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Abstract

This dissertation investigates farm firm growth using a multiperiod investment 

portfolio problem th a t includes farmland, nonfarm assets, and debt financing on farm­

land. The investment portfolio problem is formulated as a stochastic continuous-state 

dynamic programming model.

Since this dynamic programming model lacks a closed-form solution, it is solved 

numerically with collocation methods. We develop a test for checking the accuracy 

of a stochastic continuous-state dynamic programming model. Using this accuracy 

test, we examine the accuracy of the solution for the investment portfolio problem. 

We compare the accuracy of collocation methods with Chebyshev and linear spline 

interpolations. We propose techniques for improving the accuracy and efficiency in 

solving a large-scale dynamic programming model.

We solve the investment portfolio problem th a t includes risky farmland and a 

riskless nonfarm asset or debt financing on farmland in the presence of transaction 

costs, credit constraints, stochastic land prices and farm returns. We explore how the 

optimal portfolio is adjusted in a dynamic and stochastic environment. Results show 

that the optimal portfolio depends on farm returns, farmland price, and liquid assets. 

We explore the effect of initial farm size, initial wealth levels, length of the planning 

horizon, interest rate, riskiness of returns, and risk aversion. Observed risk avoiding 

behavior in investment decisions is often a ttribu ted  to risk aversion. We find that 

risk avoiding behavior in investment decisions can also be attribu ted  to the length of
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the decision maker’s planning horizon. Also, unlike in a static  model, changes in the 

riskiness of returns affect the  optim al portfolio in the dynamic model, even when the 

decision maker is risk neutral.

The above portfolio problem is extended by adding a risky mutual fund invest­

ment. We find that it is optim al for farmers to include the mutual fund in the portfolio 

along with farmland investment. Furthermore, higher debt financing on farmland is 

optimal when mutual fund investment is included in the  model. Finally, we find 

tha t the probability of exiting farming increases in the model with the mutual fund 

investment opportunity.
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Chapter 1 

Introduction

In the process of economic development and growth, it is common for the number

of farms to decline and the average farm size to increase (Upton and Haworth, p.

1). During the past four decades, for example, the agriculture sector of the United

States has experienced a 50 percent decline in the number of farms, while the average

farm size has doubled from about 200 acres to more than  400 acres per farm (Penson,

Capps, and Rosson, p. 26).

This process of structural change in agriculture has motivated a num ber of farm

firm growth1 studies th a t focus on farmland purchase and sale decisions to explain

changes in farm size from the individual farm standpoint (Minden, p. 38). In addition

to concern about explaining the changing structure of agriculture, farm firm growth

analysis addresses risk management issues of farmers’ investment strategies (Baker)

1 Farm firm growth theories axe reviewed in Renborg.
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and farm and lending policy issues relating to financial stress and farm firm survival 

(Boehlje and Eidm an).

Farmland is a  risky investment subject to numerous uncertainties. In addition 

to uncertainty of farm returns resulting from yield risks and output and input price 

risks, farmers also face farmland value risks. Farmland investments are usually fi­

nanced with a combination of equity and debt capital. Through leverage, the use 

of debt capital makes it possible for farmers to finance additional farmland invest­

ment. However, using more debt capital also increases financial risk and so can have 

a long-term effect on the farm’s financial well-being. Jensen and Langemeier (p. 85) 

note tha t during periods of financial stress, as in early 1980’s, farms with high debt 

to asset ratios face a higher risk of failure. Since farmland is collateral for debt cap­

ital, low farmland values decrease the availability of debt capital. In periods of low 

farm income, w ith the associated decrease in land values, farmers are unable to meet 

planned cash flow commitments, which results in financial stress (Brake). Have the 

farmers who experience financial stress taken on too much financial risk? How does 

risk aversion affect investment and financial strategies? Collins and Karp note that 

optimal choice of leverage is also affected by farmer’s age. W hat is the effect of the 

length of planning horizon on farm land investment strategies?

The Federal Agriculture Improvement Reform (FAIR) Act 1996 has changed farm 

policy, removing support prices and acreage restrictions. “Producers will ... bear 

greater income risk because payments are fixed and not related to  the level of market

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3

prices” (Young and Shields, p. 97). How does this increase in riskiness affect farmers' 

investment and financing strategies?

Farm land investment and financing  decisions are multiperiod in nature, and farm­

ers make these decisions subject to  relevant constraints in each time period. This 

suggests th a t consideration should be given to  the relationship present and future 

decisions have with present and future outcomes. The time relationship of decisions 

and outcomes can be accommodated by a sequential decision model in a dynamic 

programming framework2 (Minden, p. 39; Puterman, p. 1).

The literature on investment under uncertainty (e.g. Dixit and Pindyck) has em­

phasized th a t the firms must consider future decisions and uncertainty when making 

current decisions. The aspect of future decisions is viewed as an opportunity, and 

firms have option to wait before taking actions that may be difficult to reverse. Op­

timal decisions considering the option to wait and future decisions can be obtained 

using dynamic programming (Dixit and Pindyck, p. 93). In farmland investment de­

cisions, the  manager can also choose no purchase or sale besides the choice of buying 

or selling land.

