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Abstract 

 

Quite different R&D lag structures predominate in studies of agricultural R&D compared 

with studies of R&D in other industries, and compared with studies of economic growth 

more broadly.  Here we compare the main models and their implications using long-run 

data for U.S. agriculture.  We reject the models predominantly used in studies of 

economic growth and industrial R&D both on prior grounds and using various statistical 

tests.  The preferred model is a 50-year gamma lag distribution model.  The estimated 

elasticity of MFP with respect to the knowledge stock is 0.28 and the implied marginal 

benefit-cost ratio is 23:1. 
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R&D Lags in Economic Models 

1. Introduction 

Innovation resulting from organized investments in R&D is at the center of contemporary 

models of economic growth and is a focus of econometric models of research-induced increases 

in productivity in agriculture and other industries.  Although these branches of applied 

economics share a common heritage—from work done decades ago by economists like Zvi 

Griliches, Edwin Mansfield, Jora Minasian, Robert Solow, and Theodore Schultz—, nowadays 

they employ quite different conceptual and empirical models to represent the process by which 

today’s investments in R&D influence the future time path of productivity and economic growth.  

These substantial differences in models can be characterized, formally, in terms of differences in 

the detail of the specification of the R&D lag structure, which transforms measures of past and 

present investments in R&D into an R&D knowledge stock that affects current productivity.   

In a companion paper, Alston et al. (2022b) flesh out those differences and explore their 

origins and implications, taking a broad perspective and drawing on a range of evidence about 

particular technologies.  In the present paper, we focus more narrowly on comparing these 

alternative models empirically, using a particular data set for U.S. agriculture.  These are high-

quality data in a comparatively long time-series, which is advantageous for drawing comparisons 

among the alternative models that differ substantively in terms of their assumptions regarding lag 

length and shape.  Our findings using agricultural data are relevant beyond agriculture; they are 

informative about comparable relationships for the economy as a whole and the many other 

industries for which comparably useful data have not been available.  



2 

 

We begin with a review of the relevant conceptual foundations and a synopsis of the 

predominant lag specifications used in applications to agricultural R&D, industrial R&D, and 

implicitly in economic growth models.  This leads to an econometric specification that permits 

testing among these alternatives.  Our application uses data for U.S. agriculture, which are 

available in long enough time series to enable estimating models with long lags, and for which 

we have strong priors about the plausible length and shape of the lag distribution, sufficient to 

reject at least some models.  In practice, we are also able to reject some models on statistical 

grounds, and to select a model that is both statistically preferred and compatible with our prior 

views—a 50-year gamma lag distribution model with a shape similar to that used in several 

recent studies of agricultural R&D.  The implied marginal benefit-cost ratio for research is 23:1 

and the elasticity of productivity with respect to the R&D knowledge stock is 0.28; both also in 

keeping with priors.  

The most striking aspect of our results is the remarkable similarity of findings regarding 

implied rates of return to research and elasticities of productivity with respect to R&D 

knowledge stocks among all the models tried, including totally implausible ones.  A geometric 

lag distribution model with no gestation lag—as typically used in models of industrial R&D, for 

example—is totally implausible for these data, yet in practice might appear to be an adequate 

statistical model that yields estimated rates of return and elasticities that are consistent with 

published estimates for agriculture and other industries.  But as we show, this model wholly 

misrepresents the true data-generating process.  The upshot is that modelers should place greater 

emphasis on developing well-informed priors as a basis for imposing assumptions about the 

overall length and general shape of the R&D lag distribution, which are inevitable. 
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2. Economic Models of Knowledge Stocks 

Economic studies linking R&D to productivity implicitly or explicitly entail a model in 

which multifactor productivity (MFPt) depends on flows of services from an R&D knowledge 

stock, 𝐾𝑡, as well as other factors, 𝑋𝑡:   

(1) 𝑀𝐹𝑃𝑡 = 𝑓(𝐾𝑡;  𝑋𝑡). 

In the typical application, a double-log form is imposed in which the parameters are elasticities: 

(2) ln𝑀𝐹𝑃𝑡 = 𝛽0 + 𝛽𝐾ln𝐾𝑡 + 𝛽𝑋ln 𝑋𝑡 + 𝜀𝑡. 

Different assumptions about the processes of creation and utilization of knowledge can be 

characterized as different parameterizations of the R&D lag structure whereby past and present 

R&D investments contribute to the stock of knowledge in use today.  Applying notation from 

Alston et al. (2011), the knowledge stock in year t, 𝐾𝑡, can be characterized as: 

(3) 𝐾𝑡 =∑ 𝑏𝑘𝑅𝑡−𝑘,
∞

𝑘=0
  

where 𝑏𝑘 is the weight assigned to lag period k, and 𝑅𝑡−𝑘 is the real (or inflation-adjusted) public 

agricultural R&D investment in year t – k, and (in most cases) these weights sum to one: 

(4) ∑ 𝑏𝑘
∞

𝑘=0
= 1.  

We are interested in three main categories of models, allowing for some variation within 

categories, namely: agricultural R&D models, industrial R&D models, and growth theory 

models.  We characterize the differences among these models in terms of differences in the 

attributes of R&D lag distributions that are imposed implicitly or explicitly: (1) the total lag 
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length, (2) a gestation lag period before research investments begin to contribute to the 

knowledge stock, (3) restrictions imposed on the functional form of the distribution, and (4) 

parameters associated with the functional form.  In what follows we compare the lag structures 

used in agricultural R&D models, industrial R&D models, and growth theory models both 

conceptually and in an illustrative empirical application using data for U.S. agriculture. 

2.1  Agricultural R&D Models 

As discussed by Alston et al. (2022b), in applications to U.S. agriculture over the past 

half century (since Evenson 1967) it has been conventional to model agricultural productivity as 

a function of an R&D knowledge stock.  The current knowledge stock in use, Kt in year t, is 

represented by lagged investments in agricultural R&D, with rising and falling lag weights 

reflecting successive phases of research, development, adoption, depreciation and disadoption of 

the resulting innovations.  Though some have tried free-form weights the great majority of the 

hundreds of agricultural R&D studies have imposed a structure on the lag distribution so it can 

be represented by just a few parameters (see, e.g., Alston et al. 2022b).1  As discussed by Pardey 

et al. (2010), from early beginnings with quite simple models and short lags the models have 

evolved to allow for longer lags and more complex shapes.   

The two predominant models in use nowadays are the 35-year trapezoidal lag distribution 

model introduced by Huffman and Evenson (1993) thirty years ago, and the 50-year gamma lag 

distribution model proposed more recently by Alston et al. (2010).  Alston et al. (2011) 

 

1 Alston et al. (2022a) report that 540 out of 2,963 estimates of rates of return to agricultural R&D were derived 

from models using free-form lags.   
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compared these two models applied to U.S. state-level MFP data for the period 1949–2007 from 

InSTePP, and found in favor of a gamma lag distribution model with a peak lag considerably 

later than that for the trapezoidal lag model, though otherwise reasonably similar in shape.  Both 

of these models have initial periods of several years with negligible or zero impact of R&D on 

productivity (a gestation lag or a pre-technology research and development lag) followed 

successively by a period of rising impact (the adoption lag), and eventually a period of declining 

impact (reflecting disadoption and depreciation of knowledge in use), truncated to zero at 35 

years (the trapezoidal lag distribution model) or 50 years (the 50-year gamma distribution).   

In this paper we take the 50-year gamma lag distribution model from Alston et al. (2011) 

as our starting point.  Alston et al. (2011) had state-level MFP data beginning in 1949 so they 

were constrained to estimating models for the period 1949–2007, but we are modeling national 

aggregate MFP for which we have data back to 1910.  Given a 50-year lag, our first knowledge 

stock observation in 1940 is a weighted average of public R&D investments from 1890 to 1940, 

while the last observation in 2007 is a weighted average of investments from 1957 to 2007.  With 

these measures of knowledge stocks, we can estimate models of MFP using national data for 

1940–2007. 

Some studies (e.g., Andersen and Song 2013; Khan and Salim 2015) have imposed the 

specific gamma lag distribution model weights, as estimated by Alston et al. (2011) in other 

contexts, whether using similar or totally different data.  Here, we use a somewhat different 

model (i.e., including a different weather index, applied to a single time-series of national 

aggregate data rather than a panel of state-level data, and excluding extension expenditures to 

make for more direct comparability to models applied to other sectors of the economy) to model 
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changes in agricultural MFP over a different time period (1940–2007 rather than 1949–2007).  

Therefore, we opted to re-estimate the gamma lag distribution parameters, using a grid search 

procedure as done by Alston et al. (2011) across 64 combinations given by 8 values each for the 

two gamma distribution coefficients.  We also try the Huffman and Evenson (1993) trapezoidal 

lag model with its specific lag weight structure applied to these different data. 

2.2  Industrial R&D Models 

In models applied in studies of returns to research in other industries, the predominant 

R&D lag model in use is quite different: it is a perpetual inventory model (see, e.g., Hall 2010; 

Li and Hall 2018; Serfas et al. 2023).  In this model, a proportional declining balance or 

geometric depreciation rule is used to represent changes in an aggregate stock of knowledge 

(Griliches 1980, 1986).  As described by Alston et al. (2022b), using δ to denote the depreciation 

rate, and allowing for a gestation lag of g years between research spending and increments to 

knowledge, the aggregate stock of knowledge evolves over time according to:  

(5) 𝐾𝑡 = (1 − 𝛿)𝐾𝑡−1 + 𝑅𝑡−𝑔 =∑(1 − 𝛿)𝑠𝑅𝑡−𝑠−𝑔

∞

𝑠=0

.  

Equation (5) can be seen as a special case of equation (3) in which the entire (infinitely long) 

distribution of lag weights, 𝑏𝑘 is represented by one parameter, δ (or two parameters if a nonzero 

gestation lag is included): 𝑏𝑠−𝑔 = (1 − 𝛿)𝑠.  While it is analytically and empirically convenient, 

this model imposes strong restrictions on both the length and shape of the R&D-productivity lag 

relationship.   
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As typically used, this model allows little or no time for the sequential processes of 

research, knowledge creation, and the development, diffusion and adoption of technology.2  The 

assumed gestation lag is usually very short (if not absent) as is the effective overall lag: in the 

benchmark case, as described by Li and Hall (2018), g ≤ 2 (and more often zero) and 𝛿 = 0.15.3  

Research has its maximum impact on productivity immediately or almost immediately, and 

thereafter the lag weights decline rapidly given high assumed rates of knowledge depreciation.  

This model seems highly implausible.  Why is it so popular?  We speculate that the 

amount and types of firm- or sectoral-level research expenditure data, as typically used in 

measures of industrial R&D knowledge stocks, are not amenable to estimating (and testing 

among) more plausible lag distribution models that have more flexible shapes and longer 

effective lags.  Moreover, the perpetual inventory-cum-geometric lag distribution model is quite 

convenient for applications using data in a very short time-series or a cross-section since the 

current R&D knowledge stock can be calculated using just the current annual rate of spending, 

and measures of (or assumptions about) the growth rate of that spending, and the rate of 

depreciation of the stock.4   

 

2 This remains so in almost all models of industrial R&D lags, even though some 30 years ago, Griliches (1992, pp. 

S41–42) declared: “… the more or less contemporaneous timing of such effects is just not possible.”  

3 Serfas et al. (2023) compiled 1,464 estimates of rates of return from 128 studies of industrial R&D.  Of those 1,464 

estimates, 97.3% were based on a perpetual inventory model; 88.2%, did not allow for any gestation lag; 64.4% used 

a knowledge depreciation rate of 𝛿 = 15% per year, and another 4.5% used a 𝛿 > 15% per year.  

