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Introduction  
Agricultural commodity futures contracts have been traded for over 150 years in the 

United States (Working, 1953). With the Grain Futures Act enacted on September 21, 

1922, the United States has established the federal law involving the regulation of 

trading in certain commodity futures. Since then, trading in futures contracts is under 

federal regulation (Carlton, 1984). Nowadays, the grains futures including corn, 

soybean and wheat futures contracts are the top three actively traded agricultural 

commodity futures contracts in the Chicago Mercantile Exchange (CME). It is well 

known that futures markets play an important role in price discovery mechanism and 

risk transfer in agricultural commodity markets (Irwin et al., 2008). Price discovery 

mechanism refers specifically to the functions and mechanisms of the futures markets 

that are formed through option auctions and can indicate the future direction of price 

change in t spot markets (Working, 1949), and the risk transfer refers to the process of 

hedgers using futures to shift the risks in price changes to others (Working, 1953). 

Given the price discovery role of futures contracts and the possibility of risk transfer, it 

is important to have some understanding of the relationship between spot and futures 

prices (Garbade and Silber, 1983), because spot-futures relations are important to 

various sectors in the agricultural commodity markets including production, marketing 

and consumption (Xu, 2019).  

 



An understanding of this relationship is essential for four reasons. First, grains 

producers fix sales prices ahead of production and adjust supply decisions basing on 

the futures contract prices (Nicolau and Palomba, 2015; Xu, 2019). Second, commodity 

processors and exporters rely on the futures contracts to cover continuous supply 

requirements (Hieronymus, 1977; Peck, 1985), and the physical traders price their 

commodities using the futures as the references (Nicolau and Palomba, 2015). Third, 

futures contract, as an important financial instrument for hedge, knowledge of the 

relationship between spot and futures prices could be valuable for speculators and 

hedgers to forecast the possible deviations in between spot and futures prices to 

generate profits and mitigate risks (Hieronymus, 1977). Finally, exchange 

administrators need to understand the linkage of the cash and futures prices to design 

and evaluate new financial derivative contracts (Xu, 2019). These reasons motivate this 

article as to investigate the lead-lag relations between grains cash prices and futures 

prices.  

 

The continual interest in the lead-lag relationship between the agricultural commodity 

cash markets and futures markets has led to the extant literature on this subject. This 

lead-lag relation indicates the speed at which the futures market transmits new 

information relative to the spot market as well as how closely they interact (Chan, 1992). 

Economic theory suggests that, in a perfect frictionless world, cash and futures prices 

should be contemporaneously linked (Chan, 1992), implying they adjust 

instantaneously to incorporate new information under efficient markets where no 

profitable arbitrage opportunities exist, and as a result, the lead-lag relationship is not 

to be expected (Xu, 2019). However, if the futures (spot) markets respond faster to 

information and spot (futures) markets behave slowly, then this gives rise to a lead-lag 

relation (Chan, 1992). The empirical evidence based on analysing the lead-lag relations 

in commodity markets has generated empirical results that are at best mixed (Xu, 2019). 

Nonetheless, the weight of evidence is in favour of futures markets to dominate spot 

commodity markets (Nicolau and Palomba, 2015; Xu, 2019). This could be owing to 

the advantages of the futures markets being able to incorporate new information faster 



than spot markets because of high liquidity and transparency, low transaction costs and 

initial outlays and short sell opportunities (Herbst et al., 1987). For instance, futures 

markets facilitate price information flows by offering a central but virtual place to 

register commodity values. Therefore, futures prices, especially commodity futures, 

convey new information to economic agents more quickly (Xu, 2018). However, some 

studies have found that cash markets play the leading roles in price discovery (e.g. 

Kawaller et al., 1987; Moosa, 1996; Rosenberg and Traub, 2009). This could result 

from increased transparency, which allows new information to be contained in spot 

markets (Moosa, 1996; Rosenberg and Traub, 2009). At any time, market participants 

filter their information sets that are associated with either spot or futures markets, 

thereby possibly causing the lead-lag relationship to change in respond to the new 

information (Kawaller et al., 1987). Since the lead-lag relationship is found to be mixed 

in extant studies, it is reasonable to assume that the relationship changes with time as 

new information received (Kawaller et al., 1987). At certain periods of time, the flow 

of information may be relatively sluggish thereby affecting the lead-lag relationship. 

This implies that the relationship between futures and spot prices can be sensitive to 

the chosen time period. A natural question that can arise is whether the lead-lag 

relationship changes over time between futures and spot prices and whether we can 

identify those time periods when the change occurs. The result can be useful as it may 

point to regimes where the agricultural policy or market conditions affect the causal 

relationship.  

 

This paper adds to the extant literature of spot-futures lead-lag interactions, which so 

far have produced mixed results. The contributions and novelties of this paper are as 

follows. First, this study contributes to the on-going research on the lead-lag 

relationship between agricultural commodity futures and cash prices. We provide 

empirical evidence to support the lead-lag relationship can change over time and find 

the periods when the change occurs. Agricultural commodity futures and spot prices 

could be affected by the current market information. The lead-lag pattern change as 

new information in the commodity market arrives. At any time point, each could lead 



the other because agricultural commodity market participants filter and respond to the 

information relevant to their positions, which may be spot or futures. Besides, the lead-

lag relationship is time-varying due to changes in the information flows. In certain 

periods of time, it can be fast or sluggish compared to other times. Since the early 2000s, 

financialisation among commodity markets makes the commodity futures traded as a 

class of assets. Increasing futures trading in commodity markets serves as a key 

platform for aggregating information. The centralised futures exchange accelerates the 

information flows and affects the lead-lag pattern. Second, this paper adopts a novel 

econometric method that can be used to exploit the lead-lag relationship between spot 

and futures prices employing the concept of time-varying Granger causality. Phillips et 

al. (2015a; 2015b) has proposed the recursive evolving window method. Later, Shi et 

al. (2020) introduce a new time-varying Granger causality test base on this recursive 

evolving window procedure. Given the commodity prices are characterised as highly 

volatile, especially since 2000, use of the long sample period data may include multiple 

breaks of exuberance and collapse. The recursive evolving window approach proposed 

in Phillips et al. (2015a; 2015b) is more effective to identify the causal relationships 

with non-stability. This novel approach adds the flexibility to allow the testing 

procedure to search for the optimum starting point of the regression for each 

observation, which able to accommodate re-initialisation in the subsample to square 

with any structural changes that may exist within the entire sample. Therefore, it assists 

in detecting any unknown change points in the causal relationship (Shi et al., 2018). By 

identifying the causal periods, we are able to link these causal periods to specific 

agricultural commodity market events. Of particular interest is that recursive evolving 

window causality test allows us to identify the exact dates of the origination and end 

dates of any causality period. Besides, a problem with extant studies is that when testing 

for Granger causality, there are several transformations that are made to the data when 

adopting a conventional vector autoregressive (VAR) framework. For example, 

whether agricultural prices contain a stochastic or deterministic trend is a contentious 

issue (Ghoshray 2019, Wang and Tomek, 2007) and therefore uncertainty shrouds over 

the question of whether or not to difference or detrend the data when incorporating the 



price variables in the VAR. The problem is that if we choose to difference the data, then 

the meaning of the variable changes as it is expressed in growth form. Other problems 

arise if such transformation of the data is made leading to arbitrary transformations that 

can cause error misspecification (Christiano and Ljungqvist 1988). However, the 

method by Shi et al. (2020) is robust in the sense that it does not require pretesting of 

the data leading to detrending or differencing of the data. Besides, the procedure allows 

for causality to change over time by endogenously determining the switching points, 

which contributes to the point we raise before that changes in the flow of information 

can affect the lead-lag relationship. The procedure also allows for potential 

heteroscedasticity in the testing process. This may be particularly useful because it is 

well-known that agricultural prices are highly volatile in nature.  

 

According to Shi et al. (2020), the traditional forward expanding window causality test 

(Thoma, 1994) and the rolling window causality test (Swanson, 1998) are the two 

special cases of this recursive evolving window method. For comparison, we adopt both 

the traditional and newly presented time-varying Granger causality tests, to examine 

the time-varying lead-lag causality for grains spot and futures spanning nearly half-

century. The remainder of this paper is organised as follows: Section 2 reviews the 

previous literature on testing the lead-lag relations; Section 3 describes the econometric 

methods to test for time-varying Granger causality; Section 4 describes the data applied 

to this study and present the empirical results, and Section 5 provides the conclusions.  
 

Literature Review 

The spot-futures lead-lag relationships have been studied both theoretically and 

empirically (Alzahrani et al., 2014). Two important theories, traditional cost of carry 

model (Brennan, 1958; Kaldor, 1939; Working, 1949) and market efficiency theory 

(Fama, 1970), have agreed on the existence of the relationship between spot and futures 

prices, but only the latter indicates a causality between spot and futures prices 

(Alzahrani et al., 2014). With respect to the market efficiency theory, futures prices are 



the unbiased predictors of future cash prices, and hence futures prices are expected to 

lead cash prices (Alzahrani et al., 2014; Garbade and Silber, 1983). However, applying 

different methodologies, researchers have provided inconsistent and diverse empirical 

evidence for lead-lag interaction relationship between cash and futures prices in 

different markets and time periods (Shao et al., 2019). Lead-lag pattern causality 

between cash and futures markets has been widely studied in the context of financial 

markets and commodity markets. Some researchers have dealt with the lead-lag pattern 

issues among commodity spot and futures markets with the objective of analysing the 

issues of price discovery and market efficiency (Silvapulle and Moosa, 1999). Although 

there are extensive studies that test the lead-lag relations, we only concentrate on 

reviewing studies that relate to commodity markets. 

