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Abstract 

With the advancement of climate change, temperature and precipitation patterns have been 

changing over the last decades. These changes continue to have substantial impacts on 

agricultural production activities. The question to which extent weather patterns affect the 

productivity of farm businesses has gained more and more attention in recent years. This study 

seeks to give a nuanced picture on the complex relationship between weather, farm 

management, biophysical conditions and total factor productivity. To this end, we utilize 

generalized random forests, a causal machine learning algorithm, to assess the complex 

weather-productivity nexus in European arable farming. We find considerable weather impacts 

in 27 EU member states at the NUTS3 level between 2005 and 2016. We find both positive 

and negative effects of aggregated weather events (mean temperature and precipitaion sum), 

and predominantly negative effects of drought spells, heat and heavy precipitation on 

productivity. Using model-agnostic Shapley values, important interactions between weather, 

farm management, technology, and the biophysical environment are found. Given the fact that 

climate change continues to change weather patterns, our results provide interesting insights as 

to how farm managers and legislators could locally respond to offset negative climate change 

impacts, e.g. by adjusting farm management characteristics or improving soil quality. 

Keywords Total factor productivity, weather, machine learning, generalized random 

forest, arable farming 
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1 Introduction

According to the Food and Agricultural Organization of the United Nations (FAO), one of
the major challenges for agriculture is to satisfy the steadily rising global need for food,
fiber and bioenergy (FAOSTAT, 2017). Given this challenge, international organizations,
legislators and scientists call for persistent efforts to further increase agricultural produc-
tivity. However, it seems that agricultural productivity growth has considerably slowed
down in recent decades (e.g Thirtle et al., 2004; Alston, Beddow, and Pardey, 2009; Ball
et al., 2010; Baráth and Fertő, 2017; Chambers and Pieralli, 2020). In the meantime,
farmers around the globe are facing the threat of climate change, which might dras-
tically modify the natural conditions under which they produce (OECD, 2019; Njuki,
Bravo-Ureta, and O’Donnell, 2018). As farming activities directly depend upon climatic
conditions, changing weather patterns are likely to have a direct effect on agricultural
productivity, and a growing body of evidence suggests that this effect might be nega-
tive. Understanding the complex weather-productivity-nexus in the agricultural sector is
therefore vitally important for meeting the rising demand of crop and livestock products.

In this paper, we look at the question if there exist heterogeneous effects of differ-
ent weather patterns on total factor productivity in arable farming in the context of
the European Union (EU). To do so, we exploit recent advances in the causal machine
learning (ML) literature and insights from microeconomic production theory to estimate
the impact of five weather indicators relevant for agriculture, namely average temper-
ature and precipitation as well as drought spells, heat and heavy rains. We then use a
model-agnostic interpretation approach to gain further insights into the nature of this
relationship.

Several studies have found a significant relationship between weather-related phe-
nomena and total factor productivity (TFP)measures (Mendelsohn, Nordhaus, and Shaw,
1994; Schlenker, Hanemann, and Fisher, 2005; Burke and Emerick, 2015; Njuki, Bravo-
Ureta, and O’Donnell, 2018; Njuki, Bravo-Ureta, and Cabrera, 2020; Chambers and
Pieralli, 2020; Chambers, Pieralli, and Sheng, 2020; Ortiz-Bobea et al., 2020; Ortiz-
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Bobea, Knippenberg, and Chambers, 2018), profits (e.g. Deschênes and Greenstone,
2007, 2012) and partial productivity such as crop yields (e.g. Vogel et al., 2019; Web-
ber et al., 2020; Schlenker and Roberts, 2009). However, many studies fail to recognize
that the effect of weather on TFP interacts with important biophysical and management-
related contextual covariates of farming activities (Hsiang, 2016). This might be espe-
cially true for EU agriculture, where the weather-TFP nexus has not been studied exten-
sively yet. While some studies account for the potential heterogeneity of the weather-
production relationship (Burke, Hsiang, andMiguel, 2015; Schlenker and Roberts, 2009;
Keane and Neal, 2020; Cui, 2020), many fail to comprehensively capture its complexity.
The effect of weather events on productivity are likely to vary both spatially and tem-
porally due to different farming settings. These include the current state of technology,
environmental conditions such as topography as well as characteristics closely related to
the farms, e.g. size and intensity (Njuki, Bravo-Ureta, and O’Donnell, 2018). Failing to
account for important interactions between weather and farming context might lead to
biased estimates of the impact of weather on productivity. What is more, it is also im-
portant to address the possibility of compound weather effects, i.e. interactions among
weather phenomena such as droughts and heat waves, which are likely to further go up
in the future (Zscheischler et al., 2018; Aghakouchak et al., 2020).

One reason why such effects have not been studied extensively yet might be that
traditional statistical and econometric techniques are quite limited in capturing complex
relationships because they usually rely on rather inflexible functional form assumptions
and are not well-suited for high-dimensional and highly nonlinear relationships (Storm,
Baylis, and Heckelei, 2019). In an attempt to overcome these problems, several authors
suggested a number of novel estimation techniques that combine predictive machine
learning methods and inferential statistics (Athey and Imbens, 2016; Wager and Athey,
2018; Athey and Wager, 2019; Künzel et al., 2019; Shi, Blei, and Veitch, 2019; Chen
et al., 2019).