Relatively few studies have analyzed the farm firm growth problem of farmland 

investment decision in a stochastic and dynamic framework. Minden formulated a 

conceptual farm firm growth model in a dynamic programming framework. He noted

(p. 44) th a t dynamic programming does not require any particular functional form

2Dynamic programming is an approach for solving sequential decision models using Bellman’s 
equation. Chapter 3 presents a brief overview on dynamic programming.
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for the objective function and constraints, and thus is flexible for incorporating real 

world farm situations such as lumpiness of certain inputs.

Larson, Stauber, and Burt developed an empirical farm growth model for farm­

land investment and financial decisions in a stochastic dynamic programming frame­

work. Their model incorporated transaction costs associated with selling land and 

uncertainty of crop yield. The values of farmland, buildings, and equipment were 

deterministic in their model. They solved the model numerically for wheat farms 

in M ontana and found tha t the firm’s survivability and failure depend on the initial 

debt to asset ratio, risk aversion, and the cost of investment including land price and 

interest rates.

The stochastic nature of farm returns and land values and their relationship have 

been characterized in many studies. Brut and other studies (e.g. Featherstone and 

Baker) have investigated the stochastic and dynamic nature of farmland returns and 

the linkages between farmland returns and land values. Motivated by these studies, 

Schnitkey, Taylor, and Barry extended the model of Larson, Stauber, and Burt by 

incorporating stochastic dynamic farm returns, and dynamic land prices that are 

related to farm returns. Schnitkey, Taylor, and Barry estim ated the relationship 

between land price and farm returns but treated this as deterministic in their dynamic 

programming model. However, when land values are assumed to be deterministic, a 

large component of risk is not considered in evaluating the survivability of farms 

and the profitability of farmland purchase and sale decisions. Land value risk is
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particularly significant in investment decisions involving collateral risks and credit 

reserve risks, since land value serves as collateral in debt financing (Featherstone. 

Preckel, and Baker, p. 81). Incorporating land value risk is also im portant for full 

consideration of capital gain or loss risks.

Many studies (e.g. Pederson and Brake) have recognized that lenders allow a 

proportion, say 70 percent, of debt capital for financing farmland investment. Incor­

porating this constraint may have a significant impact on farmland investment and 

financial decisions. Also, for policy evaluation, it is im portant to ask how a change 

in interest rate affects farm survival and growth.

Farmers also have nonfarm investment opportunities, such as stocks, bonds, and 

mutual funas. Given numerous uncertainties in farm returns, it is im portant to ask 

what is the optimal mix of farm and non farm investment and what are the  factors 

tha t influence investment portfolio adjustments.

Adding nonfarm investments to a farm growth dynamic programming model ex­

pands the size of the problem and poses technical challenges. In the case of contin­

uous sta te  and control variables, such as prices, returns, wealth, assets, the dynamic 

programming model may be solved by discretization methods, as used in the  above 

studies3. Under this m ethod, continuous sta te  and control variables are discretized in 

finite sets, and the value function is solved and stored for each element in the state

set. W hen solving the problem requires the value function at points other than  state

3Other relevant studies of discrete state dynamic programming applications are Novak and 
Schnitkey (1993, 1994) and Schnitkey and Novak. They studied investment decisions applied to 
hog finishing barns with nonfarm assets.
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set, it is approximated. This m ethod is reliable if the  discretization is sufficiently fine. 

In large-scale problems, however, discretization w ith many points is not possible due 

to  lim itations of computer storage capacity, and thus it may give poor approximation.

An alternative is a  param etric approach, such as interpolation with polynomials 

or spline functions, for approxim ating  the  value function due to  Bellman and Dreyfus 

and Bellman, Kalaba, and Kotkin. This approach is flexible, accurate, and numeri­

cally efficient (Miranda and Fackler). The model of the present study has four sta te  

variables of which two variables are stochastic. In the absence of a closed-form so­

lution, it is essential to  examine the accuracy of the numerical approximation of the 

solution to the model, especially in large-scale problems. Given the lim itations of 

computer storage capacity, there  is also a need for improving accuracy and efficiency 

in computing the solution for large-scale multidimensional dynamic programming 

models.

The present study explores a m ultiperiod portfolio problem in a dynamic pro­

gramming framework, focusing on farmland investment decisions in the presence of 

transaction costs, credit constraints, stochastic farmland prices and farm returns, and 

risky and risk free nonfarm investment opportunities. Using this problem, this study 

also examines collocation methods for the reduction of computation effort in solving 

a large-scale dynamic programming model. The specific objectives of this study  are:

1. To develop a dynamic programming model for farmland investment and finan­

cial planning.
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2. To develop a test for accuracy of numerical solution of a continuous-state dy­

namic programming model.

3. To evaluate accuracy of alternative numerical methods, and to propose tech­

niques for improving efficiency and accuracy in solving a large-scale dynamic 

programming model.

