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MAXIMUM LIKELIHOOD ESTIMATION OF STOCHASTIC FRONTIER

MODELS WITH ENDOGENEITY

SAMUELE CENTORRINO AND MARÍA PÉREZ-URDIALES

Abstract. We propose and study a maximum likelihood estimator of stochastic frontier models
with endogeneity in cross-section data when the composite error term may be correlated with inputs
and environmental variables. Our framework is a generalization of the normal half-normal stochas-
tic frontier model with endogeneity. We derive the likelihood function in closed form using three
fundamental assumptions: the existence of control functions that fully capture the dependence be-
tween regressors and unobservables; the conditional independence of the two error components given
the control functions; and imposing that the conditional distribution of the stochastic inefficiency
term given the control functions is a folded normal distribution. We also provide a Battese-Coelli
estimator of technical efficiency. Our estimator is computationally fast and easy to implement. We
study some of its asymptotic properties, and we showcase its finite sample behavior in Monte-Carlo
simulations and an empirical application to farmers in Nepal.

Keywords: Stochastic Frontier; Endogeneity; Control Functions; Maximum Likelihood; Technical
efficiency.

JEL Codes: C10; C13; C26; C36.

1. Introduction

Endogeneity in the stochastic frontier framework has received increasing attention in recent work

(see Kutlu, 2010; Tran and Tsionas, 2013, 2015; Karakaplan and Kutlu, 2017; Amsler et al., 2016;

Lai and Kumbhakar, 2018, among others, and Kumbhakar et al., 2020a,b, for a review). Most con-

tributions focus on the correlation between the regressors and the two-sided error component, while

ignoring the potential dependence between regressors and the stochastic inefficiency component.

However, if producers have some information about their inefficiency level, they can use it to guide

their choice of inputs and environmental variables (e.g., managerial characteristics). That is, there

may be factors, observable to the firm but unobservable to the econometrician, which affect both

the choice of regressors, and the level of inefficiency (see Cazals et al., 2016, for a similar argument).
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In this paper, we consider a stochastic frontier model in which both the two-sided error and the

stochastic inefficiency terms are allowed to be correlated with inputs and environmental variables.

These endogenous variables are restricted to be continuous. The production frontier can be linear

or nonlinear, and the inefficiency term satisfies the scaling property. That is, it can be decomposed

into a stochastic efficiency term and a scaling function that depends on environmental variables

(Alvarez et al., 2006). We achieve identification by allowing for a vector of control functions that

fully captures the dependence between the composite error term and the endogenous variables.

To the best of our knowledge, models that explicitly allow for dependence between the stochas-

tic inefficiency term, inputs, and environmental variables have only been studied by Amsler et al.

(2017).1 In their paper, the marginal distribution of the statistical noise is taken to be a normal

distribution, and the marginal distribution of the stochastic inefficiency term to be a half-normal

distribution. The two stochastic terms are potentially correlated. The dependence between observ-

ables and unobservables is modeled using copula functions, which are cleverly constructed from the

marginal distributions of the unobservables. However, the likelihood function cannot be written in

closed form, and the authors need to resort to simulations to obtain an estimator of the model’s

parameters. This approach prevents a clear analysis of identification, estimation, and inference.

Moreover, simulated methods can be biased and have a higher variance in finite samples, especially

when the number of simulations is not chosen appropriately with the sample size (Gouriéroux and

Monfort, 1997). Finally, when both inputs and environmental variables are potentially correlated

with the inefficiency term, they cannot obtain an estimator of technical efficiency.

Our framework seeks to avoid these potential pitfalls. In particular, we are able to obtain the

maximum likelihood function in closed-form. This allows us to further the analysis of identification

of this model and propose a simple and computationally fast estimation of the model’s parameters.

We also offer a generalization of the Battese and Coelli (1988) estimator of technical efficiency.

While our main statistical model is similar to the one in Amsler et al. (2017), two fundamental

assumptions deviate from their framework. First, we assume that the two-sided error term and the

inefficiency term are independent conditional on a vector of control functions. This first assumption

1Karakaplan and Kutlu (2017) do not directly consider the potential endogeneity of the inefficiency term. They instead
model the potential dependence between the two-sided error term and the inefficiency term through observables, while
we model such dependence through unobservables.
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allows us to write the conditional density of the composite error as the convolution of the conditional

densities of the statistical noise and the inefficiency term, respectively. Second, we assume that

the conditional distribution of the baseline stochastic inefficiency term given the control functions

is a folded normal distribution (Leone et al., 1961; Sundberg, 1974a). The latter assumption

is convenient for two main reasons. On the one hand, it allows us to capture the dependence

between inefficiency and endogenous variables through a vector of what we refer to as dependence

parameters, ρU , which take values in the hypercube [−1,1]. These parameters measure the fraction

of inefficiency observed by the producer, but not by the econometrician, which may influence

the choice of inputs and environmental factors and is confounded with the observed level of the

regressors. On the other hand, the conditional normal-folded normal model provides a natural

generalization of the normal half-normal model to the case when inputs and environmental variables

are endogenous. This is because the folded normal pdf collapses to the density of a half-normal

random variable when ρU = 0, where 0 is a vector of zeros. That is, when stochastic inefficiency is

unobservable to producers and hence cannot influence their decision.

Our analysis of identification and estimation focuses on the dependence parameters ρU . Because

of the properties of the folded normal distribution, only the magnitude of the components of

ρU is identified. However, their sign cannot be identified (Sundberg, 1974a; Schmidt and Lovell,

1980).2 Hence, the likelihood function has two isolated maxima which are symmetric about a local

extremum at zero. We deal with this identification issue by imposing a sign normalization which

amounts to restricting one of the components of ρU to lay in the positive orthant. When ρU = 0,

the likelihood function has a unique extremum. However, the score is identically equal to zero at

ρU = 0, and our model is not first-order identified. We are nonetheless able to show that our model

is second-order identified.

Moreover, since one of the components of ρU lays at the boundary of the parameters’ space

and the Hessian matrix is singular when ρU = 0, our estimator has a non-standard asymptotic

distribution, and its rate of convergence is slower than
√
n, where n is the sample size. We provide

2The folded normal distribution can be thought of as a normal distribution “folded” at zero by taking the absolute
value. Suppose we take a mean-zero normal random variable η, and then generate two standard normal random
variables U1 and U2, which have correlation −0.5, and 0.5 with η, respectively. When we “fold” both U1 and U2 by
taking their absolute values, we have that ∣U1∣ has the same conditional distribution of ∣U2∣. Identification of the sign
of ρU is thus not feasible.
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the asymptotic distribution of our estimator in all these cases following the framework of Andrews

(1999) and Rotnitzky et al. (2000). Finally, we briefly discuss potential ways to conduct inference

on ρU .

Throughout the paper, we assume that parameters other than ρU are first-order locally identified,

and thus
√
n-estimable (Sargan, 1983). This assumption implies, in particular, that the variance of

the inefficiency term is strictly positive. We defer to future research the study of this model when

such an assumption fails (see, e.g. Lee, 1993, for identifying and estimating the classical stochastic

frontier model with lack of first-order identification).

The paper is structured as follows. In Section 2, we discuss the statistical model and provide the

main steps for the construction of the likelihood function. In Section 2.2, we discuss identification,

estimation and inference. In Section 3, we provide simulation evidence of the finite sample properties

of our estimator. We show that our estimator performs better than the copula method of Amsler

et al. (2017) especially for estimating the variance of the stochastic inefficiency term. In Section

4, we apply our methodology to the agricultural sector in Nepal. We show that accounting for

endogeneity substantially changes the conclusions of the empirical analysis. In particular, our

estimator detects considerable variation in the efficiency scores which is not found when regressors

are taken to be exogenous.

2. Statistical Model

We study a general version of the model usually considered in this literature. The logarithm of

the output, Y , is determined by some known function, m(⋅, ⋅), which depends on a vector of p ≥ 1

inputs, X, and parameters, β; and by a composite error term ε = V − U , where V represents a

stochastic component; and U ≥ 0 is the so-called inefficiency term. We thus have

Y =m(X,β) + V −U, (1)

where U captures the producer’s shortfall from the production frontier.

Additionally, we fix U = U0g(Z, δ), where U0 ≥ 0 is a stochastic inefficiency component and g(⋅, ⋅)

is a known strictly positive scaling function, which depends on some additional environmental

variables Z ∈ Rk, with k ≥ 0, through parameters δ (Simar et al., 1994; Alvarez et al., 2006). The
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scaling function further satisfies the normalization condition g(0, δ) = 1. X and Z may have some

common elements, but they must have at least one non-overlapping component.

Thus, we finally have

Y =m(X,β) + V −U0g(Z, δ). (2)

A maximum likelihood estimator of (β, δ) is based on the assumption that the composite error

component (V,U0) is independent of (X,Z), with (U0, V ) mutually independent; V following a

normal distribution with a constant variance, and U0 following a normal distribution truncated at

0 (so-called positive half-normal distribution, see Aigner et al., 1977; Schmidt and Lovell, 1979,

1980; Horrace, 2005). While a consistent estimation of (β, δ) can also be obtained without these

strong distributional assumptions (Simar et al., 1994; Tran and Tsionas, 2013), these assumptions

are necessary to learn something about the variance of the inefficiency term, U0. We are often

interested in estimating each producer’s distance from the frontier (Battese and Coelli, 1988). This

can be easily done when the marginal distributions of V and U0 are taken to be known.

The literature has long recognized that inputs may be simultaneously chosen with the output,

and thus potentially correlated with the composite error term (see Mundlak, 1961; Schmidt and

Sickles, 1984, for a full description of the statistical issues in this context). Similarly, the producer

may decide environmental variables depending on characteristics that are observable to her but not

to the econometrician.

To deal with endogenous variables, we need a vector of instruments that are correlated with the

endogenous components but independent of the composite error term (see Amsler et al., 2016, for

the impact of several exogeneity assumptions on identification in SFA). To simplify our presentation,

we take all variables in (X,Z) to be endogenous. Extension to the case when we have some

endogenous and some exogenous components can be handled similarly.

We consider the following auxiliary regression models

X =WγX + ηX

Z =WγZ + ηZ ,

where η = (η′X , η′Z)′ ∈ Rp+k is a random vector of error components, and W ∈ Rq is a vector of

instrumental variables, with q ≥ p + k.
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Our approach is based on a control function assumption. That is, we assume that all the

dependence between (X,Z) and (V,U0) is captured by η (Newey et al., 1999; Imbens and Newey,

2009; Wooldridge, 2015). Moreover, we assume that the instruments are strongly exogenous, that

is, independent of the composite error term. Given a triplet of random variables U0, V and η, we

use the notation U0 á V to indicate that U0 is independent of V ; and the notation U0 á V ∣η to

indicate that U0 is independent of V conditional on η.

Our independence assumptions can be formally stated as follows:

Assumption 2.1. W á (V,U0, η),

Assumption 2.2. U0 á V ∣η.

Assumption 2.1 implies strong exogeneity of the instruments; and that the control function, η,

captures all the dependence between (X,Z) and (U0, V ). That is, (X,Z) á (U0, V )∣η.

Assumption 2.2 implies that, if any dependence exists between V and U0, it has to happen

through the vector η. This assumption reduces to the standard assumption of U0 á V when both

X and Z are taken to be exogenous (Kumbhakar and Lovell, 2003, Sec. 3.2, p. 64).

Assumptions 2.1 and 2.2 imply that

fV,U0,η∣W (v, u, η∣W ) = fV,U0,η(v, u, η) = fV,η(v, η)fU0∣η(u∣η),

where f denotes a probability density function. To construct a maximum likelihood estimator

(MLE), we let η ∼ N(0,Ση), where Ση is a symmetric, positive definite covariance matrix. We also

let Dη be a p + k × p + k diagonal matrix whose diagonal entries are the standard deviations of η.

We can write that Ση = DηCηDη, where Cη is the symmetric, positive definite correlation matrix

of the vector η. That is, a matrix with diagonal equal to 1 and the other elements in the interval

(−1,1).

An additional requirement for the construction of a full information MLE is that

⎛
⎜
⎝

V

η

⎞
⎟
⎠
∼ N

⎛
⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

0

0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

σ2
V σV ρ

′

VDη

DηρV σV Ση

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟
⎠
,
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where ρV is a vector of correlation coefficients between V and all components of η, and σ2
V is the

variance of V (see also Kutlu, 2010).