Our article contributes to the literature in at least three ways. First, we use a novel ma-
chine learning technique, namely the generalized random forest (Athey, Tibshirani, and
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Wager, 2019), to estimate the effect of weather on total factor productivity, which en-
ables us to account for important interactions and nonlinearities within this relationship.
Second, our empirical case is based on data for the entire EU at a granular (county-level
or NUTS-31) scale. Thus, we are able to draw conclusions for a very large territory com-
prising several million farms. In contrast to that, most previous studies in this context
focused either on the United States or were based on case studies with a rather small
regional extent. Third, we show that model-agnostic Shapley values can be used to in-
terpret the results of our analyses, which allows us to identify and evaluate key drivers
of the complex weather–TFP relationship.

The article proceeds as follows. In Section 2, we introduce the theoretical model of the
study that is largely based on production economics and index number theory. Section
3 describes the data and provides summary statistics of the underlying variables. In
Section 4, we describe our ML-based estimation strategy. Then, in Section 5 we present
our empirical results, which is followed by a discussion (Sec. 6) and conclusion (Sec.
7)of the paper.

2 Economic Framework

2.1 Production technology

The starting point for our analysis is the period-and-environment-specific production
possibilities set (O’Donnell, 2018) reflecting all feasible input-output combinations (x, q)
using a given technology set in a given period (t) in a given environment (z) considering
firm characteristics (c):

T t(z, c) = {(x, q) ∈ RM+N
+ : x can produce q in environment (z, c) in period t} (1)

where the usual regularity conditions apply (Chambers, 1988). We can reformulate
1NUTS is a geographical system, according to which the territory of the European Union is divided

into hierarchical levels, where NUTS-3 is the most granular resolution describing small regions for specific
diagnoses. NUTS-3 regions generally have a population of 150,000 to 800,000 inhabitants.
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expression (1) as an average production function using the most general, multiplicative
form, which allows for nonlinearities and interactions in a potentially high-dimensional
covariate space (Hastie, Tibshirani, and Friedman, 2009):

fq(qit) = fa(ait)× fx(xit)× fz(zit)× fc(cit). (2)

In this formulation, each component of (2) is a nonlinear function (f{q,a,x,z,c}), where
q is a vector of m outputs, a a vector of j covariates describing the state of technology,
x a vector of n inputs, z a vector of k covariates describing the biophysical environment
and c a vector of l farm characteristics of farm i at time t.

Dividing both sides of the equation by fx(xit), we obtain the following expression:

fq(qit)

fx(xit)
= TFPit = fa(ait)× fz(zit)× fc(cit) (3)

where the ratio of all outputs over all inputs is defined as total factor productivity (Cham-
bers, 1988). Thus, TFP is a function of the state of technology, the farming environment
comprising factors that naturally influence the production process such as weather, other
biophysical factors or topography, as well as farm (management) characteristics. Finally,
we are interested in analyzing the partial effect (θit) of some weather pattern zw on TFP,
which is equivalent to the first derivative of equation (3) w.r.t. zw:

θit =
∂TFP

∂zw
(4)

2.2 Lowe TFP index

In order to define the TFP index, we follow O’Donnell (2012c) and assume that fq(qit)
and fx(xit) are linear aggregator functions, which can be expressed as fq(qit) = p′

0qit and
fx(xit) = w′

0xit, where p′
0 and w′

0 are reference output and input prices, respectively.
To allow for comparisons across different observations and time periods, the following
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quantity indices are constructed

QIhsit =
p′
0qit

p′
0qhs

and XIhsit =
w′

0xit

w′
0xhs

(5)

such that the input and output quantities of region i in year t are compared with the
input and output quantities of region k in year s. Provided expression (5), we can define
the Lowe TFP index (O’Donnell, 2012b):

TFPIhsit =
QIhsit
XIhsit

=
p′
0qit

p′
0qhs

× w′
0xhs

w′
0xit

. (6)

In contrast to other popular indexes such as the Paasche, Laspeyres, or Fisher index the
Lowe TFP index satisfies all relevant axioms from index number theory by using time
and observation invariant reference prices (O’Donnell, 2016).

3 Data

We use farm accountancy data on specialized crop farms in the EU-28 obtained from the
EU Farm Accounting Data Network (FADN) and aggregate these at the NUTS-3 (county)
level. The data cover the years 2005–2016 and originally consist of a total of 185,984
observations, which reduce to 9,693 after aggregation (taking the median at the NUTS-
3 level). We only included farm-level observations with a revenue share of specialized
products such as wine, olives, vegetables and fruits of at most 33%. All EU-28 countries
are represented including the United Kingdom but excluding overseas departments and
Croatia, which only joined the EU in 2013 and for which no weather record was avail-
able. Furthermore, 0.7% of the observations with highly implausible values were deleted
from the dataset. Spatial data on the chemical and physical properties of soil were re-
trieved from the LUCAS 2009/2012 topsoil database (Panagos et al., 2012). Weather
variables are based on 0.1 degree gridded daily data obtained from the European Cli-
mate Assessment & Dataset (ECA&D) project (Cornes et al., 2018). The panel dataset is
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unbalanced.2

The Lowe productivity index is calculated using six output variables, namely cereals,
protein crops, root and tuber crops, oilseeds, and other output (e.g. vegetables, fruits) as
well as five input variables: crop-specific inputs (seed, fertilizers, pesticides), materials
(fuel, electricity, contract work, insurance and other farming overheads), capital, labor,
and land. Labor is measured in annual working hours, including both family and hired
labor. Land is expressed in hectares. For these labor and land, farm-level prices are
available. All other variables are expressed as costs and are deflated using agricultural
price indices from EUROSTAT to the year 2015 to obtain implicit quantities (European
Commission, 2020). Capital is proxied by deflated depreciation costs. The transitivity of
the Lowe TFP index relies on a fixed representative price vector (O’Donnell, 2012a). The
median value of real prices (2015=100) is chosen for this purpose. Summary statistics
of input and output variables can be found in Table 1.