4. To identify optimal dynamic investment and financial strategies for corn and 

soybean producers of Southwestern Minnesota farmers.

5. To analyze the effect of initial farm size, available liquid assets, risk preferences, 

length of the planning horizon, interest rate and riskiness of farm returns on 

the farmland investment decisions.

6. To explore the effect of nonfarm investments on farmland investment decisions 

and farm growth.

Numerically solving a large-scale stochastic dynamic programming model involves 

technical challenges due to the stochastic nature of variables. The dynamic program­

ming algorithm requires optimization and integration. S tate variables may go out of 

bounds. The utility function needs to be defined for all values of states. We address 

these issues for a continuous-state dynamic programming model using the investment 

problem developed for this study.

The remainder of this dissertation is organized as follows. Chapter 2 specifies 

the model for this study and defines the variables of the model. Chapter 3 provides
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a general overview of the theory of dynamic programming and numerical methods 

for solving dynamic program m ing problems. Econometric methods for estimating 

the stochastic state  equations, data, estim ation results, and other parameters of the 

model axe presented in Chapter 4. Chapter 5 presents model implementation and 

accuracy analysis. Chapter 6 presents results for a base model th a t considers farmland 

investment in a context with limited nonfarm investment opportunities. Chapter 7 

extends the model to include risky nonfarm investment and presents the results. 

Finally, Chapter 8 summarizes the results and draws conclusions.
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Chapter 2 

The Model

This chapter presents a  model of farmland investment and financial planning with 

a single risk free opportunity  for nonfarm investment. Chapter 7 presents an extended 

version of the model th a t also considers a risky alternative for nonfarm investment.

The model of farm land investment and financial planning is formulated in a 

stochastic dynamic programming framework and is an extension of models devel­

oped by Larson, Stauber, and Burt, and by Schnitkey, Taylor, and Barry. In the 

following sections, we first describe the economic environment and notation and then 

define the farmland investment problem. The choice of objective function and utility 

function is also discussed.
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2.1 Economic Environment and Notation

At the  beginning of each year t, a farm manager has farmland acreage Lt and 

liquid assets A t. A negative value of A t represents a net debt position. A positive 

value of A t represents a riskless nonfarm asset. At the beginning of each year t. the 

manager can purchase or sell land, x t:

Lt+i = Lt + Xt-

Farm land price per acre is denoted by Pt. Farming requires machinery and equip­

ment. The price of machinery and equipment per acre is denoted by k . There is a 

transaction cost per acre of tcp on buying land, and no transaction cost on buying 

machinery and equipment. There is a transaction cost per acre on selling land and 

machinery and equipment, and the sum of these transaction costs per acre is denoted 

by tcs. These expenses depend on x t , and are equal to (Pt +  k + tc )*x t , where tc = tCp 

if x t > 0, and tc =  —tca if x t < 0.

The purchase or sale decision for farmland is made in the beginning of each year 

t. so to ta l land available for farming is L t+\ = L t + x t. The costs of production per 

acre are denoted by c, and the total costs of production are equal to c * Lt+1.

The above expenses are financed from liquid assets, A t, and determine the net 

liquid assets after investment and production expenses. If the net liquid assets are 

negative, then the financing interest rate  is rb (borrowing rate). If the net liquid 

assets are positive, then these assets are invested at riskless interest rate  rt (lending
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rate). The farm manager faces a  difference between the borrowing and lending rates 

such th a t r/ <  rb (Hirshleifer, p. 196).

We define a composite crop representing a combination of crops produced for 

sale. Gross return per acre from the composite crop is denoted by R t. Though total 

available land after making a decision about z £, L t+\ =  L t + x t , is used for producing 

the composite crop, the gross return  is not realized until the beginning of the next 

year. Thus, gross revenue is equal to R t + 1 * Lt+\, and is added into liquid assets in 

the beginning of the next year. Considering the above expenses and returns, the state 

transition equation of liquid assets is:

A t+i =  (1 +  r) [At -  (Pt + k + tc) * x t -  c * L t+i\ +  R t+i * L t+1 , (2.1)

where1

r  =

tc =  <

rb if [At — (Pt + k + tc) * x t — c * L t+i] > 0 

r £ otherwise, 

tCp if x t > 0

—tcs otherwise.
There are constraints on farmland purchase and sale decisions. The feasibility 

constraint is L < L t < L  or L t =  0, where L denotes minimum acres required for 

farming and L  denotes maximum feasible acres the manager can own in the location.2 

For period t + 1, we have L < L t+i < L  or Lt+1 =  0, which defines the following

:The expression in brackets is net liquid assets after investment and production expenses at 
beginning of time t. As described above, the sign of net liquid assets determines borrowing or 
lending.