4 The knowledge stock in the base period, B, can be approximated as KB = RB / (δ – 𝜃) where 𝜃 is the applicable 

(often assumed) growth rate of spending on research.  



8 

 

2.3 Growth Models 

As described by Jones (1995), the R&D-based models of economic growth associated 

with Romer (1990), Grossman and Helpman (1991a, b, c), and Aghion and Howitt (1992) all 

imply scale effects: “…an increase in the level of resources devoted to R&D should increase the 

growth rate of the economy” (Jones 1995, p. 761, emphasis in original).  Jones (1995, p. 760) 

points out that the “…prediction of scale effects is clearly at odds with empirical evidence” and 

attempts to revise the model to address that deficiency.  Others also have found fault with that 

model and its implausible empirical implications (see, e.g., Jones and Summers 2020).  Jones 

(2022) provides an up-to-date discussion of this model and variants. 

These issues notwithstanding, the same (unrevised) Romer-Aghion-Howitt model was 

employed by Bloom et al. (2020) in recent work that included illustrative applications to several 

industries, including U.S. agriculture.  Specifically, Bloom et al. (2020) presume the current rate 

of productivity growth is proportional to the current flow of research effort, represented by the 

number of scientists, S, measured as research spending divided by an index of the wage rate of 

scientists (which corresponds to R in our notation above).  That is, in their equation (1): 

(6) 
𝐴𝑡̇
𝐴𝑡
= α𝑆𝑡.  

In terms of our notation, the growth rate of productivity is measured by MFP, and equation (6) 

can be written as: 

(6’) 
Δ𝑀𝐹𝑃𝑡
𝑀𝐹𝑃𝑡

= 𝛼𝑅𝑡 ≈ 𝑑 ln𝑀𝐹𝑃𝑡,  

or, equivalently: 
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(6”) ln𝑀𝐹𝑃𝑡 = 𝛼𝑅𝑡 + ln𝑀𝐹𝑃𝑡−1.  

After repeated substitution for the lagged value of equation (6”), this can be rewritten as: 

(7) ln𝑀𝐹𝑃𝑡 = 𝛼∑𝑅𝑡−𝑛

∞

𝑛=0

= 𝛼𝐾𝑡,  

where the knowledge stock in year t is equal to the accumulated sum of research spending up to 

year t. 

This model assumes research investments have their maximum impact on productivity 

immediately (i.e., in the same year), without any gestation lag—like the majority of studies of 

industrial R&D but in contrast to almost all the studies of agricultural R&D.5  Further, it assumes 

these effects that begin immediately continue undiminished, forever.  This is significantly 

different from both the predominant models used in studies of industrial R&D (which imply 

rapidly and geometrically declining lag weights) and those used in prominent recent studies of 

agricultural R&D (which allow for rising and falling lag weights over a 35 to 50-year horizon).6  

 

5 We are aware of just one study contemplating economic growth models and industrial R&D models together, and 

ironically it entails an application to agriculture—in Italy.  Specifically, Esposito and Pierani (2003) employ a 

variant of the perpetual inventory model, with a lag distribution characterized by three parameters: (1) the 

knowledge depreciation rate, (2) a parameter that defines the length of the “gestation period” (before today’s R&D 

has its maximum impact on future productivity), and (3) a parameter that defines the shape of the lag distribution 

during the gestation period.  This lag distribution model seems less plausible than either the gamma lag distribution 

model or the trapezoidal distribution model, for most cases, but in practice it might yield similar results.  

6 Jones and Summers (2020) begin with a model in the same spirit as Romer (1990) and Bloom et al. (2020) and 

examine several reasons why the implied benefit-cost ratio may be too high, including a mis-specified R&D lag 

model.  They say “The above baseline assumes that the payoff from R&D investments occurs immediately.  Yet 

there may be substantive delays in receiving the fruits of R&D investments” (Jones and Summers p. 13). 

“Aggregating across the different types of research, a middle-of-the-road delay estimate may be 6.5 years…” (Jones 

and Summers p. 14).  These comments refer to the initial R&D lag and adoption processes, but do not address the 

issue of depreciation of knowledge in use.   
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Also, in its pertinent aspects, equation (7) is similar to equation (2) except that the knowledge 

stock enters linearly rather than in logarithmic form.  

2.4 Synopsis of Models—Nested Structure 

We have a total of four models to compare, namely: (1) the 50-year (truncated) gamma 

distribution model (associated with Alston et al. 2011) with its two parameters to be estimated 

using a grid search, (2) the 35-year trapezoidal model with its specific parameterization 

(associated with Huffman and Evenson 1993), (3) the geometric model (associated with Hall et 

al. 2010 among others) using depreciation rates of δ = 0.10 or 0.15, and (4) the Romer-Aghion-

Howitt model (used by Bloom et al. 2020 among others).7  For the first three of these models we 

impose in common a two-year gestation lag and we limit the maximum length of the R&D lag to 

50 years—as was already imposed by Huffman and Evenson (1993), by truncating at 35 years, 

and implicit as an approximation in the geometric lag model with δ = 0.10 or 0.15 since 0.9050 = 

0.005 and 0.8550 = 0.0003.  Further, we divide by the 50-year sum of the weights to obtain 

normalized weights that sum to 1.0.  For the Romer-Aghion-Howitt model we do not impose a 

gestation lag, we do not truncate the lags at 50 years, and we do not impose the restriction that 

the lag weights sum to 1 (indeed, they are all equal to 1).   

Specifically, for each of the gamma, trapezoidal, and geometric lag distribution models 

we envision the following linear regression model: 

(8) ln(𝑀𝐹𝑃𝑡) = 𝛽0 + 𝛽1 ln(𝐾𝑡) + 𝛽2𝑊𝑡 + 𝑇𝑡 + 𝜀𝑡,  

 

7 Details on the parameterization of the knowledge stocks for these four models are provided in the supplementary 

online appendix (Appendix Table 1). 
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where 𝑀𝐹𝑃𝑡, 𝐾𝑡, and 𝑊𝑡 are, respectively, multifactor productivity, the knowledge stock, and an 

agricultural weather index, 𝑇𝑡 is a linear time trend (where 1940 is the starting point with 𝑇𝑡 = 1), 

and 𝜀𝑡 is a residual, all in year t.  In contrast, for the Romer-Aghion-Howitt model, the 

knowledge stock enters additively rather than in logarithms:8 

(8’) ln(𝑀𝐹𝑃𝑡) = 𝛽0 + 𝛽1𝐾𝑡 + 𝛽2𝑊𝑡 + 𝑇𝑡 + 𝜀𝑡.  

In equation (8), the growth rate of productivity is proportional to the growth rate of the 

knowledge stock, and we can interpret 𝛽1 as the elasticity of productivity with respect to the 

knowledge stock.  However, in equation (8’), representing the Romer-Aghion-Howitt model, the 

growth rate of productivity is simply proportional to the knowledge stock; hence, the elasticity of 

productivity with respect to the knowledge stock is equal to 𝛽1𝐾𝑡.
9  

3.  Data 

We compare the alternative models in an application to U.S. agriculture, drawing on 

long-run data developed specifically for use in models like these by us with colleagues at the 

International Science and Technology Practice and Policy (InSTePP) Center at the University of 

Minnesota.  The data used in our analysis include (1) an annual index of U.S. agricultural 

multifactor productivity (MFP) for the period 1910–2007, obtained from InSTePP; (2) measures 

 

8 In our regression analysis we try a variant of this model in which we include the Romer-Aghion-Howitt R&D 

stock in logarithms rather than levels, to check the importance of this aspect of the difference between this model 

and the other seven models.  We thank Aaron Smith for prompting us to take this diagnostic step.  

9 Since the knowledge stock enters linearly and accumulates additively, the estimate of 𝛽1 in equation (8’) does not 

depend on the size of the initial knowledge stock in 1939, or how it is estimated, prior to the first observation of 

MFP, in 1940.  Changes in the initial knowledge stock will be absorbed as changes in the intercept without changing 

any of the slope coefficients.  Indeed, for that reason it would be possible to fit that model using data back to 1910—

the first year for which we have data available on both MFP and R (and hence, K). 
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of aggregate annual U.S. public agricultural R&D investments and the associated R&D deflator 

for the period 1890–2007, also sourced from InSTePP; and (3) a purpose-built weather index, 

which we compute based on crop yield data from the National Agricultural Statistics Service 

(NASS) of the United States Department of Agriculture (USDA), sourced from USDA-NASS 

(2017).  

3.1  Multifactor Productivity Index 

The InSTePP multifactor productivity (MFP) indexes are Fisher ideal discrete 

approximations of Divisia indexes derived from detailed data on quantities and prices of inputs 

and outputs in U.S. agriculture (see supplementary online appendix, Appendix Figure 1).  

Version 5 of the InSTePP data consists of annual observations of state-specific prices and 

quantities of 74 categories of outputs and 58 categories of inputs for the 48 contiguous U.S. 

states from 1949 to 2007, and a corresponding national aggregate.  To obtain a longer time series 

for the national aggregate, MFP is backcast to 1910 using year-to-year changes in the Laspeyres 

indexes of MFP for the period 1910–1949 from USDA-ERS (1983).  More details on the 

construction and backcasting of this MFP index can be found in the book by Alston et al. (2010) 

and the online appendix of Pardey and Alston (2021).  

3.2  Public Agricultural R&D Investment  

InSTePP also provides data on U.S. public agricultural research expenditures for the 

period 1890–2007, primarily reflecting funding from the federal government to support 

intramural research undertaken by USDA, and from both federal and state governments to 

provide for R&D undertaken by the State Agricultural Experiment Stations (SAESs), affiliated 
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with land grant universities.10  As well as funds from various federal and state government 

agencies, SAESs obtain funding from industry grants and contracts and income earned from 

sales, royalties, and various other sources.  During the period 1903–1942, USDA intramural 

research and SAES research contributed almost equally to total public agricultural research 

spending in the United States.  However, since WWII the paths have diverged, and SAES 

research spending has increasingly exceeded federal intramural research spending, peaking at 75 

percent of total public agricultural R&D spending in 2002 (Pardey et al. 2013 and 2017).11   

3.3  Agriculturally Relevant Weather Shocks 

Year-to-year fluctuations in crop yields around trend are highly influenced by weather 

(Beddow et al. 2014), making yield deviations from trend a useful proxy of the transient 

agricultural productivity effects of weather.  Our composite index of crop yield deviations from 

trend is based on an area-weighted average yield for the years 1940–2007, calculated using yield 

data for the top 10 crops (by harvested area) taken from USDA-NASS (2017).  First, we ranked 

all 44 field crops in the USDA-NASS (2017) listing according to their average annual harvested 

areas for the period 1940–2007.  Then we selected the top 10 field crops by area (accounting for 

78 percent of total harvested area), namely: corn, hay, wheat, soybeans, oats, cotton, sorghum, 

barley, rice and flaxseed.  Since yields vary considerably across crops, we used standardized 

 

10 For our analysis in this paper, expenditures were converted to constant (2019-dollar) values using the InSTePP 

R&D price deflator (unpublished series, updated from Pardey et al. 1989).  

11 These measures are plotted in the supplementary online appendix (Appendix Figure 2).  More detail on these data 

and the history of U.S. agricultural R&D investments can be gleaned from Alston et al. (2010, chapter 6) and Pardey 

et al. (2013). 
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yields for each crop.12  These standardized annual, national-average crop yields were aggregated 

by years using as weights each crop’s annual share of the total U.S. value of production (also 

from USDA-NASS, 2017).  The resulting series was then used in the following time-trend 

regression:13 

(9) 𝑦𝑖𝑒𝑙𝑑𝑡 = 𝛼 + 𝑇𝑡 + 𝑇𝑡
3 + ε𝑡 ,  

where 𝑦𝑖𝑒𝑙𝑑𝑡 is aggregated standardized yield in year t, and 𝑇𝑡 is the time trend created by 

calendar year minus 1939.   