The right hand side contextual variables from eq. (3) describing the state of technol-
ogy, biophysical conditions, and farm characteristics are summarized in Table 2. Weather
patterns, which are of primary interest in this study, are described by five indicators. An-
nual mean temperature (°C) and annual precipitation sum (mm) reflect mean yearly
conditions, which are expected to keep being affected by climate change. Furthermore,
beside changing annual mean values, climate change also affects specific weather pat-
terns such as the number of heavy rain events, droughts and heat (Lüttger and Feike,
2018; Westra et al., 2014). Therefore, we include the number of consecutive dry days
(precipitation < 1mm), heavy rain days during the agricultural season (days with rain-
fall > 20mm from March–October) and hot days (days with max. temperature > 30°C)
in our analysis. Furthermore, technology is approximated by location (longitude and lat-
itude) and a time trend. A total of 22 variables comprising weather (see above), physical
and chemical soil properties as well as elevation reflect the biophysical conditions of the

2This is partly because there were several territorial and nomenclature reforms concerning NUTS-3
regions during the observed time period, which caused that multiple farm-level observations could not
unambiguously be attributed to a NUTS-3 region (e.g. Denmark). For several regions and years, there is
no information available on specialized crop farms. Finally, there were several missing values on weather
for some regions.
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Variable Mean SD Min. Max.

Cereals output (implicit quantity) 916.25 1298.86 0 36780.63
Protein crop output (implicit quantity) 21.35 70.93 0 1844.98
Root/tubers output (implicit quantity) 427.96 820.76 0 12020.1
Oilseeds output (implicit quantity) 63.27 177.84 0 8606
Forage crops output (implicit quantity) 44.35 112.18 0 3374.96
Other crops output (implicit quantity) 41.82 286.56 0 17129.24
Crop specific input (implicit quantity) 659 855.89 0 22154.64
Materials input (implicit quantity) 630.33 2313.28 1.78 214582.62
Capital input (implicit quantity) 319.26 401.71 0 10192.09
Labor input (annual working hours) 5281.14 7211.16 36 382804
Land input (hectares) 174.79 263.25 0.79 12047.5
Cereals output (reference price, dimensionless) 100 100 100
Protein crop output (reference price, dimensionless) 93.69 93.69 93.69
Root/tubers output (reference price, dimensionless) 99.75 99.75 99.75
Oilseeds output (reference price, dimensionless) 100 100 100
Forage crops output (reference price, dimensionless) 100 100 100
Other crops output (reference price, dimensionless) 99.49 99.49 99.49
Crop specific input (reference price, dimensionless) 98.95 98.95 98.95
Materials input (reference price, dimensionless) 100.16 100.16 100.16
Capital input (reference price, dimensionless) 100 100 100
Labor input (reference price, dimensionless) 90.08 90.08 90.08
Land input (reference price, dimensionless) 151.34 151.34 151.34

Table 1: Descriptive Statistics of farm inputs and outputs (N = 9,693).

observations. Farm and management characteristics are summarized by 17 variables,
carefully derived from the production economics literature, ranging from average farm
size to crop diversity to share of irrigated land.

4 Empirical approach

The empirical strategy to estimate ∂TFP
∂zw

is based on generalized random forests (GRF
Athey, Tibshirani, and Wager, 2019), which fundamentally rest upon the random forest
algorithm introduced by Breiman (2001). It belongs to the class of tree-based prediction
methods (Breiman et al., 1984). Random forests are basically an ensemble of regression
or classification trees (CART), which are grown based on recursive partitioning such
that the covariate space is divided into binary subregions (aka nodes) according to an
optimality criterion, e.g. minimizing the in-sample prediction error of one node (Breiman
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Variable Mean SD Min. Max.

State of technology (A)
Time trend 5.82 3.41 0 11
Longitude (WGS 84 coordinates) 10.61 8.65 -9.18 33.23
Latitude (WGS 84 coordinates) 48.89 5.2 35.05 67.73
Biophysical environment (Z)
Annual mean temperature (°Celcius) 10.57 2.61 -1.84 21.87
Annual precipitation sum (mm/year) 718.29 223.62 9.28 2600.7
Hot days (Days with temperature > 30 °Celcius) 22.76 24.01 0 141.07
Longest period of consecutive dry days (Days with pre-
cipition < 1mm)

27.75 17.4 9.08 187

Heavy rain days (Days with precipition > 20mm) 2.96 2.51 0 23.6
Calcium carbonates (CACO3, mg/kg) 40.24 48.13 0.33 333.26
Cation Exchange Capacity (CEC, cmol/kg) 16.79 5.64 6 40.22
C:N ratio 12.73 2.46 9.31 25.53
Potassium (K, g/kg) 206.22 72.68 64.44 663
Nitrogen (N, g/kg) 2.15 0.54 1.12 5.24
Phosphorus (P, g/kg) 32.61 12.87 4.77 71.1
pH in CaCl2 solution 5.72 0.7 3.63 7.32
pH in water (H2O) 6.29 0.69 4.39 7.91
pH in H2O,CaCl 0.58 0.1 0.28 1.05
Available Water Capacity (AWC) for the topsoil fine
earth fraction

0.09 0.02 0.05 0.13

Bulk density 1.23 0.11 0.94 1.48
Clay content (%) in topsoil (0-20cm) 19.99 7.09 3.6 40.6
Coarse fragements (%) content in topsoil 13.33 4.85 4.63 30.8
Sand content (%) in topsoil 41.08 17.23 10.84 88.65
Silt content (%) in topsoil 38.93 11.96 7.75 69
USDA soil textural classes derived from clay, silt and
sand maps

