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A Maximum Entropy Estimate of Uncertainty about a Wine Rating 
What can be deduced about the shape of a latent distribution from one observation? 

 
Jeff Bodingtona 

 
 

Abstract 
 
Much research shows that the ratings that judges assign to wines are uncertain and an acute 
difficulty in ratings-related research, and in calculating consensus among judges, is that each rating 
is one observation drawn from a unique and latent distribution that is wine- and judge-specific.  A 
simple maximum entropy estimator is proposed that yields a maximum-entropy probability 
distribution for sample sizes of none, one, and more.  A test of that estimator yields results that are 
consistent with the results of experiments in which blind replicates are embedded within flights of 
wines evaluated by trained and tested judges.  
 
(JEL Classifications: A10, C10, C00, C12, D12) 
Keywords: wine, judge, ratings, statistics, random 
 
 

I. Introduction	
 

Diverse research relies on the ratings that critics, judges, and consumers assign to wines.  Recent 

examples include Gergaud et al. (2021) method of aggregating judges’ ratings,  Hölle et al. (2020) 

finding that customers’ ratings of wines online can vary due to screen position alone,  Corsi and 

Ashenfelter (2019) analysis of the correlation between weather data and ratings, Capehart (2019) 

analysis of whether or not training improves the accuracy of ratings, Lam et al. (2019) analysis of 

how ratings affect written reviews, and Malfeito-Ferreira et al. (2019) identification of the sensory 

and chemical differences between grand-gold and gold rated wines.  In addition to such research, 

numerous critics, competitions, clubs, and vendors use ratings to compare wines, convey 

information, and sell wine.  

 

This short article focuses on a difficulty with wine ratings for the uses above that is due the finding 

that each rating observed is one draw from a latent distribution that is wine- and judge-specific.  

 
a	Contact	author	at	jcb@bodingtonandcompany.com.	

	



2	

	

What can be deduced about the shape of a latent distribution from one observation?  Section II 

summarizes research showing that the ratings that critics and judges assign are stochastic, 

heteroscedastic, and may be affected by anchoring, expectations and serial position biases.  Section 

III shows that those conditions lead to a problem that is inverse, ill posed with a sample size of 

one, and partially or wholly categorical rather than cardinal.  A maximum entropy solution to that 

problem is posed in Section IV for sample sizes of none, one, and more.  An example is presented 

in Section V and the results are consistent with the actual distributions observed for ratings 

assigned to blind replicates.  Conclusions follow in Section VI.   

 

II. The Maelstrom About a Rating Observed  
 

Judges assign ratings to wines that are within a bounded set of scores, or an ordered set of 

categories, or ranks.  Examples of scores include the 50- to 100-point scales used by Wine Advocate 

and Wine Spectator, U.C. Davis’ zero to 20-point scale, Jacis Robinson’s 12- to 20-point scale, 

and the zero- to 100-point scale prescribed by the International Organization of Wine and Vine’s 

(OIV).  Examples of categories include the Wine & Spirit Education Trust (WSET) six categories 

of quality (faulty, poor, acceptable, good, very good, and outstanding) and the California State Fair 

Commercial Wine Competition’s (CSF) six or ten medals.1  Further, some systems are forced 

rankings.  If there are six wines in a flight, a judge must rank all six in order of relative preference.  

Liquid Assets and San Francisco FOG are examples of tasting groups who employ that approach.  

See reviews and comparisons of rating systems in Cicchetti & Cicchetti (2014), Kliparchuck 

(2013), and Veseth (2008). 

 

Although tasters focus on the wine in the glass, much research shows that the ratings that they 

assign are affected by other factors.  Some of the factors are supported by literature that is cited 

below.  Other factors described below are reported as anecdotes and, when no literature is cited, 

those other factors are intended as hypotheses that remain to be tested. 

