 0.00
NV - - - - 0.49 4,836.95 -
NY 1,733,795.51 - 526,449.52 35,628.81 - 1,182.71 277,270.43
OH - - 365,897.51 14,493.19 - 8,876.06 92,127.44
OK 53,961.74 83,800.66 1,161.02 11,365.30 1.22 13.94 103,328.23
OR 27,101.69 - - - - 24,248.83 -
PA 23,337.96 121,242.69 565,361.69 - - 4,279.42 -
RI - - 174,571.19 - - - -
SC - 956,495.95 - 21,586.17 - - -
SD - - 0.20 - - 7,288.49 304.98
TN 7,681.92 543,192.20 144,111.60 - - - 2.63
TX 191,392.58 905,911.78 2,603.25 6,197.02 3,216.98 2.61 283,347.40
UT - - - - 29,128.33 - -
VA 42,907.69 1,431,898.42 54,266.45 - - - -
VT - - 26,088.16 - - - 559.95
WA 7,418.96 - 3.76 - - 90,206.04 -
WI - 4,239.27 769.29 203,490.34 - - 60,238.92
WV - - 487,081.14 - - 7,063.55 -
WY - - - - 51,077.67 - -

Table 7: Acres of forest expansion in scenario 9 by state for natural and planted Pine, natural
and planted Softwood, Juniper, Hardwood, and Oak species.
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State Oak-Pine
Planted
Oak-Pine

Maple Aspen
Planted
Doug-fir

Misc
Pine

AL - - - - - -
AR 38,764.0 - - - - -
AZ - - - - - -
CA - - - - 3.4 -
CO - - - - - -
CT - - - - - -
DE - - - - - -
FL 225,765.4 10,437.2 - - - -
GA - - - - - -
IA - - - - - -
ID - - - - - 304.1
IL 8.9 - 0.2 - - -
IN 1,540.0 - - - - -
KS - - - - - -
KY 25.8 - - - - -
LA 11,872.2 573.9 - - - -
MA - - - - - -
MD - - - - - -
ME - - - - - -
MI - - - 208,076.1 - -
MN - - 4,335.7 234,509.4 - -
MO 21.9 - - - - -
MS - - - - - -
MT - - - - - 179.0
NC 400.0 - - - - -
ND - - - - - -
NE - - - - - -
NH - - - - - -
NJ - - - - - -
NM - - - - - -
NV - - - - - -
NY 17,971.2 - - - - -
OH 44,105.3 - 5.7 - - -
OK 1,365.3 - - - - -
OR - - - - 113,406.5 2,090.1
PA 0.0 615.4 9.4 - - -
RI - - - - - -
SC - - - - - -
SD - - - - - -
TN 873.5 - - - - -
TX 45,015.8 - - - - -
UT - - - - - -
VA 3,551.4 - - - - -
VT - - - - - -
WA - - - - 76,614.2 15.6
WI - - - 144,082.1 - -
WV - - - - - -
WY - - - - - -

Table 8: Acres of forest expansion in scenario 9 for natural and planted Oak-Pine, Maple,
Aspen, planted Doug-fir, Misc. Pine, and Oak species.
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State Pine
Planted
Pine