2The bounds on state variables axe also required for numerically solving a dynamic programming 
problem and are specified in Chapter 5 for this model.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



12

constraint on x t:

L  — L t < x t < L  — L t or x t = —L t. (2.2)

Another constraint is the bankruptcy condition. We define net wealth in period 

t, W t , as the net value of all assets after they are sold:

Wt =  At +  (Pt +  k — tcs) * Lt

Under the bankruptcy condition, the farm is liquidated if net wealth is negative at 

any time:

x t = - L t if Wt < 0 (2.3)

Note th a t when W t >  0, the manager can potentially choose to  sell all land as given

in equation (2.2). We assume that once all land is sold, however, the business cannot 

re-enter farming:

if x t = —L t, then x t+i = x t + 2  =  ... =  i r  =  0 (2.4)

Another constraint is on loans provided by the lender. This constraint allows

purchase of land and the associated machinery and equipment as long as the debt to 

asset ratio is less th an  or equal to p, where 0 <  p < 1:

•f ^  n ^  ~ At +  ( #  +  « +  tcv) * x t ^if x t > 0, then — ---------------— ——  r  <  p
(Pt + k -  tcs) * (Lt + x t)

This constraint can also be w ritten as:

A t + p * (Pt + k — tcs) * L t \  ,x t < max 0, — — =— H \  --------— LL----E— - (2.5
\  (Pt +  K +  tCj,) — p * (Pt +  K ~  tCs) )
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The above constraints, (2.2)-(2.5), limit the choice of control variable x t. For nota- 

tional convenience we denote X t as the set of all levels of control variables th a t satisfy 

these constraints. Note th a t control space X t is a  function of variables Pt, L t , A t, and 

constants p, k , tCp, tcs,L ,  L. Then, these constraints are represented by

x t e  X t (2.6)

The farm manager faces uncertainty in the gross returns per acre, R t , and farmland 

price per acre, Pt. R t and Pt are assumed to follow Markov processes, which are given 

in the specification of the  investment problem in the next section.

2.2 Farmland Investment Problem

The farm manager’s objective is to choose an optim al policy {x*t }J=Q th a t maxi­

mizes the expected utility of net terminal wealth subject to  relevant constraints'1:

max E 0 [U {WT+\)\ (2.7)

subject to :

Rt+1 =  9 (Rt,  £ i , t+ i)  >

Pt+i  =  h (Pt ,  R t ,  £2,t+i)  i

Lt+i  =  L>t +  x t ,

3 This is a preliminary specification of state equations of Pt and R t . Their final specification, 
functional form, and estimation are described in Chapter 4. t  -I- 1 is time index used as a subscript 
in all variables including £ i,t+ i, where £i is random shock in state equation of R t .
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W t+l =  (1 +  r) [{Wt -  (Pt +  k -  tca) * L t} -  (Pt + k + tc) * x t -  c*  Lt+l] 

+Rt+ 1  * L t + 1  +  (Pt+\ +  K ~  tca) * Lt+1 , 

x t € X t, for t  =  0 ,1 ,2 , (Ro, P0, L0, W0) are given,

where

rb if [{Wt -  (Pt + k — tcs) * Lt} — {Pt + k + tc) * x t — c * L t+1] > 0
r =

t c  =  <

ri otherwise, 

top if x t >  0

—tcs otherwise, 
and 0 < p < l .4

E q is expectation operator over the random shocks £i,t+ i,£2 ,1 + 1  > and U is the utility 

function.

In a dynamic programming context, the above investment problem has four state 

transition equations for sta te  variables R t, Pt, L t,W t, and one control variable x t. 

In the economic environment described above, we note from the identity Wt = A t + 

{Pt + k — tcs) * L t th a t for a given state {Pt + k — tcs) * L t , each level of A t determines 

Wt. or each level of Wt determines A t. Thus, the dynamic programming model can 

be formulated w ith either A t or W t as a state variable, in addition to the other 

sta te  variables R t,P t ,L t. For period t + 1, the identity of net wealth is Wl+l =  

.At+1 +  {Pt + 1 +  « — tcs) * L t+i, in which we substitute (2.1) for A t+\. In the result 

we substitute A t =  Wt — {Pt + k — tcs) * L t, which gives the state  equation for W t

4The control space, X t, is a function of state variables Pt , L t , Wt and other constants including 
p, as defined in (2.6).
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specified in the above problem. In addition, constraint (2.5) can be rewritten as:

Wt — (1 -  p) * (Pt +  k -  tcs) * Lt
’ {Pt + K  + tC p )  -  p * (Pt +  K ~  tC s )

R t and Pt are stochastic state variables, because the next period’s state is affected 

by random shocks. Net wealth, W t , is also stochastic because the next period’s state, 

Wt+1 , depends on R t+\ and Pt+i- Riskiness of net wealth has im portant significance 

in the decision making process. It not only creates objective function risks, but it 

also affects bankruptcy risks, as given in (2.3).

The optim al policy {r* }̂ L0 is not a simple sequence of numbers because at least 

one variable is stochastic in the model. Rather, given (R q, Po, Lq, Wo), the farm 

manager chooses Xq and makes contingency plans x \  for periods t =  1,2,..., T. These 

contingency plans depend on (Rt , Pt , L t ,W t), which will be known only after the 

realization of the shocks in period £,

In the above model, all variables, including farmland price, returns, costs, and 

interest rates, are in constant dollars. For numerically estimating this model, we 

adjust the data  for inflation to convert them  to constant dollars, as described in 

Chapter 4.