9.12 1.92 3 12

Elevation (10m) 68.19 42.27 0.79 177.13
Farm (management) characteristics (C)
Environmental constraints Area 0.74 0.49 0 2
Economic size class (1=very small,..., 14=very large) 7 1.52 2 14
Share family labor 0.81 0.22 0 1
Share rented land 0.56 0.27 0 1
Cashflow to capital ratio 0.14 1.07 -2.91 88.75
Share of total subsidies in total farm income 0.52 0.21 0 1
Share of decoupled subsidies in total subsidies 0.77 0.21 0 1
Share of environmental subsidies in total subsidies 0.05 0.08 0 0.95
Insurance intensity - share of insurance in total cost 0.03 0.02 0 0.25
Crop diversity (Shannon index) 1.34 0.29 0 2.16
Capital intensity (AC/ha) 2.9 17.88 0 1739.27
Labor intensity (AC/ha) 79.56 148.93 0.27 4692.37
Fertilizer intensity (AC100/ha) 1.72 0.89 0 14.8
Chemicals intensity (AC100/ha) 1.26 0.97 0 16.99
Energy intensity (AC100/ha) 1.35 1.29 0 66.18
Contract Work Intensity (AC100/ha) 1 1.06 0 41.99
Share irrigated land 0.06 0.18 0 1

Table 2: Descriptive Statistics of the set of contextual covariates comprising technology,
biophysical environment, and farm (management) characteristics (N = 9,693).

et al., 1984) until the final nodes (aka leaves) contain a number of observations greater
than a given minimum. In regression trees, the mean outcome of such a leaf is then the
prediction for the observations contained in that leaf. Random forests make predictions
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in the form of an average of the predictions of a large ensemble of b = 1, . . . B such trees
3, each of which is grown on a random subsample of the data. One of the key attractions
of tree-based methods is that they can take an extremely complex, non-linear problem,
with a wide range of covariates (Tiffin, 2019).

4.1 Generalized random forests

Instead of making a precise prediction of the outcome Yi itself (here TFP), we are primar-
ily interested in an accurate prediction of the effect of a specific covariate zw (weather
indicators 1–5) on TFP (Eq. 4). Athey and Imbens (2019) demonstrate how partial or
treatment effects, respectively, can be computed based on regression trees by means of
an adjusted splitting rule. They regard random forests not as an ensemble method (aka
averaging the results of multiple trees) but as an adaptive kernel method, e.g. outcome
Yi could be predicted by means of Ŷi =

∑n
i=1 αi(x)Yi, where αi(x) is a data-adaptive-

kernel measuring how often the i-th observation falls in the same leaf as a test point x.
However, we are not primarily interested in obtaining an exact prediction of Yi but rather
of the partial effect θ(x) on Yi, which can be expressed by the following local moment
condition:4

θ̂(x) = argmin
θ

n∑
i=1

αi(x)× (Yi − θZi)2 (7)

From (7) it becomes apparent that the heterogeneity of the partial effect stems from
the weights αi(x).5 Given the local kernel framework of equation (7) and the high-
dimensional setting of the research problem, Athey and Imbens (2019) suggest using
random forests for estimating kernel weights αi(x), whose splitting rule has to be ad-
justed to the fact that not a precise prediction of the outcome is required but an esti-

3These trees base each split on a randomly selected subsample of covariates.
4The condition derives from the simple linear regression problem: Yi = c + θZi + ε. We omit the

constant c in the above equation for simplicity reasons.
5Basically, eq. 7 could also be estimated using traditional k-NN estimates. However, k-NN is limited

in the sense that it does not distinguish with respect to variable importance. Hence, in high dimensional
cases withmany covariates, where the signal is concentrated along very few covariates, k-NN does not yield
precise weights. As random forests are data-adaptive and thus prioritize high-signal contextual variables,
it is better-suited to yield precise weights in a high-dimensional covariate space (Wager and Athey, 2018).
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mation of the effect of weather on the outcome. Wager and Athey (2018) show that
minimizing the squared-error loss in regression trees (as used in Breimann regression
trees) is equivalent to maximizing the heterogeneity of the estimate of interest across
subregions. Athey and Imbens (2019) make use of this finding and define the generally
valid splitting rule

max
S1,S2

=
nS1 nS2

n2
P

(
θ̂S1 − θ̂S2

)2
. (8)

Equation (8) states that a parent node is split into two children nodes (S1, S2) such
that the balanced difference in θ̂ is maximized between the two children nodes. Within
this framework, Athey, Tibshirani, andWager (2019) define an optimality criterion∆(S1, S2)

as to how an individual tree of a subsample str split the covariate space Xi of the par-
ent node P into binary regions (S1, S2) to greedily 6 maximize the heterogeneity of θ̂
across (S1, S2). NS1,2/NP is the fraction of training examples i : Xi ∈ str belonging to the
two children nodes obtained from the parent P . Our parameter of interest θSj

(str) is
identified by locally estimating a simple equation of the form (i.e. in a subregion of the
predictor space):

θ̂Sj
(str) ∈ argmin

θ

N∑
i

(Yi − θTi)2 . (9)

In order to find the optimal split, eq. 9 is solved for multiple random splits of Xi,
where the split is selected that maximizes the optimality criterion (8), i.e. maximum
heterogeneity across nodes. This proceduremay now be repeated until a certain stopping
criterion is reached, e.g., when a minimum size of observations per node is left. 7 Given
the local estimating equation 9, we can train a random forest based on trees that greedily
optimize for partial effect heterogeneity (9), fromwhich we can derive similarity weights
ai(x). These data-adaptive kernels measure how often the i-th individual falls into the

6Greedymeans that an optimal choice is made at each step rather than considering the entire tree when
trying to find the optimal split.

