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1 Introduction

Correct estimates of the elasticity of import demand are crucial in order to accurately

estimate the gains from trade, predict the impact of trade policies and impute the size

of trade costs from data on international trade flows. These elasticities are typically es-

timated from import trade data and have been estimated for many importing countries

and products. The lower are these estimates, the greater the benefits of international

trade and economic integration.

Estimates of the elasticity of import demand are traditionally performed using trade

value data and price data constructed by dividing trade values by trade quantities,

which are known as “trade unit values”. An alternative approach is to estimate import

demand elasticities using data on traded quantities instead of trade values. We present

evidence here suggesting that import demand elasticity estimates based on trade values

tend to be higher compared to using traded quantity data. In order to expose these

differences between using traded quantities and trade values, we apply the method

of partial identification of demand and supply elasticities developed by Leamer (1981).

This method permits the estimation of the upper and lower bound on the set of possible

estimates for the elasticity of import demand, and underpins the point estimates derived

by Feenstra (1994).

In this partial identification framework, we show that the estimates of the upper

bound using trade value data are more biased away from zero compared to using trade

quantity data. Using data on U.S. imports for the years 1993-2006, we then show that

using trade quantities instead of trade values yields estimates of import demand elas-

ticity upper bounds that are smaller than traditional estimates. Since the lower bounds

are identical using both approaches, this implies that the range of plausible estimates

is much smaller when using traded quantities compared to the standard approach using

trade values. Furthermore, approximately one third of the point estimates based on

Feenstra (1994) are implausibly high, since they lie above the Leamer (1981) upper

bounds.

The international economics literature has avoided using import quantity data when

estimating import demand elasticities and authors typically claim that measurement

error in the quantity data is at issue. The literature often cites Kemp (1962), who was

the first to warn of the bias caused by measurement errors when estimating import
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demand elasticities. In Kemp’s case, however, the bias was caused by measurement

error in the price indices, which led to error in the constructed quantity indices that

were calculated from trade value and price index data. However, in the context of

contemporary international trade data, the raw data reports the value of trade and its

quantity (in weight or units), so Kemp’s critique does not necessarily apply. We derive

the asymptotic bias of our estimators for the upper and lower bounds in the presence

of measurement error in both trade quantities and trade values, and show that our

original theoretical results are not overturned unless measurement error is sufficiently

more severe in the quantity data than the value data.

Using detailed import data for the U.S., we estimate upper and lower bounds on the

import demand elasticity using the three possible combinations of trade value, trade

quantity and trade unit value data. The pattern of the upper and lower bounds in

each approach matches our theoretical predictions for the asymptotic bias. We also

derive point estimates using traded quantity data instead of trade value data in the

estimation, modifying Feenstra’s (1994) methodology. We find that the point estimates

based on quantity data are lower on average than the corresponding point estimates

using trade value data.

Our results have important implications not only for the estimates of import de-

mand elasticities in particular goods, but also for the implied gains from international

trade and economic integration. Our results thus contribute to a recent literature that

has attempted to quantity the gains from trade for different countries and time periods

that are predicted by workhorse models of international trade. Using the framework

developed by Arkolakis et al. (2012), we show that our alternative approach to esti-

mating import demand elasticities implies that the gains from economic integration are

larger for many goods compared to previous studies.

Point estimates of import demand elasticities using Feenstra’s (1994) methodology

have been extensively employed in the field of international economics, and have been

used to estimate the impact of new imported product varieties on the price index

(Feenstra, 1994), measure the gains from increased variety due to imports (Broda and

Weinstein, 2006), impute trade costs from trade flow data (Jacks et al., 2008, 2011;

Chen and Novy, 2011; Novy, 2013) , and also to calibrate countless applied models of

international trade. The vast majority of this literature estimates this elasticity using

trade value data. The Feenstra (1994) approach is commonly used to calculate the
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trade elasticity, and is conceptually distinct from estimates of the trade elasticity using

the Ricardian models of international trade, such as Simonovska and Waugh (2014)

and Caliendo and Parro (2015).

While we test and motivate our analysis in the context of international trade, our

results are generalizable to any estimation of demand elasticities where price data must

be constructed from quantity and value data, and the econometrician must select the

most appropriate model. For example, household survey data on expenditures and

quantities is used to estimate price elasticities (Deaton, 1987, 1990). Unit values are

also prevalent in firm-level datasets, and are used to estimate price elasticities for unit

labor costs (Carlsson and Skans, 2012) and electricity unit values (Davis et al., 2013).

The rest of the study proceeds as follows. In section 2 we present the theory behind

the partial identification of the import demand elasticities and derive the asymptotic

bias associated with the upper and lower bound estimators. Section 3 describes our data

and empirical methodology. In section 4 we present the results estimating the upper

bounds, lower bounds and point estimates of the import demand elasticity using U.S.

import data. Given our new estimates, we quantify the impact of these new estimates

on the welfare gains from trade in Section 5. Section 6 concludes.

2 Partially Identifying Import Demand Elasticities

We begin by theoretically deriving the difference in asymptotic bias when estimating

import demand elasticities using quantity data or value data. The import demand

elasticity for a good can be naively estimated by regressing traded quantities on prices:

lnxct = −β ln pct + εct, (1)

where xct is the quantity demanded from country c in year t, and pct is its corresponding

price.1 However, estimating (1) by OLS will lead to biased and inconsistent estimates of

β if the errors are correlated with prices, i.e., E(εct ln pct) > 0. This positive covariance

arises if εct contains demand shocks — a positive demand shock raises both quantity and

price. An IV approach is one potential solution, but the absence of good instruments

1Note that we express the elasticity of substitution as a positive value. For simplicity and without
loss of generality, we omit the constant in the regression equation and assume all variables have mean
zero.
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in this context has lead to alternative approaches in the literature.