2 .2 .1  C h oice  o f  O b jective  F u n ction

Various studies have discussed the  choice of objective function for a sequential 

decision model from a theoretical and empirical standpoint. The most commonly 

used objective functions are the additive utility of consumption or profits and the
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utility of term inal wealth. The objective function, of term inal wealth is suitable due 

its simplicity and the straightforward definition of risk aversion. Elton and Gruber 

(p. 8 6 ) sta te  tha t, though this objective function ignores intermediate consumption, 

it is of interest because it represents a class of problems th a t actually exists and 

it provides insight into the nature of the multiperiod portfolio problem in a simple 

framework. Jeffrey and Eidm an (p. 198) sta te  th a t “additive utility ... is likely to  

be inappropriate” because the assumption of additive independence is unrealistic in 

many cases. They show th a t the objective function of the terminal wealth may be 

used to determine efficient sets for all forms of stochastic dominance and can be used 

to address the issue of long-run risk . 5

In the above model, the objective function is the  expected utility of term inal 

net wealth. In this framework, the withdrawal for consumption can be incorporated 

in the net wealth equation. To reduce the size of the  problem, we do not include 

consumption as a control variable. We assume th a t consumption expenditures are 

met by the labor and management costs included in the  production costs, c * Lt+\.

which depend on the number of acres . 5

5Featherstone, Preckel, and Baker (p. 85) also discuss the comparison of these objective functions.
6An alternative is a fixed amount of consumption for all farm sizes. However, this assumption 

implicitly puts more costs per acre. Furthermore, farmers with smaller farm size would not depend 
on only farm income.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



17

2 .2 .2  S p ec ifica tio n  o f  U tility  F u n ctio n

The utility  function used in the model should be able to represent risk neutrality or 

risk aversion. One utility function th a t offers flexibility in representing risk preferences 

and has been widely used in applications is:

W l~° -  1U { W ) =  (2.8)

where 6 > 0. If 9 =  0, the  utility function exhibits risk neutral preferences. If 9 > 0, 

it exhibits risk aversion. Note th a t lim U (W ) =  ln(VT).

Absolute risk aversion, r  (W), is defined as: r (W) = — jpj^ )  ■ Relative risk aver­

sion, r r (W ) , is defined as: r r ( W )  =  — For the above utility function,

absolute risk aversion is r (W)  =  -jf?, which decreases toward zero as wealth increases. 

Relative risk aversion is rr (W)  =  6, which is constant across wealth levels. One 

advantage of this utility function is that the relative risk aversion is unit free. Empir­

ical evidence suggests th a t the preferences of most decision makers exhibit decreasing 

absolute risk aversion, especially with constant relative risk aversion of 1 (Arrow).
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Chapter 3 

Dynamic Programming and 

Numerical Methods

The farmland investment problem specified in Chapter 2 is a sequential deci­

sion model and can be solved by the dynamic programming approach1. Numerically 

solving the farmland investment problem requires estimates of the stochastic state 

equations and parameters of the model, which are presented in Chapter 4.

Dynamic programming “takes a  sequential or multistage decision process con­

taining many interdependent variables and converts it into a  series of single-stage 

problems, each containing only a few variables” (Nemhauser, p. 6 ). T he dynamic

programming framework allows modelling sequential decision problems w ith nonlin­

1 Since dynamic programming is an approach for solving sequential decision models, in the lit­
erature, these models are often referred to as dynamic programming models or dynamic programs. 
When outcomes are uncertain, these models are referred to as stochastic dynamic programs, or 
Markov decision processes. These models are also known as stochastic control problems in the 
mathematics and engineering literature.
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earity and uncertainty. There is an extensive literature on dynamic programming 

and its application to  economic problems. Stokey and Lucas with Prescott present a 

rigorous overview of dynamic program m ing and its properties with application to eco­

nomic models. Rust surveys the literature on numerical methods and their properties 

for solving dynamic program m ing models in economics. Santos reviews some numer­

ical techniques and their accuracy in solving economic models. M iranda and Fackler 

apply dynamic program m ing and numerical methods, implemented in MATLAB. to  

solve a wide range of dynamic decision problems.

This chapter presents a brief overview of the dynamic programming approach and 

numerical methods for solving sequential decision problems with discrete time, finite 

horizon, stochastic states, and continuous sta te  and control variables. In Sections 3.1 

and 3.2, we present this approach for a  relatively general sequential decision problem. 

The farmland investment problem specified in Chapter 2 is a sequential decision 

problem with term inal optimization, which is a  special case of the general problem. 

Based on Sections 3.1 and 3.2, the dynamic programming approach for the terminal 

optimization problem is presented in Section 3.3. Then we present numerical methods 

for solving the dynamic programming problem.
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3.1 Dynamic Programming Approach

3 .1 .1  S eq u en tia l D ec is io n  P ro b lem

A decision maker is faced with the problem of choosing a sequence of decision 

rules over a prespecified planning horizon to  perform optimally with respect to a 

performance criterion. The decisions are made at the beginning of each period, t =  

0 , 1 . where T  is a finite positive integer.