We constructed the agricultural weather index in year t as a composite of yield deviations 

from trend: 𝑦𝑖𝑒𝑙𝑑𝑡 − 𝑦𝑖𝑒𝑙𝑑𝑡̂ , where: 𝑦𝑖𝑒𝑙𝑑𝑡 is the weighted average of the observed yields, 

aggregated across crops, and 𝑦𝑖𝑒𝑙𝑑𝑡̂  is fitted yields from equation (1).  U.S. agriculture suffered 

an extended drought in the 1950s (see, e.g., Nace and Pluhowski 1965), and the year 1988 was a 

severe drought year (see, e.g., GAO 1989), as is apparent in both the yield index and the plot of 

deviations around it.14  

 

12 Standardized annual yields were computed by subtracting the mean of the series from each observation and 

dividing by the standard deviation of the series to reduce the effects of differences in average yields among crops. 

13 Alternative specifications were tried.  In particular, we estimated models that included the following terms on the 

right-hand side of equation (9) besides the constant coefficient 𝛼: (a) a linear time trend 𝑇𝑡; (b) a linear time trend 𝑇𝑡 

and a quadratic time trend 𝑇𝑡
2; (c) a linear time trend 𝑇𝑡, a quadratic time trend 𝑇𝑡

2, and a cubic time trend 𝑇𝑡
3.  All 

these specifications, including the one in equation (9), are not statistically significantly different from one another 

based on F tests.  However, equation (9) results in a slightly higher adjusted 𝑅2 and a slightly lower AIC, which 

indicates a better fit to our data.  Detailed results are included in the supplementary online appendix, Appendix 

Table 2. 

14 In the supplementary online appendix (Appendix Figure 3) the fitted aggregated yield, 𝑦𝑖𝑒𝑙𝑑𝑡̂  is plotted against 

the observed aggregated yield, 𝑦𝑖𝑒𝑙𝑑𝑡.   
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4. Time-Series Properties and Lag Model Selection 

Ultimately, we aim to estimate the elasticity of productivity with respect to the 

knowledge stock and the implied benefit-cost ratio (BCR) for agricultural R&D, to see how 

those estimates compare among the models that differ in terms of the lag specification, and to 

make an informed choice from among those alternatives.  Drawing on Andersen and Song 

(2013), we propose a systematic method for model selection, which begins with an examination 

of the time-series properties of the knowledge stocks from each of our lag distribution models 

(including 64 gamma lag distribution models, as well as the trapezoidal lag distribution model, 

two geometric lag distribution models, and the Romer-Aghion-Howitt model), and the 

relationship with other variables, namely MFP and the agricultural weather index. 

Whether we are estimating (8) or (8’), we are primarily interested in the estimate of the 

response of MFP to changes in the knowledge stock, represented by 𝛽1.  But for the estimate of 

𝛽1 to be meaningful, either the sequences of ln(𝑀𝐹𝑃𝑡), ln(𝐾𝑡) (or 𝐾𝑡 for the Romer-Aghion-

Howitt model), and 𝑊𝑡 must be stationary or some linear combination of these variables must be 

stationary.  Otherwise, we will get what Granger and Newbold (1974) call spurious regressions 

resulting in misleading estimates of 𝛽1.  To address this aspect, we first test the stationarity of 

ln(𝑀𝐹𝑃𝑡), its first difference, Δ ln(𝑀𝐹𝑃𝑡), and 𝑊𝑡 using the GLS-ADF test (a modified version 

of the augmented Dickey-Fuller test) proposed by Elliott et al. (1996).  Elliott et al. (1996) 

showed that the GLS-ADF test has better power than the standard ADF test when a linear time 

trend is present in the data (we can see a clear trend in ln(𝑀𝐹𝑃𝑡) in online Appendix Figure 1).   

The test results are summarized in the online appendix (Appendix Table 3).  In the GLS-

ADF test the null hypothesis is that the time series is nonstationary.  The results indicate that 𝑊𝑡 
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is stationary.  Although ln(𝑀𝐹𝑃𝑡) is nonstationary, its first difference (i.e., Δln(𝑀𝐹𝑃𝑡)) is 

stationary, which indicates ln(𝑀𝐹𝑃𝑡) is integrated of order one, I(1).  Therefore, to avoid 

running spurious regressions, requires that ln(𝐾𝑡) (or 𝐾𝑡 for the Romer-Aghion-Howitt model) 

also is I(1) and cointegrated with ln(𝑀𝐹𝑃𝑡).
15  The stationarity criterion eliminates 46 of the 64 

(i.e., 8 x 8) parameterizations of the gamma lag model included in our grid search.  

Our next step is to test whether ln(𝐾𝑡) and ln(𝑀𝐹𝑃𝑡) are cointegrated.  We opted to 

perform two cointegration tests: the Johansen (1998) test and the Phillips-Perron (1988) test.  

The main results are summarized in Table 1.16  In brief, only three gamma lag models 

(designated here and henceforth as Models 1, 2, and 3) pass all the time-series tests.  For 

purposes of comparison, we also include results for another gamma model (Model 4, using 

parameters from Alston et al. 2011), as well as the trapezoidal lag distribution model (Model 5), 

the two geometric lag distribution models (Models 6 and 7), the Romer-Aghion-Howitt model 

(Model 8), and a logarithmic variant of the Romer-Aghion-Howitt model (Model 9), none of 

which has entirely satisfactory time-series properties.  

[Table 1. Cointegration Tests with Alternative Lag Distribution Models] 

In Table 1, columns (4) and (5) refer to the results from applying the same time-series 

stationarity tests as above, but here with respect to the knowledge stock in order to determine its 

order of integration.  The numbers in columns (4) and (5) indicate we reject the null hypothesis 

 

15 For the Romer-Aghion-Howitt model, we perform all the time-series tests with respect to 𝐾𝑡 instead of ln(𝐾𝑡). 

16 Further details regarding test statistics, optimal lags, and critical values are included in the supplementary online 

appendix, Appendix Tables 4.1–4.3.   
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at the specific percentage significance levels shown (i.e., 1%, 5%, or 10%).  As discussed above, 

we require ln(𝐾𝑡) to be I(1), which implies we should fail to reject the hypothesis in column (4) 

but reject the nonstationary hypothesis in column (5).  Models 1, 2, 3, 6, and 7 satisfy this 

criterion for I(1) knowledge stocks. 

Next, for the cointegration test, we regress ln(𝑀𝐹𝑃𝑡) on ln(𝐾𝑡) (or 𝐾𝑡 for Model 8) and 

run Phillips-Perron tests on the residuals.  The null hypothesis is that a unit root is present in the 

residuals.  The results are shown in column (6) of Table 1.  Models 1–5 pass this test but Models 

6–8 fail.  Finally, in Table 1, column (7) we denote that a model passes the Johansen test if it 

both (1) rejects the hypothesis that there is no cointegrating equation defined by linearly 

combining ln(𝑀𝐹𝑃𝑡) and ln(𝐾𝑡) (or 𝐾𝑡 for Model 8), and (2) does not reject the hypothesis that 

no more than one cointegrating equation is defined by the two variables.  In other words, 

ln(𝑀𝐹𝑃𝑡) and ln(𝐾𝑡) (or 𝐾𝑡 for Model 8) form only a single stationary time series.  All of the 

models except the trapezoidal lag model (Model 5) pass the Johansen test.  Only the four gamma 

lag distribution models (Models 1–4) and the logarithmic variant of the Romer-Aghion-Howitt 

model (Model 9) pass both the Phillips-Perron and Johansen tests.17   

[Figure 1: Lag Distribution Shapes for Models 1–7] 

Based on this battery of statistical tests, and our strong priors regarding the general 

structure of the R&D lag, our preferred model is Model 1: a gamma model with 𝛾 = 0.75 and 

𝜆 = 0.80.  In Figure 1, we depict the distribution of lag weights assigned to past investments for 

 

17 These cointegration tests are strictly relevant only for the models that had satisfied the stationarity tests.   
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this model and Models 2 through 7 (i.e., all the models except for the Romer-Aghion-Howitt 

model and its variant, Models 8 and 9).  We calculate the peak and average lag for each model 

and summarize the information in Table 2.  Our preferred gamma model has its peak at year 13, 

which implies R&D investments make their greatest contribution to the useful knowledge stock 

13 years later.  Although the lag distribution from this model has a potential lag length of 50 

years, its shape is much more similar to that of the trapezoidal model (Model 5, with an imposed 

lag length of 35 years) than that of Model 4 (with its much longer effective lag length), which 

was preferred by Alston et al. (2010, 2011).  

[Table 2. Peak Lag Year and Mean Lag for Models 1–7] 

5. Corrections for Autocorrelation and Heteroskedasticity 

As noted by Anderson and Song (2013) in a similar context, ordinary least-squares (OLS) 

can provide consistent estimators given stationary relationships among the variables in our 

specification.  However, the estimators and inferences may be biased if the residuals are not 

independent and identically distributed.  The residuals from OLS estimates of equation (8) for 

the three gamma lag distribution models that pass the time-series tests (Models 1–3) are plotted 

in the supplementary online appendix (Appendix Figure 4).  Although the knowledge stock 

differs across these models, the plots of the residuals are similar.  From 1940 to 1970, the models 

seem to suffer from autocorrelation, and each of the three residual plots exhibits a wide apparent 

range of variance.  Accordingly, we conduct tests for heteroskedasticity and autocorrelation, and 

ultimately utilize estimates from regression models with corrections for heteroskedasticity and 

autocorrelation.   
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Detailed results from formal tests for heteroskedasticity and autocorrelation are provided 

in the online appendix (Appendix Tables 5.1–5.3).  To test for heteroskedasticity we use the 

White test for nonlinear forms of heteroskedasticity and the Breusch-Pagan test for linear forms 

of heteroskedasticity.  The null hypothesis is that the errors have a constant variance.  Since we 

do not have a large data set, we implemented Wooldridge’s (2015) version of the White test to 

save degrees of freedom.  The results indicate that we might have a nonlinear heteroskedasticity 

problem in the error terms: we reject the null hypothesis of constant error variance using the 

White test at a 5% significance level, though not at 1%.  In our OLS and dynamic OLS 

regressions, we use Newey-West heteroskedasticity and autocorrelation consistent (HAC) 

standard errors.18  In the regressions that use the Cochrane-Orcutt procedure or the Prais-Winsten 

procedure to correct for autocorrelation we use Eicker-Huber-White standard errors to correct for 

heteroskedasticity.  These corrections will not affect the point estimates of 𝛽1.  However, they 

will affect the confidence intervals. 

We considered Durbin-Watson (DW) and Breusch-Godfrey (BG) tests to test for 

autocorrelation in the error terms.  The DW test can be used to test for a first-order 

autoregressive structure in models where the error terms follow a normal distribution and the 

regressors are strictly exogeneous.  The BG test can be used to test for higher orders of 

autoregressive structures, and it also does not require regressors to be strictly exogenous.  From 

the test results, we reject the null hypothesis that there is no autocorrelation in the error terms up 

to the specified lags.  The evidence strongly suggests that we should correct for at least first-

 

18 We use Newey-West HAC estimators with pre-whitening and a finite sample adjustment. See the R manual on the 

function NeweyWest for details. 
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order autocorrelation in the error terms, and we consider three options for doing so: dynamic 

OLS (Stock and Watson, 1993), the Cochrane-Orcutt procedure, and the Prais-Winsten 

procedure.  The dynamic OLS method does not specify the order of autocorrelation while the 

latter two procedures take care of AR(1) serial correlation in the errors.  Compared with the 

Cochrane-Orcutt procedure, the Prais-Winsten procedure has the advantage of preserving the 

first observation in the data transformation step and, given a small sample size, it might produce 

different results.   