The main difficulty lies in the specification of the joint density of (U0, η) such that its marginal

distributions are a half-normal and a joint normal, respectively, and the dependence between the two

is captured by only one parameter. If one specifies a joint normal distribution for the random vector

(U∗

0 , η) and then takes U0 = ∣U∗

0 ∣, the marginal distributions of U0 and η are the correct marginal

distributions. This construction also creates dependence between U0 and η. Here, we argue that

the conditional distribution of U0 given η can be written in such a way that this dependence is

captured by only one vector of parameters which, we refer to as dependence parameters, and we

denote as ρU . Let

⎛
⎜
⎝

U∗

0

η

⎞
⎟
⎠
∼ N

⎛
⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

0

0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

σ2
U σUρ

′

UDη

DηρUσU Ση

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟
⎠
,

where ρU is a vector of correlations between U∗

0 and η, and σ2
U is the variance of U∗

0 . The conditional

density of U∗

0 given η is

fU∗

0 ∣η
(u∣η) = 1

√
2πσ2

U(1 − ρ′UC−1
η ρU)

exp(−
(u − σUρ′UC−1

η D−1
η η)2

2σ2
U(1 − ρ′UC−1

η ρU)
) .

Thus, we have that

P (U0 ≤ u∣η) = P (U∗

0 ≤ u∣η) − P (U∗

0 ≤ −u∣η) .

Taking the derivative of the last equality with respect to u on both sides, we obtain that the density

of U0 given η is equal to

fU0∣η(u∣η) = fU∗

0 ∣η
(u∣η) + fU∗

0 ∣η
(−u∣η).

Therefore, the conditional density function of U0 is

fU0∣η(u∣η) =
1

√
2πσ2

U(1 − ρ′UC−1
η ρU)

{exp(−
(u − σUρ′UC−1

η D−1
η η)2

2σ2
U(1 − ρ′UC−1

η ρU)
) + exp(−

(u + σUρ′UC−1
η D−1

η η)2

2σ2
U(1 − ρ′UC−1

η ρU)
)} ,

(3)

which is the pdf of a folded normal distribution (Leone et al., 1961). When we impose that ρU is

a vector of zeros, that is, when there is no dependence between the regressors and the inefficiency
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term, the conditional distribution in (3) reduces to

fU0(u) =
2

√
2πσ2

U

exp(− u2

2σ2
U

) ,

which is the density of a half-normal distribution. We also show in Appendix A that the marginal

density of U0 obtained from this construction is a half-normal density.

Figure 1 depicts the conditional folded normal pdf when η is a bivariate random vector with

unit variance and correlation coefficient equal to 0.5, σ2
U = 2.752, and ρU = (0.5,0.5)′. For fixed

parameters, the pdf is symmetric in η, in the sense that the shape of the density for η = e is the

same as for η = −e, for any real-valued vector e.

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

1  = 2  = 0

1  = 2  = 1

1  = 2, 2  = 1

1  = 3, 2  = 1

Figure 1. Conditional density of U0 given η.

For a given η, this implies that the density is invariant to changes in sign of the vector of

dependence parameters ρU . That is, the conditional density of U0 generated under a certain

dependence vector ρU is equal to the conditional density of U0 when the dependence vector is −ρU .

This is a well-known equivalence property of the folded normal distribution (see Sundberg, 1974a,

among others).

The construction of the likelihood function is thus based on the following

Assumption 2.3.

(i) η ∼ N (0,Ση), where Ση =DηCηDη is a positive definite and symmetric covariance matrix;
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(ii) V ∣η ∼ N (σV ρ′V C−1
η D−1

η η, σ
2
V (1 − ρ′V C−1

η ρV )).

(iii) U0∣η ∼ FN (σUρ′UC−1
η D−1

η η, σ
2
U(1 − ρ′UC−1

η ρU)), where FN denotes a folded-normal distri-

bution with location parameter σUρ
′

UC
−1
η D−1

η η; and scale parameter σ2
U(1 − ρ′UC−1

η ρU).

Finally, because of Assumption 2.1 and the strict positivity of the function g(⋅, ⋅), the conditional

distribution of U = U0g(Z, δ) given η can be written as

P (U ≤ u∣η) = P (U0 ≤ (g(Z, δ))−1 u∣η), (4)

and it is therefore a simple scaled version of the distribution of U0 given η, as in the exogenous

case.

We follow the literature on stochastic frontier and define a new random variable ε = V −U such

that

fU,ε∣η(u, ε∣η) = fV ∣η(ε + u∣η) (g(Z, δ))
−1 fU0∣η((g(Z, δ))

−1 u∣η).

We can thus write

fV ∣η(ε + u∣η) (g(Z, δ))
−1 fU0∣η((g(Z, δ))

−1 u∣η)

= 1

2πσ̃U(Z)σ̃V
{exp(−

(u − σUg (Z, δ)ρ′UC−1
η D−1

η η)2

2σ̃2
U(Z)

−
(ε + u − σV ρ′V C−1

η D−1
η η)2

2σ̃2
V

)

+ exp(−
(u + σUg (Z, δ)ρ′UC−1

η D−1
η η)2

2σ̃2
U(Z)

−
(ε + u − σV ρ′V C−1

η D−1
η η)2

2σ̃2
V

)} ,

where σ̃2
U(Z) = σ2

Ug
2 (Z, δ) (1 − ρ′UC−1

η ρU), and σ̃2
V = σ2

V (1 − ρ′V C−1
η ρV ).

By tedious computations that we detail in Appendix A, and after integrating with respect to U ,

we obtain

fε∣η(ε∣η) =∫ fV ∣η(ε + u∣η) (g(Z, δ))
−1 fU0∣η((g(Z, δ))

−1 u∣η)du

= 1√
2πσ(Z)

{Φ(
g (Z, δ)σUρ′UC−1

η D−1
η η

λ(Z)σ(Z)
−
λ(Z)(ε − σV ρ′V C−1

η D−1
η η)

σ(Z)
)×

exp(−
(ε − σV ρ′V C−1

η D−1
η η + g (Z, δ)σUρ′UC−1

η D−1
η η)2

2σ2(Z)
)

+Φ(−
g (Z, δ)σUρ′UC−1

η D−1
η η

λ(Z)σ(Z)
−
λ(Z)(ε − σV ρ′V C−1

η D−1
η η)

σ(Z)
)×
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exp(−
(ε − σV ρ′V C−1

η D−1
η η − g (Z, δ)σUρ′UC−1

η D−1
η η)2

2σ2(Z)
)}

=Φ(
σ̃2
V g (Z, δ)σUρ′UC−1

η D−1
η η

σ̃U(Z)σ2(Z)
)

⎡⎢⎢⎢⎢⎢⎢⎣

1√
2πσ(Z)

Φ(g(Z,δ)σUρ
′

UC
−1
η D−1

η η

λ(Z)σ(Z) − λ(Z)(ε−σV ρ
′

V C
−1
η D−1

η η)

σ(Z) )

Φ( σ̃
2
V g(Z,δ)σUρ

′

UC
−1
η D−1

η η

σ̃U (Z)σ2(Z)
)

×

exp(−
(ε − σV ρ′V C−1

η D−1
η η + g (Z, δ)σUρ′UC−1

η D−1
η η)2

2σ2(Z)
)]

+Φ(−
σ̃2
V g (Z, δ)σUρ′UC−1

η D−1
η η

σ̃U(Z)σ2(Z)
)

⎡⎢⎢⎢⎢⎢⎢⎣

1√
2πσ(Z)

Φ(−g(Z,δ)σUρ
′

UC
−1
η D−1

η η

λ(Z)σ(Z) − λ(Z)(ε−σV ρ
′

V C
−1
η D−1

η η)

σ(Z) )

Φ(− σ̃
2
V g(Z,δ)σUρ

′

UC
−1
η D−1

η η

σ̃U (Z)σ2(Z)
)

×

exp(−
(ε − σV ρ′V C−1

η D−1
η η − g (Z, δ)σUρ′UC−1

η D−1
η η)2

2σ2(Z)
)]

=Φ(
σ̃2
V g (Z, δ)σUρ′UC−1

η D−1
η η

σ̃U(Z)σ2(Z)
) fε∣η,1(ε∣η) +Φ(−

σ̃2
V g (Z, δ)σUρ′UC−1

η D−1
η η

σ̃U(Z)σ2(Z)
) fε∣η,2(ε∣η),

(5)

with

λ(Z) = σ̃U(Z)
σ̃V

, and σ2(Z) = σ̃2
V + σ̃2

U(Z),

and Φ the cdf of a standard normal distribution. The distribution of ε given η is a mixture of

two conditional extended skew-normal distributions, where the mixing probabilities depend on ρU

(see Azzalini, 2013, p. 35-36). When ρU = 0, that is, all the elements of ρU are equal to zero, the

mixing probabilities are equal and equal to 0.5, and the conditional distribution of ε reduces to a

skew-normal distribution. That is, our specification reduces to a stochastic frontier model where

the regressors are independent of the inefficiency term U0.

The full information likelihood function is therefore given by

L(θ) = fε∣η(ε∣η;β, δ, σ2
V , σ

2
U , ρV , ρU)fη(η;γ, diag(Dη), ve(Cη)),

where θ = (β′, δ′, σ2
V , σ

2
U , ρ

′

V , ρ
′

U , γ
′, diag(Dη)′, ve(Cη)′)′; diag(Dη) denotes the diagonal of the ma-

trix Dη; and ve(⋅) denotes the half-vectorization of the matrix Cη which only keeps the p+k(p+k−
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1)/2 elements below the main diagonal (as the matrix is symmetric and the elements of the main

diagonal are equal to 1 by construction).3

2.1. Identification. Let `(θ) = logL(θ) be the log-likelihood function, and assume that E [∣`(θ)∣] <

∞ for all θ ∈ Θ. We define

θ0 = arg max
θ∈Θ

E [`(θ)] . (6)

As we can restrict Θ to be a compact parameter space, and the likelihood function is continuous

in θ, there exists a parameter vector θ0 which satisfies (6) (Gourieroux and Monfort, 1995).

We focus our identification analysis on the parameter ρU . To this end, we maintain the following

assumption.

Assumption 2.4. Let θ1 = (β′, δ′, σ2
V , σ

2
U , ρ

′

V , γ
′, diag(Dη)′, ve(Cη)′)′. The matrix

E [∇2
θ1θ′1

`(θ0)]

is negative definite and has full rank.

This assumption imposes that the parameter θ1 is first-order locally identified (Sargan, 1983).

In particular, we require that the variance of the inefficiency term σ2
U,0 > 0. Lee and Chesher (1986)

and Lee (1993) have shown that when σ2
U,0 = 0, the stochastic frontier model is not first-order

identified. Moreover, in our model, whenever σ2
U = 0, (δ, ρU) are not identified. We believe this

case is worthy of future investigation, but we rule it out here for simplicity.

Proposition 2.1. Let Assumptions 2.1-2.4 hold, and ρU,0 to be such that

E [∇ρU `(θ1,0, ρU,0)] = 0.

We have that

(i) E [∇ρU `(θ1,0,−ρU,0)] = 0.

(ii) ∇ρU `(θ1,0) = 0, for any θ1.

(iii) If ρU,0 has at least one non-zero component, then the model is first-order identified.

3This operation is defined more formally as ve(Cη) = Lvech(Cη), where L is an elimination matrix of dimension
p+k(p+k−1)/2×p+k(p+k+1)/2, which only keeps the off-diagonal elements of the half-vectorization of the matrix
Cη.
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Part (i) states that if ρU,0 is a solution of the maximization problem in (6), so is −ρU,0, where the

negative sign is applied to all components of the vector ρU,0. That is, the sign of all components

of ρU is not identified. Part (ii) implies that ρU,0 = 0 is always a solution of (6), which is true

for any value of θ1. This result entails that the matrix of second derivatives has rank equal to

dim(θ) − p − k, and the model is not first-order identified at ρU = 0. In Part (iii), we show that

first-order identification is restored when at least one component of ρU,0 is non-zero. A proof of

this Proposition is provided in Appendix A.4

Figure 2 illustrates the result of Part (i) of Proposition 2.1. In this example, there are two

endogenous regressors, one in the inputs and one in the environmental variables, so that p = k = 1,

and the true value of ρU = (0.5,0.5)′. The solid black lines are the level curves of the log-likelihood

as a function of ρU , when all other parameters taken to be known. The red dots designate the points

where the log-likelihood function reaches its maximum. We can observe how both (−0.5,−0.5)′ and

(0.5,0.5)′ are maxima of the log-likelihood function. Moreover, it can be seen from the level curves

that, in this case, the log-likelihood also has a local minimum at ρU = (0,0)′.