Consider a general problem with J  continuous state variables and K  continuous 

control variables. For j  =  1,2 ,..., J , let Sj be a set of all levels of state  variable j .  

The state  space S  is defined as S  =  Si x  S 2 x  ... x  S j ,  which is the Cartesian product 

of all S j 's for j  = 1,2 ,..., J.  An arbitrary element of S  is denoted by s, which is a 

vector of sta te  variable levels. For each state  variable j  = 1 ,2 ,..., J,  a random shock 

£j is distributed w ith a density function f 3 (ej). Let Sj be a set of all levels of random 

shocks. Then again, £  is the Cartesian product of all S j 's for j  =  1,2,...,«/. An 

arbitrary element of £  is denoted by e. Since a problem may have both  deterministic 

and stochastic s ta te  variables, this specification also characterizes deterministic sta te  

variables. For a sta te  variable i, £*, and /* (s*) can be defined to represent it as 

a deterministic s ta te  variable . 2 Let Xk  be the  nonempty set of all levels of control 

variable k. Then again, X  is the Cartesian product of all X ^ s  for k = 1,2,..., K.  An

arbitrary element of X  is denoted by x , which is a vector of control variable levels.

2For example, when the random shock is additive, we can define e, =  0 to be the only element 
in £i, and / { (e*) =  1 to represent the deterministic variable.
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Let u  be a function from S  x X  into R , and let G be a function from S  x X  x £ 

into S.  At any time i, if x t E X  is chosen in state  st E S,  then u(st , x t ) is the 

current period reward. The next period state, s£+i, is given by s t + 1 =  G (st , x t , £t+i) , 3 

where £t+i E £  is a random shock realized in the next period. We assume th a t the 

spaces S, X , £ , and the functions u, G , f j ,  are for all £, tha t is, they are invariant to 

time. While the  dynamic progra m m in g  approach does not require this assumption, it 

is common in most applications, including the farmland investment problem of this 

study. Let U { s t+ \) be the salvage value function for time T  + 1. Let 6 €  (0,1] be the 

one-period discount factor.

The decision maker’s objective function is:

max E
{*‘}T= o

5 : « ‘U(Sl, i t) + '5 T+ic /(Sr+I)
Lt=0

(3.1)

subject to:

■St+i =  G (st, x t,£t+i) i x:t E X ,  for t =  0,1,2,  . .. ,T,  

s 0  E S  given.

In the case of all deterministic sta te  variables, with the state  so known, the decision 

maker chooses a sequence of controls {x*t }^=Q in period 0. In the case with at least 

one stochastic sta te  variable, with the sta te  sq known, the decision maker chooses Xq

3The control space, X,  may be defined as X  =  {x : s €  S, e €  E,  and G  (s, x, s) e  5 } . However, 
especially with stochastic state variables, the condition of G  (s, x, e) €  S  with multiple state variables 
may yield stringent restrictions on the control space, or the condition may not satisfy for some state 
variables. In that case, extrapolation may be used. See implementation in Chapter 5 for details on 
the farmland investment problem.
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and makes contingency plans x* for periods t = 1,2, ...,T . These contingency plans 

depend on s£, which will be known after the realization of the shocks in period t, et.

3 .1 .2  B e llm a n ’s E qu ation

The optim al policy for the sequence problem (3.1) is sought not only for period 

t = 0, bu t also for periods t =  1,2, ...,T . Thus, problem (3.1) can be viewed as 

solving the  following problems for each t =  0 ,l , . . . ,T :

max E
{Xt}T=t

£  r - ' u  (sT, x T) +  6T+1- lU (sT+l)
_T=t

(3.2)

subject to:

sr+ i =  G (sr , x T, er+i ) , x T 6  X ,  for r  =  £, t + 1 ,..., T,

st £  S  given.

Note tha t s t can take any value from S , so we seek the solution of the above problem 

for all st €  5. The formulation (3.2) is the basis for solving this problem by converting 

it into Bellman’s Equation, and is explained by Bellman (p. 83) as the Principle of 

Optimality:

“An optimal policy has the property tha t whatever the initial sta te  and 
initial decision are, the remaining decisions must constitute an optimal 
policy with regard to  the state  resulting from the first decision.”

Define the value function for each t =  0 ,1 ,..., T , for all s G S :

Vt (s) =  max E
T

£  6r~‘u ( s T,x r ) + ST+l- ‘U (sr+1) I 5 , = s
.T = £
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Note th a t we have om itted subscript t  for the sta te  s in the  value function because 

the value function is defined for all s, not just the  realized state  in period t. From 

the above definition, it follows tha t the value function satisfies Bellman’s equation:

Vt (s) = m ax {u (s, x) + 6E  [VJ+i(st+i) | s t = s, x t = x]} (3.3)

with the term inal (boundary) condition:

VT+i (s) = U(s)  (3.4)

The value function is found by backward induction. Given Vp+ 1 (s) for all s £  S.  

as defined by (3.4), we find Vp (s) for all s E S  by using (3.3) for t =  T  and attaining 

the maximum. Having Vp (s) for all s 6  S,  we find Vp- 1  (s) for all s G S  by using

(3.3) for t = T  — 1 and attaining the maximum. Thus, by the backward induction, 

we find Vt (s ) for all s 6  S  for each t =  1 ,..., T.