 

Identifying the direction of information flows between cash and futures markets 

appears to be an empirical issue, as economic theory only indicates the variables to be 

related (Bessler and Brandt, 1982). This study builds on three types of empirical 

evidence on the causality between the cash and futures markets. The first posits that the 

direction of the causal lead-lag relations runs from futures market to spot market 

(Brorsen et al., 1984; Carter and Mohapatra, 2008; Garbade and Silber, 1983; Khoury 

and Yourougou, 1991; Koontz et al., 1990; Oellermann and Farris, 1985; Schroeder 

and Goodwin, 1991; Schwarz and Szakmary, 1994). The second evidence shows that 

the spot market causal leads the futures markets (Moosa, 1996; Quan, 1992). The third 

suggests that the direction of the causal link changes over different sub-samples or 

described as time-varying (Alzahrani et al., 2014; Bekiros and Diks, 2008; Silvapulle 

and Moosa, 1999).  

 

A substantial amount of studies have modelled the lead-lag relationship in commodity 

markets and analyse the price discovery process between cash and futures prices. 

Generally, past studies have found to lend more support to futures prices dominating 

cash prices (Judge and Reancharoen, 2014). The common rationalisation of this finding 

is that the futures contract prices react to new information faster than cash prices 



because the flexible short selling opportunities and lower transaction costs make the 

futures markets are better informed (Herbst et al., 1987; Xu, 2019). Further, the futures 

market are more prone to market manipulations (Newbery, 1989) and serve as reference 

points for speculators and arbitrageurs (Moosa and Al-Loughani, 1995). Many studies 

on commodity lead-lag relationships lend support for the hypothesis that causality runs 

from futures prices to spot prices. Garbade and Silber (1983) have analysed the 

characteristics of price flows between spot and futures market for storable commodities, 

including wheat, corn, oats, frozen orange juice concentrates, copper, gold, and silver. 

They present a theoretical model of the concurrent spot and futures price changes to 

identify the direction of information flows and then empirically test the model to study 

the notion of price discovery. Their findings show in general, that futures markets play 

a leading role over spot markets, with about 75% of new information incorporated in 

futures markets first and then flowing to spot markets for wheat, corn and orange juice 

because the cash markets for these commodities are largely satellites of the futures 

markets. In contrast, they find the price discovery function shows the information of 

silver, oats and copper is more evenly divided between spot and futures markets, and 

no conclusive statement can be found for gold because of the data limitations. Similar 

studies of Schroeder and Goodwin (1991) have also applied Garbade and Silber (1983) 

model to the live hog markets and draw the same conclusions of the leadership role of 

futures prices. Several theoretical studies by Khoury and Martel (1985;1986;1989) 

abandon the previous assumption of equal dissemination of new information to all 

market participants, and propose the issues of optimal hedging when the new 

information is asymmetrically distributed between hedgers and speculators. To 

empirically test this, Khoury and Yourougou (1991) analyse the lead-lag relations 

between cash and futures for agricultural commodity prices, including barley, canola 

and oats. Following the studies that generally employ the model of Garbade and Silber 

(1983), they examine price series including barley, canola and oats using daily data for 

the period March 1980 to July 1977. They pose that the futures prices are empirically 

confirmed to lead cash prices on a day-to-day basis, and also hold for varying periods 

before maturity. But the reverse feedback effects from cash to futures are weak for oats 



and do not occur in the cases of barley and canola. Brorsen et al. (1984) publish the 

study that analyses the role of the futures market in cotton price discovery by comparing 

the current cash and current futures prices and exploring whether the cotton prices are 

discovered in futures markets, spot markets or if they are decided simultaneously. They 

use the closing quoted daily time series prices over a period ranging from June 15, 1976, 

and April 30, 1982, and test causalities between spot and futures cotton prices in a 

bivariate autoregressive (AR) framework. The empirical results show that the spot 

prices have a strong positive relationship with the lagged one period of the futures 

prices. Therefore, the cotton prices are discovered in the futures markets and transferred 

to the spot markets in a short period of time, implying futures price changes are the 

leading sources of the spot price movements and cause the cash price changes 

unidirectionally. Oellermann and Farris (1985) use the Granger causality test (Granger, 

1969) to determine for live beef cattle between 1966 and 1982. They take the view that 

live cattle futures started to gain public attention from 1964 to the early 1970s, then 

experienced high price volatility during the mid of 1970s, after partially returning to 

stability around 1980. Taking into account these changes in price stability that occurred 

in the sample period, they divide this sample period into three time spans: 1966 through 

1972, 1973 through 1977 and 1978 through 1982. These three-time spans have been 

further separated into six time-of-year sub-periods to accommodate the seasonal nature 

of cattle production and marketing. The empirical results indicate the live cattle futures 

prices lead changes in spot prices for nearly each sub-period. Besides, they also notice 

the instantaneous feedback within some years. As a result, they provide strong evidence 

that in most instances, the futures prices play the centre role of price discovery for live 

cattle. In a similar vein, dividing the observation period of 1973-1984 into three sub-

periods (1973-1976, 1977-1980 and 1981-1984), Koontz et al. (1990) conduct a 

Granger causality test to identify the live cattle dominant-satellite relationship. They 

find evidence to support that none of the markets is independent, implying that the 

information runs between all markets over a 1-week trading period. They did confirm 

that causality runs from end-of-week futures prices to cash prices early in the next week. 

However, the dependence of cash prices on future prices has generally decreased over 



time. Using data on hog cash and futures prices spanning 1998 to 2014, Carter and 

Mohapatra (2008) employ an error-correction cointegration framework and test both 

the short-run and long-run price discovery process. They reveal that hog futures are the 

unbiased predictor of spot prices especially for the closed futures contracts and prove 

the futures markets are the primary price discovery point. Further, the empirical results 

of the short-run causality test show the hog futures contracts prices lead movements in 

spot prices, but no reverse feedback found from hog spot prices. Similar studies have 

focused on the crude oil markets and found futures prices lead the spot prices. In the oil 

market, the new information such as the OPEC decides to restrict production would 

indicate that oil prices will increase. Speculators tend to purchase oil futures over 

physical oil, as the latter needs a relatively higher initial outlay and relatively long time 

to implement the physical purchase deal. Besides, speculators are not interested in 

physical oil but prefer to hold futures contracts. Hedgers with storage constraints would 

prefer to buy futures contracts. As such, both speculators and hedgers respond to new 

information by choosing futures contracts than spot transactions. Spot prices reactions 

would be lagged since executing a spot transaction takes more time (Bekiros and Diks, 

2008; Silvapulle and Moosa, 1999). Schwarz and Szakmary (1994) explore the lead-

lag relations among the light sweet crude oil, No.2 heating oil and unleaded gasoline 

cash and futures prices, from 1985 to 1991. They strongly favour the standpoint that oil 

futures prices lead the cash prices. Xu (2019) identifies causal linkages among seven 

major corn-producing states cash prices and futures prices in the United States. This 

study adds to the previous research by examining both the in-sample and out-sample 

causal directions based on the VECM and first attempting to explore contemporaneous 

Granger causality among U.S. corn spot and futures prices. Testing the 

contemporaneous causality is important to understand the contemporaneous effects of 

shocks or interventions. An analysis of contemporaneous causality supplements the 

Granger causality by offering more insight into dynamic linkages between cash and 

futures prices. To perform contemporaneous causality test, Xu (2019) adopts a data-

determined method, directed acyclic graphs (DAGs), which identifies the structural 

models through data-determined orthogonalisation of the contemporaneous innovation 



covariance, so that facilitates to determine the directions of instantaneous causal flows 

and provide inference in innovation accounting (Swanson and Granger, 1997). Using 

VECM and DAGs, she concludes that the contemporaneous and in-sample causality 

tests report a causality runs from futures prices to cash prices in the corn markets. No 

causal relations are found from corn cash prices to futures prices, which lends support 

to the studies of Garbade and Silber (1983).  

 

Although a majority of studies have proved for futures leading cash prices, there also 

exists some empirical evidence for cash prices’ leading role in lead-lag causality 

relations. For example, Quan (1992) examine the price discovery process using the 

monthly crude oil prices data employing two-step testing procedures; the first-step 

reveals the long-run relations and the second-step aims to test the lead-lag causality in 

the crude oil market. The results conclude that new information originates from cash 

prices spreading over to the futures prices, contrary to the view that futures prices lead 

spot prices. However, Schwarz and Szakmary (1994) argue that Quan (1992)’s failure 

to confirm the leadership role of oil futures prices attribute to the inappropriate choice 

of data frequency. Given that markets change quickly, Schwarz and Szakmary (1994) 

point out that the lead-lag relations only appear within short intervals so that high-

frequency data should be considered. In another study, Moosa (1996) introduces a 

model in which crude oil futures prices is triggered by cash prices, because the markets 

participants including arbitrageurs and speculators set the cash prices as reference point 

to motivate their actions in futures markets.  

 

A group of empirical findings have revealed a time-varying lead-lag causality between 

futures and spot prices. Several studies find that the causal lead-lag relationship varies 

over different subperiods applying linear econometric methods (Foster 1996; Moosa 

2002; Narayan and Sharma, 2018; Oellermann et al., 1989). Focusing on analysing the 

price discovery process and causality among spot and futures prices for feeder cattle 

and live cattle, Oellermann et al. (1989) utilise the model constructed by Garbade and 

Silber (1983) and modify it by deleting the storage costs adjustments as it is not 



appropriate for livestock. Considering the structural changes in the daily observations, 

they divide the full sample into two periods of 1979-1982 and 1983-1986 and find the 

lead-lag causality significantly changed between two periods. They find futures prices 

to lead cash prices for feeder cattle, but the leading power becomes weak in the more 

recent period. In addition to applying the dynamic regression model of Garbade and 

Silber (1983), they use a Granger causality technique that follows Mishken (1983) to 

further examine the spot-futures price linkages for feeder cattle. The results confirm 

feeder cattle futures prices play the leadership role in generating new pricing 

information and serve as the centre of price discovery for feeder cattle in the early 

period, but the leading strength of futures prices tend to be less in more recent years. 