Identification of U

-0.6 -0.4 -0.2 0 0.2 0.4

UX

-0.6

-0.4

-0.2

0

0.2

0.4

U
Z

Figure 2. Example of lack of identification of the parameter ρU .

We deal with the lack of identification of the sign of ρU by restricting the support of one of its

components, say the first one, ρU1, to be [0,1] (Sundberg, 1974a). The sign of all other components

4A similar identification problem arises in Zero Inefficiency Stochastic Frontier models, see Kumbhakar et al. (2013);
Rho and Schmidt (2015).
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is identified relative to this normalization, and provided ρU1,0 is in the interior of [0,1].5 When

ρU1 = 0, the sign of the other components of ρU remains unidentified. Theoretically, we can therefore

distinguish two cases. In case one, there is at least one component of ρU which is non-zero. That

is, ρU1,0 > 0, and all other components are in the interior of [−1,1]p+k−1. In this case, the model

is first order identified, and all the components of ρU are identified up to a sign normalization

(see Proposition 2.1(iii)). In case two, ρU = 0, and, because of Proposition 2.1(ii), the model is

not first-order identified. We refer interested readers to Section 4, where we informally discuss the

choice of ρU1 in practice.

We let Θ̄ to be the parameter’s space which embeds the restriction on ρU1, and we redefine

θ0 = arg max
θ∈Θ̄

E [`(θ)] , (7)

which exists and is (locally) unique under Assumption 2.4.

While Part (ii) of Proposition 2.1 states that the model is not first-order identified when ρU,0 = 0,

in the next proposition we show that the model is second-order identified at ρU,0 = 0.

Proposition 2.2. Let Assumption 2.1-2.4 hold, with ρU,0 = 0. Then

∇ρUρ′U `(θ1,0,0)

is not identically equal to 0, and

E [∇ρUρ′U `(θ1,0,0)] = 0.

A proof is provided in Appendix A.

2.2. Estimation and Inference. We consider an iid sample drawn from the joint distribution

of (Y,X,Z,W ), that we denote {(Yi,Xi, Zi,Wi), i = 1, . . . , n}, where each observation follows the

model in equation (2).

Estimation is straightforward and follows from the specification of the likelihood function derived

above. For all i = 1, . . . , n, we can write

Ln(θ) =
n

∏
i=1

fε∣η(εi∣ηi;β, δ, σ2
V , σ

2
U , ρV , ρU)fη(ηi;γ, diag(Dη), ve(Cη)), (8)

5An alternative approach would be to construct confidence sets for the identified set following Chen et al. (2018),
but we do not pursue it here.
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with ηi = (η′X,i, η′Z,i)′ and

εi =Yi −m(Xi, β)

ηXi =Xi −WiγX

ηZi =Zi −WiγZ .

Letting, `n(θ) = logLn(θ) to be the sample log-likelihood function, we have

θ̂n = arg max
θ∈Θ̄

`n(θ).

In parallel with our study of identification, we analyze our estimator’s asymptotic properties de-

pending on the true value of the parameter ρU .

Upon the additional assumption that E [supθ∈Θ̄ ∣`(θ)∣] < ∞, the log-likelihood function satisfies

the required conditions for consistency (see Newey and McFadden, 1994, Theorem 2.5, p. 2131).

We thus have that

θ̂n
p
Ð→ θ0.

Moreover, the log-likelihood function is at least twice continuously differentiable with respect to

the parameter θ0. When ρU is in the interior of [0,1] × [−1,1]p+k−1 and Assumption 2.4 holds,

standard theory of maximum likelihood estimation applies, and we can claim that

√
n (θ̂n − θ0)

dÐ→ N (0,I−1
θ0

) ,

where Iθ0 is the Fisher’s information matrix.

However, the asymptotic distribution and the rate of convergence of our estimator are non-

standard when all the components of ρU,0 are equal to 0. In this case, it follows from the result of

Proposition 2.1 that we have a singular Hessian matrix, and one of the parameters of interest is

at the boundary of the parameter space. This implies that we do not have the standard
√
n-rate

of convergence, and that our estimator is not asymptotically normal (Sundberg, 1974b; Andrews,

1999; Rotnitzky et al., 2000). However, Proposition 2.2 also implies that a reparametrization of

the log-likelihood function allows us to obtain the rate of convergence and asymptotic distribution

of our estimator.
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Let vec(ρUρ′U) be the (p + k)2 vectorization of the matrix ρUρ
′

U . The following theorem gives

the asymptotic properties of our estimator when ρU,0 = 0.

Theorem 2.1. Let Assumptions 2.1-2.4 hold with ρU,0 = 0, and (Zθ1 , ZρUρ′U ) a normal random

vector such that dim(Zθ1) = dim(θ1), dim(ZρUρ′U ) = (p + k)2, with covariance matrix I−1 , where I−1
is the pseudo-inverse of

I1 =
⎡⎢⎢⎢⎢⎢⎣

Iθ1 Iθ1ρUρ′U
IρUρ′Uθ1 IρUρ′U

⎤⎥⎥⎥⎥⎥⎦
.

Define the quadratic function

Q1(τ) = (τ −ZρUρ′U )
′

[IρUρ′U − IρUρ′Uθ1I
−1
θ1 Iθ1ρUρ′U ] (τ −ZρUρ′U ) ,

and τ̂ρUρ′U such that

Q1(τ̂ρUρ′U ) = inf
τ∈T1

Q1(τ),

where T1 = {τ ∈ R(p+k)2 ∶ τ ≥ 0}. Then

(i)

√
n
⎛
⎜
⎝

θ̂1 − θ1,0

vech(ρ̂U ρ̂′U)

⎞
⎟
⎠

dÐ→
⎛
⎜
⎝

Zθ1 − I−1
θ1
Iθ1ρUρ′U τ̂ρUρ′U
τ̂ρUρ′U

⎞
⎟
⎠

(ii) n1/4ρ̂U = OP (1).

The vector τ̂ρUρ′U is the projection of a normal random vector onto T1 with respect to the Eu-

clidean norm weighted by the matrix IρUρ′U − IρUρ′Uθ1I
−1
θ1
Iθ1ρUρ′U (Chernoff, 1954; Andrews, 1999;

Rotnitzky et al., 2000). When ρU is a scalar, τ̂ρUρ′U = max{ZρUρ′U ,0}. However, it is more cumber-

some to derive the distribution of τ̂ρUρ′U in closed form when the dimension of ρU is greater than

one and when there is dependence between the components of vec(ρUρ′U).
6 The result in Part (ii)

is a direct consequence of Part (i). However, it is worth highlighting that the rate of convergence

of ρU is slower when the parameter is not first-order identified.

Theorem 2.1 shows that our estimator has rates of convergence slower than
√
n, and may not

be asymptotically normal, depending on the true value of the parameter ρU . These results have

important implications for obtaining standard errors and conducting inference on ρU .

6We show in a Supplementary Appendix that the off-diagonal elements of the (p + k)2 × (p + k)2 matrix of fourth
derivatives wrt ρU are not zero in general.
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To obtain standard errors and confidence intervals, we advocate the use of the subsampling

method of Politis and Romano (1994); or the m-out-of-n bootstrap of Andrews (2000). The sub-

sampling method of Politis and Romano (1994) is consistent whenever the estimator has some

asymptotic distributions (not necessarily normal) and when the rate of convergence is slower than
√
n.7 Andrews (2000) has shown that the m-out-of-n bootstrap is consistent when the true parame-

ter is at the boundaries but only when the estimator is
√
n convergent. Provided that m2/n = o(1),

the m-out-of-n bootstrap is consistent when rates of convergence are slower than
√
n (Bertail

et al., 1999). We refer interested readers to Andrews and Guggenberger (2010) for a recent study

of asymptotic uniformity of subsampling and of the m-out-of-n bootstrap.

Furthermore, one may wish to conduct inference on the parameter ρU . In particular, a simple

hypothesis to be tested is whetherX and Z are independent of the inefficiency term, i.e. ρU = 0. The

trinity of tests is an obvious candidate but the implementation of these tests is not straightforward

because of the non-standard asymptotic properties of the estimator of ρU .

Andrews (2001) studies the properties of the trinity of test when some parameters are at the

boundary, although the author does not consider the issue of singularity of the Hessian matrix. His

theoretical results about the Likelihood Ratio (LR) test can nonetheless be used following Theorem

2.1, provided one can obtain an estimator of the information matrix under H0 ∶ vec(ρUρ′U) = 0. The

critical values from the asymptotic distribution of the LR statistic are obtained by random draws

from the vector (Zθ1 , ZρUρ′U ), and by solving a quadratic programming problem (see Andrews, 1999,

2001).

One important remark is about the Score test. Irrespective of the true value of ρU , the Score

test has no power around ρU = 0. This is because, as shown in Proposition 2.1, the score is always

identically zero at that point.

We leave a thorough theoretical exploration of the properties of the Trinity of tests in this model

for future work, but we explore some of the finite sample properties of the LR test in simulations.

7One potential issue with the subsampling method is that one has to know the rate of convergence of the estimator.
In practice, one can test first whether ρU = 0, and then apply the appropriate rate of convergence. Also, Bertail et al.
(1999) extend the subsampling method to the case when rates of convergence are unknown. We do not explore it
here.
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2.3. Technical Efficiency. Our framework is completed by an estimator of technical efficiency,

TE = exp(−Ui). Researchers are often interested in obtaining the technical efficiency for each

producer. In our case, we obtain an estimator of TE from the conditional distribution of U given

ε and η.

Let

λ⋆ =
√

1 + λ2(Z)

σ⋆ =
σ̃V σ̃U(Z)
σ(Z)

µ1⋆ = − (ε − σV ρ′V C−1
η D−1

η η)
σ̃2
U(Z)
σ2(Z)

µ2⋆ =g (Z, δ)σUρ′UC−1
η D−1

η η
σ̃2
V

σ2(Z)
,

where we have removed the dependence of λ⋆, σ⋆, µ1⋆ and µ2⋆ on Z for simplicity. By equation

(5), we have that the joint density of (ε, η) can be written as

fε,η(ε, η) =(Φ( µ2⋆

σ⋆λ⋆
) fε∣η,1(ε∣η) +Φ(− µ2⋆

σ⋆λ⋆
) fε∣η,2(ε∣η)) fη(η)

=Φ( µ2⋆

σ⋆λ⋆
) fε,η,1(ε, η) +Φ(− µ2⋆

σ⋆λ⋆
) fε,η,2(ε, η).

The conditional density of U given ε and η is then equal to

fU ∣ε,η(u∣ε, η) =
1√

2πσ⋆
{Φ( µ2⋆

σ⋆λ⋆
)
fε,η,1(ε, η)
fε,η(ε, η)

[Φ(µ1⋆ + µ2⋆

σ⋆
)]

−1

exp(−(u − µ1⋆ − µ2⋆)2

2σ2
⋆

)

+Φ(− µ2⋆

σ⋆λ⋆
)
fε,η,2(ε, η)
fε,η(ε, η)

[Φ(µ1⋆ − µ2⋆

σ⋆
)]

−1

exp(−(u − µ1⋆ + µ2⋆)2

2σ2
⋆

)} .

When both U0 and V are independent of η, this conditional density reduces to the one derived in

Jondrow et al. (1982).