3.2 Optimal Policy

The approach of dynamic programming provides a m ethod for finding the value 

functions {Vi(s), V2 ( s ) , ..., Vr(s)}, and function Vp+i(s) is given in (3.4), as described 

in the previous section. The result of this approach is tha t, instead of solving (3.1), 

at any tim e t  =  0 , 1 ,..., T  the  optimal policy for any given s €  S  can be obtained by:

x*(s) = arg  max {u (s, x) + 6E  [Vt+1 (s£+1) | s t = s, x t = m]}
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subject to:

•St+i =  G  (s£, x£, s £.f-i), x € X ,  s €  S  given.

For finding optimal policy a t t =  0 we use value function Vi, and at any t, value 

function V£+i, in the above problem.

3 .2 .1  C om p arative  D y n a m ics

Comparative dynamic m ethods can be used to analyze the effect of changes in 

param eters of the model. For example, changes in the length of the planning horizon, 

risk aversion, and the interest rate  can be explored using comparative dynamics. 

Denote 7  as the set of param eters of the model to  be varied. We take different levels 

of 7  and find the value function V7  for each level of 7  as described in Section (4.1). 

Comparative dynamics for the  representative agent can be done as follows.

Denote s as the sta te  level. Then we solve for the optimal x £ for each level of 7  

at the fixed state  level s by:

x p  (s) = argm ax  {u (s, x) +  6E  [V^.1 (3t+1) | st =  s, x£ =  x]} (3.5)
X

subject to:

s£+i =  G (st , x t,£t+i) , x t e  X ,  s e  S  given.
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3.3 Terminal Optimization

The farmland investment problem specified in Chapter 2  is a  sequential decision 

problem with terminal optimization. The objective function under term inal optimiza­

tion is a  special case of problem (3.1). Let u(.)  = 0  for t = 0 ,1 ,2 , and 6  =  1. 

then problem (3.1) can be w ritten as follows. The decision maker’s objective function 

is:

max E [ U ( st+i )] (3.6)

subject to:

s t+ 1 = G ( s t , x t , E t + i )  , X t  e  X ,  for t  = 0 ,1 ,2 , ...,T ,

s0  € S  given.

The corresponding Bellman’s equation can be written as:

Vt(s) =m ax { E  [K+1 (st+1) | st = s, x t = x\} (3.7)

with the terminad (boundary) condition:

Kr + 1  (s) = U ( S), (3-8)

where the value function for each t = 0 ,1 ,.... T, for all s € S, is defined as:

Vt(s) =  max E  [U (sr+1) | s £ =  s]
J T_ \  *

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



26

3.4 Numerical Solution Methods

Following Sections 3.1 and 3.2, we have the dynamic programming problem with 

discrete time, finite horizon, stochastic states, and continuous state and control vari­

ables. Finding the optimal policy by the dynamic programming approach requires the 

value functions (Vi(s), V ^ s ) ,..., Vr(s)}.  Though we have a continuous-state dynamic 

programming problem, it lacks a  closed-form solution in most applications, with the 

exception of some very simple deterministic dynamic programming models. Thus, 

the value functions must be numerically approximated by computational methods.

A variety of computational methods are available for numerically solving a dy­

namic programming model w ith continuous sta te  and control variables. The choice of 

method depends on the assumptions for a given model. A special case of the dynamic 

programming model is the linear-quadratic problem, in which the state  equations are 

assumed to  be linear and the reward function to  be quadratic. Optimal value and 

policy functions can be derived analytically in this case. The method for solving such 

problems, the linear-quadratic approach, is of limited value, however, since the  neces­

sary assumptions do not hold for many problems, including the farmland investment 

problem of this study.

Methods th a t do not make these assumptions include (1) the discretization method 

and (2 ) the  parametric approach (Judd, 1998, p. 433). Under the discretization 

method, continuous state and control variables are discretized in finite sets, and the 

value function is solved and stored for the selected elements in the sta te  space. Under
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the parametric approach, the value function is treated  as a function of parameters, 

which are estimated using approximation methods. This approach yields a value 

function defined over all values in the range of the sta te  space. Rust reviews different 

methods of param etrizing the value function and their properties.

In the discretization m ethod, the value function is approxim ated with a step func­

tion (Judd, 1996, p. 562). This method poses problems in implementation since this 

method requires tha t, given the current state, the  next period sta te  must be an ele­

ment of the set of points in sta te  space defined for discretization. Furthermore, this 

m ethod is reliable only if the discretization is made sufficiently fine. Despite advances 

in computer technology, however, this method becomes impractical with large-scale 

problems due to lim itations of computer storage capacity (Judd, 1998, p. 433).