The challenge of estimating import demand and supply elasticities in the absence of

good instruments has a long tradition in economics. The study of an under-identified

supply and demand system was pioneered by Working (1927), who showed that under

certain conditions the data trace out the demand curve if the supply curve is more

variable than the demand curve. Leamer (1981) shows that in a demand–supply system

with zero covariance between the residuals, the set of possible maximum likelihood

estimates is defined by a hyperbola. Leamer (1981) also shows that if the demand

elasticity assumed to be negative and the demand elasticity assumed to be positive,

then the set of maximum likelihood estimates for one elasticity is the interval between

the direct least-squares estimate (regressing quantities on prices) and the reverse least-

squares estimates (regressing prices on quantities). Leamer (1981) shows that (1) defines

either the upper or lower bound on the true estimate of the demand elasticity, and the

reverse least square estimate will define the other bound. In what follows, we follow

Leamer’s (1981) partial identification approach to estimating an upper and lower bound

for the elasticity of import demand.

2.1 Quantity–Price Approach (Leamer, 1981)

The main principle of partial identification is to estimate an interval in which the true

parameter lies. The main objective is to establish that the upper bound is above the

true parameter, and the lower bound is below the true parameter. For these bounds to

be informative, it is also relevant that the estimated interval is as narrow as possible,

while at the same time ensuring that the bounds bracket the true parameter of interest.

We now derive the asymptotic bias of the estimators for the least squares and reverse

least squares regressions of import quantities on import prices. The demand equation

is given by (1), and the supply equation is given by:

lnxct = γ ln pct + ηct, (2)
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which yields the following reduced form:

lnxct =
γ

γ + β
εct +

β

γ + β
ηct,

ln pct =
1

γ + β
εct −

1

γ + β
ηct.

The probability limit of the OLS estimate of β using (1) is

plim β̂ = −E(lnxct ln pct)

E ((ln pct)2)
=
βσ2

η − γσ2
ε + (γ − β)σεη

σ2
ε + σ2

η − 2σεη
,

where σεη = E(εctηct). Now, consider the reverse regression of ln pct on lnxct. The

probability limit of the OLS estimator is

plim β̂R = −E(lnxct ln pct)

E ((lnxct)2)
=

βσ2
η − γσ2

ε + (γ − β)σεη

γ2σ2
ε + β2σ2

η + (β + γ)σεη
.

Assume the supply and demand shocks are uncorrelated, i.e. σεη = 0. This yields the

following probability limits for the least squares and reverse least squares estimates:2:

plim β̂ = β − (γ + β)
σ2
ε

σ2
ε + σ2

η

≤ β, (3)

1

plim β̂R
= β + (γ + β)

γσ2
ε

βσ2
η − γσ2

ε

R β (4)

It is clear from (3) that the least squares estimate, which captures the lower bound,

brackets the true β from below. With an additional parametric assumption on the sign

of the denominator in (4), we obtain the Leamer (1981) result that the least squares

and reverse least squares estimates constitute the upper and lower bound on β:

0 ≤ plim β̂ ≤ β ≤ 1

plim β̂R
⇔ βσ2

η − γσ2
ε > 0. (5)

2Leamer (1981) shows that the hyperbola of the maximum likelihood estimates is given by

γ̂2
(
β̂s2p − spx

)
+ β̂2

(
−γ̂s2p + spx

)
=
(
β̂ − γ̂

)
s2x, where s2p and s2x are the sample variances and spx is

the sample covariance. Assuming a non–negative supply elasticity, the upper bound for the demand

elasticity is found by imposing γ̂ = 0, which yields β̂ =
s2x
spx

, the inverse of the least squares estimate

of p on x.
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2.2 Value–Price Approach

In international trade data, the price is constructed as the average unit value of each

trade flow i.e. pct = vct/xct, where vct is the value of trade. Logging this expression and

rearranging yields

ln vct = ln pct + lnxct. (6)

This simple relationship between trade values, trade quantities and trade unit values

in the data implies that β and γ can be estimated using any two of the components

from (6) and then transforming the resulting point estimate. For example, one can use

(6) to transform (1) and (2) into regression of trade values on trade unit values, yielding

the following expressions for demand and supply:

ln vct = (1− β) ln pct + εct, (7)

ln vct = (γ + 1) ln pct + ηct. (8)

Feenstra’s (1994) point estimates are based on structural equations similar to (7)

and (8), which require using constructed trade unit values. The reduced form of this

system of equations is given by:

ln vct =
1 + γ

γ + β
εct +

β − 1

γ + β
ηct,

ln pct =
1

γ + β
εct −

1

γ + β
ηct.

The probability limit of the lower bound on β using (7) is the ordinary least squares

regression of trade values on prices, transformed using (6):

1− plim β̂P = 1− E(ln vct ln pct)

E ((ln pct)2)
= β − (γ + β)

σ2
ε

σ2
ε + σ2

η

≤ β. (9)

The probability limit of the lower bound in (9) is identical to (3). This stems from the

fact that price is on the right hand side when estimating the lower bounds, regardless of

whether quantities or values are the dependent variable. We can show, however, that the

upper bounds are not identical to the quantity–price approach. The probability limit

for the upper bound based on the reverse least squares estimation takes the following
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form:3

plim − 1− β̂R,P

β̂R,P
= −

1− E(ln vct ln pct)
E((ln vct)2)

E(ln vct ln pct)
E((ln vct)2)

= β + (β + γ)
(1 + γ)σ2

ε

(β − 1)σ2
η − (1 + γ)σ2

ε

. (10)

It is clear from the denominator in (10) that the reverse least squares regression will

unambiguously not bound the true β from above if β < 1. However, β > 1 is a

common assumption in the literature and will be satisfied for may imported products.