7For computational reasons, the algorithm applied is based on an approximation of the described pro-
cedure. Technical details can be found in Athey and Wager (2019).
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same leaf as a test point q:

ai(x) =
1

B

B∑
b=1

1 ({Xi ∈ Lb(q), i ∈ Tb})
| {i : Xi ∈ Lb(q), i ∈ Tb}

(10)

where Lb(q) is the leaf of the b-th tree that contains the test point q and Tb denotes the
subsample used to grow the b-th tree.

Using only a random subsample of observations for estimating each tree is an effective
way to avoid overfitting (Hastie, Tibshirani, and Friedman, 2009). Furthermore, Athey
and Imbens (2016) andWager and Athey (2018) formally establish asymptotic normality
for regression trees and random forests through honest splitting of trees, i.e. the training
sample is split into two parts, one part is used to train the tree and the other part is
used to predict the outcome of interest. Athey, Tibshirani, and Wager (2019) show that
valid confidence intervals for generalized random forest estimates can be obtained by
means of the ’bootstrap of little bags method’, where basically small groups of trees are
trained and their predictions are then compared within and across groups to estimate the
variance. For a more technical description of the method, see Sexton and Laake (2009).

So far, we have not accounted for the panel structure in our data, i.e. the correlation
between two observations of one individual (i.e. county) at different time points. To ad-
just the predictions and standard errors for this circumstance, we use clustered sampling
(at the NUTS-3 level) when training the the b-th tree of the random forest, i.e. instead of
drawing a random subsample from the full data directly, we add an extra step. We first
draw a random set of clusters (e.g. half of the NUTS-3 regions), and then sample these
selected clusters for training and honest estimation (Athey and Wager, 2019; Tibshirani,
Athey, and Wager, 2020).

4.2 Model-agnostic Shapley values

To explain the individual partial effects at the NUTS-3 level, we make use of Shapley val-
ues (Shapley, 1953), a model-agnostic concept stemming from cooperative game theory,
which is well-suited for complex prediction models (Molnar, 2019; Lundberg and Lee,
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2017; Tiffin, 2019).
Shapley values capture the contribution of each covariate to the difference between

the actual farm-level estimation and the sample mean estimation. Hence, Shapley val-
ues reflect each contextual variable’s relative contribution to the predicted outcome and
can be seen as a special case of marginal effects, where interactions and redundancies
between covariates are taken into account (Štrumbelj and Kononenko, 2014). Shapley
values represent estimates of variable importance (size of the contribution) and direc-
tion (sign) in explaining an outcome. To get a better intuition as to what Shapley values
are, Fig. 1 presents stylized examples of their use. Assume, we estimated a GRF for a
sample using three contextual covariates. The sample mean prediction of the weather
effect would be 7 units. Variable 1 takes on a high value for region A, which contributes
negatively to the predicted effect (Shapley value=–2). For region B it is the other way
around. Variable 1 is low, which contributes positively to the effect prediction (+1), i.e.
it increases the mean prediction. We find similar patterns for Variables 2 and 3. Finally,
after summing over all Shapley values, we end up with the individual prediction for each
observation. A more detailed description and further discussions on the method can be
found in Molnar (2019).

Figure 1: Stylized graph of two fictitious NUTS-3 regions, for which partial effects and
Shapley values were computed. Source: Own compilation based on Tiffin
(2019) and Molnar (2019).
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5 Empirical Results

First, we calculated our outcome variable, the Lowe TFP index as described in Section
2. We then trained a generalized random forest for each weather indicator separately.
For a better interpretation of the result we log-transformed the outcome variable (TFP),
which allows us to interpret the results as semi-elasticities. To be stringent in terms of
retrieving reliable estimates and standard errors, we train 40,000 trees for each weather
indicator. By doing this, we make sure that the excess error – measuring the stability
of our estimates if we repeated the estimation – is negligibly small (Wager, Hastie, and
Efron, 2014). Furthermore, we tested different versions of hyperparameter tuning via
cross-validation (James et al., 2013) on the minimum number of observations in each
tree leaf, the fraction of the data used for the subsample to build each tree, the number
of variables tried for each split, as well as split balance parameters. No significant per-
formance differences could be detected, which is why we adhered to the base settings of
the algorithm as determined by Tibshirani, Athey, and Wager (2020). For the calculation
of the Shapley values, we used approximations of the above mentioned GRFs based on
2,000 trees to keep computational burden manageable.

5.1 Total factor productivity estimates

Figure 2 illustrates the spatial and temporal dynamics of total factor productivity in the
EU between 2005 and 2016. The TFP of each region in each year is compared to the
TFP of the NUTS-3 region Stockholm County (SE010) in 2005. Panel 2A describes the
spatial distribution of the mean TFP level in the sample period. Based on the United
Nations geoscheme (UNSD, 2021), we compare crop farm productivities across four Eu-
ropean subregions (East, North, West, South). We can see, that crop farming in the
Western subregion, and especially in Northeast France, Belgium, the Netherlands and
parts of Germany show the highest TFP levels, together with the Southeast of the UK,
as well South Sweden, East Denmark (Northern region). Lower TFP levels are found
for most parts of Southern and Eastern Europe. These finding are largely confirmed
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by Panel B of Fig. 2. Crop farming in Western Europe was most productive followed
by Northern Europe, which however shows a greater TFP growth than Western Europe.
Western European crop production appeared to have been twice as productive as Eastern
and Southern Europe. Generally, we can observe a positive development for all regions.
Two very strong aggregation effects can be found in 2007. First, Danish regions join
the sample for Northern Europe, which strongly increased mean productivity.8 Also, Ro-
mania and Bulgaria joined the EU in 2007, which seem to have strongly affected the
mean TFP for Eastern Europe. Our results are in parts very similar to previous findings
for European crop farming, e.g. Bokusheva and Čechura (2017) compares the TFP de-
velopment of arable farming in selected EU countries at the farm-level using stochastic
frontier analysis. They find an average yearly productivity increase of 1.8% for England
between 2003 and 2015, for which we find a 1.7% TFP growth. However, in general,
our results appear to be slightly more fluctuating. Our results also correspond well with
Martinho (2017), who studies TFP growth at the NUTS-2 level using data envelopment
analysis. We are not aware of any EU-wide crop farming study that uses a transitive TFP
index.