Hence

E [exp(−U)∣ε, η] = 1√
2πσ⋆

{Φ( µ2⋆

σ⋆λ⋆
)
fε,η,1(ε, η)
fε,η(ε, η)

[Φ(µ1⋆ + µ2⋆

σ⋆
)]

−1

∫
∞

0
exp(−u − (u − µ1⋆ − µ2⋆)2

2σ2
⋆

)du

+Φ(− µ2⋆

σ⋆λ⋆
)
fε,η,2(ε, η)
fε,η(ε, η)

[Φ(µ1⋆ − µ2⋆

σ⋆
)]

−1

∫
∞

0
exp(−u − (u − µ1⋆ + µ2⋆)2

2σ2
⋆

)du} .
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By the properties of the cdf of the univariate normal distribution, this expression is shown to be

equal to

E [exp(−U)∣ε, η] =Φ( µ2⋆

σ⋆λ⋆
)
fε,η,1(ε, η)
fε,η(ε, η)

exp(−µ1⋆ − µ2⋆ +
σ2
⋆

2
)

1 −Φ (−µ1⋆+µ2⋆σ⋆
+ σ⋆)

Φ (µ1⋆+µ2⋆σ⋆
)

+Φ(− µ2⋆

σ⋆λ⋆
)
fε,η,2(ε, η)
fε,η(ε, η)

exp(−µ1⋆ + µ2⋆ +
σ2
⋆

2
)

1 −Φ (−µ1⋆−µ2⋆σ⋆
+ σ⋆)

Φ (µ1⋆−µ2⋆σ⋆
)

. (9)

This formula generalizes Battese and Coelli (1988) formula for technical efficiencies to the en-

dogenous case. Finally, the mean technical efficiency can be obtained as

E [exp(−U)] = E [E [exp(−U)∣ε, η]] ,

by the law of iterated expectations (Lee and Tyler, 1978).

3. Simulations

We replicate the simulation scheme in Amsler et al. (2017). We consider the following model

Yi = β0 +X1iβ1 +X2iβ2 + Vi −U0i exp (Z1iδ1 +Z2iδ2) ,

with β0 = δ1 = δ2 = 0 and β1 = β2 = 0.661, and where the random variables (X1i, Z1i) are taken to be

exogenous (i.e. independent of the composite error term), and (X2i, Z2i) are instead endogenous.

We consider two instruments (W1i,W2i), also independent of the error term.

The exogenous variables are generated independently from a normal distribution with means

equal to 0 and variances equal to 1. These variables are equicorrelated, with correlation parameter

equal to 0.5.

We generate the triplet (V, ηX , ηZ) from the following normal distribution

⎛
⎜⎜⎜⎜⎜
⎝

Vi

ηX,i

ηZ,i

⎞
⎟⎟⎟⎟⎟
⎠

∼ N

⎛
⎜⎜⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎣

1 ρ′V

ρV Ση

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟
⎠

,
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with ρV = (0.5,0.5)′,

Ση = Cη =
⎡⎢⎢⎢⎢⎢⎣

1 ρη,12

ρη,12 1

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

1 0.5

0.5 1

⎤⎥⎥⎥⎥⎥⎦
,

and

X2i =γ (X1i +Z1i +W1i +W2i) + ηX,i

Z2i =γ (X1i +Z1i +W1i +W2i) + ηZ,i,

with γ = 0.316.

We finally generate

U∗

0 ∼ N (σUρ′UC−1
η η, σ2

U(1 − ρ′UC−1
η ρU)) ,

with the stochastic inefficiency term given by U0 = ∣U∗

0 ∣.

We consider two simulation schemes that differ because of the value of the parameter ρU . In

Setting 1, we take U0 to be independent of η (the same setting as in Amsler et al., 2017). In Setting

2, we take ρU = (0.5,0.5)′. In both settings, we impose that the first component of ρU belongs

to [0,1]. We take increasing sample sizes n = {250,500,1000}, and run 1000 replications for each

scenario.

Our estimation procedure is based on the maximization of the full likelihood in equation (8).

There are two main issues for practical implementation of these models. First, the parameter

space is often very large. To reduce the dimensionality of the optimization problem, one can first

estimate the vector of parameters (γ, diag(Dη), ve(Cη)) by OLS. Given (γ, diag(Dη), ve(Cη)), one

can then maximize the full likelihood with respect to the other parameters.

Moreover, the starting values for the remaining parameters need to be appropriately chosen,

especially in nonlinear, high dimensional optimization problems like ours. To this end, we use the

method of moments. We can write

E [Yi∣Xi, Zi, ηi] = β0 +X1iβ1 +X2iβ2 +E [Vi∣ηi] −E [U0i∣ηi] exp (Z1iδ1 +Z2iδ2) ,

using the assumption that (U0, V ) is independent of (X2, Z2) given η, with

E [Vi∣ηi] =σV ρ′V C−1
η D−1

η ηi
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E [U0i∣ηi] =2σU
√

1 − ρ′UC−1
η ρUφ

⎛
⎜
⎝

ρ′UC
−1
η D−1

η ηi√
1 − ρ′UC−1

η ρU

⎞
⎟
⎠

+
⎛
⎜
⎝

2Φ
⎛
⎜
⎝

ρ′UC
−1
η D−1

η ηi√
1 − ρ′UC−1

η ρU

⎞
⎟
⎠
− 1

⎞
⎟
⎠
σUρ

′

UC
−1
η D−1

η ηi.

We report both the average standard errors obtained by evaluating numerically the Hessian

matrix of the full likelihood (Av. SE), the coverage of Wald-type confidence intervals (CI), and

the coverage of confidence intervals obtained by the random subsampling method of Politis and

Romano (1994) (CI∗). The nominal size for both is equal to 95%. The size of each subsample, b,

should be selected in such a way that b → ∞ and b/n = o(1). We use b = ⌊n0.95/ log(n)⌋, where

⌊⋅⌋ denotes the integer part of a number. Choosing the size of each subsample in a data-driven

way is still an open question and we do not explore it here (see Politis et al., 1999). Based on

our theoretical results, we expect that the inversion of the Hessian matrix is not going to provide

reliable estimates of the standard errors in Setting 1 e.

Tables 1 and 2 below contain the results of these simulations. Table 1 should be compared with

Table 4, p. 138 of Amsler et al. (2017). The mean and the standard deviation for most of the

parameters are comparable with theirs. However, we achieve much better precision in estimating

the variance of the inefficiency term, which, as indicated by Amsler et al. (2017), is estimated very

imprecisely using the copula method. Both the bias and the variance decrease as the sample size n

increases, which ought to be expected from our MLE. The average standard errors computed using

the inverse of the numerical Hessian are generally larger than the sampling standard deviation.

However, Wald-type confidence intervals have good coverage, with the exception of those for the

dependent parameter ρU whose coverage is well below the nominal one. Subsampling confidence

intervals have good coverage for the parameters of the stochastic frontier model. However, they

undercover the first stage parameters, especially the variances of the control functions.

Results in Setting 2 are comparable to the results obtained above. It is worth noticing that,

in line with our theory, standard errors are now estimated more precisely using the inverse of the

Hessian matrix, and the coverage of Wald-type confidence intervals is much closer to the nominal

one, for all parameters of the model. Subsampling confidence intervals perform similarly as above.
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N = 250 N = 500 N = 1000

TRUE Mean Std. Dev. Av. SE CI CI∗ Mean Std. Dev. Av. SE CI CI∗ Mean Std. Dev. Av. SE CI CI∗

β0 0.000 -0.151 0.420 0.253 0.828 0.857 -0.067 0.288 0.162 0.886 0.925 -0.022 0.149 0.093 0.923 0.953
β1 0.661 0.666 0.148 0.264 0.931 0.974 0.659 0.102 0.158 0.928 0.977 0.665 0.074 0.074 0.909 0.949

β2 0.661 0.654 0.174 0.292 0.911 0.976 0.661 0.115 0.142 0.930 0.982 0.657 0.080 0.084 0.924 0.974

δ1 0.000 0.027 0.426 0.606 0.904 0.945 0.018 0.265 1.462 0.936 0.977 0.004 0.131 0.051 0.948 0.994
δ2 0.000 -0.004 0.275 0.420 0.943 0.957 -0.019 0.191 1.074 0.945 0.973 -0.007 0.080 0.039 0.956 0.992

σ2
U 2.752 2.404 1.115 0.629 0.870 0.828 2.590 0.752 0.532 0.920 0.924 2.692 0.420 0.361 0.941 0.954
σ2
V 1.000 1.114 0.418 0.406 0.801 0.827 1.052 0.267 0.239 0.872 0.908 1.020 0.164 0.139 0.884 0.935

ρU,ηX 0.000 0.149 0.222 0.496 0.786 0.854 0.113 0.160 0.293 0.793 0.949 0.100 0.100 0.155 0.754 0.993

ρU,ηZ 0.000 0.059 0.259 0.563 0.812 0.972 0.066 0.189 0.420 0.810 0.986 0.047 0.144 0.150 0.785 0.992
ρV,ηX 0.500 0.484 0.157 0.217 0.869 0.930 0.489 0.109 0.209 0.870 0.950 0.499 0.072 0.074 0.906 0.958

ρV,ηZ 0.500 0.489 0.112 0.118 0.856 0.931 0.493 0.081 0.130 0.891 0.949 0.497 0.050 0.051 0.924 0.965

γx,0 0.000 -0.001 0.065 0.083 0.933 0.923 -0.001 0.044 0.077 0.944 0.927 0.001 0.031 0.032 0.949 0.933
γx,1 0.316 0.314 0.081 0.140 0.940 0.943 0.317 0.056 0.113 0.942 0.938 0.318 0.040 0.041 0.938 0.939

γx,2 0.316 0.323 0.079 0.125 0.939 0.960 0.316 0.055 0.069 0.944 0.946 0.317 0.038 0.040 0.951 0.939

γx,3 0.316 0.313 0.078 0.105 0.942 0.949 0.318 0.053 0.075 0.949 0.961 0.318 0.039 0.040 0.943 0.944
γx,4 0.316 0.313 0.078 0.115 0.939 0.950 0.316 0.052 0.108 0.957 0.962 0.314 0.037 0.040 0.955 0.945

γz,0 0.000 -0.001 0.065 0.085 0.941 0.926 -0.001 0.045 0.049 0.949 0.922 0.002 0.032 0.033 0.941 0.922

γz,1 0.316 0.315 0.080 0.102 0.951 0.936 0.316 0.056 0.068 0.954 0.938 0.316 0.039 0.041 0.947 0.936

γz,2 0.316 0.319 0.077 0.102 0.950 0.952 0.316 0.054 0.101 0.948 0.932 0.318 0.037 0.040 0.961 0.938

γz,3 0.316 0.314 0.076 0.103 0.948 0.951 0.317 0.052 0.104 0.955 0.954 0.318 0.037 0.040 0.961 0.941
γz,4 0.316 0.317 0.075 0.101 0.952 0.951 0.317 0.053 0.089 0.954 0.937 0.314 0.036 0.040 0.952 0.941

σ2
ηX

1.000 0.977 0.091 0.125 0.903 0.867 0.992 0.063 0.179 0.930 0.909 0.995 0.043 0.044 0.942 0.934

σ2
ηZ

1.000 0.983 0.091 0.129 0.916 0.895 0.993 0.062 0.163 0.935 0.913 0.997 0.045 0.045 0.936 0.929

ρηXηZ 0.500 0.498 0.050 0.079 0.923 0.937 0.502 0.034 0.093 0.930 0.940 0.500 0.024 0.023 0.942 0.937

Table 1. Simulation results for Setting 1

N = 250 N = 500 N = 1000

TRUE Mean Std. Dev. Av. SE CI CI∗ Mean Std. Dev. Av. SE CI CI∗ Mean Std. Dev. Av. SE CI CI∗

β0 0.000 -0.146 0.362 0.204 0.815 0.833 -0.039 0.196 0.162 0.885 0.937 -0.011 0.105 0.089 0.916 0.952
β1 0.661 0.666 0.143 0.184 0.929 0.970 0.661 0.105 0.139 0.909 0.961 0.666 0.069 0.071 0.931 0.959

β2 0.661 0.652 0.175 0.198 0.895 0.969 0.660 0.115 0.137 0.915 0.978 0.657 0.077 0.080 0.912 0.965

δ1 0.000 0.012 0.237 0.275 0.905 0.973 -0.001 0.071 0.124 0.950 0.999 -0.000 0.040 0.041 0.941 0.995
δ2 0.000 -0.012 0.206 0.118 0.895 0.972 -0.001 0.066 0.067 0.935 0.997 -0.001 0.030 0.030 0.946 0.998