Feenstra (1994) assumes a demand elasticity in excess of unity due to CES preferences,

and Scobie and Johnson (1975) argue that the elasticity of demand will be elastic if

supplying countries are sufficiently “small” in the sense that there are several suppliers

of a similar good to the export market. It is also evident in (10) that the Feenstra upper

bound will hold under in some cases in the presence of a downward-sloping supply curve.

The numerator of the bias term in (10) is larger than the numerator in equation (4),

which suggests that the upper bound is likely larger using trade value data compared

to using trade quantity data.4

2.3 Discussion and the Impact of Measurement Error

To sum our results so far, we have shown that the Leamer and Feenstra lower bounds are

identical and unambiguously bound the true demand elasticity from below. The Leamer

and Feenstra upper bounds are not identical, and both bracket the true import demand

elasticity from above under certain parameter restrictions. Moreover, the Feenstra

upper bound is more likely to be violated when the true import demand elasticity is

small.

3Inverting equation (7) without the error term yields the transformed reverse least squares estimate

β̂R,P = 1
1−β̂P

. Rearranging yields β̂P = − 1−β̂R,P

β̂R,P
.

4As suggested by Scobie and Johnson (1975), another way to partially estimate import demand
elasticities is to regress lnxct on ln vct and vice versa, thus avoiding the need to construct price data.
We derive the asymptotic bias of the upper and lower bounds using this approach in the Appendix.
We find that the quantity–value lower bound is identical to the Leamer upper bound, and that the
quantity–value upper bound is identical to the Feenstra upper bound. Since the lower bound is
not likely the bracket the true elasticity in this case, estimating import demand elasticities without
constructing trade unit values thus leads to implausibly high estimates.
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We plot the predicted asymptotic biases of each estimator for various values of

the true import demand elasticity in order to illustrate the relationships between the

bounds. The results of this exercise are reported in figure 1 where we plot β between 0

and 10, and we hold constant γ = 1, σ2
ε = 0.5, and σ2

η = 1. It is evident from the figure

that the Feenstra upper bound is larger than the Leamer upper bound for most values

of β. Figure 1 also illustrates that the Feenstra upper bound is highly unstable at low

values of β, and becomes negative when the true import demand elasticity is below a

certain threshold. The Leamer approach is thus particularly well–suited to situations

where the true import demand elasticity is low.

A related question is whether or not our theoretical results hold in the presence of

measurement error. Kemp (1962) was the first to warn of the bias caused by measure-

ment errors using quantity data for the purpose of estimating import demand elastici-

ties. In Kemp’s case, the bias was caused by constructing quantity indices from trade

value and price index data. In the second paragraph of Kemp (1962), he writes:

In aggregative studies, however, the quantity variables almost always is

constructed by dividing the index of import prices into an index of the total

money value of imports. The quantity variable is subject therefore to a

measurement error of its own.

In his derivations, Kemp assumes a measurement error term in the price index data,

but not in the money value of imports. Kemp goes on to show that using constructed

quantity index data leads to biased and inconsistent estimates of the import demand

elasticity, which correspond to our lower bound estimates. In the context of contem-

porary international trade data, however, the raw data reports the value of trade and

its quantity (in weight or units). In the raw 10-digit US import data, for example,

there are 47 different units of measuring quantities. Moreover, one cannot rule out that

measurement error exists in the contemporary trade value data. Transfer pricing, for

example, can lead to measurement error in the trade value data.

The asymptotic bias of the upper and lower bounds of import demand elasticities in

the presence of classical measurement error in both trade values and traded quantities

are provided in the Appendix. We find that the expression for the asymptotic bias in

the presence of measurement error for the least squares estimator (the lower bound)

is identical regardless of using trade value or trade quantity data, just as it is in the
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case without measurement error. The parameter restrictions required for the bounds

to hold in the presence of measurement error become slightly more complicated in all

approaches since they also hinge on the magnitudes of the error variance and covariance.

We therefore study three specific cases of measurement error. In the first case, we

assume that the measurement error variance in traded quantities and trade values, and

their covariance, are equal in magnitude, which we call the “quantity and value error”

case. In the second and third cases, we assume that there is only measurement error in

traded quantities only and trade values only. The results of this exercise are illustrated

in figures A.1, A.2 and A.3 in the Appendix.

In figure A.1 we plot the true import demand elasticity, and the lower bound with

no measurement error, with quantity measurement error, and with value measurement

error. It turns out that measurement error in quantities only attenuates the Leamer

lower bound, and measurement error in values only attenuates the Feenstra lower bound.

However, the attenuation bias is relatively more severe with measurement error in

values.

In figure A.2 we plot the true import demand elasticity and the Leamer upper bound

with no measurement error, with measurement error of equal magnitude in quantities

and values, and with measurement error in quantities only. In figure A.3 we plot the

true import demand elasticity and the Feenstra upper bound with no measurement

error, with measurement error of equal magnitude in quantities and values, and with

measurement error in values only. The results suggest that measurement error of equal

magnitude in both quantities and values leads to a very similar outcome to our re-

sults without measurement error. Measurement error in quantities only attenuates the

Leamer upper bound, while measurement error in values only inflates the Feenstra

upper bound.

Overall, our partial identification theoretical results suggest that it is best to es-

timate import demand elasticities using traded quantities if measurement error is not

an issue, or it is similar in magnitude in the quantity and value data. If measurement

error is a relatively larger problem in the quantity data then it should be avoided,

while if measurement error is relatively larger problem in the value data then it should

be avoided. In general, quantity data is particularly well-suited to estimating import

demand elasticities for goods with an expected low elasticity. With these theoreti-

cal predictions in hand, we now describe the trade data and estimate the bounds on
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the elasticity of substitution and the point estimates using the Leamer and Feenstra

approaches.