Softwood
Planted
Softwood

Juniper Hardwood Oak

AL 103,283.0 980,431.4 - - - - -
AR 3,131.8 822,605.9 121,855.0 8.7 - 17,195.2 64,066.0
AZ - - - - 109,269.4 - -
CA - - 7,229.4 - 16.1 1,564,599.5 103,097.0
CO - - - - 380,706.6 2,351.7 -
CT - - 67,859.4 - - - -
DE 3,461.9 78,417.2 - - - - -
FL 346,766.4 772,516.2 - 253,549.6 - 138,622.8 48,730.3
GA 844,510.1 855,939.5 - - - - -
IA - - - 2,543.4 - 161,896.2 29,733.5
ID 12,532.9 - 537.7 - 147,745.9 7,086.6 -
IL - 7,554.9 79,433.2 72,541.8 - 213,277.4 122,050.4
IN - - 98,053.0 97,771.0 - 77,637.9 139,923.8
KS - - 313.6 - - 118,851.1 22,805.7
KY - 109,529.2 411,298.9 - - 122,737.3 -
LA 822,377.0 99,533.4 24,609.3 - - 9,870.1 31,212.8
MA - - 94,503.7 - - 431.7 1,425.7
MD 356,444.5 252,260.9 148,204.8 - - 1,496.5 17,047.2
ME - - 233,746.5 - - 1,575.8 113,033.6
MI - 292,233.4 1,869.0 279,616.6 - - 53,399.9
MN - 225,014.6 - 28,573.8 - 85,556.1 9,900.8
MO - 43.0 148,922.2 - - 344,222.0 9,574.0
MS 333,314.8 424,758.9 35,773.8 - - 321.4 -
MT 4,836.3 - - - 20,149.7 34.6 -
NC 258,116.9 873,511.1 2,238.3 - - - -
ND - - - - 0.0 29,799.1 210.1
NE - - - - - 171,440.6 3,602.8
NH - - 213,761.7 - - 8,358.7 12,170.8
NJ 160,142.3 72,576.3 8,216.1 - - - -
NM - - - - 134,662.9 - 21.1
NV - - - - 7.8 18,532.3 1,522.2
NY 1,733,795.5 - 410,446.5 196,341.0 - 795.8 697,822.8
OH - - 362,369.7 20,622.8 - 37,403.9 124,325.4
OK 56,780.9 83,800.7 - 9,488.9 - 4,940.4 120,963.2
OR 0.0 0.0 2,877.5 - - 10,879.5 -
PA 23,338.0 121,242.7 334,258.8 1,282.2 - 103,916.1 177,703.8
RI - - 222,241.6 - - - -
SC 466,176.7 465,508.7 - - - - -
SD - - 1,976.5 - - 45,500.3 823.9
TN 7,094.3 498,546.1 194,143.9 - - 39,310.1 2.7
TX 1,035,310.6 44,329.9 1,340.5 19,407.2 11,375.4 604.4 286,367.6
UT - - - - 81,879.5 - -
VA 255,488.4 1,018,827.5 100,237.2 - - 1,142.0 8,692.0
VT - - - - - 14,228.1 16,386.5
WA 10,133.7 - 82,627.7 - - 2,578.6 -
WI - 228,714.1 - 283,730.2 - - 10,108.5
WV - - 463,015.5 - - 7,428.5 30,080.2
WY - - - - 151,504.7 23.0 -

Table 9: Acres of forest expansion in scenario 10 by state for natural and planted Pine,
natural and planted Softwood, Juniper, Hardwood, and Oak species.
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State Oak-Pine
Planted
Oak-Pine

Maple Aspen Doug-fir
Planted
Doug-fir

Misc
Pine

AL - - - - - - -
AR - - - - - - -
AZ - - - - - - -
CA - - - - - 1,976.9 -
CO - - - - - - -
CT - - - - - - -
DE - - - - - - -
FL 225,741.7 10,437.2 - - - - -
GA - - - - - - -
IA - - - - - - -
ID - - - - 72.5 - 350.2
IL 8.9 - 14.8 - - - -
IN 4,228.8 - - - - - -
KS - - - - - - -
KY - - - - - - -
LA 12,151.9 378.0 - - - - -
MA - - - - - - -
MD - - - - - - -
ME - - 1,226.5 - - - -
MI - - - 8,918.9 - - -
MN - - 12,832.5 94,237.8 - - -
MO 21.9 - - - - - -
MS - - - - - - -
MT - - - - - - 28,060.0
NC 400.0 - - - - - -
ND - - - - - - -
NE - - - - - - -
NH - - - - - - -
NJ - - - - - - -
NM - - - - - - -
NV - - - - - - -
NY 17,971.2 - 26,146.1 - - - -
OH 25,104.2 - 28,734.8 - - - -
OK 14,448.2 - - - - - -
OR - - - - - 256,428.2 3,161.5
PA 0.0 - 20,252.0 - - - -
RI - - - - - - -
SC - - - - - - -
SD - - - - - - -
TN 1,206.4 - - - - - -
TX 45,015.8 - - - - - -
UT - - - - - - -
VA 66,649.9 - - - - - -
VT - - - - - - -
WA - - - - - 131,854.2 333.6
WI - - - 23,763.3 - - -
WV - - - - - - -
WY - - - - - - -