σ2
U 2.752 2.353 1.072 0.628 0.831 0.834 2.634 0.633 0.516 0.902 0.940 2.713 0.365 0.348 0.932 0.961
σ2
V 1.000 1.139 0.395 0.331 0.788 0.818 1.035 0.244 0.232 0.855 0.921 1.007 0.151 0.134 0.881 0.939

ρU,ηX 0.500 0.543 0.156 0.304 0.835 0.896 0.509 0.085 0.092 0.915 0.959 0.504 0.050 0.045 0.935 0.971

ρU,ηZ 0.500 0.518 0.170 0.212 0.854 0.954 0.507 0.082 0.080 0.926 0.987 0.501 0.049 0.045 0.929 0.994
ρV,ηX 0.500 0.478 0.163 0.179 0.845 0.907 0.490 0.107 0.098 0.880 0.945 0.500 0.071 0.072 0.912 0.961

ρV,ηZ 0.500 0.480 0.129 0.135 0.857 0.910 0.497 0.082 0.073 0.901 0.958 0.497 0.052 0.052 0.924 0.965

γx,0 0.000 -0.000 0.065 0.070 0.931 0.936 -0.002 0.043 0.051 0.944 0.928 0.001 0.031 0.032 0.947 0.927
γx,1 0.316 0.314 0.077 0.089 0.943 0.957 0.318 0.055 0.061 0.948 0.941 0.319 0.038 0.039 0.934 0.932

γx,2 0.316 0.323 0.077 0.082 0.944 0.958 0.315 0.052 0.059 0.940 0.943 0.316 0.037 0.038 0.951 0.942

γx,3 0.316 0.314 0.076 0.083 0.940 0.962 0.320 0.052 0.066 0.948 0.952 0.317 0.038 0.038 0.944 0.939
γx,4 0.316 0.314 0.074 0.089 0.947 0.953 0.315 0.051 0.058 0.950 0.957 0.315 0.037 0.037 0.937 0.946

γz,0 0.000 0.000 0.064 0.068 0.939 0.940 -0.001 0.045 0.055 0.950 0.933 0.002 0.032 0.032 0.944 0.921

γz,1 0.316 0.315 0.077 0.091 0.952 0.951 0.317 0.055 0.060 0.952 0.936 0.317 0.037 0.039 0.956 0.932
γz,2 0.316 0.319 0.076 0.098 0.944 0.962 0.315 0.052 0.057 0.953 0.936 0.317 0.036 0.038 0.955 0.937

γz,3 0.316 0.315 0.075 0.091 0.938 0.957 0.318 0.051 0.073 0.959 0.958 0.318 0.037 0.038 0.952 0.943
γz,4 0.316 0.318 0.071 0.088 0.957 0.960 0.316 0.053 0.061 0.948 0.939 0.314 0.036 0.038 0.950 0.942

σ2
ηX

1.000 0.978 0.092 0.090 0.900 0.878 0.993 0.063 0.080 0.927 0.902 0.996 0.043 0.044 0.935 0.914

σ2
ηZ

1.000 0.984 0.091 0.099 0.907 0.895 0.993 0.062 0.065 0.933 0.899 0.997 0.045 0.044 0.930 0.907

ρηXηZ 0.500 0.498 0.050 0.054 0.907 0.935 0.502 0.034 0.040 0.923 0.932 0.501 0.024 0.023 0.937 0.928

Table 2. Simulation Results Setting 2

Finally, we discuss some simulation evidence about the LR test in this setting. For both sim-

ulation schemes, we test the composite nulls that ρU = 0 and ρU = (0.5,0.5)′, respectively. When

testing for ρU = 0, the critical values are approximated by simulations, whereas for ρU = (0.5,0.5)′,

the critical values are obtained from a χ2
2. To obtain the critical values in the former case, we first

numerically approximate of the score vector at θ̂1,n at each sample point. We then stack to it the
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closed-form expression of the (vectorized) Hessian matrix for ρU , which is relatively straightfor-

ward to estimate. Its expression is given in the proof of Proposition 2.2. Finally, we compute the

sample information matrix by taking the inner product of the augmented score matrix. Using the

generalized inverse of the information matrix, we simulate 10000 values from the distribution of

(Zθ1 , ZρUρ′U ), and we obtain an estimator of τ̂ρUρ′U by a weighted projection of the realizations of

ZρUρ′U into the positive orthant. This last step is performed through quadratic programming, as

explained in Andrews (1999, 2001).

Table 3 contains the size of the LR test. The nominal sizes are {10%,5%,1%}, respectively. The

columns indicate the true value of ρU used in the simulation exercise and the null hypothesis of

the test. For ρU = 0, the test has size close to the nominal one, although it tends to be slightly

conservative. When ρU = (0.5,0.5)′, the LR test tends to have the opposite behavior as sizes are

slightly larger than the nominal ones.

ρU = 0, H0 ∶ ρU = 0 ρU = (0.5,0.5)′, H0 ∶ ρU = (0.5,0.5)′

250 500 1000 250 500 1000

0.1 0.002 0.075 0.075 0.131 0.111 0.115
0.05 0.001 0.047 0.037 0.069 0.067 0.066

0.01 0.001 0.020 0.008 0.014 0.017 0.015

Table 3. Size of the Likelihood Ratio test

In Table 4, we instead report the power properties of the LR test. The columns indicate the true

value of ρU used in the simulation exercise and the null hypothesis of the test. In general, the test

has good power, and the power improves substantially as the sample size increases.

ρU = 0, H0 ∶ ρU = (0.5,0.5)′ ρU = (0.5,0.5)′, H0 ∶ ρU = 0

250 500 1000 250 500 1000

0.1 0.000 0.940 0.991 0.937 0.998 1.000

0.05 0.000 0.917 0.990 0.888 0.995 1.000
0.01 0.000 0.839 0.989 0.763 0.986 1.000

Table 4. Power of the Likelihood Ratio test

Finally, we report summary statistics for our estimators of technical efficiencies using the Battese-

Coelli formula provided in equation 9. To give a reference point to the reader, in both simulation

schemes the marginal distribution of U is a half-normal distribution with scale parameter equal to
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σ2
U = 2.7519. Therefore, the true mean technical efficiency is equal to

E [exp(−U)] = 2 exp(
σ2
U

2
)Φ (−σU) = 0.3846.

Our estimator gives a plausible interval for the values of technical efficiencies. The mean technical

efficiency also approaches its true value as the sample size increases.

N = 250 N = 500 N = 1000

ρU = 0 ρU = (0.5,0.5)′ ρU = 0 ρU = (0.5,0.5)′ ρU = 0 ρU = (0.5,0.5)′

Min. 0.000 0.000 0.000 0.000 0.000 0.000
1st Qu. 0.227 0.244 0.232 0.241 0.230 0.238

Median 0.419 0.430 0.408 0.415 0.399 0.408

Mean 0.411 0.419 0.399 0.401 0.389 0.396
3rd Qu. 0.581 0.586 0.560 0.561 0.548 0.554

Max. 1.000 1.000 1.000 1.000 1.000 0.992

Table 5. Summary measures for the estimator of technical efficiency

4. Empirical Application

In this section, we consider an application using data on the agricultural sector in Nepal. The

data-set consists of a cross-section of 600 vegetable-cultivating farmers for the crop year 2015.

The database is sourced from the International Food Policy Research Institute and the Seed En-

trepreneurs’ Association of Nepal (2018). For more detail on the data, see Spielman et al. (2017).

The Output variable is total vegetable production measured in rupees. Land is measured as the to-

tal area cultivated in square feet. Labor is the sum of hours worked by hired laborers and the hours

worked by household members. Fertilizers are the sum of organic and inorganic fertilizers, both

measured in kilograms. Seeds are measured as the sum of hybrid and pollinated seeds in grams.

As environmental variables we consider Education, as the proportion of household members with

higher education or professional degree; Experience, which is the number of years the farmer has

been growing vegetables; and an indicator of risk diversification, Risk Div, which is constructed as

an Ogive index of relative economic diversification (Wasylenko and Erickson, 1978). In particular,

we let

Risk Div = ln
⎛
⎝

NC

∑
i=1

(si − s̄i)2

s̄i

⎞
⎠
,

where si is the proportion of land devoted by the farmer to crop i, s̄i is the average sample proportion

of land devoted to crop i, and NC is the total number of crops cultivated by each farmer. A higher
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value of the Risk Div index implies lower risk diversification. After removing missing values, we

obtain a final sample of 497 observations. Summary statistics of the variables used in the analysis

are provided in Appendix B.

The model we estimate is the following

Y =Xβ + V −U0 exp(Zδ),

where

Y ={log(Output)},

X ={Intercept, log(Land), log(Labor), log(Fertilizers), log(Seeds)},

Z ={Education,Experience,Risk Div}.

We allow for endogeneity of three inputs (Labor, Fertilizers, and Seeds) and one environmental

variable (Risk Div). As instruments, we use a dummy for whether the farmer has suffered any

natural shocks in the two years prior to the survey (Natural Shocks); the average years of experience

of nearby farmers, as a measure of spillover effects (Peers Experience), and its square; three variables

measuring the proportion of seeds that are owned by the farmer (Own Supplier), obtained through

formal channels such as an input retailer, a private seed company or representative, a government

extension service or a research institute (Formal Supplier), or informal channels such as a family

member, a farmer’s cooperative, gifted from a nearby farmer, friend or farmer from other villages,

or landlord (Informal Supplier); and interaction terms between these variables. 8

In this application, we normalize the dependence parameter between Fertilizers and U0, ρU,ηFertilizer ,

to be positive. The motivation for this choice is that the use of Fertilizers for production may be

related to unobserved soil quality, which ultimately influences the efficiency of the producer. We

have run some robustness checks and our results are not sensitive to the choice of normalization.

8We have checked for weak instruments using the Cragg–Donald statistic, CGn (see Cragg and Donald, 1993; Stock
and Yogo, 2005). We obtain a value of CGn = 4.891. Our instruments appear to be sufficiently strong based on
the critical values reported in Table 5.4 of Stock and Yogo (2005), with 2 endogenous variables, 10 instruments
and a maximum size distortion between 10% and 15%. This conclusion is speculative, as we do not know what
the distribution of our estimator is under weak-instrument asymptotic. We have also computed the value of the
Cragg–Donald statistic in our simulation study with two instruments and two endogenous variables and N = 500.
The 95 percentile of the test statistic is equal to 1.919, which seems to support our conclusion.
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Exogeneity Endogeneity, ρU = 0 Endogeneity

Estimate 95% CI Estimate 95% CI Estimate 95% CI

β0 8.0440 [4.0438 9.4146] 6.2405 [-0.0110 8.9503] 6.4094 [4.3764 8.3598]

βLand 0.1721 [0.0606 0.4524] -0.1116 [-0.3935 0.4632] -0.0988 [-0.2155 0.1780]

βLabor 0.1423 [0.0056 0.2529] 0.2593 [-0.5882 0.8927] 0.2966 [0.0149 0.5558]
βFertilizer 0.0940 [0.0387 0.3141] 0.4201 [0.1015 0.9596] 0.3914 [0.1453 0.5640]

βSeeds 0.1171 [0.0323 0.2388] 0.4913 [0.1785 0.8723] 0.4608 [0.2202 0.6008]

δEducation 0.1726 [-34.3189 1.3928] -0.9533 [-8.6051 5.6725] -0.7039 [-2.3566 1.0696]
δExperience -0.2986 [-4.7863 5.2293] 2.8778 [-1.2931 6.3602] 2.2386 [0.1417 3.0539]

δRisk -0.4340 [-1.1017 4.0653] -0.1069 [-0.9274 0.8136] -0.0988 [-0.2125 0.3224]

ρU,ηLabor
-0.1375 [-0.5201 0.4231]

ρU,ηFertilizer
0.4493 [0.1963 0.6873]

ρU,ηSeeds
-0.3383 [-0.4938 0.3606]

ρU,ηRisk
0.1604 [-0.4605 0.4941]

ρV,ηLabor
-0.3045 [-0.5124 0.0655] -0.3350 [-0.5150 -0.0594]

ρV,ηFertilizer
-0.4445 [-0.5898 -0.0500] -0.4127 [-0.5703 0.0035]

ρV,ηSeeds
-0.5282 [-0.6572 -0.2132] -0.5272 [-0.6392 -0.2661]

ρV,ηRisk
0.1121 [-0.0619 0.2489] 0.1140 [-0.0335 0.2668]

σ2
U 0.0100 [0.0069 1.5672] 0.0347 [0.0237 1.5798] 0.0811 [0.0554 1.6315]
σ2
V 1.0105 [0.6900 4.3150] 1.6148 [1.1026 4.7276] 1.4830 [1.0126 2.0437]

Table 6. Estimates of the production function parameters for farmers in Nepal.