5.2 Heterogeneous weather effects on total factor productivity

Table 3 summarizes the GRF estimation results for all five weather indicators. Regarding
the average weather patterns temperature and precipitation sum, we find mixed results.
On average, a temperature increase by one °Celcius leads to a TFP increase of 4.56%.
However, this effect varies considerably. Turning to the first column of Table 3, we find
that 75% percent of observations react positively to an average temperature increase,
while in 25% of the cases TFP decreases. In total, we find in 60% of the observations a
significant impact of average temperature on TFP (at the 95% significance level). Those
regions that experience a negative effect, suffer a 5.1% loss in TFP due to a one degree
temperature increase, while the majority of cases (>50%) gain a 8.35% average increase

8We had to omit Danish regions before 2007, since farms were spatially not unambiguously attributable
to the respective NUTS-3-regions after a reform of the NUTS classification in Denmark.
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Figure 2: Summary of the total factor productivities for crop farms across the EU at the
NUTS-3 level. regions are aggregated according to the UN geoschemes for
Europe. Panel A: Spatial distribution of mean TFP values between 2005 and
2016. Panel B: Mean development of TFP index.

in productivity. As described in the second column of Table 3, the response to an increase
in the yearly precipitation sum appears to be rather small. We could not find significant
effects for more than 50% of the observations. However, the 33% of the observations
with a semi-elasticity significantly smaller than zero, 100mm additional rainfall would
signify a TFP decrease of 4% on average.

Regarding specific weather events, namely drought spells, heat and heavy rain, we
find almost exclusively negative effects on TFP (Table 3, columns 3–5), e.g. an extra day
with a maximum temperature of more than 30°Celcius means an average TFP reduction
of 0.7% for approx. 80% of the observations. What is more, approx. 75% suffer a TFP
loss of -0.8% from one extra day of the maximum rain-free period (i.e. drought spell).
The effect of heavy rain events varies from -10% to 4.3%. In summary, we can say that
average weather had a mixed effect on TFP in the EU between 2005 and 2016, while
specific weather phenomena had a clearly negative effect on productivity.

Figure 3 gives an overview of the spatio-temporal dynamics of the weather-TFP nexus.
Panel A summarizes the weather impacts on a yearly basis, from which two primary
conclusions can be drawn. First, there is no clear time trend observable in the given time
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Table 3: Summary of the GRF estimation results.

Weather indicator

Mean tem-
perature
(°C)

Precipitation
sum (mm)

Consecutive
dry days

Hot days Heavy rain
days (pre-
cipitation
> 20mm)

Full sample

Mean semi-elasticity (% change in TFP) 4.56 -0.01 -0.69 -0.63 -2.83
SD semi-elasticity (% change in TFP) 5.1 0.04 0.35 0.3 2.05
Precentage of N with semi-elasticity < 0 24.4 66.1 98.7 98 90.9
Precentage of N with semi-elasticity > 0 75.6 33.9 1.3 2 9.1
Subsample (semi-elasticity θ < 0 at 95% significance level)

N 474 3165 7332 7842 5767
Share in full sample (%) 4.9 32.7 75.6 80.9 59.5
Mean semi-elasticity (% change in TFP) -5.1 -0.04 -0.8 -0.7 -4.07
SD semi-elasticity (% change in TFP) 1.69 0.01 0.31 0.25 1.31
Subsample (semi-elasticity θ > 0 at 95% significance level)

N 5202 1068 0 3 54
Share in full sample (%) 53.67 11.02 <1 <1 <1
Mean semi-elasticity (% change in TFP) 8.35 0.06 - 0.29 3
SD semi-elasticity (% change in TFP) 2.34 0.03 - 0.06 0.64

period for any of the weather indicators. Second, for most indicators, the effect on TFP
is rather constant or fluctuates very little, respectively. We only find somewhat more
pronounced volatility for drought spells (Panel A3), where the negative impact appears
to have been largest in 2005 and 2006.

Panel 3B characterizes the temporal dynamics of the share of observations whose
semi-elasticities are significantly different from zero (at the 95% significance level). For
average temperature (Panel A2), the number of observations with negative effects is
quite constant at 4% to 6%, while the number for positive values fluctuates by roughly 10
percentage points from 41% (2005) to 51% (2015). Regarding precipitation (Panel B2),
we find fluctuations especially for the significant negative relationship (28.2%–38.7%).
The largest variability in terms of significant weather impacts can be found for drought
spells (Panel B3), varying from roughly 85% (2005, 2006) and 66% in 2007.