6. Regression Results, Elasticities and Benefit-Cost Ratios 

The dynamic OLS estimates are preferred because this procedure corrects for more 

general autocorrelation problems.  In Table 3, we report complete results for all nine lag 

distribution models estimated using dynamic OLS with Newey-West HAC standard errors.19  

Corresponding results estimated with OLS, the Cochrane-Orcutt and the Prais-Winsten 

procedures are reported in the online appendix (Appendix Tables 6.1–6.3).  In Table 3, the 

preferred R&D lag model (on both statistical and conceptual grounds) is Model 1, and the other 

models are presented for purposes of comparison and to illustrate the consequences of model 

specification choices. 

 

19 Stock and Watson (1993) did not provide an empirical procedure for selecting the optimal lags and leads for the 

first difference of the cointegrated regressors (i.e., Δln(𝐾𝑡) = ln(𝐾𝑡) − ln(𝐾𝑡−1) for equation (8) and Δ𝐾𝑡 = 𝐾𝑡 −
𝐾𝑡−1 for equation (8′)).  We follow a data-driven procedure as used by Choi and Kurozumi (2012) to select the 

optimal lags and leads.  In particular, we first define the maximum numbers of lags and leads using 

floor(4 × (𝑇/100)1/4), where floor(x) is a floor function which gives the greatest integer less than or equal to x, 

and T is the total number of years in our data.  The resulting maximum number of lags and leads in our sample is 

three.  Next, we run dynamic OLS regressions with different combinations of lags and leads (Δln(𝐾𝑡±𝑖) =
ln(𝐾𝑡±𝑖) − ln(𝐾𝑡±𝑖−1), where 𝑖 ∈ {1,2,3}) and compute the BIC for each model.  The model with the optimal lags 

and leads will produce the smallest BIC.   
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[Table 3.  Dynamic OLS Regressions of MFP against Knowledge Stocks] 

Estimation procedures might also matter for findings.  In Table 4, we focus on the 

estimates of the elasticities of MFP with respect to the knowledge stock from those same 

regressions across the nine lag distribution models and the four different estimation procedures.   

[Table 4. Estimated Elasticities from Alternative Models and Estimators] 

6.1  Elasticity Estimates 

In the OLS estimates (Table 4, column (1)), all of the coefficients except one are 

estimated quite precisely with small standard errors, they are all in keeping with prior 

expectations and the relevant economic theory, and they are quite similar across all but one of 

the nine models.  The notable and sole exception is the coefficient on the knowledge stock in the 

Romer-Aghion-Howitt model (Model 8) for which the point estimate in column (3) is not 

statistically significantly different from zero at the 5% level of significance.20   

Comparing the estimates across columns (1)–(4) of Table 4, we see that the corrections 

for autocorrelation had mostly modest effects on the point estimates of the elasticities of 

productivity with respect to the knowledge stock.  The notable exceptions are meaningful 

increases, especially with dynamic OLS, in the point estimates of the elasticities for Models 3, 4, 

and 9—models with larger mean lags compared with the other methods.  However, even when 

they did not increase the point estimates, the autocorrelation corrections affected the standard 

 

20 Recall, in the Romer-Aghion-Howitt model, the elasticity of productivity with respect to the knowledge stock is 

equal to 𝛽1𝐾𝑡, whereas in the other models the elasticity of productivity with respect to the knowledge stock is equal 

to 𝛽1.  
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errors on some of the estimates of elasticities of productivity with respect to the knowledge 

stock, sufficiently to change the inferences in some cases—notably in Models 3 and 4.   

When the Cochrane-Orcutt procedure is employed (column (2)) nothing changes very 

much compared with OLS (column (1)), but more pronounced differences are observed when the 

Prais-Winsten procedure is employed (column (3)), reflecting the combination of smaller 

estimated standard errors and larger point estimates of elasticities.  Now, compared with the OLS 

estimates (column (1)), the elasticity of productivity with respect to the knowledge stock in 

Model 2 is statistically significantly different from zero at the 1% level of significance, rather 

than 5%; the elasticities in Models 3, 4, 6, 7 and 9 are statistically significantly different from 

zero at the 5% level, but not 1%; and the elasticity from Model 8 is now statistically significant 

at the 10% level but not 5%.   

Compared with OLS, the dynamic OLS regressions result in a slightly less precise and 

less statistically significant estimate of the elasticity of productivity with respect to the 

knowledge stock in the preferred model (from 1% to 5%) and significantly more precise 

estimates of the elasticities from three other models: elasticities from Models 3, 4, and 9 that 

were not statistically significant are now all significantly different from zero at the 1% level.  

This might be because the leads and lags of the first differences of the knowledge stock variables 

absorb short-term noise, resulting in more precise estimators of the long-run cointegration 

relationships (i.e., elasticities).   

In what follows we focus on the estimates obtained using the dynamic OLS regressions.  

The elasticities reported in column (4) of Table 4 for lag distribution Models 1–7 and 9 range 

from 0.201 to 0.386.  This is a remarkably narrow range given the considerable differences in the 
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shapes of the lag distributions across the models.  The largest value comes from Model 3.  The 

point estimate of the elasticity for Model 1 is essentially the same across the different estimation 

methods (0.290 for OLS, 0.306 for Cochrane-Orcutt, 0.307 for Prais-Winsten, and 0.277 for 

dynamic OLS). 

6.2  Benefit-Cost Ratios 

As first suggested by Griliches (1958) the gross annual benefits from productivity growth 

are approximately equal to the product of the gross value of production, V, and the growth rate of 

multifactor productivity, MFP: 

(10) 𝐵𝑡 ≈
Δ𝑀𝐹𝑃𝑡
𝑀𝐹𝑃𝑡

× 𝑉𝑡 ≈ 𝑑 ln𝑀𝐹𝑃𝑡 × 𝑉𝑡.  

In equation (8), growth in multifactor productivity is linked to research spending through 

the knowledge stock, K: 

(11) 𝑑 ln𝑀𝐹𝑃𝑡 = 𝛽1𝑑 ln𝐾𝑡  where 𝐾𝑡 =∑𝑏𝑘

∞

𝑘=0

𝑅𝑡−𝑘  

An increase in research spending in the current year, t, by Δ𝑅𝑡 will give rise to a stream of 

benefits from its effects on the time path of the stock of knowledge and thus productivity: 

(12) 𝑑
𝛥𝑀𝐹𝑃𝑡+𝑘
𝑀𝐹𝑃𝑡+𝑘

|
Δ𝑅𝑡

= 𝛽1
𝛥𝐾𝑡+𝑘
𝐾𝑡+𝑘

|
Δ𝑅𝑡

= 𝛽1
𝑏𝑘Δ𝑅𝑡
𝐾𝑡+𝑘

.  

Given a discount rate of 100 r percent per year, the discounted present value of benefits from an 

increase in research spending in the current year, t, is therefore equal to: 
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(13) 

𝑃𝑉𝐵𝑡 =∑
Δ𝑀𝐹𝑃𝑡+𝑘
𝑀𝐹𝑃𝑡+𝑘

|
Δ𝑅𝑡

𝑉𝑡+𝑘 (1 + 𝑟)
−𝑘

∞

𝑘=0

=∑𝛽1 𝑏𝑘 Δ𝑅𝑡
𝑉𝑡+𝑘
𝐾𝑡+𝑘

(1 + 𝑟)−𝑘
∞

𝑘=0

 

 

Hence, the benefit-cost ratio (BCR) for an increase in research spending in year t by Δ𝑅𝑡 is:21 

(14) 𝐵𝐶𝑅𝑡 =
𝑃𝑉𝐵𝑡
Δ𝑅𝑡

= 𝛽1∑𝑏𝑘
𝑉𝑡+𝑘
𝐾𝑡+𝑘

(1 + 𝑟)−𝑘
∞

𝑘=0

.  

Table 5 presents the BCRs and 95% confidence intervals computed using a real discount 

rate of 3 percent per year (i.e., r = 0.03) for the seven models that yielded sensible results 

(Models 1–7).  The BCRs were computed using equation (13) with the elasticities estimated by 

OLS (column (1)), or with corrections for autocorrelation using either the Cochrane-Orcutt 

procedure (column (2)), the Prais-Winsten procedure (column (3)), or dynamic OLS (column 

(4)), the last of which is the preferred estimation procedure.   

[Table 5. Benefit-Cost Ratios from Various Models] 

The first row of Table 5 refers to results for our preferred lag distribution model (Model 

1).  In column (4), the dynamic OLS estimate of the BCR is 23.4, and it is statistically 

 

21 Reflecting the difference between equations (8) and (8’), the benefit-cost ratio for the Romer-Aghion-Howitt 

model is different, specifically 

𝐵𝐶𝑅𝑡 =
𝑃𝑉𝐵𝑡
𝑅𝑡

= 𝛽1∑𝑉𝑡+𝑘(1 + 𝑟)
−𝑘 .

∞

𝑘=0
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significantly different from zero.  In columns (1), (2) and (3), the alternative estimation 

procedures yield very similar estimates (24.5, 25.9, and 26.0) for Model 1.  The same is true for 

the estimates of BCRs for Models 2–7: looking across columns in any specific row the estimates 

are very similar.  Reflecting the results with respect to elasticities, the OLS estimates of BCRs 

are mostly statistically significantly different from zero.  However only four lag distribution 

models yield statistically significant BCR estimates across all estimation procedures: the 

preferred gamma model (Model 1), the almost identical trapezoidal model (Model 5), the 

somewhat similar gamma model (Model 2), and the geometric model with 10% depreciation 

(Model 6).  Recall, of these four models, only Models 1 and 2 satisfy the time-series conditions 

required for robust estimates.   

The preferred estimates of BCRs are those in column (4), based on the dynamic OLS 

regressions.  They are all statistically significantly different from zero across eight of the nine lag 

distribution models, the exception being the Romer-Aghion-Howitt Model.  Looking down 

column (4), among the eight lag distribution models the estimated BCRs range from 18.5 (Model 

7) to 27.3 (Model 3), a surprisingly narrow range at first blush.  These differences in BCRs 

reflect the effects of differences in elasticities combined with different lag shapes and 

discounting—a lag distribution with a greater mean lag, everything else equal, will have a 

smaller BCR and more so if the discount rate is greater.   

Compared with Model 1 (our preferred gamma lag model, with a BCR of 23.4), Model 5 

(the trapezoidal lag model) has a slightly larger BCR (25.2) reflecting its combination of a 

slightly larger elasticity and a somewhat shorter lag—it peaks at years 9 to 15 compared with 

year 13 for Model 1.  In contrast, Model 2 has a smaller elasticity and a somewhat longer lag 
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resulting in a somewhat smaller BCR (20.5).  The other two gamma lag distribution models 

(Models 3 and 4) both have substantially longer lags.  In spite of its relatively long lag, Model 3 

has the highest BCR (27.3) reflecting its considerably larger elasticity, while Model 4 has both a 

smaller elasticity and a long lag; hence, a relatively small BCR (18.9).  Finally, while they too 

have smaller elasticities the two geometric lag distribution models (Models 6 and 7) also have 

much shorter lags, with offsetting effects on the estimated BCRs (21.0 and 18.5 respectively). 