Table 6 reports the estimated coefficients and the 95% confidence intervals for our empirical

example. The confidence intervals are obtained using 496 subsamples of size b = 50.

The left panel shows the estimation results assuming exogeneity. All the estimated coefficients

for inputs are positive and significant, although generally small in magnitude, being Labor and

Land, the inputs with the largest estimated effect. None of the environmental variables appears to

have a significant effect on inefficiency. The exogenous model detects very little inefficiency, and

the parameter δ is estimated very imprecisely, as it can be noticed by the length of the confidence

intervals.

In the center panel, we report the estimation results controlling for endogeneity but restricting

ρU = 0, i.e., imposing independence between the endogenous variables and the inefficiency term.

As it is usually the case in instrumental variable models, confidence intervals are wider than in

the model assuming exogeneity. However, controlling for endogeneity substantially changes the

conclusions from this empirical example, both regarding the effect of inputs, but especially the

effect of the inefficiency determinants. We find that most of the estimated coefficients for the

inputs are positive but significant only for Fertilizers and Seeds. Regarding the environmental

variables, the estimated coefficient of Risk Div is negative, although not significant, which means

that farmers cultivating fewer crops (i.e., with lower risk diversification) are more efficient, possibly
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due to higher specialization levels. The correlation between the two-sided error term and the

endogenous variables is negative and significant, except for Risk Div.

The right panel shows the results controlling for endogeneity without restricting the dependence

between the endogenous variables and the inefficiency term. The estimated coefficients are quite

similar to those when we impose that ρU = 0, except for Experience whose coefficient is positive

and significant in the third model. This result may be due to more experienced, i.e. older, farmers

being more conservative, and therefore, less willing to implement new practices that could improve

their efficiency (Coelli and Battese, 1996). The 95% confidence intervals are much narrower than

those for the restricted estimator and indicate that only the choice of Fertilizers may be related to

the producer’s inefficiency level. We test for the absence of dependence between the endogenous

variables and the inefficiency term being equal to 0 using the LR test, as explained in the simulation

study. The value of the test statistic is equal to 6.77, and we obtain a 95% critical value equal to

11.41. Hence, we cannot reject the null that ρU = 0.

We also test the null that σ2
U = 0 in the three models. Under the null, ρU and δ are nuisance

parameters. As we do not know the asymptotic distribution of the LR test statistics in this case

and we are testing a parameter at the boundary, critical values are obtained from an equal mixture

of a mass point at 0 and a χ2-distribution with 1 degree of freedom (Lee, 1993; Andrews, 2001;

Ketz, 2018). In both the exogenous and the endogenous model, we reject the null of no inefficiency

at the 1% level. The value of the LR statistic is 4.66 for the exogenous model, and 79.46 for the

endogenous model, with a critical value equal to 3.82.

Finally, Figure 3 reports the technical efficiency estimates for the endogenous models. The

distribution of the efficiency scores is similar in both models, which is an expected result given that

we cannot reject that ρU is equal to 0.

5. Conclusions

We propose and study an estimator of stochastic frontier models when both the production in-

puts and the environmental variables are correlated with the two-sided stochastic error term and

the one-sided stochastic inefficiency term. Our identification and estimation strategy is based on

control functions that fully capture the dependence between regressors and unobservables. While
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Figure 3. Estimation of technical efficiency.

the joint density of the two-sided stochastic error term and the control function is modeled as a

normal distribution, one of the main challenges for direct maximum likelihood estimation is to

write the joint density of the stochastic inefficiency term and the control function in closed-form.

To circumvent this issue, Amsler et al. (2017) use copula functions to model the dependence be-

tween observables and unobservables components of the model, and employ a simulated maximum

likelihood procedure to obtain the parameter’s estimate. This estimator may not be easy to im-

plement and may be computationally slow. Moreover, instrumental variable methods lead to lower

precision in the estimate and simulated methods can increase this lack of precision even further.

In this work, we provide a simple maximum likelihood estimator that aims at avoiding these

potential pitfalls. Our main assumption is that the conditional distribution of the stochastic ineffi-

ciency term given the control functions is a folded normal distribution. This distribution reduces to

the half-normal when there is no endogeneity. This makes our model a straightforward extension

of the normal-half-normal model to include endogenous regressors. We shed light on some new

identification issues, and we provide some theoretical results on estimation and inference. Our

estimator is easy and fast to implement, and enjoys good finite sample properties.

Additional research on the properties of the trinity of tests and on testing the distributional

assumptions on the error term is needed. Moreover, extensions of our model to panel data with

time-varying endogeneity and true fixed effects could be of interest.
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Appendix A. Main Proofs

A.1. Marginal density of U0. We start from the conditional density of U0 given η, and the

marginal density of η given by

fU0∣η(u∣η) =
1

√
2π(σ2

U −Σ′

UηΣ
−1
η ΣUη)
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1
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2
η′Σ−1

η η) ,

where ∣Ση ∣ denotes the determinant of Ση, and we let ΣUη =DηρUσU , to simplify notations.

We wish to prove that the marginal density of U0 is the half-normal density. First notice that,

by block matrix inversion, and the matrix inversion lemma (Sherman and Morrison, 1950), we have

that
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Let
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Using results about determinants of block matrices, we have that
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Therefore, using a similar decomposition of the conditional density as above, we obtain
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where the first term is the density of a normal distribution with mean ΣUηu/σ2
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U , and whose integral with respect to η ∈ (−∞,∞) is therefore equal to one. Similarly,
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Hence,
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which is the density of a half-normal distribution. This concludes the proof.
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A.2. Conditional density of the composite error term. In this subsection, we provide the

main steps to derive the conditional density of the composite error term, ε, given η. As above, we

let ΣV η =DηρV σV , and ΣUη =DηρUσU , to simplify notations. Recall that
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The terms inside the exponential function can be treated similarly, and for simplicity, we only

show the algebra for the first term. We have
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Then, treating the remaining term similarly, we can write

fV ∣η(ε + u∣η) (g(Z, δ))
−1 fU0∣η((g(Z, δ))

−1 u∣η)

= 1

2π
σ̃U (Z)σ̃V
σ(Z) σ(Z)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

exp

⎛
⎜⎜⎜
⎝
−
σ2(Z) [u + ((ε −Σ′

V ηΣ
−1
η η)

σ̃2
U (Z)

σ2(Z)
− g (Z, δ)Σ′

UηΣ
−1
η η

σ̃2
V

σ2(Z)
)]

2

2σ̃2
U(Z)σ̃2

V

⎞
⎟⎟⎟
⎠
×

exp
⎛
⎜
⎝
−
(ε −Σ′

V ηΣ
−1
η η + g (Z, δ)Σ′

UηΣ
−1
η η)

2

2σ2(Z)

⎞
⎟
⎠

+ exp

⎛
⎜⎜⎜
⎝
−
σ2(Z) [u + ((ε −Σ′

V ηΣ
−1
η η)

σ̃2
U (Z)

σ2(Z)
+ g (Z, δ)Σ′

UηΣ
−1
η η

σ̃2
V

σ2(Z)
)]

2

2σ̃2
U(Z)σ̃2

V

⎞
⎟⎟⎟
⎠
×

exp
⎛
⎜
⎝
−
(ε −Σ′

V ηΣ
−1
η η − g (Z, δ)Σ′

UηΣ
−1
η η)

2

2σ2(Z)

⎞
⎟
⎠

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

By integrating the last expression with respect to u ∈ (0,∞), we obtain,
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Finally, the normalizing constants are computed using Lemma 2.2. in Azzalini (2013, p. 26), which

implies that
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This concludes the proof.

A.3. Proof of Proposition 2.1. Let R = (X ′, Z ′)′, with

R =Wγ + η.

The conditional density of ε given η is

fε∣η(ε∣η) =
1√

2πσ(Z)

⎧⎪⎪⎨⎪⎪⎩
Φ

⎛
⎝
g (Z, δ)σUρ′UC−1

η D−1
η η

λ(Z)σ(Z)
−
λ(Z) (ε − σV ρ′V C−1

η D−1
η η)

σ(Z)
⎞
⎠
×

exp(−
(ε − σV ρ′V C−1

η D−1
η η + g (Z, δ)σUρ′UC−1

η D−1
η η)2

2σ2(Z)
)

+Φ
⎛
⎝
−
g (Z, δ)σUρ′UC−1

η D−1
η η

λ(Z)σ(Z)
−
λ(Z) (ε − σV ρ′V C−1

η D−1
η η)

σ(Z)
⎞
⎠
×

exp(−
(ε − σV ρ′V C−1

η D−1
η η − g (Z, δ)σUρ′UC−1

η D−1
η η)2

2σ2(Z)
)} ,

(A.1)

with
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Upon the assumption of joint normality of the vector η, the joint density of (ε, η) is therefore

equal to

fε,η(ε, η)

36



=
∣Dη ∣−1∣Cη ∣−

1
2

(2π)
p+k+1

2 σ(Z)

⎧⎪⎪⎨⎪⎪⎩
Φ

⎛
⎝
g (Z, δ)σUρ′UC−1

η D−1
η η

λ(Z)σ(Z)
−
λ(Z) (ε − σV ρ′V C−1

η D−1
η η)

σ(Z)
⎞
⎠
×

exp(−
(ε − σV ρ′V C−1

η D−1
η η + g (Z, δ)σUρ′UC−1

η D−1
η η)2

2σ2(Z)
)

+Φ
⎛
⎝
−
g (Z, δ)σUρ′UC−1

η D−1
η η

λ(Z)σ(Z)
−
λ(Z) (ε − σV ρ′V C−1

η D−1
η η)

σ(Z)
⎞
⎠
×

exp(−
(ε − σV ρ′V C−1

η D−1
η η − g (Z, δ)σUρ′UC−1

η D−1
η η)2

2σ2(Z)
)} exp(−1

2
η′D−1

η C
−1
η D−1

η η)

=
∣Dη ∣−1∣Cη ∣−

1
2

(2π)
p+k+1

2 σ(Z)
exp(−1

2
η′D−1

η C
−1
η D−1

η η) exp(−
(ε − σV ρ′V C−1

η D−1
η η + g (Z, δ)σUρ′UC−1

η D−1
η η)2

2σ2(Z)
)×

⎧⎪⎪⎨⎪⎪⎩
Φ

⎛
⎝
g (Z, δ)σUρ′UC−1

η D−1
η η

λ(Z)σ(Z)
−
λ(Z) (ε − σV ρ′V C−1

η D−1
η η)

σ(Z)
⎞
⎠

+Φ
⎛
⎝
−
g (Z, δ)σUρ′UC−1

η D−1
η η

λ(Z)σ(Z)
−
λ(Z) (ε − σV ρ′V C−1

η D−1
η η)

σ(Z)
⎞
⎠
×

exp(
2(ε − σV ρ′V C−1

η D−1
η η)g (Z, δ)σUρ′UC−1

η D−1
η η)

σ2(Z)
)} (A.2)

Replacing ε = Y −m(X,β), and η = R −Wγ, and taking logs, we obtain
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where we have omitted terms which do not depend on parameters, and θ =
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U , γ
′, diag(Dη)′, ve(Cη)′)

′

.

To simplify the notations below, let

ω =Y −m(X,β) − σV ρ′V C−1
η D−1

η (R −Wγ)
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ζ =g (Z, δ)σUρ′UC−1
η D−1

η (R −Wγ)

ξ =
g (Z, δ)σUρ′UC−1

η D−1
η (R −Wγ)

λ(Z)σ(Z)
= ζ

λ(Z)σ(Z)

Ψ =Φ(ξ − λ(Z)ω
σ(Z)

) +Φ(−ξ − λ(Z)ω
σ(Z)

) exp( 2ωζ

σ2(Z)
) .