Table 10: Acres of forest expansion in scenario 10 for natural and planted Oak-Pine, Maple,
Aspen, natural and planted Doug-fir, and Misc. Pine species.
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State S1 S2 S3 S4 S5 S6

AL 683,423 539,486 683,423 539,486 1,027,066 857,057
AR 996,413 982,947 996,413 982,947 1,015,783 1,013,727
AZ 62,908 91,898 62,908 91,898 67,007 108,005
CA 418,090 858,649 418,090 858,385 468,172 1,239,234
CO 160,010 202,390 160,010 202,390 187,491 300,158
CT 67,609 67,609 67,609 67,609 67,609 67,609
DE 80,802 80,802 80,802 80,802 81,879 80,802
FL 1,378,016 1,331,989 1,378,016 1,331,989 1,618,214 1,540,521
GA 955,021 802,411 955,021 802,411 1,586,995 1,231,671
IA 52,304 130,146 52,304 130,146 70,757 160,792
ID 38,824 150,753 38,824 150,753 153,570 163,508
IL 383,771 411,103 383,771 411,103 423,941 449,264
IN 189,685 366,033 189,685 366,033 343,372 404,933
KS 43,238 57,642 43,238 57,642 52,522 92,262
KY 446,035 446,621 446,035 446,621 527,557 570,932
LA 690,781 665,307 690,781 665,307 950,210 958,488
MA 93,383 93,383 93,383 93,383 93,383 96,361
MD 620,228 621,208 620,228 621,208 681,771 647,791
ME 316,413 343,528 316,413 343,528 342,318 347,843
MI 464,436 500,744 464,436 500,744 485,114 555,784
MN 174,032 213,222 174,032 213,222 199,295 284,947
MO 178,194 290,204 178,194 290,204 366,379 443,341
MS 731,985 685,668 731,985 685,668 753,627 753,123
MT 312 10,462 312 10,462 4,581 22,561
NC 614,554 550,153 614,557 550,153 1,048,769 923,825
ND 2,857 20,561 2,857 20,561 19,612 23,996
NE 9,221 94,008 9,221 94,008 36,366 150,000
NH 201,128 205,481 201,128 205,481 203,447 228,663
NJ 240,935 240,935 240,935 240,935 240,935 240,935
NM 22,402 31,555 22,402 31,555 24,797 132,900
NV - 8,207 - 8,207 2,571 17,840
NY 2,331,033 2,530,506 2,331,033 2,530,506 2,393,157 2,897,661
OH 409,756 523,335 409,756 523,335 478,035 563,694
OK 162,816 173,087 162,816 173,147 230,304 256,235
OR 141,110 168,585 141,110 168,585 154,772 226,664
PA 609,716 678,714 609,716 678,714 659,156 744,541
RI 174,383 174,571 174,383 174,571 174,571 222,242
SC 424,229 350,000 424,229 350,000 795,344 666,265
SD 5,821 7,889 5,821 7,889 6,597 18,693
TN 432,360 439,402 432,360 439,448 586,827 648,055
TX 881,717 872,530 881,684 872,530 1,198,576 1,183,916
UT 18,363 22,542 18,363 22,542 22,024 44,786
VA 920,378 899,618 920,378 899,618 1,147,550 1,114,212
VT 21,078 29,131 21,078 29,131 22,867 30,615
WA 145,255 189,114 145,255 189,114 164,964 204,525
WI 328,173 373,565 328,173 373,565 369,572 441,298
WV 468,896 484,175 468,896 484,175 484,198 494,742
WY 38,946 49,587 38,946 49,587 47,918 151,496