 
1 Depending on the year, the CSF has awarded six	(No	Award,	Bronze,	Silver,	Gold-,	Gold,	and	Gold+)	or	ten	
(No	Award,	Bronze–,	Bronze,	Bronze+,	Silver-,	Silver,	Silver+,	Gold–,	Gold,	and	Gold+)	ordered	medals.		
The author holds a WSET Level III certification. 
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Stochastic Ratings 

 

First, although wine ratings are not merely random, evidence that ratings are stochastic is abundant 

in the wine-related academic literature and trade press.  Bodington (2017, 2020) summarizes and 

cites four experiments with blind replicates, more than 20 other evaluations that find uncertainty 

in ratings, and two texts that explain the neurological, physiological, and psychological reasons 

for variance in the ratings that the same judge assigns to the same wine.  The stochastic nature of 

wine ratings is not unique.  Kahneman et al. (2021, p. 80-86, 215-258) describe variance in wine 

ratings and in many other areas of human judgement including physicians’ diagnoses, forensic 

experts’ fingerprint identifications, and judges’ sentencings of criminals. 

 

The wine-related literature cited above supports several findings.  A rating observed is one draw 

from a latent distribution, it is one instance of in some cases many potential instances.  Ratings are 

heteroscedastic, so the distribution of ratings on a wine is wine- and judge-specific and different 

judges’ ratings on the same wine are not identically distributed (ID).  Some judges assign ratings 

more consistently than others, and some wines are more difficult to rate consistently than others.  

Research attempts to predict ratings from physiochemical properties have struggled to obtain 

statistical significance.  Experiments with blind replicates show that, on average, the standard 

deviation of the rating that the same judge assigns to the same wine within a flight is approximately 

1.3 out of 10 potential rating categories.  And while some judges independently assign ratings that 

correlate well with each other, about 10% of CSF judges assign ratings that are indistinguishable 

from random assignments. 

 

Although most ratings are assigned by judges prior to any discussion of the subject wines, pre-

rating discussion sometimes occurs among panelists and some competitions require an initial 

rating, then discussion and then a post-discussion rating.  According to Taber (2005, p. 300-301), 

discussion of the wines took place during the tasting at the 1976 Judgement of Paris.  The CSF is 

an example of a competition in which judges assign an initial rating, discuss the wines with other 

judges and then assign another post-discussion rating.  Both sets of ratings are reported to CSF 

officials and the author is not aware of any correlation or other comparisons made by the CSF.  
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Judges can influence each other so post-discussion ratings may not be statistically independent (I) 

and such ratings may be more highly correlated.  When combined with the heteroscedasticity 

above, post-discussion ratings may not be statistically IID.    

 

Anchoring, Expectation & Serial Position Biases 

 

The score-based rating systems noted above also assign categories of quality or award to score 

thresholds and ranges.  For example, the OIV system sets score thresholds for Bronze, Silver, and 

Gold medals at scores of 80, 85 and 90 respectively.2  Bodington and Malfeito (2018) showed 

spikes in the frequencies of scores assigned just below those thresholds.  Thus, some judges appear 

to anchor at OIV’s category thresholds.  

 

In addition to anchoring scores to category thresholds, there is anecdotal evidence of sequential 

anchoring.  In a taste-and-score sequential protocol, a judge may assign a rating to the first wine 

and then rate the remaining wines “around” that anchor.  A lag structure may also exist in which a 

judge rates around some composite of the most recent wines.  The upper and lower bounds on 

ratings, whether numerical or categorical, may then merely bound a judge’s assessments of relative 

preference. 

 

Much research shows that judges’ expectations affect the ratings they assign.  Ashton (2014) found 

that judges assigned higher ratings to wines from New Jersey when told the wines were from 

California and lower ratings to wines from California when told the wines were from New Jersey.  

On that evidence, regardless of actual quality, an expectation of good quality may lead to a central 

tendency in ratings within whatever range of scores or categories indicates good quality.  In 

addition, information provided about wines may alter expectations and ratings.  For example, the 

pre-printed forms provided to CSF judges list the grape variety, vintage, alcohol by volume and 

 
2 The complete OIV award system is Bronze to wines with a mean score of at least 80 points (up to a maximum of 
25% of all prized wines including Gold and Silver), Silver to wines with a mean score more than 84 points (up to a 
maximum of 12% of all wines entered), and Gold to wines with mean scores over 90 points (up to a maximum of 6% 
of all wines entered). A fourth medal, Great Gold, is awarded by a Grand Jury to the best wine in each of several 
categories (up to a maximum of 25% of the number of Gold medals). 
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residual sugar of a wine next to spaces where the judge writes in a comment and then a rating.3  

Whether or not such judgments should be represented as “blind” is open to debate.  Whether or 

not having that information affects judges’ ratings remains to be tested. 