The possible explanations could be that futures markets are the focal point of 

information assimilation for both purchasers and sellers, which contributes 

significantly to improving the price discovery efficiency for feeder cattle. But in recent 

years, some feedback occurs from the feeder cash prices to futures prices, which 

explains the leading strength of futures prices become weak. Foster (1996) and Moosa 

(2002) have modified the Garbade and Silber (1983) model by employing the time-

varying parameter estimation based on the Kalman filter. Foster (1996) use daily West 

Texas Intermediate (WTI) crude oil prices from January 1990 to September 1991 and 

find the evidence of a strong time-varying price discovery function, and concludes that 

the first Gulf conflict in 1990-1991 causes a shift. Moosa (2002) also use the WTI crude 

oil prices covering the period 1985-1986 and find 60 per cent of the price discovery 

function is performed by the future market. This result indicates a time-varying price 

discovery function, which is in support of the conclusions reached by Foster (1996). In 

a recent study, Narayan and Sharma (2018) propose a rolling-window-based error 

correction model to examine the time-varying price discovery (spot and futures) for 17 

commodities, including metals, energy and agricultural commodities. Applying the 

monthly time series prices spanning 1977-2012, they find strong evidence of time-

varying price discovery for 14 commodities including corn, soybean oil and soybean 

yellow, etc. Namely, they conclude that the price discovery process is oscillatory for 

these commodities, implying the spot market dominate price discovery over some time 



periods while futures markets lead spot markets during other periods. They indicate that 

for different phases, the dominance of price discovery is linked to the specific 

commodity market events.  

 

Several more recent empirical studies point out that the lead-lag causal relation between 

spot and futures prices is nonlinear and time-varying (Alzahrani et al., 2014; Balcilar 

et al., 2015; Bekiros and Diks, 2008; Polanco-Martínez and Abadie, 2016; Silvapulle 

and Moosa, 1999). These papers use both linear and nonlinear causality tests to capture 

the lead-lag linkages between commodity cash and futures markets and compare the 

results. The nonlinearities are typically related to nonlinear transaction cost, noise 

traders, market microstructure impacts (Silvapulle and Moosa, 1999). To account for 

the nonlinearity, nonparametric form methods are appealing given it places direct focus 

on prediction without using a linear function form (Bekiros and Diks, 2008). The linear 

causality test is typically conducted in the parametric form and the nonlinear test is 

performed using nonparametric techniques. For example, Silvapulle and Moosa (1999) 

first apply the Hsio’s (1981) sequential procedure for linear Granger causality test and 

use a bivariate VAR to analyse the lead-lag relationship between the spot and futures 

prices of crude oil. Then, they test for a nonlinear dynamic causal relationship by 

adopting a nonparametric procedure of Hiemstra and Jones (1994), which is a modified 

version of the Baek and Brock (1992) test. Their analysis covers the period 02 January 

1985 and 11 July 1996, using one-month, three months and six-months futures contract 

daily prices. The results of the linear causality test confirm that there is feedback from 

spot to futures prices. On the contrary, the nonlinear causality testing reports a 

bidirectional relationship, namely implying both markets respond to new information 

simultaneously. In addition, they find that the lead-lag pattern should change over time. 

Bekiros and Diks (2008) investigate the lead-lag causal relations between oil spot and 

futures prices using daily data covering two separate periods, namely 21 October 1991 

to 29 October 1999, and 1 November 1999 to 30 October 2007. A traditional linear 

Granger causality test based on a vector error correction model (VECM) is employed. 

The linear causality test indicates a strong bidirectional Granger causal lead-lag relation 



between crude oil cash and futures prices during both periods, which are in contrast to 

the unidirectional results from the linear test in the study by Silvapulle and Moosa 

(1999). Bekiros and Diks (2008) also apply a new nonlinear nonparametric causality 

test introduced by Diks and Panchenko (2005). When accounting for the nonlinear 

effects, the causality test results suggest neither market leads or lags the other 

consistently.  The studies of Silvapulle and Moosa (1999) and Bekiros and Diks (2008) 

both conclude the pattern of leads and lags changes over time. These two studies both 

explain that given the spot-futures causal linkage can change from one direction to the 

other at any time point, the result of bidirectional causality over the sample periods may 

imply a changing pattern of leads and lags over time, which provides support to the 

Kawaller et al. (1987) hypothesis. Kawaller et al. (1987) hypothesis indicate that 

market participants filter the information relevant to their positions as new information 

comes in, at any time point, cash may lead futures and vice versa. Therefore, on balance, 

though futures prices are found to play a bigger role in price discovery, there is still 

some evidence to suggest spot prices can play a key role in the price discovery process. 

Similar to Bekiros and Diks (2008), Alzahrani et al. (2014) also employ both the linear 

Granger causality test based on a VAR and a modified nonlinear nonparametric 

causality test of Diks and Panchenko (2005) to test the lead-lag causality using the daily 

oil prices from February 20, 2003 to April 19, 2011. They apply a wavelet approach to 

transform the data into frequency domain without losing the time domain information, 

so that the time-dependent volatility and structural breaks in oil cash and futures prices 

series can be accommodated, and avoid the effects of data frequency on causality tests. 

The outcomes of both linear and nonlinear tests in this study reconcile the findings of 

Bekiros and Diks (2008) who find bidirectional causality and conclude neither markets 

necessarily lead the other. Inspired by Alzahrani et al. (2014), Polanco-Martínez and 

Abadie (2016) estimate the lead-lag relations from different time-scales (short, medium 

and long-term scales), with the use of a stochastic model (Abadie and Chamorro, 2016), 

a wavelet correlation graphical tool (Polanco-Martínez and Fernández-Macho, 2014), 

as well as a nonlinear causality test (Diks and Panchenko, 2006). Their results show 

bidirectional causal relations for most time scales, from intra-week to biannual, over 



the period 24 February 2006 to 2 April 2016, which implies the concurrent response of 

spot and futures prices to the new information. Noticing some of the previous studies 

have mostly been supportive of the time-varying causal links between spot and futures 

markets, Balcilar et al. (2015) examine time-varying causal relations between the daily 

spot and futures prices for maturities of one, two, three and four months of the WTI 

crude oil benchmark spanning periods from January 2, 1986-July 31, 2013. They 

propose a Markov-switching vector-error correction (MS-VEC) model which is 

capable of capturing the nonlinear, asymmetric and time-varying causal linkages. 

Namely, this method is helpful in identifying the causal linkages that are likely to be 

operative for each point in time. Moreover, it allows the causal patterns change over 

time accordingly to a Markov-switching process. The results indicate a strong time-

varying causality between spot and futures prices. The lead-lag relations between spot 

and futures crude oil prices for the maturities of one, two, three and four months are 

proved to experience significant changes over the sample years. They indicate that the 

change periods are all related to the times of volatile prices and continues flows of new 

information to the markets, triggered by the diversified important events. 

 

In summary, the empirical evidence on price discovery and lead-lag relationships 

between spot and futures prices is mixed. A potential gap that appears in the above 

studies is that although they highlight the fact of the changing pattern of leads and lags 

over time, implying the lead-lag causality are likely to contain time-varying features, 

very few have attempted to study the time-varying pattern of causality. Besides, a large 

number of studies have acknowledged the lead-lag relationships and the associated 

time-varying causal relations between crude oil cash and futures prices, however, this 

aspect of time-varying lead-lag causality has received limited attention in the context 

of the agricultural commodity prices. This literature review suggests that the lead-lag 

causality is a dynamic one, especially for the periods with consistent uncertainty, which 

results in significant incongruities among studies in terms of the dominant role of the 

prices. We address this gap by adopting the traditional time-varying Granger causality 

tests of forward expanding window causality test (Thoma, 1994) and the rolling 



window causality test (Swanson, 1998), with recent developments that use recursive 

evolving window causality test that allow us to be agnostic about the order of 

integration of the data, a problem that is known to plague agricultural spot and futures 

prices. (Phillips et al., 2015a; 2015b; Shi et al., 2020). Given the data stationarity could 

impact price variable modelling, previous empirical studies first determine the order of 

integration of each price series using unit root tests (Xu, 2018). In this study, the 

forward recursive algorithm, rolling window algorithm, and recursive evolving 

algorithm, all of which use subsample tests of Granger causality within a lag-

augmented VAR model. This approach is particularly designed to be robust to the 

integration and cointegration properties of the time series employed in the regressions 

and can hence be used without accurate prior knowledge of the presence or absence of 

unit root (Shi et al., 2020). The advantages of applying these novel tests are that they 

allow to revealing the changing pattern informational directions running between cash 

and futures prices over time; and we could identify the exact time periods and capture 

the corresponding information flows between agricultural commodity cash prices and 

futures prices. Therefore, instead of giving a general conclusion of changing causality, 

we can be more specific in explaining how causality changes over time. Besides, 

regarding the statistical analysis perspective, commodity prices are characterised to be 

highly volatile and may contain structural breaks (Ghoshray, 2019). Typically, the 

structural breaks are the most challenging problems when conducting time series 

analysis (Granger, 1996). Hansen (2001) and Perron (2006) have affirmed that issues 

of the structural breaks should be distinctly considered when applying the econometric 

tools with the time series data. The possible presence of structural breaks in the 

underlying data can lead to the parameters of the econometric models to be time-variant. 