The results in Table 5 were obtained with a discount rate of 3 percent per year, which we 

think is appropriate for this application.  In the supplementary online appendix (see Appendix 

Table 7) we show the consequences of alternative discount rates applied to compute BCRs with 

the dynamic OLS estimates of the elasticities.  In every row of this table, as we increase the 

discount rate from a very low (r = 0.001, 0.1 percent per year) to a very high (r = 0.10, 10 

percent per year) the estimated BCR falls—for our preferred model it falls from a high of 36.3 to 

a low of 9.8, still quite impressive, bracketing the BCR in column (2) of 23.4.  But this effect is 

more pronounced for the models with the longer lags, with implications for the relative sizes of 

the BCRs across models and even the ranking of the models.  In column (4), with a 10 percent 

discount rate the geometric models (Models 6, and 7) now have BCRs greater than that for the 

preferred model (Model 1). 

One of the striking features of these results is the strong similarity and substantial size 

and statistical significance of the estimated BCRs regardless of whether the underlying lag 

distribution model is fully consistent with priors (Models 1 through 5) or totally at odds with 

them (Models 6, 7 and 8).  That this is so can be partly understood by considering the extensive 

discussion of “Plausibility of Estimates” in the book by Alston et al. (2010, pp. 423–435).  As 
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they show there, the annual value of agricultural productivity growth is many times greater than 

annual public spending on agricultural R&D.  Hence, if the productivity growth is attributed 

entirely or mostly to that R&D spending, the BCR must be very large even if a long R&D lag is 

imposed.  This aspect of the analysis is common across all the models and the variants tried.22   

7. Conclusion 

The work in this paper was inspired by our observation of striking differences in the 

predominant R&D lag distribution models currently being used by economists studying the 

economics of agricultural R&D, compared with economists studying the economics of R&D in 

other industries or modeling economic growth more broadly.  Specifically, recent applications to 

agricultural R&D typically employ a 35- to 50-year R&D lag distribution model, with phases of 

rising and falling lag weights as innovations are progressively created, introduced, adopted and 

eventually replaced.  In contrast, stereotypical models of industrial R&D and popular economic 

growth models entail much less likely assumptions of very short or nonexistent R&D lags and 

very high (at one extreme) or zero (at the other extreme) rates of knowledge depreciation.  In 

addition, the same models also imply that R&D spending has its maximum effect on productivity 

(or profits) in the year in which it is spent, or very shortly thereafter.  

 

22 A related consideration discussed by Alston et al. (2010) is the potential for attribution bias resulting from the 

omission of potentially relevant explanatory variables such as agricultural extension knowledge stocks (as included 

in the model used by Alston et al. 2010, 2011), private agricultural R&D knowledge stocks (as tried but without any 

empirical success by Huffman and Evenson 2006) or other sources of technology spillovers such as international 

agricultural R&D or other U.S. industrial R&D.  These omissions might have resulted in upward-biased estimates of 

the elasticities and, consequently, the BCRs from all the models.  However, we suspect these biases would be 

modest, for the reasons given by Alston et al. (2010). 
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We set out to codify these differences into a nested structure and conduct a comparative 

assessment of their empirical consequences using a comparatively rich data set in relatively long 

time-series.  Our data set for U.S. agriculture is similar to those used by others in several recent 

studies (see, e.g., Alston et al. 2011; Andersen and Song 2013; Baldos et al. 2019), and it is a 

context in which we have strong priors, based on detailed evidence of various forms, about the 

credibility of models that entail assumptions of very short or nonexistent R&D lags and extreme 

assumptions about the rate of knowledge depreciation (see, e.g., Pardey et al., 2010 and Alston et 

al. 2010, 2011, and 2022b). 

The quantitative results are surprising in some ways.  First, apart from the Romer-

Aghion-Howitt model, the models all yielded rather similar estimates of elasticities of 

productivity with respect to the R&D knowledge stock and, in turn, quite comparable estimates 

of BCRs—all well within the range of widely accepted status quo estimates (see, e.g., the review 

by Fuglie 2018).  If someone had naïvely estimated just one (any one) of these models by OLS, 

viewing the estimates uncritically they might have been well pleased by the seemingly strong 

and apparently credible results. 

But even if they work well as statistical models, two of these models (the geometric lag 

distribution models, Models 6 and 7) are not at all plausible in the application to U.S. agriculture, 

if anywhere (Alston et al. 2022a).  Further, four of the seven models (Models 4, 5, 6, and 7) fail 

to satisfy time-series (stationarity and cointegration) tests.  Notably, we rejected (Model 4) the 

specific gamma lag distribution model that was found to be best in the similar application by 

Alston et al. (2010, 2011).  Fortunately, we were able to estimate two models (Models 1 and 2) 

that performed well as statistical models, that were not inconsistent with our prior expectations 
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regarding the likely length and shape of the R&D lag distribution, and that yielded plausible and 

statistically significant results within the range of reasonable expectations.   

Interestingly, our preferred gamma lag distribution model is quite different in its general 

shape from the model preferred by Alston et al. (2010, 2011).  Even though it allows for a 

longer, 50-year, lag it has a very similar overall shape to the shorter (35-year) Huffman and 

Evenson (1993) trapezoidal lag model.  It also appears to be very similar in shape to the 

preferred gamma lag model identified by Baldos et al. (2019), which also implies a similar value 

for the BCR.  Moreover, the estimate of the elasticity of productivity with respect to the 

knowledge stock (0.28) from our preferred model is remarkably close to what Baldos et al. 

(2019) estimated (0.29) using a Bayesian hierarchical approach.23   

Most researchers are not in a position to estimate a flexible lag distribution model and 

test among alternatives in the ways we have done here using data for U.S. agricultural R&D.  

Instead, almost all studies linking R&D to productivity simply impose untested assumptions 

about the length and shape of the R&D lag, which can potentially have profound implications for 

the results.  Some such assumptions are inevitable and indeed desirable.  Forty years ago, Zvi 

Griliches (1979, p. 106, emphasis in original) suggested “… it is probably best to assume a 

functional form for the lag distribution on the basis of prior knowledge and general 

considerations and not to expect the data to answer such fine questions.”   

 

23 Fuglie (2018, p. 437) reports an elasticity of MFP with respect to national public agricultural R&D equal to 0.30 

for North America, computed as the average of estimates across seven studies.   
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But Griliches does not tell us what to assume about the form for the R&D lag 

distribution, and at least some groups of economists—in particular, those measuring returns to 

industrial R&D or using R&D-based models of economic growth—have made a habit of 

imposing assumptions in their lag distribution models that seem to be significantly at odds with 

reality, even after allowing for differences in market settings and the types of data used in 

industrial versus agricultural applications (Alston et al. 2022b).  It should be possible to make 

better judgments about this aspect of model specification.  Getting these ideas right matters.  

Even though they might seem superficially similar—in terms of the estimated elasticities and 

BCRs—the alternative lag distribution models can have profoundly different implications for our 

economic understanding of the linkages between investments in R&D, productivity, and 

economic growth, and the temporal structure of those linkages. 
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TABLE 1—COINTEGRATION TESTS WITH ALTERNATIVE LAG DISTRIBUTION MODELS 

 

SSE 
GLS-ADF 

Phillips-

Perron test 

Johansen 

test 

    Model Model Specification ln(𝐾𝑡) Δ ln(𝐾𝑡)   

 (1) (2) (3) (4) (5) (6) (7) 

1 Gamma 
𝛾 = 0.75 

𝜆 = 0.80 
0.074 Fail 10% 1% Pass 

2  
𝛾 = 0.75 

𝜆 = 0.85 
0.083 Fail 1% 1% Pass 

3  
𝛾 = 0.85 

𝜆 = 0.80 
0.096 Fail 10% 1% Pass 

4  
𝛾 = 0.90 

𝜆 = 0.70 
0.098 Fail Fail 1% Pass 

5 Trapezoidal  0.073 10% Fail 1% Fail 

6 Geometric 𝛿 = 0.10 0.077 Fail 10% Fail Pass 

7  𝛿 = 0.15 0.078 Fail 5% Fail Pass 

8 Romer-Aghion-Howitt 𝐾𝑡 0.100 1% Fail Fail Pass 

9  ln(𝐾𝑡) 0.086 Fail 10% 1% Pass 

Sources: Developed by the authors. 

Notes: SSE (sum of squared errors) is calculated from estimating equation (8) for models 1–7 and 9, and equation (8’) for 

Model 8.  In the case of the Romer-Aghion-Howitt model (Model 8), the entries in columns (4) and (5) refer to 𝐾𝑡 and 

Δ𝐾𝑡 rather than ln(𝐾𝑡) and Δ ln(𝐾𝑡).  The numbers in columns (4) through (7) indicate we reject the null hypothesis at the 

specific percentage significance levels shown (i.e., 1%, 5%, or 10%). 
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FIGURE 1—LAG DISTRIBUTION SHAPES FOR MODELS 1–7 

 

Sources: Developed by the authors. 

Notes: Gamma lag distribution models (Models 1–4) are shown in blue; the trapezoidal lag distribution 

(Model 5) is shown in green; the geometric lag distribution models (Models 6 and 7) are shown in 

orange; the Romer-Aghion-Howitt model (Model 8) is not depicted here.  Table 1 includes a summary 

of the parametrizations of these lag distribution models.  
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TABLE 2—PEAK LAG YEAR AND MEAN LAG FOR MODELS 1–7 

Model Model Specification 
Lag (years) 

Peak Mean Maximum 

1 Gamma 𝛾 = 0.75, 𝜆 = 0.80 13 17.8 50 

2  𝛾 = 0.75, 𝜆 = 0.85 18 23.3 50 

3  𝛾 = 0.85, 𝜆 = 0.80 25 28.3 50 

4  𝛾 = 0.90, 𝜆 = 0.70 25 27.6 50 

5 Trapezoidal  9 15.7 35 

6 Geometric 𝛿 = 0.10 2 10.7 ∞ 

7  𝛿 = 0.15 2 7.7 ∞ 

Sources: Developed by the authors. 

Notes: Derived from fitted models reported in Table 3. 
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TABLE 3—DYNAMIC OLS REGRESSIONS OF MFP AGAINST ALTERNATIVE KNOWLEDGE STOCKS 

 

 

Model 

Lag Model 

(Parameters) 

Regressors 

Constant ln(𝐾𝑡) 𝑊𝑡 𝑇𝑡 ∆ ln(𝐾𝑡) ∆ ln(𝐾𝑡−1) ∆ ln(𝐾𝑡+1) 

(1) (2) (3) (4) (5) (6) (7) 

1 Gamma 2.914*** 0.277** 0.020*** 0.010** -8.200 9.156  

 (0.75, 0.80)  (0.639) (0.106) (0.006) (0.004) (6.608) (6.256)  

2 Gamma 2.874*** 0.260** 0.020*** 0.012*** -12.334 17.354  

 (0.75, 0.85)  (0.654) (0.109) (0.006) (0.004) (12.319) (11.676)  

3 Gamma 1.922*** 0.386*** 0.025*** 0.009*** 2.224 7.225  

 (0.85, 0.80)  (0.558) (0.084) (0.005) (0.003) (9.682) (9.969)  

4 Gamma 2.455*** 0.267*** 0.026*** 0.015*** 88.593***  -72.038 

 (0.90, 0.70)  (0.371) (0.058) (0.003) (0.002) (22.111)  (45.065) 

5 Trapezoidal 2.843*** 0.292*** 0.020*** 0.009** 9.489*  -9.561* 

   (0.658) (0.109) (0.005) (0.004) (5.604)  (5.663) 

6 Geometric 3.235*** 0.232*** 0.019*** 0.011*** -0.206  -0.846 

 (𝛿 = 0.10)  (0.352) (0.053) (0.005) (0.002) (0.801)  (0.812) 

7 Geometric 3.414*** 0.201*** 0.018*** 0.012*** -0.256  -0.546 

 (𝛿 = 0.15)  (0.309) (0.045) (0.005) (0.001) (0.575)  (0.581) 

8 Romer-Aghion-Howitt 4.703*** 7.29E-07* 0.018*** 0.007** 6.28E-05 3.45E-05  

 (𝐾𝑡) (0.018) (4.08E-07) 

[0.082] 

(0.006) (0.003) (3.96E-05) (3.85E-05)  

         

9 [ln(𝐾𝑡)] 1.415 0.351*** 0.018*** 0.004 -0.645  -4.168 

  (1.039) (0.115) (0.005) (0.005) (3.693)  (4.032) 

Sources: Developed by the authors. 