3 Data and Empirical Application to U.S. Imports

We now describe how we estimate the upper and lower bounds using the Leamer and

Feenstra approaches. We first describe the data, then we provide our estimating equa-

tions for the bounds. Finally, we explain how we derive point estimates using the

quantity data.

3.1 Data

Our main data source is the U.S. import data available at the Center for International

Data, which is based on data from the U.S. Customs Service.5 The data includes the

value of U.S. imports (in USD) and its associated quantity by country of origin at the

10-digit HS level. Following Soderbery (2015), we focus on the years 1993–2006. From

the trade values and trade quantities we compute trade unit values. We thus observe the

trade value, trade quantity and trade unit values by HS product, partner country and

year. We study the U.S. since it is a large importer that imports from many countries,

even withing narrowly defined product categories, and allows us to relate our results to

those of Feenstra (1994), Broda and Weinstein (2006) and Soderbery (2015).

We perform our estimations at the 8-, 6-, 4-, and 3-digit HS levels, which we achieve

by aggregating the data across products. There are 47 different types of quantity units

in the data. Since it is crucial to use the same quantity unit for each product, we keep

only the trade flows that use the most common quantity unit within before aggregating

the data to more coarse product definitions. The units used to measure quantity are

very often the same, even within broad product categories. Approximately 5 percent of

trade flow observations are dropped when harmonizing the quantity units at the 8-digit

HS level. When harmonizing quantity units at the 3-digit HS level, our most aggregated

product definition, we drop approximately 20 percent of observations.

As a robustness check we perform our estimations using data from the COMTRADE

database, which is administered by the United Nations. We use importer-reported data

5See Feenstra et al. (2002) for a detailed description of the U.S. import data. The data can be
found at http://cid.econ.ucdavis.edu/usix.html
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for U.S. imports at the 6-digit HS level for the years 1991–2015, where both the value

of trade (in USD) and the quantity of trade (in kilograms) are reported.

In order to calculate the gains from trade for each imported product, we require data

on import penetration ratios for each product, which we take from the U.S. Bureau of

Economic Analysis (BEA) 2007 input-output tables, available at the 6-digit level. We

collapse the BEA commodity/industry classification to the 4-digit level, then merge it

with the Center for International Data U.S. import data at the 4-digit NAICS level.

3.2 Empirical Methodology

In order to compare our results with the literature, we follow Feenstra (1994) by nor-

malizing trade values and trade quantities as a share of total imports. In the case of

traded quantities, a country’s market share for good g is defined as

qgct ≡ xgct∑
c∈Cgt

xgct
(11)

In the case of trade values, a country’s expenditure share for good g is defined as

sgct ≡ vgct∑
c∈Cgt

vgct
(12)

Normalizing the data with respect to a reference country absorbs the origin–product–

year fixed effect, which contains the importer’s price index term that would arise in a

CES demand framework. Following Feenstra (1994), we also difference the data with

respect to a reference country k.

We estimate the lower and upper bounds of the elasticity of import demand for each

good at the 3-, 4-, 6- and 8-digit HS level of aggregation, normalizing the variables as

described above. Formally, the Leamer lower bound regression for good g is:

∆k ln qgct = −β̂g∆k ln pgct + ςgct, (13)

where

∆k ln qgct ≡ ∆ ln qgct −∆ ln qgkt,

∆k ln pgct ≡ ∆ ln pgct −∆ ln pgkt
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The Leamer upper bound regression is:

∆k ln pgct = −β̂Rg ∆k ln qgct + υgct, (14)

The Feenstra lower bound regression is:

∆k ln sgct = −β̂Pg ∆k ln pgct + ξgct, (15)

where

∆k ln sgct ≡ ∆ ln sgct −∆ ln sgkt,

The Feenstra upper bound regression is:

∆k ln pgct = −β̂R,Pg ∆k ln sgct + ζgct, (16)

We also develop a method for deriving point estimates of import demand elasticities

using data on traded quantities instead of trade values, based on Feenstra’s (1994)

methdology. The structural model’s “demand” and “supply” equations are as follows:

∆k ln qgct = −σqg∆k ln pgct + εkgct (17)

∆k ln pgct = ωqg∆
k ln qgct + δkgct (18)

where εkgct and δkgct are unobservable demand and supply shocks, respectively and

ω ≥ 0 is the inverse supply elasticity. Feenstra (1994) derives equations similar to

(17) and (18), but using expenditure shares instead of quantity shares, from a model

of CES preferences, using the Armington (1969) assumption of product differentiation

by country of origin. 6 Note, however, that σqg in (17) is identical to our estimate of

the Leamer lower bound, β̂Rg , in equation (13). Moreover, ωqg in (18) is the reverse

least squares estimate, which is the same as our estimate of the Leamer upper bound

with the opposite sign, β̂Rg , in equation (14). Thus, the structural equations used

to establish point estimates of the elasticity of demand are directly related to the

6Harberger (1957) shows that this system yields an elasticity of substitution with more general
assumptions on consumer preferences than CES.
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estimating equations of the upper and lower bounds.