Hence the statistical tests based on the assumption of the constant parameter can give 

invalid and incorrect inferences (Balcilar et al., 2019). Accordingly, we consider the 

possibility of structural breaks in agricultural commodity prices. This study conducts 

the time-varying Granger causality tests against the effects of structural breaks. The 

econometric procedures of these three time-varying Granger causality tests are now 

described in the following section.  



Econometric Methods 

When performing an empirical test on the hypothesis, one should consider the 

underlying nature of the data series because the conclusion drawn will be relying on 

the econometric framework (Ghoshray and Johnson, 2010). It is widely known that 

commodity prices are characterised as being volatile, given it is the common features 

of commodity prices (Deaton and Laroque, 1992). The agricultural commodity price 

series under investigation could be nonstationary. To conduct a Granger causality test 

by allowing for possibly integrated variables, we adopt a lag-augmented vector 

autoregression (LA-VAR) model (Toda and Yamamoto, 1995; Dolado and Lütkepohl, 

1996) and the bivariate case with a maximum order of integration !, which could be 

expressed as  

 

"!" = $!# + $!!& + ∑ (!$"!"%$ +&'(
$)! ∑ )!$"*"%$&'(

$)! + *!", 

"*" = $*# + $*!& + ∑ (*$"!"%$ +&'(
$)! ∑ )*$"*"%$&'(

$)! + **", 

 

where +  indicates the lag order of the original VAR model and additional !  lags 

represents the possible maximum order of integration of the variables. & is the time 

trend and *$" are the error terms. "*" ↛+, "!" denotes that "*" does not Granger cause 

"!", implying the situation that the predictions of "!" conditional on its own previous 

cannot be improved by incorporating the +  lags of "*"  in the model. The null 

hypothesis for testing the causality from "*" to "!" is 

 

-#:	)!! = ⋯ = )!& = 0 

 

Extend to the general version for n-dimensional vector "" , the LA-VAR model is 

expressed as  

 

"" = 2# + 2!& + ∑ 3$""%$ +&
$)! ∑ 3-""%-&'(

-)&'! + *",                    (1) 

 



where 3&'! = ⋯ = 3&'( = 0 and !  is the maximum order of integrated variable "" . 

Thus rewrite the above regression equation as  

 

"" = 45" + 67" +89" + *",                                        (2) 

 

where 4 = (2#, 2!).×(1'!) , 5" = (1, &)*×!3 , 7" = (""%!3 , … , ""%&3 )′.&×! , 9" =

(""%&%!3 , … , ""%&%(3 )′.(×! , 6 = (3!, … , 3&).×.&  and 8 = (3&'!, … , 3&'().×.( . The 

null hypothesis of testing the Granger non-causality is given as  

 

-#:	@∅ = 0                                                      (3) 

 

on the coefficient ∅ = BCD(6)  applying row vectorisation and @  is the E × G*+ 

matrix. The final ! lagged vectors parameter matrix 8 is ignored because its elements 

are set to be zero.  

 

Rewriting the equation (5.1) in a more compact representation as  

 

Y = 54′ + I6′ + J8′ + *, 

 

where Y = ("!, "*, … , "4)′4×. , 5 = (5!, … , 54)′4×* , I = (7!, … , 74)′4×.& , J =

(9!, … , 94)′4×.( and * = (5!, … , 54)′4×*. Then set out 

 

Q = L5 − L5J(J3L5J)%!J′L5 

 

and the OLS estimator could be given as  

 

6N = O′LI(I3LI)%! 

 

The standard Wald statistic P for testing the null hypothesis -# is  



 

P = Q@∅NR
3
[@{U6V⊗ (I3LI)%!}@3]%7@∅N                             (4) 

 

where ∅N = BCD(6N) , U6V = !
4 *̂

3*̂ , and ⊗  denotes the Kronecker product. This Wald 

statistic has the [8*  asymptotic null distribution with E being the number of restrictions 

(Toda and Yamamoto, 1995; Dolado and Lütkepohl, 1996).  

 

As indicated in the literature review, there are some studies expect the lead-lag causality 

should change over time because the market participants will filter the information 

relevant to cash and futures positions over time (Silvapulle and Moosa, 1999; Bekiros 

and Diks, 2008). In such circumstances, testing the time-varying causality using the 

entire sample will average the sample information and inevitably fail to capture the 

changes in information receiving (Shi et al., 2018). Although estimating the Granger 

causality with exogenously determined subsamples of the data could give useful 

information, it does not allow the data to reveal the potential change points. 

Accordingly, the ultimate objective for this study is conducting tests that allow for the 

change points endogenously defined and identified in the sample data (Shi et al., 2018). 

The recursive Granger causality procedures calculate the Wald statistics by using the 

subsamples of the data. To clearly illustrate the testing algorithms, we follow Shi et al. 

(2018; 2020) and explain with sample fractions in the following exposition. Let \ 

represents the fractional observation of interest and \#  is the minimum fractional 

window size needed to conduct the estimations. Besides, assuming the \! and \* denote 

the fractional start and end points of the regression sample, respectively, and \9 = \* −

\!. And P:!
:" indicates the Wald statistic based on the LA-VAR model and calculated 

from the subsample.  

 

In Figure 1 we illustrate the subsampling process subsampling processes and the 

window widths of forward expanding, rolling window and recursive evolving 

procedures, respectively. For the forward expanding procedure, \# = 0 is fixed and sets 



\ = \*, and the rolling window assumes a fixed window width \9 = \* − \! = \# and 

window initialisation \! = \* − \#. Forward expanding and rolling window procedures 

are the special cases of the recursive evolving approach. The recursive evolving method 

allows variation in the window widths \9 = \* − \! ≥ \#  applied in the regression, 

which adds the flexibility by relaxing \!  to allow the procedure to search for the 

optimum starting point of the regression for each observation. This flexibility is able to 

accommodate re-initialisation in the subsample to square with any structural changes 

that may exist within the entire sample, and thereby assists in detect any changes in the 

structural and causal direction. Although the subsampling processes are different, these 

three methods all rely only on the past information and hence can be employed for real-

time monitoring at the present observation \ (Shi et al., 2018).  

 

 



 
Note: Sample sequences for forward expanding, rolling window and recursive evolving 
procedures are displayed in (a), (b) and (c), respectively.  
 

Figure 1: Sample sequences for forward expanding, rolling window, and 
recursive evolving procedures 

 

Set 5! = ⌊\!_⌋, 5* = ⌊\*_⌋ and 59 = ⌊\9_⌋ , where _  denotes the total observation 

number and 5# = ⌊\#_⌋ is the minimum observation number required for the VAR 

estimation. To achieve the goal of testing the dynamic lead-lag causality, this study 

employs three time-varying Granger causality tests, which are the forward expanding 

window causality test (Thoma, 1994), the rolling window causality test (Swanson, 1998) 

and the recursive evolving window causality test (Phillips et al., 2015a; 2015b; Shi et 

al., 2020). They all focus on testing the changing pattern causality but calculate the 

Wald statistics in different ways. The forward expanding window approach sets starting 

point 5! fixed at the first observation, for example: 5! = 1, and the regression window 

starts to expand from 5# to _. This procedure could be view as to having 5* runs from 



5#  to _  and hence the test basing from this method is mentioned to as a forward 

expanding window test. For the rolling window procedure, by contrast, the regression 

window size keeps fixed and set the window size equals to 5#  in the sequence of 

regressions. The starting point is not fixed and the regression window moves from the 

first available observations to _ − 5# + 1 and the ending point 5* = 5! + 5# − 1. We 

can rewrite in an alternative form to 5! and 5* of the procedure as 5* = {5#, … , _} and 

5! = 5* − 5# + 1. Then the ending point of the process moves from 5#  to the last 

observation in the sample _, and the starting point follows to move to keep the window 

size fixed at 5#. For the recent proposed recursive evolving window procedure, the end 

point 5* = {5#, … , _}, which is the same as the rolling window method. But the start 

point 5! , rather than keeping a constant distance with 5*  as in the rolling window 

process, varies from 1 to 5* − 5# + 1 to cover all possible values.  

 

We could obtain a sequence of Wald statistics {P:!,:"}:"):
:!∈[#,:"%:#] for each fractional 

observation of interest \a[\#, 1]. Defining the test statistic based on the supremum norm 

of the Wald statistic sequence 

 

bP:(\#) = cde
:"):,:!∈[#,:"%:#]	

{P:!,:"}.                                   (5) 

 

And we make inferences on Granger non-causality for available observation ⌊\_⌋ 

based on this sup Wald statistic bP:(\#).  

 

The above Wald statistic and sup Wald statistic are under the assumption of the residual 

error term is homoskedasticity. When the errors are heteroskedastic, the Granger 

causality test based on the assumption of homoskedasticity could be accompanied by 

power loss. To account for the potential effects of heteroskedasticity in the residuals, 

Shi et al. (2020) propose heteroskedastic consistent versions of the Wald and sup Wald 

statistics. Shi et al. (2020) define the heteroskedastic-consistent subsample Wald test 

statistic as  



 

P:!,:"
∗ = _9Q@∅N:!,:"R

3
[@fgh:!,:"

%7 Uh:!,:"gh:!,:"
%7 i@3]%7@∅N:!,:" ,                    (6) 

 

Where ∅N:!,:" = BCD(6N:!,:") with 6N:!,:" denotes the OLS estimate of 6 from the sample 

running from \! to \*, 

 

gh:!,:" = j. ⊗Lh:!,:" with Lh:!,:" =
!
4$
∑ 7"7"3
⌊4:"⌋
")⌊4:!⌋  

Uh:!,:" =
!
4$
∑ kl"kl"3
⌊4:"⌋
")⌊4:!⌋  with kl" = *"̂ ⊗7". 