 

Some critics and competitions employ a sequential, step-by-step or taste-and-rate protocol.  A 

critic or judge tastes a wine and assigns a rating, then tastes the next wine and assigns a rating to 

that wine, and so on.  The Judgement of Paris, the CSF, and many publishing critics employ a 

sequential protocol.4  The possibility that ratings assigned during taste-and-rate protocols are 

affected by serial position, rather than the intrinsic qualities of the wines and judges, is difficult 

assess and rule out.  Serial position bias may occur in wine competitions due to palate fatigue, rest 

breaks, meal breaks, physiological and psychological factors.5  There are anecdotal reports from 

judges who say there is temptation to assign a high rating to a dry and high-acid wine because it is 

refreshing in a sequence just after several off-dry and alcoholic wines.  U.C. Davis’ class for 

potential wine judges warns of position bias affecting differences in ratings due to the sequence of 

wines, breaks and lunch.6  Filipello (1955, 1956, 1957) and Filipello and Berg (1958) conducted 

various tests using sequential protocols and found evidence of primacy bias.   Mantonakis et al. 

(2009, p. 1311) found that “high knowledge” wine tasters are more prone than “low knowledge” 

tasters to primacy and recency bias.  The sequence of wines tasted at the 1976 Judgment of Paris 

has never been disclosed so what effect position bias may have had on the results remains 

unknown.7  

 
3	Form	provided	to	the	author	by	the	CSF	on	July	16,	2019.	

4	In	contrast,	some	competitions	employ	an	“open”	protocol	in	which	a	flight	is	poured	and	judges	can	
taste	and	re-taste	the	wines	in	any	order	and	frequency.		Liquid	Assets	and	San	Francisco	FOG	follow	that	
open	protocol.	

5	Serial	position	bias	is	common	in	many	fields	of	judging.		de	Bruin	(2005)	examined	singing	and	figure	
skating	competition	results	and	found	position	bias	in	both	step-by-step	and	end-of-sequence	sequential	
judging	protocols.	

6	The	author	took	the	class	and	test	for	potential	CSF	judges	at	UC	Davis.	

7	The	Judgment’s	tasting	protocol	was	sequential	taste-and-score.		The	author	confirmed,	in	email	
communications	with	both	Mr.	Taber	and	Mr.	Spurrier,	that	the	sequence	of	pour	has	never	been	
disclosed.	
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Standing back, within the maelstrom described above, what can be deduced about a rating 

observed?  A rating is a discrete score, ordered category or rank drawn from a bounded set.  A 

rating is stochastic, and a rating observed is one draw from a wine- and judge-specific distribution.   

And that rating observed may have been affected by anchoring, expectation and/or serial position 

biases.   

  

III. The Problem with One Observation 
 

Except for rare experiments with blind replicates in a flight, critics and judges examine one wine 

(or each wine in a flight) and then assign one rating to that wine (or one rating to each wine in a 

flight).  That is an acute problem.  Literature cited above shows that ratings are heteroscedastic, 

ratings are not ID, so neither the collection of all judges’ ratings on a wine nor the collection of 

one judge’s ratings on other wines, can be employed to estimate the distribution of potential ratings 

by one judge on one wine.  It is a unique distribution and only one sample drawn from that 

distribution is observed. 

 

Score increments are usually whole numbers, some competitions allow half-points, so even score 

assignments are discrete.  The scores, category choices and ranks used by critics, and allowed by 

competitions, are bounded sets.  Although a rating is observed after it is assigned by a judge, aside 

from being discrete and bounded, no other information about the distribution of that rating is 

observed.  Estimating the shape of the discrete and bounded distribution is thus an inverse problem.  

The shape, and any parameters describing that shape, must be inferred from the observation.  And, 

unless the shape of the distribution can be defined by one parameter, the problem is ill posed.  If 

ill posed, there are more unknown parameters than observations so a unique distribution can’t be 

defined. 