Notes: Results using OLS and the Cochrane-Orcutt method are reported in the supplementary online appendix.  The gamma model parameters in parentheses are (𝛾, 𝜆).  
Newey-West heteroskedasticity and autocorrelation consistent standard errors in parentheses in columns (1) through (5).  Coefficients in column (3) are elasticities of 

MFP with respect to the knowledge stock.  In model 4 (but none of the other models) the preferred specification also included longer leads on the R&D knowledge stock.  

The estimated coefficients were -102.719** (45.755) on ∆ ln(𝐾𝑡+2) and 99.492*** (22.739) on ∆ ln(𝐾𝑡+3).  In the Romer-Aghion-Howitt model (Model 8) the elasticity 

is shown in square brackets in column (4), calculated at the median of constructed Romer-Aghion-Howitt knowledge stock across the period 1940–2007.  For Model 8, 

rather than ln𝐾𝑡 and ∆lnKt and so on, the regressors are 𝐾𝑡 and ∆Kt and so on, as formulated in equation (8’). 

*** Significant at the 1 percent level. ** Significant at the 5 percent level. * Significant at the 10 percent level. 
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TABLE 4—ESTIMATED ELASTICITIES FROM ALTERNATIVE MODELS AND ESTIMATORS 

Model 
Lag Model 

(parameters) 

Elasticity of MFP with respect to K 

OLS 
Cochrane-Orcutt 

GLS 

Prais-Winsten 

GLS 

Dynamic  

OLS 

(1) (2) (3) (4) 

1 Gamma 0.290*** 0.306*** 0.307*** 0.277** 

 (0.75, 0.80) (0.084) (0.109) (0.084) (0.106) 

2 Gamma 0.271** 0.317** 0.304*** 0.260** 

 (0.75, 0.85) (0.130) (0.143) (0.092) (0.109) 

3 Gamma 0.184 0.248 0.247** 0.386*** 

 (0.85, 0.80) (0.374) (0.185) (0.094) (0.084) 

4 Gamma 0.167 0.221 0.235** 0.267*** 

 (0.90, 0.70) (0.466) (0.192) (0.098) (0.058) 

5 Trapezoidal 0.282*** 0.292*** 0.299*** 0.292*** 

 
 

(0.078) (0.105) (0.084) (0.109) 

6 Geometric 0.203*** 0.212** 0.227** 0.232*** 

 (𝛿 = 0.10) (0.073) (0.101) (0.087) (0.053) 

7 Geometric 0.183** 0.190* 0.205** 0.201*** 

 (𝛿 = 0.15) (0.070) (0.096) (0.084) (0.045) 

8 Romer-Aghion-Howitt -0.077 -0.083 -0.115* 0.082* 

 (𝐾𝑡)  (0.266) (0.093) (0.059) (0.046) 

9 [ln(𝐾𝑡)] 0.247* 0.266* 0.290** 0.351*** 

  (0.144) (0.150) (0.116) (0.115) 

Sources: Developed by the authors. 

Notes: The gamma model parameters in parentheses are (𝛾, 𝜆).  Eicker-Huber-White (for Cochrane-Orcutt 

and Prais-Winsten GLS estimators) and Newey-West heteroskedasticity and autocorrelation consistent (for 

OLS and dynamic OLS) standard errors in parentheses in columns (1) through (3).  Elasticities for models 1 

to 7 and 9 are just point estimates of β1 in equation (8).  In the Romer-Aghion-Howitt model in levels the 

elasticity is calculated as β1K𝑡 using the point estimate of β1 in equation (8’) with K𝑡 as the median of the 

constructed Romer-Aghion-Howitt knowledge stock across the period 1940–2007. 

*** Significant at the 1 percent level. ** Significant at the 5 percent level. * Significant at the 10 percent 

level.  
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TABLE 5—BENEFIT-COST RATIOS FROM VARIOUS MODELS AND ESTIMATORS 

Model 
Lag Model 

(Parameters) 

Mean Lag 

(years) 

 OLS 
Cochrane- 

Orcutt 

Prais- 

Winsten 

Dynamic 

OLS 

 (1) (2) (3) (4) 

1 Gamma 17.8  24.5 25.9 26.0 23.4 

 (0.75, 0.80)    [10.3, 38.8] [7.4, 44.3] [11.8, 40.1] [5.5, 41.3] 

2 Gamma 23.3  21.4 25.0 24.0 20.5 

 (0.75, 0.85)   [0.9, 42.0] [2.5, 47.6] [9.5, 38.5] [3.3, 37.8] 

3 Gamma 28.3  13.0 17.5 17.5 27.3 

 (0.85, 0.80)   [-39.8, 65.8] [-8.7, 43.8] [4.2, 30.7] [15.4, 39.2] 

4 Gamma 27.6  11.8 15.6 16.6 18.9 

 (0.90, 0.70)   [-54.1, 77.8] [-11.5, 42.8] [2.7, 30.5] [10.7, 27.0] 

5 Trapezoidal 15.7  24.4 25.2 25.8 25.2 

 
 

  [11.0, 37.7] [7.1, 43.3] [11.3, 40.4] [6.5, 44.0] 

6 Geometric 10.7  18.4 19.2 20.5 21.0 

 (0.10)   [5.2, 31.6] [0.89, 37.5] [4.8, 36.3] [11.5, 30.5] 

7 Geometric 7.7  16.9 17.5 18.9 18.5 

 (0.15)    [4.1, 29.6] [-0.15, 35.1] [3.4, 34.3] [10.2, 26.8] 

8 Romer-Aghion-Howitt   -5.7 -6.1 -8.5 6.1 

 (𝐾𝑡)   [-45.1, 33.6] [-19.9, 7.7] [-17.3, 0.3] [-0.7, 12.9] 

9 [ln(𝐾𝑡)]   18.5 20.0 21.7 26.3 

    [-3.1, 40.0] [-2.6, 42.5] [4.4, 39.1] [9.1, 43.6] 

Sources: Developed by the authors. 

Notes: The gamma model parameters in parentheses are (𝛾, 𝜆).  Entries in the table are the marginal benefit-cost ratios 

(BCRs) for an incremental investment in 1957 calculated using equation 12 and elasticities from Table 4, and a real 

discount rate of 3 percent per year.  Numbers in square brackets are the upper and lower bounds of the 95 percent 

confidence interval for the BCR, and BCRs in bold are statistically significantly different from zero since their 

respective confidence intervals do not include zero. 
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APPENDIX FIGURE 1—U.S. AGRICULTURAL INPUTS, OUTPUTS AND MULTIFACTOR PRODUCTIVITY, LOGARITHMS, 1940–2007 

Sources: University of Minnesota, InSTePP Center compilation drawing on InSTePP Production Accounts, version 5, 
augmented with data from USDA-ERS (1983). 

Notes: Plots are natural logs of the respective indexes with base year 1910=100. The Y axis reports the actual index values.  
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APPENDIX FIGURE 2—U.S. PUBLIC AGRICULTURAL R&D, USDA INTRAMURAL AND SAESS, 1890–2007 

 

Sources: University of Minnesota, InSTePP Center unpublished data.  The SAES R&D series (excluding forestry) 

prior to 1980 is from USDA sources cited in Alston et al. (2010, appendix III) and for more recent years are compiled 
from unpublished USDA, CRIS data files.  The USDA intramural series for years prior to 2001 are also from the 

USDA sources cited in Alston et al. (2010, appendix III) and NSF (various years) thereafter. 

Notes: Public agricultural R&D includes SAES (state agricultural experiment station) and USDA intramural spending, 
excluding forestry research.  The series were deflated using an agricultural R&D deflator from InSTePP.   
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APPENDIX FIGURE 3—FITTED AND OBSERVED COMPOSITE CROP YIELD INDEX, 1940–2007 

 

Sources: Developed by the authors. 

Notes: The observed annual aggregated yields in year t, yieldt, were constructed as weighted averages of standardized 

annual yields of the top 10 field crops for the years 1940–2007.  Each crop’s annual share of the total value of production 

was used as its weight.  The equation presents the fitted (linear and cubic) time-trend regression with standard errors in 

parentheses under each of the point estimates.  𝑇𝑡 is the time trend created by calendar year minus 1939.  The agricultural 

weather index in year t is given by yield deviations from the fitted value: 𝑦𝑖𝑒𝑙𝑑𝑡 − 𝑦𝑖𝑒𝑙𝑑𝑡̂ . 
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APPENDIX FIGURE 4—RESIDUALS FROM THE MODELS THAT PASSED THE TIME-SERIES TESTS (MODELS 1–3) 

 

Sources: Developed by the authors. 

Notes: Derived from the fitted models estimated using OLS.  Model numbers correspond to the first three 

gamma lag models in Tables 2 and 3.  See Appendix Table 6.1 for detailed regression results. 
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APPENDIX TABLE 1—PARAMETERIZATION OF KNOWLEDGE STOCKS FOR THE ALTERNATIVE MODELS 

Distributions Parameters Weights 

Gamma γ,  λ ∈ 

{x × 0.05 + 0.6|x ∈ Z, 0 ≤ x ≤ 7}, 

64 combinations of γ and λ. 

𝑏𝑘 =
(𝑘−𝑔+1)γ/{(1−γ})λ(𝑘−𝑔)

∑ [(𝑘−𝑔+1)𝛾/(1−𝛾)λ(𝑘−𝑔)]50
𝑘=𝑔+1

 for 

𝑔 < 𝑘 ≤ 50; otherwise 𝑏𝑘  =  0 

 

Trapezoidal a = 1, b = 9, c = 15, d = 35,  

two years of gestation lag, then weights 

increase linearly for seven years, then 

stay constant for six years, and finally 

decline linearly for 20 years. 

𝑏𝑘
′ =

{
 
 
 

 
 
 

0, 𝑘 < 𝑎 𝑜𝑟 𝑘 > 𝑑
2

(𝑑 + 𝑐 − 𝑎 − 𝑏)

𝑘 − 𝑎

𝑏 − 𝑎
, 𝑎 ≤ 𝑘 < 𝑏

2

(𝑑 + 𝑐 − 𝑎 − 𝑏)
, 𝑏 ≤ 𝑘 < 𝑐

2

(𝑑 + 𝑐 − 𝑎 − 𝑏)

𝑑 − 𝑘

𝑑 − 𝑐
, 𝑐 ≤ 𝑘 ≤ 𝑑

 

𝑏𝑘 =
𝑏𝑘
′

∑ 𝑏𝑘
′50

𝑘=0

 

 

Geometric 𝛿 = 0.10 or 0.15 𝑏𝑘
′ = (1 − 𝛿)𝑘 for 𝑔 < 𝑘 ≤ 50; otherwise 𝑏𝑘′ =  0 

𝑏𝑘 =
𝑏𝑘
′

∑ 𝑏𝑘
′50

𝑘=0

 

 

Sources: Developed by the authors. 