Feenstra’s innovation is to multiply εkgct and δkgct together in order to convert equa-

tions (17) and (18) into one estimable equation. Following Feenstra (1994), we assume

that εkgct and δkgct are independent. We define ρqg =
σq
gω

q
g

1+σq
gω

q
g
∈ [0, 1), scale by 1

σq
g(1−ρqg)

and

rearrange to obtain the analogue of Feenstra’s (1994) estimating equation:

(
∆k ln pgct

)2
= θq1g

(
∆k ln qgct

)2
+ θq2g

(
∆k ln pgct∆

k ln qgct
)

+ ugct, (19)

where

θq1g =
ρqg

(σqg)
2 (1− ρqg)

,

θq2g =
2ρqg − 1

σqg (1− ρqg)
(20)

and

ugct =
εgctδgct

σqg (1− ρqg)
(21)

Feenstra (1994) shows that estimating (19) by 2SLS, where the instruments are

dummy variables across the countries c 6= k, leads to consistent estimates of θq1g and

θq2g. We implement the most recent refinement of Feenstra’s method, by Soderbery

(2015), who applies a limited information maximum likelihood (LIML) estimator in

order to reduce bias and improve constrained search efficiencies.

Once we have obtained the estimates of θ̂q1g and θ̂q2g, the values of σ̂qg and ρ̂qg can

be solved from the quadratic equations in (20). As long as θ̂q1g > 0, these equations

yield two solutions for σ̂qg, one positive and one negative.7 We restrict attention to the

positive solution. Formally:

7This system can also be solved in terms of σqg and ωqg , where θq1g = ωqg/σ
q
g and θq2g =

(
σqgω

q
g − 1

)
/σqg .

It is clear here that θq1g must be positive so that σqg and ωqg are both positive.
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ρ̂qg =
1

2
+

1

4
− 1

4 +
(
θ̂q2g

)2
/θ̂q1g


1/2

if θq2g > 0, (22)

ρ̂qg =
1

2
−

1

4
− 1

4 +
(
θ̂q2g

)2
/θ̂q1g


1/2

if θq2g < 0, (23)

σ̂qg =

(
2ρ̂qg − 1

1− ρ̂qg

)
1

θ̂q2g
> 0. (24)

If θq1g is negative, then the solution fails to provide estimates of σqg and ρqg that

satisfy the restriction that σqg > 0 and 0 ≤ ρqg < 1. The restriction on ρqg implies

that the supply elasticity must be non-negative, i.e. ωqg > 0, which falls directly from

Leamer’s (1981) inequality constraints. In the event that θq1g is negative or there is

an imaginary solution, then we apply the constrained search algorithm developed by

Soderbery (2015).

4 Results

4.1 Partial identification using quantity data

We first estimate the upper and lower bounds using the trade value – trade unit value

specification as given by (15) and (16), which produces the bounds on the set of plausible

Feenstra point estimates. We call this set of possible estimates the “Feenstra bounds”.

The results for each 3-digit HS import product are illustrated in figure 2. The x-axis

ranks each HS3 product by its lower bound (least squares) estimate. While all lower

bound estimates are positive and lie close to one, the estimates of the upper bound

vary widely. For many products with a small lower bound estimate, the corresponding

reverse least squares estimate is negative, which agrees with the predicted asymptotic

bias. For several products the upper bound is very high. We thus truncate the figure

to display estimates between 0 and 30. We also report all “Feenstra point estimates”

based on trade values that the Soderbery (2015) procedure yields. The vast majority

of the point estimates lie within the bounds given by the estimates of equations (15)
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and equation (16), with only a few exceptions.

We then estimate the point estimates and the upper and lower bounds using the

Leamer trade quantity – trade unit value specification as given by (13) and (14), which

we call the “Leamer bounds”. We report both the Leamer bounds and the Feenstra

bounds, plus the Feenstra point estimates, in figure 3. As predicted by the theory, the

Leamer and Feenstra lower bounds are nearly identical, while the Leamer upper bound

is far below the Feenstra upper bound. It is also evident that many of the Feenstra point

estimates (around one third) lie above the Leamer upper bound. This suggests that

many of the elasticity estimates used in the literature are implausably large. Finally, it

is evident that the Leamer upper bounds are positive and lie above the lower bounds

for all products, including those for which the Feenstra upper bound was negative.

We also check whether our results regarding the difference between the Leamer and

Feenstra bounds are sensitive to the level of product aggregation. Imbs and Mejean

(2015) show, for example, that estimates of trade elasticities are smaller in aggregate

data than at finer levels of aggregation. In figures A.5 and A.6 in the Appendix we

illustrate the alternative bounds with the original bounds and point estimates at the HS

4-digit and 6-digit levels respectively. We find that the difference between the Feenstra

and Leamer upper bounds persists at finer levels of product aggregation. We also find

that many of the Feenstra point estimates lie below the Feenstra and Leamer lower

bounds even at finer levels of aggregation.

4.2 Point estimates using quantity data

We now turn to our point estimates of the import demand elasticities using quantity

data, and compare them with the point estimates derived from using trade value data,

which is the standard approach in the literature. In figure 4 we illustrate the point

estimates based on traded quantity data for each 3-digit HS import product, which

we call the “Leamer point estimates”, as well as the corresponding Feenstra point

estimate using trade value data. We also include the Leamer bounds, which allows

us to discern how well the point estimates fit withing the set of plausible estimates.

Figure 4 illustrates that nearly all our Leamer point estimates lie within the bounds.

The figure also illustrates that the Feenstra point estimates tend to be larger on average,

especially for those products where the Feenstra point estimate lies above the Leamer
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bound. We also calculate the Leamer point estimates at the 4-digit and 6-digit levels,

and the results are illustrated in figures A.7 and A.8 in the Appendix.

Descriptive statistics of all of the bounds and point estimates at the 3-digit, 4-digit

and 6-digit level are provided in Table 1, where we report the number of products, the

raw mean and the median. The mean and median of the Leamer upper bounds are

always lower than the corresponding measure of the Feenstra upper bounds, regardless

of the level of product aggregation. The median is lower than the mean in all cases

for the upper bounds, which is driven by a small number of products with relatively

high upper bounds. The difference between the mean and the median is especially

pronounced for the Feenstra upper bounds. Table 1 also highlights that the Leamer

point estimates are lower than the Feenstra point estimates in all cases, for all levels

of product aggregation. The raw average and median of the point estimates are very

stable across product aggregations.