 

There is another difficulty.  Although scores appear to be cardinal, the anchoring behaviors 

described above indicate that some judges mix the notions of cardinal scoring and ordered 

categories.  The anchoring behaviors also indicate that some judges mix the notions of cardinal 

scoring and ranking.  On that basis, treating scored ratings as cardinal appears perilous.  And trying 
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to construct a model of a judge’s scoring behavior, at minimum, exacerbates the inverse and ill-

posed aspects of the problem. 

 

The problem of what can be deduced about the shape of a latent distribution from one observation 

is not new.  Several authors have examined what can be inferred about continuous and symmetric 

distributions; see Casella & Strawderman (1981), Rodriguez (1996), Golan, Judge & Miller 

(1996), Leaf, Hui & Lui (2009), and Cook & Harslett (2015).  Their methods are summarized in 

Appendix A, and the discussion below focuses on what can be inferred from one observation about 

a bounded, discrete, ordinal scale, and probably asymmetric distribution. 

 

IV. A Maximum Entropy Solution to An Inverse and Ill-Posed Problem  
 

Hartley (1928) and Shannon (1948) posed the notion that uncertainty about something, in this case 

a judge’s rating on a wine, can be expressed as information entropy.  The higher the entropy, the 

higher the uncertainty.  Jaynes (1957a, 1957b) then proposed the idea that a distribution that 

maximizes entropy assumes the least precision in what is known about the latent distribution of 

the data.  When there aren’t enough data to estimate a unique parameter, set that parameter to 

maximize entropy so that you don’t pretend to know more than you actually know.   This maximum 

entropy approach is often employed to solve inverse and ill-posed problems.  See for example 

Golan, Judge & Miller (1997, p. 7-10 in particular).  

 

Shannon (1948) defined the amount of information (i) in a random variable (𝑥), in Equation (1), 

as the logarithm of the inverse of its probability (𝑝).  Building on that, he expressed information 

entropy (H), in Equation (2), as the expectation of information about a random variable.  While 

the precise meaning of information entropy is controversial, H is highest for a uniform random 

distribution and lowest for a single-point, degenerate distribution.  The informational distance (I) 

between two distributions, 𝑝 and 𝑞, known as relative or cross-entropy, appears in Equation (3).   

See Rioul (2008) and Lombardi et al. (2015) for histories and discussions of these famous results.  

 

𝑖%𝑝(𝑥)( = 𝑙𝑛 ,
1

𝑝(𝑥). = − 𝑙𝑛%𝑝(𝑥)(	 (1) 
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𝐻 = −1 𝑝(𝑥)	𝑙𝑛
!"#

!$%
%𝑝(𝑥)(	 (2) 

 

𝐼(𝑝, 𝑞) =1 𝑞(𝑥)	𝑙𝑛
!"#

!$%
5𝑞(𝑥) 𝑝(𝑥)6 7	 (3) 

 

Applying Jaynes’ notion of maximum entropy to none, one or more observations (𝑥&) drawn from 

a discrete and bounded but unknown distribution (𝑝̂) yields the solution proposed here in Equation 

(4) below.  The first term 𝐼(𝑢, 𝑝̂) is the cross entropy between 𝑝̂ and a uniform random distribution 

(u).  The second term 𝑛 ∙ 𝐼(𝑞|𝑥& , 𝑝̂) is the sample size (n) times the cross entropy between 𝑝̂ and 

the actually-observed distribution (𝑞|𝑥&).  If 𝑛 = 0 then the minimization in Equation (4) is a dual 

of the maximum entropy solution 𝑢(𝑎𝑙𝑙	𝑥) = 1 (𝑚𝑎𝑥 −𝑚𝑖𝑛 + 1)⁄ .8  If 𝑛 = 1 then q is a one-hot 

vector where	𝑞(𝑥&) = 1.  For 𝑛 = 3, q could be the distribution observed for blind triplicates.  As 

𝑛 → ∞ then 𝑝̂ tends to the distribution implied by a large sample and the influence of the random 

distribution, u, tends to zero.9, 10  That minimization is the dual of a maximum likelihood solution 

for a large sample.  See a derivation of Equation (4) in Appendix B and Golan, Judge & Miller 

(1996, p. 25, 41), Shashua (2008, p. 3-3) and Schapire (2014, p. 4) regarding the duality of 

maximum likelihood and minimum entropy.   