 

The heteroskedastic-consistent sup Wald statistic is defined as  

 

bP:
∗(\#) = cde

:"):,:!∈[#,:"%:#]	
{P:!,:"

∗ }.                                    (7) 

 

According to Shi et al. (2020), the heteroskedastic consistent version includes the 

homoscedastic one as a special case. Therefore, this study employs the heteroskedastic 

consistent version test to consider the potential heteroskedasticity effect, which 

normally been ignored in past studies. 

The issue of multiplicity is the common-known phenomenon that the probability of 

making a Type I error increases with the number of hypotheses being tested in a test 

sequence. In the current application context, the test statistics in these three testing 

algorithms are needed to be compared with the corresponding critical values for every 

observation moving from ⌊\#_⌋ to _. Namely, for a sample size _ data series, the test 

statistics calculated starting from ⌊\#_⌋ to _, which requires to test the hypotheses of 

non-causality for _ − ⌊\#_⌋ + 1 times. To avoid the size distortion occurring from the 

recursive procedures, we follow Shi et al. (2020) and adopt their bootstrap approach to 

address the multiplicity problem for the simulations and empirical analysis part.  

 



To make the bootstrap process more simply and easier to understand, Shi et al. (2020) 

describes it in the context of a bivariate VAR(1) model. Following the study of Shi et 

al. (2020), five steps are introduced to perform the bootstrap procedures.  

 

Step 1: Using the data from the full sample period, we estimate the bivariate VAR(1) 

model which imposes the null hypothesis of non-causality runs from "* to "!. 

 

n
"!"
	"*"o = p∅

N!! 0
∅N!* ∅N**

q n
"!"%!
	"*"%!o + n

C!"
	C*"o 

 

where ∅N!! , ∅N!*  and ∅N**  are the estimated parameters, and C!"  and 	C*"  denotes the 

estimated residuals.  

Step 2: As mentioned above, 5C denotes the number of observations in the window 

over which size is to be restricted. Let the sample size of the bootstrapped data series 

and denote by 5# + 5C − 1, the bootstrap sample could be generated as 

 

p
"!"C

	"*"C
q = p∅

N!! 0
∅N!* ∅N**

q p
"!"%!C

	"*"%!C q + p
C!"C

	C*"C
q                                 (8) 

 

in which C!"C  is randomly drawn with replacement from the estimated residuals C!" . 

Following the same logic, C*"C  is drawn from the estimated residuals C*" . The initial 

values of "!"C  and "*"C  equal to the "!" and "*", respectively.  

Step 3: The test statistic sequences for the forward expanding window, rolling window 

and recursive evolving window are 

 

Forward expanding window: {P!,"
C }")5#

5#'5%%! 

Rolling window: {P"%5#'!,"
C }")5#

5#'5%%! 

Recursive evolving window: {bP"
C(5#)}")5#

5#'5%%! 

 



respectively, based on their algorithms we have introduced above. In this step, we 

calculate each test statistic sequence by applying the bootstrapped series. The maximum 

values for these bootstrapped test statistic sequences are computed such that 

 

Forward expanding window: ℳ!,"
C = Es7"∈[5#,5#'5%%!](P!,"

C ) 

Rolling window: ℳ"%5#'!,"
C = Es7"∈[5#,5#'5%%!](P"%5#'!,"

C ) 

Recursive evolving window: bP"
C(5#) = Es7"∈[5#,5#'5%%!](bP"

C(5#)) 

(9) 

 

Step 4: Repeating step 2 and step 3 for t = 1000 times.  

Step 5: The critical values for the forward expanding window, rolling window and 

recursive evolving window methods are expressed as 90% percentiles of  

 

Forward expanding window: {ℳ!,"
C }C)!D  

Rolling window: {P"%5#'!,"
C }C)!D  

Recursive evolving window: {bP"
C(5#)}C)!D  

 

respectively.  

 

For practical implementation and empirical analysis, in step 1, we need to determine 

the optimal lag order by applying information criteria and estimate the restrictive model. 

Likewise, the lag order should be selected for step 3 before computing the test statistics. 

Shi et al. (2020) have conducted the simulation experiments to examine the 

performance of forward expanding window, rolling window and recursive evolving 

window causality tests with the bootstrapped critical values under the DGP (12) for 

different parameter settings for several cases. By performing 1000 times replications 

for each parameter constellation, they calculate the sizes and powers of these three tests, 

where the sizes denote the probability of rejecting at least one true null hypothesis and 



powers mean the probability of rejecting at least one false null hypothesis for the same 

period. According to their calculations, the sizes for all these three test processes are 

very close to the nominal size of 5%, implying the validations of the bootstrap method 

in controlling the family-wise size and resolving the multiplicity issue in recursive 

procedures. As for the empirical powers, the recursive evolving window test 

characterises the highest power and the rolling window procedure follows closely. The 

performances the evolving window and rolling window procedures could be identical 

under most circumstances, but the recursive evolving test gain more powers in 

moderate causal strength and large sample sizes (such as _ = 200 ). The forward 

expanding window method has the least power than that of the rolling window and 

recursive evolving window. The detective power of these three procedures varies. For 

rolling window and recursive evolving window, the detective power gains with the \# 

increase from 0.18 to 0.24 and remains roughly the same or slightly decreases for 

further extension to 0.36. In the case of using forward expanding procedure, the 

detective power rises with the increasing of the initialisation \#. These three procedures 

all enjoy the power gains with the increasing sample size _, at a decreasing rate though. 

Besides, all causality tests powers increase with the strength of causality (Shi et al., 

2020). 

 

Data description and preliminary analysis 

Our analysis is based on the monthly price time series for the important cereal grains, 

including wheat, soybean and corn spot and futures prices, which are freely available 

at the website of the National Agricultural Statistics Service (NASS) of the United 

States Department of Agriculture (USDA). The spot prices of the wheat, soybean and 

corn are the monthly farm received prices published by the NASS of the USDA. These 

are cash prices and represent the sales from producers to first buyers, including all 

grades and qualities. The futures prices are the prices settled by the Chicago Mercantile 

Exchange (CME) group’s contract for wheat, soybeans and corn. The prices for the 

nearby contract are applied but except the marketing year month coincides with the 



month in which the contract expires. For instance, the November contract prices are 

applied for September and October, while the January contract prices are used for 

November and December, etc. For this reason, we choose monthly prices. We focus on 

the time period which is extended to the most recent period available, covering the 

period from June 1975 to February 2020 for the case of wheat, and spanning September 

1975 to February 2020 for soybean and corn cases, in monthly frequency. The time-

series properties for the different transformed commodity prices can differ (Ghoshray, 

2019). Namely, though the data transformation is not unusual, the results of estimation 

can vary with different types of transformation (Tomek, 2000). For this reason, we 

choose to use logged price transformations in subsequent analysis, to reduce 

heteroscedasticity, stabilise the variance and straighten trend. Table 1 below exhibits 

the descriptive information of the cash and futures price series for wheat, soybean and 

corn. From Table 1, wheat and soybean price series are slightly platykurtic, but the 

corn series are more leptokurtic than wheat and soybean. All these series are slightly 

right-skewed. 

 

Table 1: Descriptive statistics for cash and futures price series 
 Wheat Soybean Corn 

Cash Futures Cash Futures Cash Futures 
Mean 1.3484 1.4089 1.9473 1.9825 1.0149 1.0830 

Median 1.2947 1.3584 1.8710 1.9095 0.9431 1.0043 
Minimum 0.7080 0.8329 1.4085 1.4255 0.3365 0.4055 
Maximum 2.3514 2.4449 2.7850 2.8219 2.0321 2.0844 
Standard 
deviation 

0.3256 0.3178 0.3129 0.3135 0.3439 0.3317 

Skewness 0.6525 0.8126 0.6374 0.6454 0.7928 0.8793 
Kurtosis 2.9653 3.2363 2.6283 2.6256 3.3749 3.5229 

 

The data are plotted in Figure 2, which provides visual evidence of that at all series 

seem much more likely to be non-stationary. Besides, visual inspection points the 

possibility of the structural breaks incorporated in the price series.  

 

 

 



     (a) 

 

     (b) 

 

     (c) 

 

 
Note: Time-series plots of the logarithms of spot prices and futures prices in the United States for wheat, soybean and corn are displayed in (a), 
(b) and (c), respectively.  
 