5 Implications for the Gains from Trade

We now quantify the economic importance of our alternative approach to measuring

import demand elasticities for the welfare gains from economic integration. We use

the framework developed by Arkolakis et al. (2012), which distills the welfare effect of

openness to trade across a wide array of trade models into a simple formula:

Ŵj = λ̂
1/ε
jj , (25)

where Ŵj is the percentage change in welfare in destination country j, λ̂jj equals

the percentage change in country j’s internal trade (1 minus the import penetration

ratio), and ε is the elasticity of imports with respect to variable trade costs, also known

as the “trade elasticity”. In the Armington (1969) model, ε = 1 − σ, where σ is the

import demand elasticity.8 The formula given in (25) thus highlights that estimates of

the import demand elasticity play a central roll in measuring the gains from trade.

We first follow Arkolakis et al. (2012) and calculate the gains from economic in-

tregration for the U.S. in 2000, where the import penetration ratio was seven percent,

which implies λjj = 0.93. Using the average Leamer point estimate at the 8-digit

8In the Melitz (2003) model, ε = 1 − σ − γj , where γj is the extensive margin elasticity. In the
Ricardian model, ε = 1− σ + γijj − γiij , where γijj and γiij denote the extensive margin elasticities.
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level from Panel D of Table 1 (2.59), the gains from trade compared to autarky are

1− 0.931/(1−2.59) = 4.6 percent. Using the corresponding 8-digit average Feenstra point

estimate (6.75), the gains from trade are 1 − 0.931/(1−6.75) = 1.3 percent. The Leamer

point estimates suggest gains from trade that are 3.5 times as large as the Feenstra

point estimates.

We also calculate the gains from trade on at the industry level, using the 4-digit

BEA commodity classification. Ossa (2015), for example, shows that the gains from

trade are often higher when calculated at the industry-level and then aggregated. We

first calculate the Leamer and Feenstra point estimates at the 4-digit BEA level. These

estimations yield 46 BEA commodities for which we have viable Feenstra and Leamer

point estimates, and we report these estimates in figure A.10 in the Appendix. We then

combine these point estimates with data on the import penetration ratio from the 2007

BEA input-output tables. Plugging these values into (25) for each commodity yields an

estimate of the gains from trade for each BEA commoditity. We report the gains from

trade across the 10th, 25th, 50th, 75th and 90th percentiles of these commodities in

Table 2. The gains from trade are clearly higher when using the Leamer point estimates

compared to the Feenstra point estimates across the entire distribution of commodities.

The gains from trade for the median commodity is 43.2 percent using the Leamer point

estimates, compared to 30.8 percent when using the Feenstra point estimates. This

difference in the gains from trade is driven by the fact that the Leamer point estimates

of the import demand elasticities are lower than the Feenstra point estimates for most

goods. Using traded quantity data instead of trade value data to estimate import

demand elasticities thus leads to much higher estimated gains.9 We also report the

gains from trade using the Leamer and Feenstra upper bound elasticity estimates in

Table 2. The calculated gains from trade based on these bounds provide a conservative

estimate of the gains from trade. The gains from trade for the median commodity is

15.7 percent using the Leamer upper bounds, and only 2.6 using the Feenstra upper

bounds.

9We find very large gains for a small number of BEA commodities in both the Leamer and Feenstra
cases, so that aggregating to the country-level following Ossa (2015) and Costinot and Rodrguez-Clare
(2014) provides uninformative results. We thus elect to report industry-level gains across different
percentiles instead.

18



6 Conclusion

Correct estimates of import demand elasticities are essential for measuring the gains

from trade and predicting the impact of trade policies. The international economics

literature has typically estimated these elasticities using trade value data instead of

trade quantities. Using partial identification methods, we show theoretically that the

upper bound on the import demand elasticity is more biased upward compared to using

traded quantity data. We confirm our theoretical predictions using detailed U.S. import

data. We also generate import demand elasticity point estimates based on traded

quantity data and compare them with corresponding point estimates using trade value

data. Our results suggest that import demand elasticities are lower than previously

thought for many goods, which implies that the gains from economic integration have

been underestimated in earlier studies.

While we test and motivate our analysis in the context of international trade, our

results are generalizable to any estimation of demand elasticities where price data must

be constructed from quantity and value data, and the econometrician must select the

most appropriate model. Our derivations of the asymptotic bias suggest that using

quantity data is superior to value data in cases where measurement error is of similar

magnitude in the quantity and value data.

Our results have many implications in international economics that we leave for

further research, such as analyzing the impact on the variety gains from trade or the

magnitude of trade costs implied by trade flow data. Given that these elasticities are so

important for understanding the gains from trade, it is hoped that our study encourages

discussion on the pros and cons of using quantity versus value data when estimating

demand elasticities.
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Figure 1: Theoretically predicted upper and lower bounds as function of true import demand
elasticity, no measurement error. Source: authors’ calculations

Notes: γ = 1, σ2
ε = 0.5, σ2

η = 1 in all cases.
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Figure 2: Feenstra bounds and point estimates, by 3-digit HS, U.S., 1993-2006. Source:
UC Davis Center for International Data, authors’ calculations
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Figure 3: Leamer bounds, Feenstra bounds and point estimates, by 3-digit HS, U.S., 1993-
2006. Source: UC Davis Center for International Data, authors’ calculations
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Figure 4: Feenstra point estimates, Leamer point estimates and Leamer bounds by 3-digit
HS, U.S., 1993-2006. Source: UC Davis Center for International Data, authors’ calculations
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Table 1: U.S. Import Elasticity Descriptive Statistics