 

arg[𝑝̂] = 𝑎𝑟𝑔𝑚𝑖𝑛[	𝐼(𝑢, 𝑝̂) + 	𝑛 ∙ 𝐼(𝑞|𝑥& , 𝑝̂)	] (4) 
 

Among many potential PMFs for 𝑝̂, a simple one is a categorical distribution that is discrete, 

bounded (min, max), and has a probability for every potential rating (r and a total of R ratings).  

𝑝(𝑥 = 𝑟) = 	𝑝#'( and 1 = 	∑ (𝑝#'()('!"#
('!$% .  That PMF has max – min + 1 = R unknown 

 
8	If	𝑛 = 0	the	minimization	in	Equation	(4)	solves	to	𝑝̂ = 𝑢.	

9	As	𝑛 → ∞	the	minimization	in	Equation	(4)	solves	to	a	PMF	where	𝑝̂ ≈ 𝑞|𝑥!.		For	a	categorical	PMF	
with	a	probability	parameter	for	every	category,	that	minimization	solves	to	𝑝̂ = 𝑞|𝑥!.			

10	Substituting	Equation	(3)	in	to	Equation	(4)	yields	the	more	detailed	expression	that	is	implemented	
in	the	author’s	MATLAB	code:	

arg[𝑝̂] = 𝑎𝑟𝑔𝑚𝑖𝑛 8	9 𝑢(𝑥)	𝑙𝑛
"#$

"%&
=𝑢(𝑥) 𝑝̂(𝑥)> ? + 	𝑛 ∙9 𝑞|𝑥!(𝑥)	𝑙𝑛

"#$

"%&
=𝑞|𝑥

!(𝑥)
𝑝̂(𝑥)> ?	B	
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probabilities to estimate.  For just one observation 𝑥&, the maximum entropy solution to Equation 

(4) for R = 10 is 𝑝(𝑥 = 𝑥&) = 0.55 and 𝑝(𝑎𝑙𝑙	𝑥 ≠ 𝑥&	) = 0.05.  That spikey solution is not very 

credible.  It ignores the notion of central tendency.  It ignores the evidence cited above in Section 

II that while most judges may not assign the exact same ratings to replicates in a flight, the ratings 

they do assign tend to cluster about nearby scores, categories or ranks.  

 

Central tendency and clustering are notions about frequency and distance, near and far.  Distance 

is easily expressed on a cardinal scale of scores, but the evidence cited in Section II shows that 

score assignments may be influenced by ordinal considerations and many rating systems are 

ordered categories alone.  The difficulty with mapping ordinal categories to a cardinal scale is that, 

although categories may be adjacent, there is no information about the widths of categories or the 

transitions between categories.  And if scores are interpreted as expressions of economic utility, 

the economics literature summarized in Barnett (2003, p. 41) is rich in what he calls the modern 

view that utility is ordinal, cannot employed to calculate indifference points between goods, and 

cannot be employed to compare one person to another.  While using ratings to make inferences 

about utility and indifference points may violate the logic of utility theory, statistical analysis of 

ordinal ratings for other purposes is common.  According to Chen & Wang (2014), ordinal data 

are the most frequently encountered type of data in social science.11  Chen & Wang review methods 

of mapping categorical responses to numerical values, and those methods include merely ranking 

the categories.  In their texts concerning analysis of categorical data, Agresti (2007, p. 43-44, 119, 

195, 230, 299) and Lynch (2007, p. 219) discuss methods of mapping, that again include ranking, 

and they also present PMFs with dispersion parameters to describe central tendency and clustering 

in the distributions of categorical data.   

 

Although the research cited above explains several methods of mapping categorical data to 

numerical values and several PMFs, this article does not pursue finding a “best” method of 

 
11	Chen	&	Wang	(2014)	give	the	example	of	“strongly	agree,”	“agree,”	“have	no	opinion,”	“disagree,”	and	
“strongly	disagree”	as	a	common	ordinal	scale.	 
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mapping and/or a best PMF.  The best of those probably depends on the form of the rating data 

and the intended analysis or hypothesis test.12 

 

V. An Example  
 

Suppose in this example that a judge assigns a rating of “G old–” to a wine entered in a competition 

with ten ordered categories of rating; No Award, Bronze–, Bronze, Bronze+, Silver-, Silver, 