The log-likelihood function can be finally written as

`(θ) = − 1

2
logσ2(Z) − log ∣Dη ∣ −

1

2
log ∣Cη ∣

− 1

2
(R −Wγ)′D−1

η C
−1
η D−1

η (R −Wγ) − 1

2

(ω + ζ)2

σ2(Z)
+ log Ψ.

In the following, we use the facts that

φ(ξ − λ(Z)ω
σ(Z)

) = φ(−ξ − λ(Z)ω
σ(Z)

) exp( 2ωζ

σ2(Z)
) , (A.3)

using the properties of the exponential function and the symmetry of the normal pdf, and

Φ (−ξ − λ(Z)ω
σ(Z) ) exp ( 2ωζ

σ2(Z)
)

Ψ
= 1 −

Φ (ξ − λ(Z)ω
σ(Z) )

Ψ
. (A.4)

We take the first order condition of the maximization problem with respect to ρU . Upon the

conditions that the log-density is continuously differentiable and uniformly integrable on Θ̄, we can

exchange expectation and differentiation.

We thus have

∇ρU `(θ) = −
1

2

∇ρUσ2(Z)
σ2(Z)

− {
∇ρU ζ(ζ − ω)

σ2(Z)
−
∇ρUσ2(Z)

2σ4(Z)
(ζ − ω)2}

− 2

Ψ
{(
ω∇ρUλ(Z)
σ(Z)

−
∇ρUσ2(Z)λ(Z)ω

2σ3(Z)
)φ(ξ − λ(Z)ω

σ(Z)
)

+ ωΦ(ξ − λ(Z)ω
σ(Z)

)(
∇ρU ζ
σ2(Z)

−
ζ∇ρUσ2(Z)
σ4(Z)

)} = 0,

(A.5)

where

∇ρUσ
2(Z) = − 2C−1

η ρUσ
2
U(g (Z, δ))2,

∇ρUλ(Z) = −
C−1
η ρUσ

2
U(g (Z, δ))2

σ̃V σ̃3
U(Z)

,
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∇ρU ζ =C
−1
η D−1

η (R −Wγ)σUg(Z, δ).

To prove part (i) of the Proposition, it suffices to notice that, when ρU = 0, then ∇ρUσ2(Z) = 0,

∇ρUλ(Z) = 0, and ξ = ζ = 0. Therefore

Ψ = 2Φ(−λ(Z)ω
σ(Z)

) ,

and

∇ρU `(θ)∣ρU,0=0 = {
ω∇ρU ζ
σ2(Z)

−
ω∇ρU ζ
σ2(Z)

} ,

which is identically equal to zero.

To prove part (ii), let ρU,0 be a solution to

E [∇ρU `(θ0)] = 0,

with θ0 = (θ′1,0, ρ′U,0)′. Further let ξ0, ζ0, and ω0, be the values of ξ, ζ and ω at θ0, respectively. Let

us evaluate the first order condition in (A.5) at ρU = −ρU,0. Notice that ξ∣−ρU,0 = −ξ0, ζ ∣−ρU,0 = −ζ0,

∇ρUσ2(Z)∣−ρU,0 = ∇ρUσ2(Z)∣ρU,0 , and ∇ρU ξ∣−ρU,0 = ∇ρU ξ. Therefore,

E [∇ρU `(θ1,0,−ρU,0)] =
1

2
E [

∇ρUσ2
0(Z)

σ2
0(Z)

] +E [
∇ρU ζ0(ζ0 + ω0)

σ2
0(Z)

−
∇ρUσ2

0(Z)
2σ4

0(Z)
(ζ0 + ω0)2]

+E

⎡⎢⎢⎢⎢⎢⎢⎣

2{(ω0∇ρU
λ0(Z)

σ0(Z)
− ∇ρU

σ2
0(Z)λ0(Z)ω0

2σ3
0(Z)

)φ (−ξ0 − λ0(Z)ω0

σ0(Z)
) − ω0Φ (−ξ0 − λ0(Z)ω0

σ0(Z)
)(∇ρU ζ0

σ2
0(Z)

− ζ0∇ρU σ
2
0(Z)

σ4
0(Z)

)}

Φ (−ξ0 − λ0(Z)ω0

σ0(Z)
) +Φ (ξ0 − λ0(Z)ω0

σ0(Z)
) exp(− 2ω0ζ0

σ2
0(Z)

)

⎤⎥⎥⎥⎥⎥⎥⎦

= 1

2
E [

∇ρUσ2
0(Z)

σ2
0(Z)

+ {
∇ρU ζ0(ζ0 + ω0)

σ2
0(Z)

−
∇ρUσ2

0(Z)
2σ4

0(Z)
(ζ0 + ω0)2}]

+E [ 2

Ψ0
{(
ω0∇ρUλ0(Z)

σ0(Z)
−
∇ρUσ2

0(Z)λ0(Z)ω0

2σ3
0(Z)

)φ(−ξ0 −
λ0(Z)ω0

σ0(Z)
) exp(− 2ω0ζ0

σ2
0(Z)

)

−ω0Φ(−ξ0 −
λ0(Z)ω0

σ0(Z)
) exp(− 2ω0ζ0

σ2
0(Z)

)(
∇ρU ζ0

σ2
0(Z)

−
ζ0∇ρUσ2

0(Z)
σ4

0(Z)
)}]

= 1

2
E [

∇ρUσ2
0(Z)

σ2
0(Z)

+
∇ρU ζ0(ζ0 − ω0)

σ2
0(Z)

−
∇ρUσ2

0(Z)
2σ4

0(Z)
(ζ0 − ω0)2]

+E [ 2

Ψ
{(
ω0∇ρUλ0(Z)

σ0(Z)
−
∇ρUσ2

0(Z)λ0(Z)ω0

2σ3
0(Z)

)φ(ξ0 −
λ0(Z)ω0

σ0(Z)
)
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+ω0Φ(ξ0 −
λ0(Z)ω0

σ0(Z)
)(

∇ρU ζ0

σ2
0(Z)

−
ζ0∇ρUσ2

0(Z)
σ4

0(Z)
)}] = −E [∇ρU `(θ0)] = 0,

where the last step follows using the identities in equations (A.3) and (A.4). This proves part (ii).

Finally, we show that the first derivative is not identically equal to 0 when some (but not all) the

components of ρU are equal to 0. Let ρU = (ρ′U1, ρ
′

U2)′, where ρU1 ∈ Rp and ρU2 ∈ Rk, for notational

simplicity, and

Cη =
⎡⎢⎢⎢⎢⎢⎣

Cη,11 Cη,12

C ′

η,12 Cη,22

⎤⎥⎥⎥⎥⎥⎦
, Dη =

⎡⎢⎢⎢⎢⎢⎣

Dη,1 0

0 Dη,2

⎤⎥⎥⎥⎥⎥⎦
, η =

⎡⎢⎢⎢⎢⎢⎣

η1

η2

⎤⎥⎥⎥⎥⎥⎦
where Dη,1 and Dη,2 are diagonal matrices. Finally,

C−1
η =

⎡⎢⎢⎢⎢⎢⎣

C−1
η,11 +C−1

η,11Cη,12Bη,22C
′

η,12 −C−1
η,11Cη,12Bη,22

−Bη,22C
′

η,12C
−1
η,11 Bη,22

⎤⎥⎥⎥⎥⎥⎦

=
⎡⎢⎢⎢⎢⎢⎣

C−1
η,11 0

0 0

⎤⎥⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎢⎢⎣

−C−1
η,11Cη,12

Ik

⎤⎥⎥⎥⎥⎥⎦
Bη,22 [−C ′

η,12C
−1
η,11 Ik]

=
⎡⎢⎢⎢⎢⎢⎣

C−1
η,11 0

0 0

⎤⎥⎥⎥⎥⎥⎦
+ P ′

ηBη,22Pη,

with Bη,22 = (Cη,22 −C ′

η,12C
−1
η,11Cη,12)

−1
, and Ik the identity matrix of dimension k.

Whenever ρU1,0 = 0, we have that

∇ρU1
`(θ)∣ρU1=0

= −C−1
η,11Cη,12Bη,22

ρU2σ
2
Ug

2(Z, δ)
σ2(Z)

−C−1
η,11D

−1
η,1η1σUg(Z, δ)

(ζ − ω)
σ2(Z)

+C−1
η,11Cη,12Bη,22PηD

−1
η ησUg(Z, δ)

(ζ − ω)
σ2(Z)

+C−1
η,11Cη,12Bη,22

ρU2σ
2
Ug

2(Z, δ)
σ4(Z)

(ζ − ω)2

− 2ω

Ψ
{φ(ξ − λ(Z)

σ(Z)
ω)[C−1

η,11Cη,12Bη,22
ρU2σ

2
Ug

2(Z, δ)
σ(Z)σ̃V σ̃3

U(Z)
−C−1

η,11Cη,12Bη,22
ρU2σ

2
Ug

2(Z, δ)λ(Z)
σ3(Z)

]

+Φ(ξ − λ(Z)
σ(Z)

ω)[C−1
η,11D

−1
η,1η1

σUg(Z, δ)
σ2(Z)

−C−1
η,11Cη,12Bη,22PηD

−1
η η

σUg(Z, δ)
σ2(Z)

+C−1
η,11Cη,12Bη,22ρU2

2ζσ2
Ug

2(Z, δ)
σ4(Z)

]} ,

(A.6)
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and

∇ρU2
`(θ)∣ρU1=0

=Bη,22
ρU2σ

2
Ug

2(Z, δ)
σ2(Z)

−Bη,22PηD
−1
η ησUg(Z, δ)

(ζ − ω)
σ2(Z)

−Bη,22
ρU2σ

2
Ug

2(Z, δ)
σ4(Z)

(ζ − ω)2

− 2ω

Ψ
{φ(ξ − λ(Z)

σ(Z)
ω)[−Bη,22

ρU2σ
2
Ug

2(Z, δ)
σ(Z)σ̃V σ̃3

U(Z)
+Bη,22

ρU2σ
2
Ug

2(Z, δ)λ(Z)
σ3(Z)

]

+Φ(ξ − λ(Z)
σ(Z)

ω)[Bη,22PηD
−1
η η

σUg(Z, δ)
σ2(Z)

+Bη,22ρU2
2ζσ2

Ug
2(Z, δ)

σ4(Z)
} .

(A.7)

Notice that

∇ρU1
`(θ)∣ρU1=0

= −C−1
η,11Cη,12 ∇ρU2

`(θ)∣ρU1=0
−C−1

η,11D
−1
η,1η1σUg(Z, δ)

(ζ − ω)
σ2(Z)

− 2ω

Ψ
Φ(ξ − λ(Z)

σ(Z)
ω)C−1

η,11D
−1
η,1η1

σUg(Z, δ)
σ2(Z)

,

which by evaluating the expression at θ0, and taking expectations gives

E [∇ρU1
`(θ0)] = −C−1

η,11Cη,12E [∇ρU2
`(θ0)] −C−1

η,11D
−1
η,1E [η1σUg(Z, δ)

(ζ − ω)
σ2(Z)

]

− 2C−1
η,11D

−1
η,1E [ω

Ψ
Φ(ξ − λ(Z)

σ(Z)
ω)η1

σUg(Z, δ)
σ2(Z)

] .

where E [∇ρU2
`(θ0)] = 0, by definition.

We now show that the remaining two terms are equal to 0 in expectation. The conditional pdf

of ε given η can be written as

fε∣η(ε∣η) =
1

σ(Z)
φ(ω + ζ

σ(Z)
)Ψ.

As this is a mixture of two conditional extended skew normal distributions, we have that

E [ω∣η] =Φ(
σ̃2
V ζ

σ̃U(Z)σ2
)
⎛
⎜⎜⎜
⎝
−ζ + σ̃U(Z)

φ( σ̃2
V ζ

σ̃U (Z)σ2(Z)
)

Φ( σ̃2
V ζ

σ̃U (Z)σ2(Z)
)

⎞
⎟⎟⎟
⎠
+ (1 −Φ(

σ̃2
V ζ

σ̃U(Z)σ2(Z)
))

⎛
⎜⎜⎜
⎝
ζ + σ̃U(Z)

φ(− σ̃2
V ζ

σ̃U (Z)σ2(Z)
)

1 −Φ ( ζ
σ̃U (Z)

)

⎞
⎟⎟⎟
⎠

=2σ̃U(Z)φ(
σ̃2
V ζ

σ̃U(Z)σ2(Z)
) + (1 − 2Φ(

σ̃2
V ζ

σ̃U(Z)σ2(Z)
)) ζ,

and

E [ω
Ψ

Φ(ξ − λ(Z)
σ(Z)

ω) ∣η] = −Φ(
σ̃2
V ζ

σ̃U(Z)σ2(Z)
) ζ + σ̃U(Z)φ(

σ̃2
V ζ

σ̃U(Z)σ2(Z)
) ,
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where both results follow from the Moment Generating Function of the extended skew-normal

distribution given in Azzalini (2013, p. 35-36).