Finally, weather effects also vary spatially (Panel 3C). We can see that an increase in
yearly mean temperature benefits primarily Central and Eastern Europe but also Scan-
dinavia, the UK, Belgium, the Netherlands and parts of France. Contrarily, adverse tem-
perature effects occur in most parts of Southern Europe. As for precipitation, a East-West
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gradient can be observed, where Eastern Europewouldmostly benefit frommore rainfall.
This is particularly true for most regions in Poland. Prolonged drought spells strongly af-
fect Western Europe, especially Northwest France and adjacent regions. Similar patterns
can be found for heat and heavy rain, while hot days have a relatively strong negative im-
pact on Eastern Germany. Poland seem to profit from additional heavy rain days, while
the French regions Haut-de-France and Grand Est suffer rather strongly from heavy rain
events.

5.3 Exploring impact heterogeneity

After having detected a prevalent heterogeneity in the weather TFP relationship in the
European Union, we want to find the major drivers behind that relationship. Further
explaining the predicted weather effects should give important insights into features that
can mitigate adverse and amplify positive weather impacts on total factor productivity.
We computed Shapley values for all observations and covariates and present a extensive
assortment in Figure 4. The figure summarizes individual Shapley values and compares
them with their repsective covariate values (indicated by the color). For instance, for
observations with a high value for the elevation covariate (=high altitude), we find a
positive contribution on the predicted temperature effect of up to almost 10% (Panel
D1). Contrary to that, low altitude seems to decrease the predicted temperature effect.
In Panel D2, we find the opposite effects for the yearly precipitation sum.

With regard to farm (management) characteristics, we find mixed results for the
different weather indicators (Panel 4A), e.g. fertilizer intensity seem to have rather
small contributions to mean temperature and rainfall compared to droughts, heat and
heavy rain. Generally, contextual variables reflecting production intensity seem to have
a noticeable effect (to various degrees) on the weather-TFP relationship, e.g. high labor
intensity seems to shift the impact on rainfall downward. Crop diversity, which is seen as
a climate change mitigation measure (Falco et al., 2014), does not seem to have strongly
affected the weather-TFP nexus. It is worth noticing that the share of decoupled subsidies
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Figure 3: Overview of the spatio-temporal dynamics of the weather-TFP relationship in
the EU.

in total subsidies seems to increase the TFP-robustness against all 5 weather phenomena.
The Shapley values for the proxies of the state of technology confirm the spatio-

temporal patterns observed in the previous Section (Panel 4B), e.g. the time trend barely
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has an impact on productivity in comparison to other covariates, while we find a strong
East-West relationship for rain-related weather patterns and a North-South gradient for
temperature and rain.

The results in Panel 4C partly point toward the existence of compound weather ef-
fects, e.g. the occurrence of prolonged drought periods and hot days seem to nega-
tively impact the effect of mean temperature on TFP, while the effects of rainfall seem
to become more positive with higher temperatures. Although no clear pattern can be
observed, our results also hint toward compound extreme weather effects (4C 3–5).

As for the biophysical farming environment, we find several effects (4D). For instance,
a high sand content in the top soil strongly intensifies the negative impact of heat on
productivity. Also, there appears to be an important interaction between weather and
soil nitrogen content, where soils with high nitrogen contents appear robust against the
weather in that high Shapley values are clustered around zero.

Overall, we find that for different weather events, different interactions matter most.
While the geographical location influences the weather-TFP relationship quite strongly,
the interaction effect is small for consecutive dry days, where as for this weather indicator
as well as heat days farm (management) characteristics matter a lot. This gives farmers
the possibility to actively develop strategies that mitigate negative weather effects, and
hence negative climate change impacts. What is more, some covariates induce opposite
effects, e.g. small economic size contributes positively to the mean temperature effect,
but negatively to the drought effect.

6 Discussion

Recent advancements in the assessment of the weather-TFP index in the agricultural
context largely explored weather as one component of TFP growth (Chambers and Pier-
alli, 2020; Njuki, Bravo-Ureta, and O’Donnell, 2018; Njuki, Bravo-Ureta, and Cabrera,
2020), which have their strengths in analyzing the interplay between weather patterns
and the components of productivity growth. However, these productivity decomposi-
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Figure 4: Summary of the temporal-spatial dynamics of the weather-TFP relationship.
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tion approaches do not allow for a detailed analysis on the marginal effects of weather
trends and patterns on TFP. In many circumstances, we are particularly interested in
how farming systems respond to specific weather events such as heavy rain or hot days,
which is necessary to derive strategies to adapt to changing weather patterns, which
become increasingly prevalent in the climate change context.

The theoretical foundation of our study can most likely be compared to Ortiz-Bobea
et al. (2020) and Damania, Desbureaux, and Zaveri (2020). Ortiz-Bobea et al. (2020)
study the historical impact of anthropogenic climate change on global agricultural pro-
ductivity using a similar production technology assumption to ours. In contrast to our
results, they find a consistently negative relationship between temperature, precipitation
and productivity growth globally and find noticeable regional heterogeneity. The most
widespread estimation approach to the analyzed relationship is based on parametric
panel data models linking productivity (growth) to weather (change), which optionally
include quadratic terms (e.g. Van Passel, Massetti, and Mendelsohn, 2017; Bozzola et al.,
2018; Ortiz-Bobea et al., 2020; Damania, Desbureaux, and Zaveri, 2020; Letta and Tol,
2019) or more sophisticated methods such as regression splines (Schlenker and Roberts,
2009) or quantile regression (DePaula, 2020) to account for effect heterogeneity/non-
linearity. Many of the authors find that weather effects are particularly detrimental in
hot and arid locations. This, however does usually not provide information regarding
how to best respond to (extreme) weather events. One way to come to such a conclusion
and another likely source of heterogeneity are interactions between weather patterns
and the production context, which is often neglected. In an attempt to account for some
of this heterogeneity source, Letta and Tol (2019) uses interaction terms of temperature
with a dummy for being poor, and finds that poor countries are particularly vulnerable
to temperature shocks. Our machine learning based approach goes beyond these at-
tempts in that it flexibly accounts for nonlinearities and potentially myriad interactions
in a high covariate space; thus more reliably reflects the complexity of the underlying
relationship. According to Storm, Baylis, and Heckelei (2019), this is one of the prime
examples, where machine learning adds value to the agricultural and applied economics
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literature.
However, increasing model complexity usually comes at the expense of reduced in-