Silver+, Gold–, Gold, and Gold+.  In that case, and mapping from categories to ranks, 𝑥) = 8 ∈

(1, 10).  Suppose further that the latent distribution of that rating can be described by a discrete 

and bounded Gaussian function of mean (𝜇) and variance (𝜎*).  With emphasis, the intent is to 

describe the distribution of potential ordinal ratings assigned by one judge to one wine and there 

is no intent to make any inference about economic utility or to make a comparison with any other 

wine or judge.  Knowing only that 𝑥) = 8 ∈ (1, 10) and using Equation (4), the maximum-entropy 

estimate of the latent distribution of that rating observed appears as the dashed line in Figure 1.  

The stair-step shape of the distribution reflects the discrete categories.  Next, evidence cited in 

Section II shows that the standard deviation (SD) in ratings assigned by trained and tested CSF 

wine judges to blind triplicates averages approximately 1.3 out of 10 ratings; 𝜎 = 1.3.  Using that 

estimate of SD and Equation (4), the maximum-entropy estimate of 𝜇 yields the solid line in Figure 

1.  MATLAB code for Figure 1 is available on request. 

 
12	For	example,	the	PMF	will	have	one	form	for	categories	assigned	with	replacement	and	a	different	
form	for	ranks	assigned	without	replacement.	
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Figure 1 

Estimated Probability Distributions of One Observed Rating of “Gold-” 

 

Although 𝜎 = 1.3 was set exogenously for the solid line in Figure 1, it may be estimated using 

cross section data from competition results where panels of judges evaluate the same wines.13  Like 

for choosing a “best” PMF, this article does not propose a best method of using cross section data, 

in conjunction with Equation (4), to estimate the parameters in a PMF.  The best method is likely 

to depend on the form of the data and the analysis intended.   

 

 
13	For	example,	consider	modeling	a	judge	as	a	signal	processor.		Using	the	Variance	Sum	Law,	𝜎%'( = 𝜎'( +
𝜂'(𝜎%(	where	𝜂' ≥ 0	is	a	parameter	representing	the	skill	of	judge	(j)	in	assessing	wine	(i).	
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VI. Conclusion 
 

Wine judges assess wines and assign ratings that are discrete and within bounded sets of scores, 

ordered categories, or ranks.  But much evidence shows that, although they are not merely random, 

those assignments are both stochastic and heteroscedastic.  Those assignments may also be 

affected by anchoring, expectations, and serial position biases.  The distribution of a rating 

observed is then wine- and judge-specific.  Estimating the distribution of a rating to support 

ratings-related research, or to calculate consensus among judges, is thus acutely difficult because 

the sample size drawn from a latent wine- and judge-specific distribution is usually one.   

 

The parameters in a PMF expressing the latent distribution of a rating observed can be estimated 

using the simple maximum entropy estimator in Equation (4).  That estimator incorporates the 

information from none, one or more observations and it relies on a minimum of additional 

assumptions.  An example yields results in Figure 1 that are consistent with the results of 

experiments in which blind replicates are embedded within flights of wines that are evaluated by 

trained and tested judges.  

 

Equation (4) is intended as a tool to support ratings-related research and assessments of consensus 

among judges.  Research may lead to improvements in, or application-specific variations of, 

Equation (4).  Further tests of the estimator could include estimating parameters in PMFs from 

cross section ratings data.    On that foundation, the assumption that ratings are deterministic and/or 

IID that is implicit in much current research, and most calculations of multi-judge consensus, could 

be relaxed.  Aggregates that depend on sums, and research uses ratings in transformations or 

regressions, can be re-framed, using Equation (4), as maximum likelihood functions that are 

explicit about the uncertainty surrounding a rating observed. 
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Appendix A: Literature review regarding what can be deduced about the shape of a latent 
distribution from one observation? 
 

Rodriguez (1996) reports that, in 1964, Robert Machol derived a confidence interval (CI) for an 

estimate of the mean of an unbounded distribution that is symmetric about zero.  Casella and 

Strawderman (1981) assumed that 𝑥 = 𝜇 + 𝛿 has a uniform prior distribution that is discrete, 
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bounded (±𝑎) and symmetric about zero.   Under those assumptions, they employed Bayes Rule 

to calculate that the posterior mean of the distribution is a hyperbolic tangent function (tanh) of 

the single observation and the distance to the bounds; 𝜇̂ = tanh	(𝑎𝑥).  Rodriguez (1996) re-stated 

Machol’s result, presented an unpublished non-parametric CI for 𝜇̂ that he attributed to Herbert 

Robbins, and he also derived a CI for the standard deviation (𝜎Y) of an unbounded symmetric 

distribution. 