Leamer Leamer Leamer Feenstra Feenstra Feenstra
Point Lower Upper Point Lower Upper

Estimate Bound Bound Estimate Bound Bound

Panel A: 3-digit HS
count 118 118 118 118 118 77
mean 1.57 1.07 3.07 2.71 1.07 26.32
median 1.35 1.07 2.24 1.53 1.08 9.85

Panel B: 4-digit HS
count 674 674 674 674 674 473
mean 1.94 1.09 4.51 5.11 1.10 34.61
median 1.33 1.10 2.42 1.63 1.10 10.06

Panel C: 6-digit HS
count 2754 2745 2745 2754 2751 1830
mean 2.25 1.12 6.86 6.71 1.13 36.42
median 1.40 1.11 2.89 1.74 1.11 9.88

Panel D: 8-digit HS
count 5044 5026 5026 5044 5037 3256
mean 2.59 1.12 17.72 6.75 1.13 56.72
median 1.44 1.10 3.20 1.79 1.10 10.30

Notes: the sample is restricted to those products for which Leamer and Feenstra point
estimates exist. Source: UC Davis Center for International Data, authors’ calculations.
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Table 2: U.S. Gains from Trade by 4-digit BEA commodity-level data

Percentile
10th 25th 50th 75th 90th

Leamer point estimates 3.3 19.4 43.2 378.9 14935.3
Feenstra point estimates 2.8 12.5 30.8 69.4 581.4
Leamer upper bounds 1.4 5.7 15.7 35.9 200.1
Feenstra upper bounds 0.03 0.6 2.6 5.6 7.6

Source: UC Davis Center for International Data, Bureau of
Economic Analysis, authors’ calculations.

A Appendix

A.1 Partial Identification using the Quantity–Value Approach

As suggested by Scobie and Johnson (1975), another way to estimate import demand

elasticities is regress lnxct on ln vct, thus avoiding the need to construct price data. We

again use (6) to transform (1) and (2) into a regression of trade quantities on trade

values. The regression equation is

lnxct =
−β

1− β
ln vct +

1

1− β
εct, (26)

where we denote the OLS coefficient δ̂X . We define δ̂V as the coefficient from the reverse

regression of ln vct on ln xct:

lnxct =
γ

1 + γ
ln vct +

1

1 + γ
ηct. (27)

The corresponding estimates of β are

β̂X =
δ̂X

δ̂X − 1
, (28)

β̂V =
1

1− δ̂V
. (29)
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The reduced form is given by

ln vct =
1 + γ

γ + β
εct −

1− β
γ + β

ηct,

lnxct =
γ

γ + β
εct +

β

γ + β
ηct.

The probability limit of the OLS estimates of δX abd δV are thus

plim δ̂X =
β(β − 1)σ2

η + γ(1 + γ)σ2
ε

(1 + γ)2σ2
ε + (1− β)2σ2

η

, (30)

plim δ̂V =
β(β − 1)σ2

η + γ(1 + γ)σ2
ε

γ2σ2
ε + β2σ2

η

. (31)

These direct OLS estimates, when expressed in terms of βX and βV , are:

plim β̂X = β + (β + γ)
(1 + γ)σ2

ε

(β − 1)σ2
η − (1 + γ)σ2

ε

, (32)

plim β̂V = β + (γ + β)
γσ2

ε

βσ2
η − γσ2

ε

R β. (33)

The probability limit of the lower bound in this case is equivalent to the Leamer upper

bound, while the probability limit of the upper bound is equivalent to the Feenstra upper

bound. It follows that the quantity-value lower bound will not hold if the Leamer upper

bound holds. It also follows that the union of the Leamer and quantity-value bounds

is equal to the Feenstra bounds.

Regressing trade quantities on trade values tends to overestimate the lower bound.

In the vast majority of cases where the Leamer upper bound parameter restrictions are

met, this implies that the parameter assumptions required for the quantity–value lower

bound to hold are unlikely to be met.

In figure A.4 we combine all three approaches, which includes the upper and lower

bounds using the regressions of trade value on trade quantity and vice versa, as given

by equations (26) and (27), plus the Feenstra point estimates. As predicted from the

asymptotic bias of the estimators, the results suggest that the lower bound on the

quantity–value lower bound is equal to the Leamer upper bound, and in many cases

is larger than the Feenstra point estimates. The Feenstra and quantity–value upper

bounds also very similar. It can also be seen that union of the Leamer bounds and the
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quantity–value bounds are equivalent to the Feenstra bounds, precisely as the theory

predicts.

A.2 Estimating Import Demand Elasticities with Measure-

ment Error

We now check whether our theoretical predictions are robust to the presence of mea-

surement error. The observed data are

ln vct = ln ṽct + uct

lnxct = ln x̃ct + wct

where ṽct and x̃ct denote the true (unobserved) data. The measurement error variances

and covariances are σ2
u, σ

2
w, and σuw. We assume classical measurement error, i.e., the

measurement errors are uncorrelated with the true values.

A.2.1 Quantity–Price Approach with Measurement Error

We first derive the probability limits on the bounds in the quantity–price specification.