Finally,

−E [η1(ζ − ω)
σUg(Z, δ)
σ2(Z)

] = 2E [η1 (σ̃U(Z)φ(
σ̃2
V ζ

σ̃U(Z)σ2(Z)
) −Φ(

σ̃2
V ζ

σ̃U(Z)σ2(Z)
) ζ) σUg(Z, δ)

σ2(Z)
] ,

and

−2E [ω
Ψ

Φ(ξ − λ(Z)
σ(Z)

ω)η1
σUg(Z, δ)
σ2(Z)

] = −2E [η1 (σ̃U(Z)φ(
σ̃2
V ζ

σ̃U(Z)σ2(Z)
) −Φ(

σ̃2
V ζ

σ̃U(Z)σ2(Z)
) ζ) σUg(Z, δ)

σ2(Z)
] ,

and their sum is therefore equal to 0. This concludes the proof.

A.4. Proof of Proposition 2.2. Notice that ∇2
ρUρ

′

U
ζ = 0. The second derivative of the log-

likelihood function wrt ρU is thus equal to

∇2
ρUρ

′

U
`(θ) = − 1

2

⎧⎪⎪⎨⎪⎪⎩

∇2
ρUρ

′

U
σ2(Z)

σ2(Z)
−
∇ρUσ2(Z)∇ρ′Uσ

2(Z)
σ4(Z)

⎫⎪⎪⎬⎪⎪⎭

−
⎧⎪⎪⎨⎪⎪⎩

∇ρU ζ∇ρ′U ζ
σ2(Z)

−
∇ρU ζ(ζ − ω)∇ρ′Uσ

2(Z)
σ4(Z)

⎫⎪⎪⎬⎪⎪⎭

+
⎧⎪⎪⎨⎪⎪⎩

∇2
ρUρ

′

U
σ2(Z)(ζ − ω)2

2σ4(Z)
+
∇ρUσ2(Z)(ζ − ω)∇ρ′U ζ

σ4(Z)
−
∇ρUσ2(Z)(ζ − ω)2∇ρ′Uσ

2(Z)
σ6(Z)

⎫⎪⎪⎬⎪⎪⎭

− 2ω

Ψ

⎧⎪⎪⎨⎪⎪⎩

⎡⎢⎢⎢⎢⎣

∇2
ρUρ

′

U
λ(Z)

σ(Z)
−
∇ρUλ(Z)∇ρ′Uσ

2(Z)
2σ3(Z)

−
∇2
ρUρ

′

U
σ2(Z)λ(Z)

2σ3(Z)

−
∇ρUσ2(Z)∇ρ′Uλ(Z)

2σ3(Z)
+

3λ(Z)∇ρUσ2(Z)∇ρ′Uσ
2(Z)

4σ5(Z)

+ (
∇ρU ζ
σ2(Z)

−
ζ∇ρUσ2(Z)
σ4(Z)

)
⎛
⎝
∇ρ′U ξ −

∇ρ′Uλ(Z)ω
σ(Z)

+
λ(Z)∇ρ′Uσ

2(Z)ω
2σ3(Z)

⎞
⎠

− (ξ − λ(Z)ω
σ(Z)

)(
∇ρUλ(Z)
σ(Z)

−
∇ρUσ2(Z)λ(Z)

2σ3(Z)
)×

⎛
⎝
∇ρ′U ξ −

∇ρ′Uλ(Z)ω
σ(Z)

+
λ(Z)∇ρ′Uσ

2(Z)ω
2σ3(Z)

⎞
⎠

⎤⎥⎥⎥⎥⎦
φ(ξ − λ(Z)ω

σ(Z)
)

−
⎛
⎝

2∇ρU ζ∇ρ′Uσ
2(Z)

σ4(Z)
+
ζ∇2

ρUρ
′

U
σ2(Z)

σ4(Z)
−

2ζ∇ρUσ2(Z)∇ρ′Uσ
2(Z)

σ6(Z)
⎞
⎠

Φ(ξ − λ(Z)ω
σ(Z)

)
⎫⎪⎪⎬⎪⎪⎭
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+ 4ω2

Ψ2
{(

∇ρUλ(Z)
σ(Z)

−
∇ρUσ2(Z)λ(Z)

2σ3(Z)
)φ(ξ − λ(Z)ω

σ(Z)
)

+ Φ(ξ − λ(Z)ω
σ(Z)

)(
∇ρU ζ
σ2(Z)

−
ζ∇ρUσ2(Z)
σ4(Z)

)}×

⎧⎪⎪⎨⎪⎪⎩

⎛
⎝
−
∇ρ′Uλ(Z)
σ(Z)

+
∇ρ′Uσ

2(Z)λ(Z)
2σ3(Z)

⎞
⎠
φ(ξ − λ(Z)ω

σ(Z)
)

+Φ(−ξ − λ(Z)ω
σ(Z)

) exp( 2ωζ

σ2(Z)
)
⎛
⎝
∇ρ′U ζ
σ2(Z)

−
ζ∇ρ′Uσ

2(Z)
σ4(Z)

⎞
⎠

⎫⎪⎪⎬⎪⎪⎭
,

where

∇2
ρUρ

′

U
σ2(Z) = − 2C−1

η σ2
U(g (Z, δ))2,

∇2
ρUρ

′

U
λ(Z) = − 1

σ̃V
[
C−1
η σ2

U(g (Z, δ))2

σ̃3
U(Z)

−
3C−1

η ρUσ
4
U(g (Z, δ))4ρ′UC

−1
η

2σ̃5
U(Z)

] .

Whenever ρU = 0,

∇2
ρUρ

′

U
`(θ)∣

ρU=0
=
C−1
η σ2

Ug
2(Z, δ)

σ2(Z)
−
∇ρU ζ∇ρ′U ζ
σ2(Z)

−
C−1
η σ2

Ug
2(Z, δ)ω2

σ4(Z)

−
φ (−λ(Z)σ(Z)ω)ω

Φ (−λ(Z)σ(Z)ω)
{−
C−1
η σ2

Ug
2(Z, δ)λ(Z)

σ(Z)σ̃4
U(Z)

+
C−1
η σ2

Ug
2(Z, δ)λ(Z)
σ3(Z)

+
∇ρU ζ∇ρ′U ζ
λ(Z)σ3(Z)

} +
∇ρU ζ∇ρ′U ζ
σ4(Z)

ω2.

Notice that, when ρU = 0,

fε∣η(ε∣η) =
2

σ(Z)
Φ(−λ(Z)

σ(Z)
ω)φ( ω

σ(Z)
) ,

which implies that

E [ε∣η] =σV ρ′V C−1
η D−1

η η − σ̃U(Z)
√

2

π

V ar [ε∣η] =σ2(Z) − σ̃2
U(Z) 2

π
.

Therefore,

E [ω2∣η] =V ar [ε∣η] + (E [ε∣η])2 − 2E [ε∣η]σV ρ′V C−1
η D−1

η η + (σV ρ′V C−1
η D−1

η η)
2
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=σ2(Z) − σ̃2
U(Z) 2

π
+ (σV ρ′V C−1

η D−1
η η)

2 + σ̃2
U(Z) 2

π
− 2 (σV ρ′V C−1

η D−1
η η) σ̃U(Z)

√
2

π

− 2 (σV ρ′V C−1
η D−1

η η)
2 + 2 (σV ρ′V C−1

η D−1
η η) σ̃U(Z)

√
2

π
+ (σV ρ′V C−1

η D−1
η η)

2

=σ2(Z),

and

E

⎡⎢⎢⎢⎢⎢⎣

φ (−λ(Z)σ(Z)ω)ω

Φ (−λ(Z)σ(Z)ω)
∣η
⎤⎥⎥⎥⎥⎥⎦
= 2

σ(Z) ∫
ωφ(−λ(Z)

σ(Z)
ω)φ( ω

σ(Z)
)dε

= 2σ̃V√
2πσ(Z) ∫

(ε − σV ρ′V C−1
η D−1

η η)
σ̃V

φ(
ε − σV ρ′V C−1

η D−1
η η

σ̃V
)dε = 0,

as the integral can be seen as the mean of a centered normally distributed random variable.

Therefore,

E [∇2
ρUρ

′

U
`(θ0)] = 0,

where the result follows from the law of iterated expectations, and the conditional independence of

ε and R given η from Assumption 2.1.

A.5. Proof of Theorem 2.1. Our proof is based on Andrews (1999) and Rotnitzky et al. (2000).

In particular, we show that the log-likelihood admits a quadratic expansion at θ0 = (θ′1,0,0′)′, and

then directly claim Theorems 2-3 and 4 of Andrews (1999). The likelihood function is infinitely

differentiable wrt θ at θ0. We further assume the following

Assumption A.1. The derivatives of the log-likelihood function up to the sixth order are square-

integrable wrt the distribution of the data.

The reason to require derivatives up to the sixth order to exist is that the log-likelihood function

is an even function of ρU , as shown in Proposition 2.1. Therefore in the MacLaurin series of `n(θ0)

all odd derivatives wrt ρU are equal to 0. Given Assumption A.1, and the iid assumption, we can

then use the weak law of large numbers (WLLN) and the central limit theorem (CLT) on sample

objects.
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Let θ̂n be the maximum likelihood estimator of θ∗0 . Then

`n(θ̂n) =`n(θ∗0) +∇θ1`n(θ
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2
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U
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ρUθ
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U )
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U
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+ ∥θ̂1,n − θ1,0∥3hθ1,n(Yi,Xi, Zi) + ∥ρ̂U,n∥6hρU ,n(Yi,Xi, Zi),

with E [h2
θ1,n

(Yi,Xi, Zi)] < ∞ and E [h2
ρU ,n

(Yi,Xi, Zi)] < ∞ by Assumption A.1. Therefore, by

the consistency of our maximum likelihood estimator, the remainder is oP (1). By the proof of

Proposition 2.1, we know that the fist derivative with respect to ρU at zero is identically equal

to zero. This further implies that the first cross partial derivatives are also equal to zero, by the

second Bartlett’s identity. We also show in a Supplementary Appendix, that the third derivative

wrt ρU at zero is identically zero. Using these identities,
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Recall that, by the properties of the Moore-Penrose pseudo inverse, I−1 I1I−1 = I−1 , and I1I−1 I1 = I1.

By Corollary 1 in Rotnitzky et al. (2000), the WLLN and the CLT, we have that
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All the regularity conditions in Andrews (1999, Assumptions 2-6) are satisfied, so that
√
n (θ̂1,n − θ1,0) = τ̂θ1,n + oP (1), and
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where τ̂n = (τ̂ ′θ1,n, τ̂
′

ρUρ
′

U ,n
)′, and the statement of the Theorem follows from Assumption 2.4 and

Andrews (1999, Th. 4 p. 1365).

Appendix B. Descriptive Statistics

Table 7 contains descriptive statistics from the main variables used in the empirical analysis.

Mean St.Dev. Min Max

Output 176516.050 295059.190 2466.286 3455000.000
Inputs

Land 27266.243 31344.445 729.000 273800.000
Labor 228.441 838.113 1.000 13374.000

Fertilizers 41358.787 434911.849 50.000 7500000.000
Seeds 277.489 392.705 0.004 3500.000

Environmental variables
Education 0.065 0.138 0.000 0.800
Experience 23.833 16.019 1.000 77.000
Risk Div -1.040 1.087 -6.220 1.115

Instruments
Natural Shock 0.439 0.497 0.000 1.000
Own Supplier 0.051 0.099 0.000 0.999

Formal Supplier 0.256 0.194 0.000 1.000
Informal Supplier 0.011 0.045 0.000 0.500
Peers Experience 24.469 13.449 10.000 44.000

Table 7. Descriptive Statistics
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