 

Golan, Judge & Miller (1996, p. 115-123) examined least squares, maximum likelihood, Bayesian 

and maximum entropy methods of estimating, for one observation, the mean of a bounded 

distribution that is symmetric about zero.  Based on what those authors describe as “standard 

sampling theory,” the least squares and maximum likelihood methods yield 𝜇̂ = 𝑥𝑜.  Their results 

using Bayes Rule cite and match Casella and Strawderman (1981).  Their maximum entropy 

estimate of 𝜇̂ is a Lagrange function of information entropy and an exogenous constraint on the 

difference between 𝑥" and the unobserved 𝜇.  Both the Bayesian and the maximum entropy 

solutions show, as the range of x increases, that 𝜇̂ tends away from 𝑥" toward the center of the 

range.  Golan, Judge & Miller compare the accuracy of the four methods assuming several types 

of error distribution, and they conclude that the maximum entropy method both relies on the least 

restrictive assumptions and is the most accurate.  

 

Leaf, Hui & Lui (2009) examined Bayesian estimates of distribution parameters using a single 

observation.  The authors found that reasonable Bayesian results depend very much on starting 

with a reasonable prior and they recommend further development of axiomatic or so-called fiducial 

inference.  Primavera (2011) addressed estimating the mean of a bounded distribution from one 

observation using a sample mean, maximum likelihood estimator, Bayesian inference and game 

theory.  The sample mean for one observation implies merely 𝜇̂ = 𝑥𝑜.  A maximum likelihood 

estimate yields the same result but interposes a distribution function, and Bayes Rule yields results, 

like those found by Leaf et al., that depend on the prior and the form of the distribution function. 

 

Cook & Harslett (2015, p. 11-22) used one observation and cross entropy to estimate the intercept 

and slope of a linear equation.  Following Bayes, they assumed prior probability distributions for 
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the two parameters and then selected values for those parameters that minimized an exogenously-

weighted cross entropy subject to the Lagrange constraints that the probabilities sum to unity and 

that the linear function of the parameters yields 𝑥&.   

 

Appendix B: Derivation of Equation (4) 
 

See definitions for algebra in Section IV. 

 

For an arbitrary distribution 𝑝̂: 

𝐻(𝑞|𝑥)) ≤ 𝐻(𝑢) (B1) 
𝐻(𝑢) − 	𝐻(𝑞|𝑥)) 	≤ 𝐼(𝑞|𝑥), 𝑝̂) + 𝐼(𝑢, 𝑝̂) (B2) 

 

Two conditions must apply.  The symbol for approximately equal (≈) indicates that the solution 

will be a minimum difference but, due to the form of a PMF, may not be a precise equality (=). 

 

	𝑝̂ ≈ 𝑢|	𝑛 = 0 (B3) 
	𝑝̂ ≈ 𝑞|𝑥)	|	𝑛 → ∞ (B4) 

 

Impose the conditions above on 𝑝̂ and maximize entropy, subject to  𝑥&, by minimizing the 

weighted sum of the cross entropies.  See also Golan, Judge & Miller (1996, p. 41) regarding cross 

entropy as a distance and then minimizing cross entropy to calculate the PMF that is consistent 

with the data but has entropy closest to, in this case, the maximum 𝐻(𝑢).  Weighting the cross 

entropy by sample size in Equation (B5) to obtain the conditions in Equations (B3) and (B4) is the 

author’s addition.  See other uses of weighting cross entropies by sample size in Mitchell (1997, 

p. 57) and Golan, Judge & Miller (1996, p. 110).   

 

arg[𝑝̂] = 𝑎𝑟𝑔𝑚𝑖𝑛[	𝐼(𝑢, 𝑝̂) + 	𝑛 ∙ 𝐼(𝑞|𝑥& , 𝑝̂)	] (B5) = (4) 
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