terpretability (Hastie, Tibshirani, and Friedman, 2009). Using model-agnostic Shapley
values, stemming from the interpretable machine learning literature, makes it possible
to identify important patterns underlying such a complex model (Molnar, 2019). In con-
trast to many other studies, we are able to explore relevant interactions between weather
events and production context and their effect on productivity. This allows us to analyze
key points concerning weather vulnerability of farming systems, which eventually inform
climate change adaptation strategies, e.g. increasing economic size appears to guard
against the negative (and positive) effects of weather shocks in the European context. In
contrast to this, Reidsma, Oude Lansink, and Ewert (2009) find that economic size am-
plify the negative impact of higher temperature in assorted European countries. There
are also weak signals in our analysis that insurance might give a disincentive to adapt to
weather shocks (compare Annan and Schlenker, 2015). Similarly, there are weak signals
in our model that increased crop diversity might guard farms from productivity losses
due to heavy rain events (Gaudin et al., 2015).

What is more, we can confirm the link between technology and weather sensitivity
(Lipper et al., 2018; Ortiz-Bobea, Knippenberg, and Chambers, 2018). The agricultural
weather impact analysis literature increasingly acknowledges the important interplay be-
tween several weather events (Zscheischler et al., 2018; Ortiz-Bobea et al., 2019; Haqiqi
et al., 2021). For instance, Haqiqi et al. (2021) find that the yield response to water can
be up to four times higher in hot weather. We find a less pronounced but similar result
for TFP (Fig. 4, Panel C2). Higher avg. temperature as well as more hot days positively
impact the effect of precipitation on productivity. Finally, we are able to analyze in what
ways the biophysical environment affects the buffer potential of farms against negative
weather effects.

One problem with ML approaches is that through their flexibility, they allow re-
searchers to include a myriad of predictors in their models, which are prone to lead
to bias structures in cause-effect relationships, e.g. by including bad control variables
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(Cinelli, Forney, and Pearl, 2020). Thus, if researchers are interested in statistical in-
ference rather than pure outcome prediction, it is absolutely necessary to come up with
a credible identification strategy (Pearl, 2018). We do that by basing our analysis on
microeconomic production theory.

Further, while the generalized random forests allows for statistical tests and inference
(Athey, Tibshirani, and Wager, 2019), Shapley values as model-agnostic interpretation
tool refer to the modeled relationship and not the ground truth, which is not the same
(Lipton, 2018). This is a major epistemological difference from more traditional statisti-
cal methods. Hence, we rely on the assumption that our model approximates the causal
mechanisms of the true relationship well (Páez, 2019). Bearing this in mind is partic-
ularly important if we were to include an excess set of covariates that are not causally
related to the outcome variable, which would lead to Shapley values explaining a spuri-
ous relationship. For the assumption that the estimated model reflects the true relation-
ship, beside having a reliable identification strategy, it is important to conduct robustness
checks to see if the estimated relationship is stable across multiple configurations. At this
stage, our study is lacking several important robustness checks.

7 Conclusion

In this study, we demonstrate the importance of taking into account the farming envi-
ronment when assessing the effects of different weather patterns on total factor produc-
tivity. Recent advances in the causal machine learning literature allow us to explore the
complex relationship between weather, technology, farm management, biophysical en-
vironment and total factor productivity. We derive important contextual variables and
estimate a Lowe TFP index, consistent with index number theory. Based on five weather
indicators, namely mean temperature, precipitation sum, consecutive dry days, hot days
and heavy rain days, we find considerable weather impacts for crop farming in 27 EU
member states at the NUTS-3 level between 2005 and 2016. We find both positive and
negative effects of aggregated weather events (mean temperature and precipitaion sum),
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and predominantly negative effects drought spells, heat and heavy precipitation on pro-
ductivity. Using model-agnostic Shapley values, we find that the farming environment
plays an important role in determining the effect size of weather on TFP. Important
interactions between weather, farm management, technology, and the biophysical envi-
ronment are found. Our modeling approach also allows to analyze compound weather
effects.

While our research approach is very flexible, we do not account for potential accu-
mulating weather effects. Furthermore, we rely on a rather short time horizon of a total
of 12 years, which might reduce the generalizability of our results to a broader climate
change impact context. Given the fact, that we have not conducted important robustness
checks, the results of this study should be interpreted with care. Nevertheless, given the
fact that climate change continues to change weather patterns, our results provide inter-
esting insights as to how farm managers and legislators could locally respond to offset
negative climate change impacts. This might lead to more effective adaptation strate-
gies. For instance, we find that larger farms might be less vulnerable to weather shocks
in the EU, a finding that should be considered in the Common Agricultural Policy, which
currently prioritizes small and medium-sized farms.

There remain several promising paths for future research. Including data on specific
agricultural practices could give more nuanced recommendations in terms of reducing
negative weather impacts on productivity. Furthermore, it would be interesting to see
our research approach being applied at the farm-level. Finally, future research could
also explore how future climate scenarios might affect the weather-TFP relationship in
agriculture.
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