Figure 2: Time-series plots of the agricultural commodity spot prices and futures prices



The LA-VAR model, introduced in the last part, does not need to pre-filter the data 

through de-trending and/or differencing, but require the information of maximum 

possible integration order. Therefore, prior to applying the LA-VAR model, we should 

determine the maximum integration order of the system. This study determines the 

integrated order of the price variables by using the Augmented Dickey-Fuller (ADF) 

test (Dickey and Fuller, 1981), Phillips-Perron (PP) test (Phillips and Perron, 1988) and 

Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test (Kwiatkowski et al., 1992), which 

have been employed in the similar studies from Xu (2018; 2019). Given that the ADF 

and PP tests have low power, the KPSS test with the null of stationary, against a non-

stationary alternative, is also employed. In addition, given the agricultural prices are 

characterised to be volatile and the possibility of a structural break in price series 

identified by visual inspection, this study also conducts the unit root test of Perron and 

Vogelsang (1992), which allows for testing one break under both the null of a unit root 

and alternative of stationary. This test searches for the unknown structural break either 

through innovational outliers (IOs) and additive outliers (AOs). The results of ADF, PP 

and KPSS testing procedures, as well as the test of Perron and Vogelssang (PV) (1992) 

are reported in Table 2 The top half of Table 2 conducts the standard unit root tests 

without breakpoint, including ADF, PP and KPSS tests. The lower half of Table 2 tests 

for unit root allowing for a structural break. Roughly in all cases, the evidence is mixed 

where the ADF test results do not match with the PP test and KPSS test. For these three 

cases, though some tests point that the null hypothesis cannot be rejected, they all 

become stationary after taking first-differences, implying I(1) is the maximum 

integration order. When assuming one unknown structural break with IOs and AOs, all 

data series are found to be I(1), implying the maximum order of integration should be 

I(1) as well. Though the results are mixed, the LA-VAR modelling framework does not 

require all the variables to be integrated of the same order. Therefore, we can set the 

maximum order of integration as I(1) in the LA-VAR model. Considering all the data 



series exhibit a driftless random walk, this study therefore does not include a time trend 

term and sets the additional lag parameter ! to one.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2: Unit root tests on levels and first differences of cash and futures price series 
 Wheat Soybean Corn 

Cash Futures Cash Futures Cash Futures 
Without break ADFL -2.3033 -2.6772* -2.9686** -3.0738** -2.7687* -2.8532* 

ADF∆ -14.6975*** -18.4634*** -14.9836*** -13.9610*** -14.2319*** -17.4305*** 
PPL -2.3508 -2.6003* -2.2223 -2.5529 -1.9954 -2.5919* 
PP∆ -14.2065*** -18.4074*** -14.1240*** -13.9610*** -13.4168*** -16.9369*** 

KPSSL 1.4749*** 1.3286*** 1.3901*** 1.3706*** 1.2518*** 1.1874*** 
KPSS∆ 0.0303 0.0307 0.0319 0.0302 0.0816 0.0363 

With break PVAO, L -2.8124 -2.7031 -2.9295 -3.0439 -2.7863 -2.8675 
PVAO, ∆ -14.5653*** -18.6379*** -15.0036*** -17.1603*** -14.1863*** -17.4279*** 
PVLO, L -2.2289 -2.5981 -2.8409 -2.9206 -2.5547 -2.8052 
PVLO, ∆ -15.3119*** -18.3717*** -14.9696**** -13.9741*** -14.2223*** -17.2053*** 

Note: ***, ** and * denote rejection of the null hypothesis of unit root process at the 1%, 5% and 10% significance level, respectively



Empirical analysis 

A wide range of unit root tests has been carried out on all price series. We now examine 

the causal relationship between cash and futures prices for each grain, applying the 

forward expanding window, rolling window and recursive evolving window 

procedures. This study follows Shi et al. (2018; 2020), in estimating the LA-VAR 

model and conducting Granger causality tests. The Bayesian Information Criteria (BIC) 

is used to select the lag length for the whole sample periods for all cases, and the lag 

order assumed the same over the subsamples. In implementing the testing procedures, 

the minimum window size usually set as !! = 0.20 because the powers of rolling and 

recursive evolving procedures increase when !! runs from 0.18 to 0.24 (Shi et al., 2018; 

2020). Practically, the optimal value of !! depends on the strength and duration of the 

causal relationship. Shi et al. (2018; 2020)’s model fixes the duration of the causality 

episode as 0.2, and therefore if the minimum window size exceeds the causality 

duration, the regression would contain the mix of causal and non-causal observations. 

Given that we have 537 observations for wheat and 534 observations for the cases of 

both soybean and corn, we set the minimum window size as 107 for all cases based on 

the 20% duration of the whole sample. The 10% critical values are acquired from the 

bootstrapping method introduced above, and the model coefficients under the null are 

computed applying the whole sample period.  

 

This study tests the causality between spot prices and futures prices of the wheat, 

soybean and corn in the United States. The estimation results are reported in Figure 3 

to Figure 8. The time-varying test statistic sequence (blue dashed line) along with the 

bootstrapped 10% critical value sequence (black solid line) are illustrated under the 

figures. We test the null hypothesis of no causal relationship between spot and futures 

prices and reject the null when the test statistic sequence above the 10% critical value 

sequence.  

 

The time-varying test statistic sequences for causal relations between wheat cash and 

futures prices, along with their corresponding bootstrapped 10% critical values for the 



forward expanding window, rolling window and recursive evolving window methods 

are displayed in Figure 3. Panel (a), (b) and (c) of Figure 3 report the test statistic 

sequences and their corresponding bootstrapped 10% critical values for testing the 

causal relationship from wheat futures to cash prices. According to the panel (a) and (c) 

in Figure 3, the test statistics are always above the 10% critical values sequence for the 

whole sample using the forward and recursive evolving methods. These results suggest 

the rejection of the null hypothesis of no causality between variables at the 10% 

significance level and indicate the causal relations running from wheat futures prices to 

cash prices. However, there is a slight discrepancy in the rolling window test as shown 

in panel (b), with the test statistics are higher than the critical values for most of the 

time except some short episodes: mid to late 1990s and at the end of the sample. This 

result shows that the rolling window method detects no causality from wheat futures 

prices to spot prices in some short periods.   

 

Panel (a), (b) and (c) in Figure 4 display time-varying test statistics for causal effects 

running from wheat cash prices to futures prices. From panel (a), (b) and (c) of Figure 

4, the test statistics are found to be higher than the 10% critical values during the early 

stage, suggesting the null hypothesis of no causality from wheat cash prices to futures 

prices can be rejected during the early periods. In detail, the forward expanding 

procedure indicates the main episode of Granger causality from wheat cash prices to 

futures prices but with some breaks: April 1984 – April 2003. The relatively short 

causality period is obtained from the rolling window process shown in panel (b) of 

Figure 4, suggesting a causal relation from wheat cash prices to futures prices between 

April 1984 and December 1995, but also with some breaks. The recursive evolving 

procedure detects a continues causality subperiod: April 1984 - July 1999.  

 

 



     (a) 

 

     (b) 

 

     (c) 

 
 
Note: Results from the forward recursive, rolling window and recursive evolving procedures are displayed in (a), (b) and (c), respectively. Causal 
periods are noted on the plots. The 10% bootstrapped critical values are obtained with 1000 repetitions and controlled over a 1-year period, with a 
minimum window size !! = 0.20. The sequence of tests for the forward recursive, rolling window and recursive evolving procedures run from 
June 1975 to February 2020. Lag orders are assumed to be constant and selected using BIC with a maximum length of 20 for the whole sample 
period.  
 

Figure 3: Tests for Granger causality running from wheat futures prices to cash prices
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Note: Results from the forward recursive, rolling window and recursive evolving procedures are displayed in (a), (b) and (c), respectively. Causal 
periods are noted on the plots. The 10% bootstrapped critical values are obtained with 1000 repetitions and controlled over a 1-year period, with a 
minimum window size !! = 0.20. The sequence of tests for the forward recursive, rolling window and recursive evolving procedures run from 
June 1975 to February 2020. Lag orders are assumed to be constant and selected using BIC with a maximum length of 20 for the whole sample 
period.  
 

Figure 4: Tests for Granger causality running from wheat cash prices to futures prices



Panel (a) to (c) of Figure 5 and Figure 6 display the test statistics and 10% critical 

values applying the forward expanding, rolling window and recursive evolving 

approaches for the cases of soybean, respectively. Panel (a) and (c) of Figure 5 report 

that the test statistic sequence obtained from forward expanding and recursive evolving 

methods are over the 10% critical value sequence persisting over the entire sample, 

implying the soybean futures prices are found to Granger cause the cash prices. 

However, a far more dynamic causal relation between cash and futures prices are 

revealed through a rolling window method. In panel (b) of Figure 5, the estimation 

results of the rolling window procedure paint a different picture. Before November 

2001, the test statistics only above the 10% critical value at some episodes, suggesting 

the causality from soybean futures prices to cash prices occurs within some subperiods. 

But the rolling window procedure detects the soybean futures prices Granger cause cash 

prices after November 2001. The estimated test statistics in panel (a) of Figure 6 are 

always below their 10% critical value sequence, indicating not rejecting the null 

hypothesis of that soybean cash prices do not Granger cause futures prices. However, 

in panel (b) and (c) of Figure 6, the test statistics of the rolling window and recursive 

evolving causality procedures are higher than the critical values at a very short period 

in 1997. These results indicate that the soybean cash prices were shown to Grange cause 

futures prices in some months in 1997. 
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Note: Results from the forward recursive, rolling window and recursive evolving procedures are displayed in (a), (b) and (c), respectively. Causal 
periods are noted on the plots. The 10% bootstrapped critical values are obtained with 1000 repetitions and controlled over a 1-year period, with a 
minimum window size !! = 0.20. The sequence of tests for the forward recursive, rolling window and recursive evolving procedures run from 
September 1975 to February 2020. Lag orders are assumed to be constant and selected using BIC with a maximum length of 20 for the whole 
sample period.  
 

Figure 5: Tests for Granger causality running from soybean futures prices to cash prices 
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Note: Results from the forward recursive, rolling window and recursive evolving procedures are displayed in (a), (b) and (c), respectively. Causal 
periods are noted on the plots. The 10% bootstrapped critical values are obtained with 1000 repetitions and controlled over a 1-year period, with a 
minimum window size !! = 0.20. The sequence of tests for the forward recursive, rolling window and recursive evolving procedures run from 
September 1975 to February 2020. Lag orders are assumed to be constant and selected using BIC with a maximum length of 20 for the whole 
sample period.  
 