Incorporating measurement error, the probability limit of β using (1) is

plim β̂ =
βσ2

η − γσ2
ε + (β + γ)2 (σ2

w − σuw)

σ2
ε + σ2

η + (β + γ)2 (σ2
u + σ2

w − 2σuw)

= β − (β + γ)
σ2
ε + β (β + γ) (σ2

u − σuw) + (β − 1) (β + γ) (σ2
w − σuw)

σ2
ε + σ2

η + (β + γ)2 (σ2
u + σ2

w − 2σuw)
(34)

For the reverse regression, we have

1

plim β̂R
=

γ2σ2
ε + β2σ2

η + (β + γ)2 σ2
w

βσ2
η − γσ2

ε − (β + γ)2 (σuw − σ2
w)

= β + (β + γ)
γσ2

ε + β (β + γ) (σuw − σ2
w) + (β + γ)σ2

w

βσ2
η − γσ2

ε − (β + γ)2 (σuw − σ2
w)

(35)

A.2.2 Value–Price Approach with Measurement Error

We now derive the bounds when using the value-price approach. The probability limit

of the lower bound βP using (7) is identical to (34) in the presence of measurement
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error. The upper bound 1/βRP , however, is not identical to (35), and takes the following

form:

1

plim β̂R
=
γ (1 + γ)σ2

ε + β (β − 1)σ2
η + (β + γ)2 σ2

u − (β + γ)2 (σ2
u − σuw)

(β − 1)σ2
η − (1 + γ)σ2

ε − (β + γ)2 (σ2
u − σuw)

= β + (β + γ)
(1 + γ)σ2

ε + (β + γ)σ2
u + (β − 1) (β + γ) (σ2

u − σuw)

(β − 1)σ2
η − (1 + γ)σ2

ε − (β + γ)2 (σ2
u − σuw)

. (36)

A.2.3 Quantity–Value Approach with Measurement Error

When regressing traded quantities on trade values, the probability limit of the OLS

estimates of δX abd δV are

plim δ̂X =
β(β − 1)σ2

η + γ(1 + γ)σ2
ε + (γ + β)2σuw

(1 + γ)2σ2
ε + (1− β)2σ2

η + (γ + β)2σ2
u

,

plim δ̂V =
β(β − 1)σ2

η + γ(1 + γ)σ2
ε + (γ + β)2σuw

γ2σ2
ε + β2σ2

η + (γ + β)2σ2
w

.

These direct OLS estimates, when expressed in terms of βX abd βV , yield probability

limits equal to equations (36) and (35) respectively

plim β̂X = β + (β + γ)
(1 + γ)σ2

ε + (β + γ)σ2
u + (β − 1) (β + γ) (σ2

u − σuw)

(β − 1)σ2
η − (1 + γ)σ2

ε − (β + γ)2 (σ2
u − σuw)

., (37)

plim β̂V = β + (β + γ)
γσ2

ε + β (β + γ) (σuw − σ2
w) + (β + γ)σ2

w

βσ2
η − γσ2

ε − (β + γ)2 (σuw − σ2
w)

. (38)

A.2.4 Discussion

These results suggest that none of the three approaches unambiguously bracket the

lower bound of the import demand elasticity in the presence of measurement error. The

effect of measurement error on the asymptotic bias depends on the relative magnitudes

of the error variance and the true demand and supply elasticities. If the error variance

terms are equal in magnitude (σ2
u = σ2

w = σuw ≡ σ2), then the error terms in the

lower bound equation completely cancel out, and (34) is equivalent to the case without

measurement error. Under this same special case, the error terms partially cancel for

the upper bounds (35) and (36), and measurement error results in an upward biased
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upper bound.
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Figure A.1: Lower bounds with measurement error

Notes: γ = 1, σ2
ε = 0.5, σ2

η = 1 in all cases. σ2
u = 0, σ2

w = 0.05 in quantity measurement
error case. σ2

u = 0.05, σ2
w = 0 in value measurement error case. Source: authors’

calculations
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Figure A.2: Leamer upper bounds with measurement error

Notes: γ = 1, σ2
ε = 0.5, σ2

η = 1 in all cases. σ2
u = σ2

w = σuw = 0.05 in identical
measurement error case. σ2

w = 0.05, σ2
u = σuw = 0 in quantity measurement error case.

Source: authors’ calculations

32



-4

1

6

11

16

21

26

0 2 4 6 8 10

Fe
e

n
st

ra
 u

p
p

er
 b

o
u

n
d

 e
st

im
at

e

True import demand elasticity

45 Degree Line no measurement error

quantity and value error value error only

Figure A.3: Feenstra upper bounds with measurement error

Notes: γ = 1, σ2
ε = 0.5, σ2

η = 1 in all cases. σ2
u = σ2

w = σuw = 0.05 in identical
measurement error case. σ2

u = 0.05, σ2
w = σuw = 0 in value measurement error case.

Source: authors’ calculations
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Figure A.4: Bounds using all three approaches and Feenstra point estimates, by 3-digit
HS, U.S., 1993-2006. Source: UC Davis Center for International Data, authors’ calculations
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Figure A.5: Leamer bounds, Feenstra bounds and point estimates, by 4-digit HS, U.S.,
1993-2006. Source: UC Davis Center for International Data, authors’ calculations
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Figure A.6: Leamer bounds, Feenstra bounds and point estimates, by 6-digit HS, U.S.,
1993-2006. Source: UC Davis Center for International Data, authors’ calculations
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Figure A.7: Feenstra point estimates, Leamer point estimates and Leamer bounds by 4-digit
HS, U.S., 1993-2006. Source: UC Davis Center for International Data, authors’ calculations
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Figure A.8: Feenstra point estimates, Leamer point estimates and Leamer bounds by 6-digit
HS, U.S., 1993-2006. Source: UC Davis Center for International Data, authors’ calculations
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Figure A.9: Feenstra point estimates, Leamer point estimates and Leamer bounds by
3-digit HS, U.S., 1991-2015. Source: Comtrade, authors’ calculations
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Figure A.10: Feenstra point estimates, Leamer point estimates and Leamer bounds by
4-digit BEA commodity, U.S., 1993-2006. Source: UC Davis Center for International Data
and BEA, authors’ calculations
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