Notes: A two-year gestation period is equivalent to 𝑔 = 1. 
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APPENDIX TABLE 2—REGRESSION RESULTS FOR ALTERNATIVE TIME TREND MODELS 

 Models 

 Linear Quadratic Cubic Cubic 

 (1) (2) (3) (4) 

𝑇𝑡  0.049*** 0.056*** 0.053*** 0.045*** 

 (0.001) (0.005) (0.003) (0.012) 

     

𝑇𝑡
2  -9.88E-05  2.96E-04 

  (6.80E-05)  (4.15E-04) 

     

𝑇𝑡
3   -1.03E-06 -3.81E-06 

   (6.46E-07) (3.95E-06) 

     

Constant -1.672*** -1.752*** -1.740*** -1.686*** 

 (0.048) (0.072) (0.064) (0.099) 

     

Observations 68 68 68 68 

𝑅2 0.961 0.962 0.963 0.963 

Adjusted 𝑅2 0.961 0.961 0.962 0.961 

AIC -25.510 -25.681 -26.124 -24.662 

 

Sources: Developed by the authors. 

Notes: The dependent variable is the annual weighted average yield of 10 field crops described in the data section of the 

main text.  𝑇𝑡  is the time trend created by subtracting calendar year by 1939.   

*** Significant at the 1 percent level.  

** Significant at the 5 percent level. 

* Significant at the 10 percent level. 
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APPENDIX TABLE 3—TESTS FOR NONSTATIONARY TIME SERIES 

Variable 
Optimal 

Lag (years) 

Estimated 

Tau 
statistic 

Critical Values of Tau 

1% 5% 10%. 

ln(𝑀𝐹𝑃𝑡) 1 -2.43 -3.70 -3.13 -2.83 

Δ ln(𝑀𝐹𝑃𝑡) 1 -9.14 -3.71 -3.14 -2.84 

𝑊𝑡  1 -4.51 -3.70 -3.13 -2.83 

Sources: Developed by the authors. 

Notes: Results obtained using STATA 17 to conduct the GLS-ADF test.  The optimal lag was 
determined using the minimum Schwarz (1978) information criterion (SIC).   
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APPENDIX TABLE 4.1—STATIONARITY TESTS FOR KNOWLEDGE STOCKS FROM ALTERNATIVE MODELS (DICKEY-FULLER GLS TEST)  

Models 
Lag Model 

(Parameters) 

DF-GLS on levels DF-GLS on first differences 

lags statistics 1% 5% 10% lags statistics 1% 5% 10% 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

1 Gamma 8 -2.500 -3.702 -2.839 -2.560 5 -2.766 -3.705 -2.982 -2.696 

 (0.75, 0.80)           

2 Gamma 5 -2.079 -3.702 -2.981 -2.695 1 -3.753 -3.705 -3.136 -2.837 

 (0.75, 0.85)           

3 Gamma 3 0.554 -3.702 -3.064 -2.772 2 -2.902 -3.705 -3.104 -2.809 

 (0.85, 0.80)           

4 Gamma 5 -0.640 -3.702 -2.981 -2.695 4 -1.683 -3.705 -3.026 -2.737 

 (0.90, 0.70)           

5 Trapezoidal 5 -2.822 -3.702 -2.981 -2.695 1 -2.654 -3.705 -3.136 -2.837 

6 Geometric 3 -0.762 -3.702 -3.064 -2.772 2 -3.015 -3.705 -3.104 -2.809 

 (0.10)           

7 Geometric 3 -0.629 -3.702 -3.064 -2.772 2 -3.301 -3.705 -3.104 -2.809 

 (0.15)           

8 Romer-Aghion-Howitt 1 -4.613 -3.702 -3.131 -2.833 2 -1.377 -3.705 -3.104 -2.809 

 (𝐾𝑡)           

9 [ln(𝐾𝑡)] 1 -1.948 -3.702 -3.131 -2.833 2 -2.883 -3.705 -3.104 -2.809 

            

Sources: Developed by the authors. 

Notes: The Dicky-Fuller GLS is used to test the order of integration of knowledge stock ln(Kt) (or Kt for the Romer-Aghion-Howitt model in levels) and its first differences ∆ln(𝐾𝑡) (or ∆𝐾𝑡).  The null 

hypothesis is that there exists a unit root in the tested time series, which implies the time series is nonstationary.  The optimal lag length was chosen using the STATA 17 default minimum Schwarz (1978) 

information criterion (SIC). Critical values for significance levels (1%, 5%, and 10%) are listed following the test statistic. 
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APPENDIX TABLE 4.2—COINTEGRATION TESTS FOR KNOWLEDGE STOCKS AND MFP (PHILLIPS-PERRON TEST)  

Model 
Lag Model 

(Parameters) 

Phillips-Perron Tests 

lags statistics 1% 5% 10% 

(1) (2) (3) (4) (5) 

1 Gamma 3 -4.873 -4.113 -3.483 -3.170 

 (0.75, 0.80)      

2 Gamma 3 -4.812 -4.113 -3.483 -3.170 

 (0.75, 0.85)      

3 Gamma 3 -4.276 -4.113 -3.483 -3.170 

 (0.85, 0.80)      

4 Gamma 3 -4.151 -4.113 -3.483 -3.170 

 (0.90, 0.70)      

5 Trapezoidal 3 -4.715 -4.113 -3.483 -3.170 

6 Geometric 3 -3.116 -4.113 -3.483 -3.170 

 (0.10)      

7 Geometric 3 -2.556 -4.113 -3.483 -3.170 

 (0.15)      

8 Romer-Aghion-Howitt 3 -1.427 -4.113 -3.483 -3.170 

 (𝐾𝑡)      

9 [ln(𝐾𝑡)] 3 -4.866 -4.113 -3.483 -3.170 

       

Sources: Developed by the authors. 

Notes: The Phillips-Perron test is used to examine the cointegration relationship between ln(𝑀𝐹𝑃𝑡) 
and ln(𝐾𝑡) (or 𝐾𝑡 for the Romer-Aghion-Howitt model).  The null hypothesis is that the residual of regressing 

ln(𝑀𝐹𝑃𝑡) on ln(𝐾𝑡) (or 𝐾𝑡) contains a unit root (i.e., non-stationary).  We imposed minimal restrictions by 

allowing the residual has a random walk, with or without drift, under the null hypothesis.  Newey-West lags 
(lags=3) are used in the tests.  Critical values for significance levels (1%, 5%, and 10%) are listed following 

the test statistics. 
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APPENDIX TABLE 4.3—COINTEGRATION TESTS FOR KNOWLEDGE STOCKS AND MFP (JOHANSEN TEST)  

Model 
Lag Model 

(Parameters) 

AIC HQIC SBIC  

Lags 
Trace 

statistics 
Lags 

Trace 

statistics 
Lags 

Trace 

statistics 

5% critical value 

 
Maximum 

rank 0 
Maximum 

rank 1 
 

Maximum 
rank 0 

Maximum 
rank 1 

 
Maximum 

rank 0 
Maximum 

rank 1 
Maximum 

rank 0 
Maximum 

rank 1 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

1 Gamma 9 32.154 12.045 8 39.907 9.574 4 42.647 7.572 25.320 12.250 

 (0.75, 0.80)            

2 Gamma 6 32.693 14.144 6 32.693 14.144 3 32.797 10.646 25.320 12.250 

 (0.75, 0.85)            

3 Gamma 5 34.381 7.495 4 37.081 8.239 4 37.081 8.239 25.320 12.250 

 (0.85, 0.80)            

4 Gamma 6 25.400 8.633 4 63.194 9.381 3 58.206 12.093 25.320 12.250 

 (0.90, 0.70)            

5 Trapezoidal 3 19.204 7.542 3 19.204 7.542 3 19.204 7.542 25.320 12.250 

6 Geometric 5 27.346 5.947 4 20.444 6.309 2 22.864 6.187 25.320 12.250 

 (0.10)            

7 Geometric 5 26.142 5.901 5 26.142 5.901 2 21.040 4.831 25.320 12.250 

 (0.15)            

8 Romer-Aghion-Howitt 5 40.901 8.916 4 32.712 6.839 2 38.815 13.526 25.320 12.250 

 (𝐾𝑡)            

9 [ln(𝐾𝑡)] 6 26.380 5.420 2 35.520 9.663 2 35.520 9.663 25.320 12.250 

             

Sources: Developed by the authors. 

Notes: The Johansen cointegration test is used to examine the cointegration relationship between ln(𝑀𝐹𝑃𝑡) and ln(𝐾𝑡) (or 𝐾𝑡 for the Romer-Aghion-Howitt model).  Maximum rank 0 (or 1) represents the 

case where the maximum rank of the cointegration matrix is 0 (or 1).  The null hypothesis is that there exists up to r cointegration relations, where r starts from 0, then 1, and so on.  In our specification, 
since there are two time-series, we perform Johannsen tests from r = 0 to r = 1.  If according to the trace statistics, we reject the null that r = 0 but fail to reject r = 1, this means there only exists one 

cointegration relationship between ln(𝑀𝐹𝑃𝑡) and ln(𝐾𝑡) (or 𝐾𝑡).  The 5% critical values for rank 0 and rank 1 are presented in columns (10) and (11).  The optimal lags are selected by the Akaike Information 

Criterion (AIC), the Hannan-Quinn Information Criterion (HQIC), and the Schwarz-Bayesian Information Criterion (SBIC).  
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APPENDIX TABLE 5.1—TESTS FOR PROPERTIES OF RESIDUALS FROM OLS ESTIMATES OF MODEL 1 

Issue Test Test statistic P value 

Heteroskedasticity    

 White χ(2)
2 = 6.22 0.045 

 Breusch-Pagan χ(1)
2 = 0.05 0.824 

Autocorrelation     

First-order Durbin-Watson DW =  0.77 0.000 

 Breusch-Godfrey 𝜒(1)
2 = 25.86 0.000 

Second-order Breusch-Godfrey 𝜒(2)
2 = 26.41 0.000 

Third-order Breusch-Godfrey 𝜒(3)
2 = 29.88 0.000 

Sources: Developed by the authors. 

Notes: P value for the Durbin-Watson test is calculated using a normal approximation with mean and 

variance of the Durbin-Watson test statistic.  Details can be found in ‘lmtest’ package in R.  
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APPENDIX TABLE 5.2—HETEROSKEDASTICITY TESTS 

Models 
Lag Model 

(Parameters) 

Breusch-Pagan White 

χ(1)
2  P value χ(2)

2  P value 

1 Gamma 0.050 0.824 6.219 0.045 

 (0.75, 0.80)     

2 Gamma 0.003 0.959 4.691 0.096 

 
(0.75, 0.85) 

    

3 Gamma 1.212 0.271 3.939 0.140 
 (0.85, 0.80)     

4 Gamma 1.622 0.203 3.914 0.141 

 (0.90, 0.70)     

5 Trapezoidal 0.082 0.775 6.512 0.039 

6 Geometric 0.009 0.924 6.993 0.030 

 (0.10)     

7 Geometric 0.003 0.957 6.742 0.034 
 (0.15)     

8 Romer-Aghion-Howitt 2.877 0.090 4.897 0.086 

 (𝐾𝑡)     

9 [ln(𝐾𝑡)] 0.092 0.762 5.317 0.070 

Sources: Developed by the authors. 