Figure 6: Tests for Granger causality running from soybean cash prices to futures prices



In the case of corn prices, the results based on the forward expanding and recursive 

evolving methods, reported in panel (a) and (c) of Figure 7, are consistently above the 

10% critical values. We can reject the null hypothesis of no causality from corn futures 

prices to spot prices. According to the panel (b) of Figure 7, similar to wheat and 

soybean cases, the rolling window causality test statistic sequence is above the 10% 

critical value sequence for most periods with some breaks. In a relatively long break 

episode, August 2004 – May 2008, the rolling window test statistics are below the 

critical values, indicating we cannot reject the null hypothesis of no causality from corn 

futures prices to cash prices. Panel (a) of Figure 8 reports that the forward expanding 

causality test statistic sequence is below the critical value sequence at 10% level, which 

fails to reject the null hypothesis of non-causality runs from corn cash prices to futures 

prices. Similar to soybean case, panel (b) and (c) of Figure 8 show that the rolling 

window and recursive evolving causality test statistics are below the 10% critical values 

except for January-February 1997.  
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Note: Results from the forward recursive, rolling window and recursive evolving procedures are displayed in (a), (b) and (c), respectively. Causal 
periods are noted on the plots. The 10% bootstrapped critical values are obtained with 1000 repetitions and controlled over a 1-year period, with a 
minimum window size !! = 0.20. The sequence of tests for the forward recursive, rolling window and recursive evolving procedures run from 
September 1975 to February 2020. Lag orders are assumed to be constant and selected using BIC with a maximum length of 20 for the whole 
sample period.  

 

Figure 7: Tests for Granger causality running from corn futures prices to cash prices 
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Note: Results from the forward recursive, rolling window and recursive evolving procedures are displayed in (a), (b) and (c), respectively. Causal 
periods are noted on the plots. The 10% bootstrapped critical values are obtained with 1000 repetitions and controlled over a 1-year period, with a 
minimum window size !! = 0.20. The sequence of tests for the forward recursive, rolling window and recursive evolving procedures run from 
September 1975 to February 2020. Lag orders are assumed to be constant and selected using BIC with a maximum length of 20 for the whole 
sample period. 
 

 Figure 8: Tests for Granger causality running from corn cash prices to futures prices



According to the explanations of subsampling processes for these three methods using Figure 

1 in the methodology section, the advanced recursive evolving is capable of searching for the 

optimum starting point of the regression for each observation, and thereby able to 

accommodate re-initialisation in the subsample to square with any changes in the structural as 

well as the causal direction that may exist within the full sample. Besides, both the forward 

expanding and rolling window methods are the special cases of the recursive evolving approach. 

The results of recursive evolving testing procedure are considered to be more comprehensive 

(Shi et al., 2018). Based on the obtained results from these causality tests, we find: (1) Before 

the early 2000s, a bidirectional Granger causality between wheat futures and spot prices, which 

suggests the information is approximate evenly divided between wheat spot and futures 

markets. But wheat futures prices lead the price discovery since the early 2000s. (2) For 

soybean and corn, there is unidirectional causality from futures prices to cash prices but with a 

very short break in 1997, providing strong evidence in favour of the futures prices lead the 

price discovery.  

 

We attempt to explore whether the different phases of price discovery lead by either the spot 

or futures prices are associated with the specific events. In general, we are able to link the time-

varying lead-lag causal relationship to specific agricultural commodity market events. In the 

case of wheat, we find a bidirectional linkage between spot and futures prices before the early 

2000s. But a unidirectional causality from wheat futures prices to cash prices after the early 

2000s. This paper suggests that the change point of the early 2000s is related to the 

financialisation among commodity markets. Prior to the early 2000s, the bidirectional causality 

indicates wheat futures prices and cash prices are both important in price discovery. Typically, 

futures prices lead the price discovery because futures markets have the advantages of lower 

transaction costs, higher transparency and higher liquidity. However, the bidirectional causality 

results suggest that wheat cash prices also play a key role in price discovery. Futures markets 

have a higher liquidity because it is the financial markets. However, constant reassessments of 

commodity future prices make the evaluation difficult and potentially affect the well-

functioning price discovery of the futures markets (O'Hara, 2003). Commodities are different 

from financial assets, the spot market on the other hand might be less liquid but could promote 

the price discovery. Specifically, in the spot market, the buyers get access to the sellers easier 

while the sellers face difficulties in touching buyers immediately. Traders (who might even 

coincide with producers) could evaluate the market fundamentals better and quickly agreed on 



the fundamental value, the best-traded spot price, of the commodity through matching supply 

and demand (Dimpfl et al., 2017). The demand and supply pressures over the physical 

commodities are equally important to the trading on the futures markets, in increasing the price 

discovery role of wheat cash markets (Irwin et al., 2009). Besides, the increased trade 

liberalisation during 1970s to 1990s adds more flexibility to the agricultural commodity 

markets. The market-liberalising policies accelerate the information dissemination and affect 

the price discovery process in the agricultural markets (Olipra, 2020). The physical market 

becomes more responsive to changes in global supply and demand conditions (Peters et al., 

2009). 

 

Since the early 2000s, the financialisation of commodity markets leads to rapid growth in 

financial investment and speculation in agricultural futures in the United States markets. For 

example, Irwin and Sanders (2012) report that the level of combined futures and option open 

interest in wheat in the late 2000s reached around five times their 1995-1999 levels. Besides, 

they report a more than three-fold increase in monthly wheat futures trading volume from 2000-

2011. The institutional managers have considered commodity as a profitable alternative asset 

because commodity futures has a low or negative correlation with traditional assets such as 

stock and bond, and commodity prices positively correlated with inflation (Cheng and Xiong, 

2014). These features encourage investors to use commodity futures as a refuge when 

conventional asset markets are under stress (Silvapulle and Moosa, 1999). Agricultural 

commodity futures emerge as an asset class and offers a diversification benefit (Cheng and 

Xiong, 2014). Accordingly, investment flows on the order of hundreds of billions of dollars 

come into the commodity markets, which attracts large liquidity. The higher liquidity results 

in higher price discovery (Grammig and Peter, 2013; Yan and Zivot, 2010), which interprets 

our result of unidirectional causality from wheat futures prices to cash prices from the early 

2000s. In addition, take a close look at the financial crisis period 2007-2009 and food crisis 

period (2007-2008), our results suggest that the greater liquidity of wheat futures over physical 

wheat. Wheat futures react more quickly to unexpected information in the crisis period. In the 

time of crisis, wheat futures prices still play an important role in the price discovery process.  

 

For soybean and corn, we find futures prices play the leadership role in price discovery, but the 

reverse is not true. Different from the wheat market, both the soybean and corn cash prices 

unanimously do not Granger cause futures prices. As explained above, the current best price of 



the commodity could be quickly agreed through matching supply and demand in the wheat 

cash market, and therefore the wheat cash price is also important in price discovery. However, 

this may not hold in soybean and corn markets because soybean and corn markets are 

interrelated markets. Soybean and corn are substitutable in terms of their end-use and these two 

commodities typically compete for acreage in the United States. The planting decisions for 

soybean and corn usually made jointly. Consequently, the supply responses of soybean and 

corn are a trade-off regarding acreage allocation decisions (Holt, 1992). In the sense that a rise 

in soybean acreage occurs at the expense of a decrease in corn acreage, and vice versa (Chavas 

and Holt, 1990). Compared to the wheat market, revising the supply and demand may relatively 

complex and take some time in the soybean and corn markets. Soybean and corn futures have 

greater liquidity over physical soybean and corn. In addition, agricultural commodity market 

participants face severe informational frictions regarding the supply, demand and inventory of 

the agricultural commodities (Cheng and Xiong, 2014). Financialisation of soybean and corn 

causes influences on the information discovery in soybean and corn markets. The lower costs 

of trading soybean and corn futures compared with the physical soybean and corn encourage 

greater participation and facilitates information aggregation. However, Stockin and Xiong 

(2015) emphasise that the noise brought about by the trading of futures investors could feed 

back to final-goods producers’ demand for the commodity. Soybean and corn futures contracts 

are the most popular traded contracts in the United States. Informational frictions could exist 

because the soybean and corn producers cannot determine whether the futures price changes 

are trigged by financial investors’ trading or the global economic fundamentals. Therefore, in 

comparison with financial traders, the participants in the physical markets may misinterpret the 

information of shocks. In other words, soybean and corn futures markets react more quickly to 

new information compared to their underlying spot markets. 

 

These results are interesting for two reasons. First, some of the previous studies (e.g. Crain and 

Lee, 1996; Garbade and Silber, 1983 and Yang and Leatham, 1999) analyse the lead-lag 

relationship in the wheat market and conclude that wheat cash markets are largely satellites of 

the futures markets. Corresponding to these studies, Dimpfl et al. (2017) find evidence that the 

prices of these agricultural commodities are independently formed in the spot markets and that 

the spot prices contribute more in price discovery. The previous studies either support wheat 

futures prices lead cash prices or wheat cash prices dominate the price discovery. Our findings 

are different from them by indicating neither wheat futures prices nor spot prices constantly 



lead the other, or in other words, the lead-lag pattern changes over time. By applying their 

causality tests, this study identifies the exact switching time point of the changing lead-lag 

relationship. We are able to link these different causality periods to specific commodity market 

events such as the financialisation of commodity markets. Second, different from the wheat 

market, almost full-sample evidence does support that soybean and corn futures prices are 

Granger-causal of their cash prices, but the reverse does not true. This finding emphasises the 

price discovery drivers more related to the financial trading on soybean and corn futures 

markets.  