Table 11: Total acres of forest expansion by state for scenarios 1-6
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State S7 S8 S9 S10 S11 S12

AL 1,027,066 857,057 1,094,349 1,083,714 1,094,349 1,083,714
AR 1,015,783 1,013,727 1,020,252 1,028,863 1,020,252 1,028,863
AZ 67,007 108,005 91,956 109,269 91,956 109,269
CA 468,158 1,239,232 570,318 1,676,919 570,114 1,676,918
CO 187,486 300,158 230,675 383,058 230,675 383,058
CT 67,609 67,609 67,609 67,859 67,609 67,859
DE 81,879 80,802 83,820 81,879 83,820 81,879
FL 1,618,214 1,540,521 2,119,778 1,796,364 2,119,778 1,796,364
GA 1,586,995 1,231,676 1,863,739 1,700,450 1,863,739 1,700,450
IA 70,757 160,792 132,015 194,173 132,015 194,173
ID 153,570 163,508 154,166 168,326 154,166 168,326
IL 423,941 449,264 474,476 494,881 474,476 494,881
IN 343,372 404,933 409,863 417,615 409,863 417,615
KS 52,522 92,255 58,091 141,970 58,090 141,970
KY 527,557 570,932 595,713 643,565 595,713 643,565
LA 950,210 958,488 1,060,757 1,000,133 1,060,757 1,000,164
MA 93,383 96,361 93,383 96,361 93,383 96,361
MD 681,771 647,791 762,547 775,454 762,585 775,454
ME 342,318 347,843 345,340 349,582 345,340 349,582
MI 485,114 555,784 515,527 636,038 515,527 636,038
MN 199,295 284,947 299,190 456,116 299,190 456,116
MO 366,379 443,341 419,729 502,783 419,729 502,783
MS 753,627 753,123 810,144 794,169 810,144 794,169
MT 4,581 22,561 15,356 53,081 15,356 53,081
NC 1,048,769 923,825 1,506,870 1,134,266 1,506,870 1,134,266
ND 19,612 23,996 20,523 30,009 20,523 30,009
NE 36,366 150,000 69,852 175,043 69,852 175,043
NH 203,447 228,663 219,473 234,291 219,473 234,291
NJ 240,935 240,935 240,935 240,935 240,935 240,935
NM 24,797 132,900 33,419 134,684 33,419 134,684
NV 2,571 17,840 4,837 20,062 4,837 20,062
NY 2,393,157 2,897,660 2,592,298 3,083,319 2,592,297 3,083,319
OH 478,035 563,694 525,505 598,561 525,505 598,561
OK 230,304 256,235 254,997 290,422 254,997 290,422
OR 154,772 226,664 166,847 273,347 166,847 273,347
PA 659,156 744,541 714,847 781,993 714,847 781,993
RI 174,571 222,242 174,571 222,242 174,571 222,242
SC 795,344 666,265 978,082 931,685 978,082 931,685
SD 6,597 18,693 7,594 48,301 7,594 48,301
TN 586,827 648,055 695,862 740,303 695,855 740,303
TX 1,198,576 1,183,916 1,437,687 1,443,751 1,437,687 1,443,725
UT 22,024 44,786 29,128 81,879 29,128 81,879
VA 1,147,554 1,114,212 1,532,624 1,451,037 1,532,656 1,451,037
VT 22,867 30,615 26,648 30,615 26,648 30,615
WA 164,964 204,525 174,259 227,528 174,259 227,528
WI 369,572 441,296 412,820 546,316 412,820 546,263
WV 484,198 494,742 494,145 500,524 494,145 500,524
WY 47,918 151,496 51,078 151,528 51,078 151,528

Table 12: Total acres of projected forest expansion by state for scenarios 7-12.
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