Notes: The Breusch-Pagan and White tests are chosen to test the heteroskedasticity of error terms in equations (8) and 

(8’).  These two tests examine linear and non-linear heteroskedasticity, respectively. 
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APPENDIX TABLE 5.3—AUTOCORRELATION TESTS 

Model 
Lag Model 

(Parameters) 

Durbin-Watson 
First order 

Breusch-Godfrey 

First order Second order Third order 

DW statistics P value 𝜒(1)
2  P value 𝜒(2)

2  P value 𝜒(3)
2  P value 

1 Gamma 0.769 0.000 25.859 0.000 26.410 0.000 29.876 0.000 

 (0.75, 0.80)         

2 Gamma 0.677 0.000 29.671 0.000 30.233 0.000 33.732 0.000 

 (0.75, 0.85)         

3 Gamma 0.590 0.000 33.599 0.000 34.259 0.000 37.681 0.000 

 (0.85, 0.80)         

4 Gamma 0.580 0.000 34.085 0.000 34.737 0.000 38.092 0.000 

 (0.90, 0.70)         

5 Trapezoidal 0.790 0.000 25.066 0.000 25.705 0.000 29.288 0.000 

6 Geometric 0.797 0.000 25.321 0.000 26.577 0.000 30.652 0.000 

 (0.10)         

7 Geometric 0.799 0.000 25.337 0.000 26.704 0.000 30.860 0.000 

 (0.15)         

8 Romer-Aghion-Howitt 0.591 0.000 33.767 0.000 34.720 0.000 38.381 0.000 

 (𝐾𝑡)         

9 [ln(𝐾𝑡)] 0.696 0.000 29.298 0.000 30.339 0.000 34.047 0.000 

          

Sources: Developed by the authors. 

Notes: The Durbin-Watson and Breusch-Godfrey tests are chosen to test the autocorrelation of error terms in equations (8) and (8’).  Test statistics and p values are presented.  The results 

strongly indicate that the error term is at least first-order autocorrelated. 
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APPENDIX TABLE 6.1—REGRESSIONS OF MFP AGAINST KNOWLEDGE STOCKS WITH ALTERNATIVE LAG MODELS, OLS 

Model 
Lag Model 

(Parameters) 

Regressors 

Constant ln(𝐾𝑡) 𝐾𝑡 𝑊𝑡 𝑇𝑡  

(1) (2) (3) (4) (5) 

1 Gamma 2.882*** 0.290***  0.020*** 0.009*** 

 (0.75, 0.80) (0.555) (0.084)  (0.006) (0.003) 

2 Gamma 3.078*** 0.271**  0.021*** 0.009* 

 (0.75, 0.85) (0.821) (0.130)  (0.006) (0.005) 

3 Gamma 3.683 0.184  0.021*** 0.012 

 (0.85, 0.80) (2.232) (0.374)  (0.007) (0.015) 

4 Gamma 3.781 0.167  0.021*** 0.012 

 (0.90, 0.70) (2.787) (0.466)  (0.007) (0.019) 

5 Trapezoidal 2.911*** 0.282***  0.020*** 0.009*** 

 
 

(0.517) (0.078)  (0.006) (0.002) 

6 Geometric 3.385*** 0.203***  0.018*** 0.013*** 

 (𝛿 = 0.10) (0.500) (0.073)  (0.006) (0.002) 

7 Geometric 3.502*** 0.183**  0.017*** 0.013*** 

 (𝛿 = 0.15) (0.483) (0.070)  (0.005) (0.002) 

8 Romer-Aghion-Howitt 4.784***  -6.84E-07 0.019*** 0.021** 

 (𝐾𝑡) (0.024)  (2.35E-06) 
[-0.077] 

(0.006) (0.008) 

9 [ln(𝐾𝑡)] 2.253 0.247*  0.019*** 0.009* 

  (1.474) (0.144)  (0.006) (0.005) 

Sources: Developed by the authors. 

Notes: Estimates obtained using OLS.  The gamma model parameters in parentheses are (𝛾, 𝜆).  Newey-West 

heteroskedasticity and autocorrelation consistent errors (with pre-whitening and adjust for small sample) in parentheses in 

columns (1) through (5).  Coefficients in column (3) are elasticities of MFP with respect to the knowledge stock.  For the 

Romer-Aghion-Howitt model (Model 8) the elasticity is shown in square brackets in column (4), calculated at the median of 
constructed Romer-Bloom knowledge stock across the period 1940–2007. 

*** Significant at the 1 percent level.  

** Significant at the 5 percent level. 

* Significant at the 10 percent level. 
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APPENDIX TABLE 6.2—REGRESSIONS OF MFP AGAINST ALTERNATIVE KNOWLEDGE STOCKS, COCHRANE-ORCUTT PROCEDURE 

Model 
Lag Model 

(Parameters) 

Regressors 

Constant ln(𝐾𝑡) 𝐾𝑡    𝑊𝑡 𝑇𝑡  

(1) (2) (3) (4) (5) 

1 Gamma 2.781*** 0.306***  0.026*** 0.008** 

 (0.75, 0.80) (0.725) (0.109)  (0.004) (0.003) 

2 Gamma 2.788*** 0.317**  0.026*** 0.007 

 (0.75, 0.85) (0.914) (0.143)  (0.004) (0.005) 

3 Gamma 3.297*** 0.248  0.026*** 0.009 

 (0.85, 0.80) (1.135) (0.185)  (0.004) (0.007) 

4 Gamma 3.460*** 0.221  0.026*** 0.010 

 (0.90, 0.70) (1.178) (0.192)  (0.004) (0.007) 

5 Trapezoidal 2.845*** 0.292***  0.026*** 0.009*** 

 
 

(0.705) (0.105)  (0.004) (0.003) 

6 Geometric 3.331*** 0.212**  0.026*** 0.012*** 

 (𝛿 = 0.10) (0.707) (0.101)  (0.004) (0.003) 

7 Geometric 3.461*** 0.190*  0.026*** 0.013*** 

 (𝛿 = 0.15) (0.682) (0.096)  (0.004) (0.002) 

8 Romer–Aghion-Howitt 4.794***  -7.30E-07 0.026*** 0.021*** 

 (𝐾𝑡) (0.034)  (8.26E-07) 

[-0.083] 

(0.004) (0.004) 

9 [ln(𝐾𝑡)] 2.055 0.266*  0.026*** 0.009 

  (1.557) (0.150)  (0.004) (0.005) 

Sources: Developed by the authors. 

Notes: Estimates obtained using the Cochrane-Orcutt method.  The gamma model parameters in parentheses are (𝛾, 𝜆).  
Eicker-Huber-White standard errors in parentheses in columns (1) through (5).  Coefficients in column (3) are elasticities 
of MFP with respect to the knowledge stock.  For the Romer-Aghion-Howitt model (Model 8) the elasticity is shown in 

square brackets in column (4), calculated at the median of constructed Romer-Aghion-Howitt knowledge stock across 

the period 1940–2007. 

*** Significant at the 1 percent level.  

** Significant at the 5 percent level. 

* Significant at the 10 percent level. 
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APPENDIX TABLE 6.3—REGRESSIONS OF MFP AGAINST ALTERNATIVE KNOWLEDGE STOCKS, PRAIS-WINSTEN PROCEDURE 

Model 
Lag Model 

(Parameters) 

Regressors 

Constant ln(𝐾𝑡) 𝐾𝑡 𝑊𝑡  𝑇𝑡 

(1) (2) (3) (4) (5) 

1 Gamma 2.772*** 0.307***  0.026*** 0.008*** 

 (0.75, 0.80) (0.550) (0.084)  (0.004) (0.003) 

2 Gamma 2.873*** 0.304***  0.026*** 0.008** 

 (0.75, 0.85) (0.577) (0.092)  (0.004) (0.003) 

3 Gamma 3.304*** 0.247**  0.026*** 0.009** 

 (0.85, 0.80) (0.559) (0.094)  (0.004) (0.004) 

4 Gamma 3.373*** 0.235**  0.026*** 0.009** 

 (0.90, 0.70) (0.586) (0.098)  (0.004) (0.004) 

5 Trapezoidal 2.798*** 0.299***  0.026*** 0.009*** 

 
 

(0.561) (0.084)  (0.004) (0.003) 

6 Geometric 3.222*** 0.227**  0.026*** 0.013*** 

 (𝛿 = 0.10) (0.603) (0.087)  (0.004) (0.002) 

7 Geometric 3.348*** 0.205**  0.026*** 0.013*** 

 (𝛿 = 0.15) (0.592) (0.084)  (0.004) (0.002) 

8 Romer-Aghion-Howitt 4.781***  -1.02E-06 0.026*** 0.023*** 

 (𝐾𝑡) (0.018)  (5.26E-07) 

[-0.115] 

(0.004) (0.002) 

9 [ln(𝐾𝑡)] 1.809 0.290**  0.026*** 0.008* 

  (1.191) (0.116)  (0.004) (0.004) 

Sources: Developed by the authors. 

Notes: Estimates obtained using the Prais-Winsten procedure.  The gamma model parameters in parentheses are (𝛾, 𝜆).  
Eicker-Huber-White standard errors in parentheses in columns (1) through (5).  Coefficients in column (3) are elasticities 
of MFP with respect to the knowledge stock.  In the Romer-Aghion-Howitt model (Model 8) the elasticity is shown in 

square brackets in column (4), calculated at the median of constructed Romer-Aghion-Howitt knowledge stock across the 

period 1940–2007. 

*** Significant at the 1 percent level.  

** Significant at the 5 percent level. 

* Significant at the 10 percent level. 
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APPENDIX TABLE 7—EFFECTS OF THE DISCOUNT RATE ON THE BENEFIT-COST RATIOS FROM THE DIFFERENT LAG MODELS 

Model 
Lag Model 

(Parameters) 
Mean Lag 

(years) 

 Real Discount Rate 

 r = 0.001 r = 0.03 r = 0.05 r = 0.10 

 (1) (2) (3) (4) 

1 Gamma 17.8  36.3 23.4 17.8 9.8 

 (0.75, 0.80)   [8.6, 64.1] [5.5, 41.3] [4.2, 31.5] [2.3, 17.3] 

2 Gamma 23.3  35.5 20.5 14.7 7.1 

 (0.75, 0.85)   [5.7, 65.3] [3.3, 37.8] [2.4, 27.0] [1.1, 13.1] 

3 Gamma 28.3  54.1 27.3 17.8 6.9 

 (0.85, 0.80)   [30.6, 77.7] [15.4, 39.2] [10.1, 25.6] [3.9, 9.9] 

4 Gamma 27.6  37.6 18.9 12.1 4.5 

 (0.90, 0.70)   [21.4, 53.9] [10.7, 27.0] [6.9, 17.4] [2.5, 6.4] 

5 Trapezoidal 15.7  37.6 25.2 19.6 11.4 

    [9.7, 65.6] [6.5, 44.0] [5.0, 34.2] [2.9, 19.8] 

6 Geometric 10.7  26.9 21.0 18.1 13.3 

 (0.10)   [14.7, 39.1] [11.5, 30.5] [9.9, 26.4] [7.3, 19.3] 

7 Geometric 7.7  22.4 18.5 16.5 12.8 

 (0.15)   [12.3, 32.4] [10.2, 26.8] [9.1, 23.8] [7.0, 18.5] 

8 Romer-Aghion-Howitt   11.7 6.1 4.3 2.3 

 (𝐾𝑡)   [-1.4, 24.8] [-0.7, 12.9] [-0.5, 9.1] [-0.3, 4.9] 

9 [ln(𝐾𝑡)]   42.1 26.3 20.6 13.2 

    [14.5, 69.8] [9.1, 43.6] [7.1, 34.0] [4.5, 21.8] 

Sources: Developed by the authors. 

Notes: The gamma model parameters in parentheses are (𝛾, 𝜆).  Entries in the table are the marginal benefit-cost ratios (BCRs) 

for an incremental investment in 1957 calculated using equation 12 and elasticities from column (4) of Table 4 (i.e., using the 

dynamic OLS estimators).  Numbers in square brackets are the upper and lower bounds of the 95 percent confidence interval 

for the BCR, and BCRs in bold are statistically significantly different from zero since their respective confidence intervals do 
not include zero.    

 

 