 

Robustness checks 

In identifying the robustness of the findings on causal relations running between spot and 

futures prices, a sensitivity and robust analysis is conducted. This study makes the following 

variants of the basic setup in the LA-VAR modelling framework: controlling the window size 

over a 3-year period to compute the 10% bootstrapped critical values and setting the minimum 

window size as !! = 0.24 to explore the finer local variability in the test statistics. We first 

retest the causality by controlling the size of the test sequence over a 3-year window instead of 

a 1-year window and the probability of making at least one false positive conclusion is taken 

to be 10% level. The 10% bootstrapped critical values are acquired from the 1000 repetitions 

and the bootstrap sample size is '" = (! + 35. The low change of drawing a false positive 

conclusion is expected with the stricter rejection criteria, but the detection power would 

decrease. Remaining the basic estimation setup unchanged and the estimated results for wheat, 

soybean and corn are presented in Figure 9, Figure 10 and Figure 11, respectively. From 

Figure 9, generally, the identification of the causal subperiods appears to be robust to the 

changes in window size. But we could also find some variations in the dates and the number 

of the causal episodes decreases, which attributed to the lower detection power induced by 

changing the window size. In the case of soybean and corn, Figure 10 and Figure 11 suggest 

that the causality pattern identified by three different algorithms keeps solid, despite some 

causal episode nuances.  
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Note: The forward recursive, rolling window and recursive evolving test results for Granger 
causality from wheat futures to spot prices are displayed in (a), (b) and (c), and spot to futures 
prices are reported in (d), (e) and (f). Causal periods are noted on the plots. The 10% 
bootstrapped critical values are obtained with 1000 repetitions and controlled over a 3-year 
period, with a minimum window size !! = 0.20. Lag orders are assumed to be constant and 
selected using BIC with a maximum length of 20 for the whole sample period. 
 

Figure 9: Tests for Granger causality between wheat futures and cash prices 
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Note: The forward recursive, rolling window and recursive evolving test results for Granger 
causality from soybean futures to spot prices are displayed in (a), (b) and (c), and spot to futures 
prices are reported in (d), (e) and (f). Causal periods are noted on the plots. The 10% 
bootstrapped critical values are obtained with 1000 repetitions and controlled over a 3-year 
period, with a minimum window size !! = 0.20. Lag orders are assumed to be constant and 
selected using BIC with a maximum length of 20 for the whole sample period.  
 

Figure 10: Tests for Granger causality between soybean futures and cash prices 
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Note: The forward recursive, rolling window and recursive evolving test results for Granger 
causality from corn futures to spot prices are displayed in (a), (b) and (c), and spot to futures 
prices are reported in (d), (e) and (f). Causal periods are noted on the plots. The 10% 
bootstrapped critical values are obtained with 1000 repetitions and controlled over a 3-year 
period, with a minimum window size !! = 0.20. Lag orders are assumed to be constant and 
selected using BIC with a maximum length of 20 for the whole sample period.  
 

Figure 11: Tests for Granger causality between corn futures and cash prices 
 

This paper subsequently changes the basic setting of the minimum window size by increasing 

the value of !!  from 0.20 to 0.24 and maintain all other settings of the LA-VAR model 

unaltered, to test for the robustness of the Granger causality for three agricultural commodities. 



We re-conduct the Granger causality test with three different procedures and the results are 

reported in Figure 12, Figure 13 and Figure 14, for wheat, soybean and corn, respectively. 

Once more, the entire Granger causality pattern identified appears to be robust to the changed 

model settings with small differences in the dates. Overall, from the robustness checks, the 

conclusion reached here implies that the pattern of Granger causality tested by employing 

sequences of Wald statistics is significantly robust to the changes of the estimation setup for 

the three agricultural commodities discussed in this study.  
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Note: The forward recursive, rolling window and recursive evolving test results for Granger 
causality from wheat futures to spot prices are displayed in (a), (b) and (c), and spot to futures 
prices are reported in (d), (e) and (f). Causal periods are noted on the plots. The 10% 
bootstrapped critical values are obtained with 1000 repetitions and controlled over a 1-year 
period, with a minimum window size !! = 0.24. Lag orders are assumed to be constant and 
selected using BIC with a maximum length of 20 for the whole sample period.  
 

Figure 12: Tests for Granger causality between wheat futures and cash prices 
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Note: The forward recursive, rolling window and recursive evolving test results for Granger 
causality from soybean futures to spot prices are displayed in (a), (b) and (c), and spot to futures 
prices are reported in (d), (e) and (f). Causal periods are noted on the plots. The 10% 
bootstrapped critical values are obtained with 1000 repetitions and controlled over a 1-year 
period, with a minimum window size !! = 0.24. Lag orders are assumed to be constant and 
selected using BIC with a maximum length of 20 for the whole sample period.  
 

Figure 13: Tests for Granger causality between soybean futures and cash prices 
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Note: The forward recursive, rolling window and recursive evolving test results for Granger 
causality from corn futures to spot prices are displayed in (a), (b) and (c), and spot to futures 
prices are reported in (d), (e) and (f). Causal periods are noted on the plots. The 10% 
bootstrapped critical values are obtained with 1000 repetitions and controlled over a 1-year 
period, with a minimum window size !! = 0.24. Lag orders are assumed to be constant and 
selected using BIC with a maximum length of 20 for the whole sample period.  
 

Figure 14: Tests for Granger causality between corn futures and cash prices 
 



 
Conclusion 
This study investigates the time-varying lead-lag causal relations between cash and futures 

markets for three important stable agricultural commodities, wheat, soybean and corn, 

spanning nearly half-century. We add to the literature on the lead-lag causality between 

agricultural commodity spot and futures markets on three counts. First, this study adopts three 

different time-varying causality test procedures based on LA-VAR modelling framework. 

Different from the previous studies, this model can be used without detailed or accurate prior 

knowledge of the presence or absence of unit roots. Besides, we could make Granger causality 

inferences in a time-varying manner and identify the exact origination and termination dates of 

causality periods. Second, the previous studies find a unidirectional causality between wheat 

futures and cash prices in the full sample, either futures prices Granger cause cash prices (e.g. 

Crain and Lee, 1996; Garbade and Silber, 1983; and Yang and Leatham, 1999) or cash prices 

Granger cause futures prices (Dimpfl et al., 2017). On the contrary, we find neither market 

leads nor lags the other consistently. We shed new light on the causal relations running from 

wheat spot prices to futures prices should change over time because the information flows 

could change with time. In our study, the lead-lag causality between wheat futures and cash 

prices are found to have experienced significant change around the early 2000s. A bidirectional 

Granger causality is observed prior to the early 2000s, but then wheat futures prices are found 

to lead the price discovery. This change corresponds to the financialisation among commodity 

markets, which attracts large liquidity and promotes the information flows in the wheat futures 

market. Third, we show that the spot and futures prices interactions behave differently in wheat 

compared to soybean and corn markets; in particular, a time-varying causality in the wheat 

markets but the unidirectional causality in the soybean and corn markets. The strong one-way 

causality is proved from futures prices to cash prices in both soybean and corn markets. The 

cases of soybean and corn are distinct from wheat. This finding emphasises futures markets are 

more liquid and react quickly to new or unexpected information. Besides, our findings are 

helpful for identifying the predictive power of futures and cash markets over different 

subperiods. Prior to the early 2000s, both only wheat futures and cash prices have predictive 

power for each other. But futures prices have the predictive power on the future actions of 

wheat cash prices since the early 2000s. Soybean and corn futures markets have strong 

predictive content for their cash markets.   

 



Our findings have implications for producers, consumers and hedgers. We know that grains 

producers fix sales prices ahead of production and adjust supply decisions basing on the futures 

contract prices (Nicolau and Palomba, 2015; Xu, 2019). Our results indicate that the predictive 

power of wheat futures and cash prices change over different subperiods. While soybean and 

corn futures prices have insight information to predict the future action of their cash prices. 

Wheat producers may not always price wheat using futures prices as the reference ahead of 

production and revise wheat supply. They should pay more attention to the market events in 

different periods. Because these events may affect the direction or speed of the information 

flows, and therefore, the lead-lag relationship is sensitive to the time. However, soybean and 

corn producers could use the futures prices to fix sale prices and adjust supply decisions given 

futures prices consistently lead their cash prices. For consumers who consume the U.S. soybean 

and corn, they could use the futures prices to predict the future trend of the cash prices. They 

could store more soybean and corn in advance when the soybean and corn futures prices show 

an increase signal. For hedgers, this result supports the intuitive idea that hedgers in soybean 

and corn markets could take opposite positions in futures and spot markets to mitigate their 

portfolio risks. But for the hedgers in wheat markets, the information of specific events may be 

important for them to adjust the futures and cash positions. In addition, this chapter also gives 

several messages of the effects on world food price in developing economies. Developing 

countries are particularly affected by the volatile world food prices because of their dependence 

on agricultural commodity exports and their specialisation in one or a few agricultural 

commodities. The volatile world agricultural commodity price have serious consequences 

especially for the poor who spend a large part of their income on food (Banerjee and Duflo, 

2007). The food price volatility leads to increased poverty in developing countries (Page and 

Hewitt, 2001). The U.S. wheat, soybean and corn markets play an important role in deciding 

the world food prices. Our results find that wheat, soybean and corn futures markets lead the 

price discovery in the United States since the 2000s. This means that wheat, soybean and corn 

futures markets are able to quickly reflect the new information related to the world agricultural 

commodity price changes and volatilities. The government in developing economies could plan 

for the appropriate preparation based on the information obtained from the grains futures 

markets of the United States. For example, the policymakers in the developing countries could 

plan for the strategic grain reserves and public stock scheme for the grains basing on the U.S. 

grains futures prices movements.  

 



An interesting issue remains unresolved in this study relates to the effects of bounded 

rationality and rational herding on the informational content between the cash and futures 

markets. Further work on this topic would need an in-depth examination of the bounded 

rationality and rational herding. Besides, this study restricts the lead-lag time-varying causality 

to the linear form. However, the causal effects between markets could be nonlinear. The 

nonlinear lead-lag interactions might draw different pictures from their linear counterparts. To 

be robust to possible nonlinear causality, there are avenues for further studies on this arguable 

issue. The findings of these studies would no doubt improve the understanding of the causal 

effects and price discovery process for agricultural commodity markets.  

 

 

 

 