To overcome these limitations, Bellman and Dreyfus (p. 17) suggest using affine 

(linear) functions or a high degree polynomial to interpolate the value function be­

tween the selected points in sta te  space. This approach is developed as interpolation 

by piecewise polynomials splines. Bellman and Dreyfus (p. 323) also introduced poly­

nomial approximation for the whole domain of the sta te  variables, formally presented 

in Bellman, Kalaba, and Kotkin. Interpolation by polynomials or piecewise polyno­

mials is an efficient and common parametric approach used in dynamic programming 

models. Like the discretization method, this approach also requires solving the value 

function for a prespecified finite state set. Instead of storing the value function for 

each element in the s ta te  set, this approach fits a functional form. Miranda and
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Fackler refer to the interpolation approach in dynamic programming as the colloca­

tion m ethod, which is how it will be referred in this study. Since the investment 

portfolio has four sta te  variables, we will use the collocation method for solving the 

dynamic programming model of the study.

3 .4 .1  C o llo ca tio n  M e th o d

The collocation m ethod approximates a functional equation in which the approx­

im ated function fits exactly a t the prespecified points of the domain (Judd, 1998, p. 

384). For solving dynamic models in economics and finance, the collocation method 

is often the most useful method. It is flexible, accurate, and numerically efficient in 

most applications (M iranda and Fackler).

The collocation method approximates a function with a linear combination of 

N  basis functions using N  prescribed points of the domain, called the collocation 

nodes, where N  is a finite positive integer. For approximating the value functions 

(V i(s), V2 ( s ) , ..., Vr(s)}, the domain is the state space. We define a series of N  basis 

functions {<pt ( s )} ^ x for s E S. The value function Vt (s) is approximated by:

Vt (s) {s)
t=i

where the basis coefficients { c ^ } ^  axe to be determined.
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The value functions are approximated following backward induction using Bell­

m an’s equation. Now Bellman’s equation (3.3) can be written as:

N  I  "j

^ 2  | S t  =  S ,  x t = X  > (3.9)
L i = l  J  )

where s t +1  =  G (st, x t,Et+i)- Note th a t the value function Vr+i is given (3.4) and is 

used for approximating V t ■ For all other t, we use the approxim ated Vt+\. that is,
N
JZ Cit+i4>i (s )- By the collocation method, (3.9) is solved for each of N  nodes. Let
i=i

{ 5 n } " = 1  be a series of N  nodes selected from the state space such th a t sn G S' . 4 Let 

vnt be the maximum value in the above problem for each node. Then we have for 

each node n =  1 , 2 ,..., N:

£  Catti (sn) =  vnt (3.10)
t=i

This gives a system of N  equations with the N  unknown coefficients The N

equations (3.10) may be expressed as:

$> * ct = vt

where $  is an N  x N  m atrix in which the n th  row and ith  column is 0 Jt (sn), ct is a 

column vector denoting the coefficients and vt is a column vector of {vnt}2=i

for all nodes. Then we can find ct by:

c£ =  Q - i y 1

Note tha t we have N  nodes and basis functions for all sta te  variables, N  =  N x * 

N 2 * ... * N j ,  where Nj  is number of nodes and basis functions for each sta te  variable

4Note that we are using subscript n  for the nodal index for explaining the collocation method.
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j  =  1 , 2 , J.  In this case, s and axe tensor products for all s ta te  variables. Miranda 

and Fackler show tha t m atrix <&- 1  can be formed efficiently by inverting it for each 

sta te  variable and then making the tensor product. This m ethod saves storage and 

computational effort especially when the problem is large.

Im plementation of the collocation method requires specification of (i) the type of 

collocation basis functions and nodes, and the number of nodes, (ii) an optimization 

method for finding the maximum value, and (iii) a method for finding expected value. 

We describe these specifications in Chapter 5, where we develop a test for accuracy 

analysis and evaluate alternative choices to find a good approxim ation for solving the 

model.
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Chapter 4 

Stochastic State Equations and 

Parameters

Numerically solving the farm land investment problem specified in Chapter 2 by 

dynamic programming requires estim ates of the stochastic sta te  equations and pa­

ram eters of the model. This chapter describes estimation m ethods and data  and 

presents estimates of the stochastic equation and parameters of the model.

In the farmland investment problem, there are two stochastic sta te  equations for 

gross return  per acre from crops and the farmland price: Rt+i = g ( R t, e u + i) and 

Pt+1 =  h ( P t, R t,E2,t+i), respectively. The gross return equation is specified as an 

autoregressive model. The farmland price equation is a special autoregressive model 

conditional on gross returns, which is based on a model proposed by Burt. The 

Box-Jenkins approach to forecasting provides a method for finding the  order of an
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autoregressive model. First we describe an autoregressive model and its properties. 

Then we describe the Box-Jenkins approach, estim ation methods, data, and regression 

results.

4.1 Autoregressive Model

Consider a model with a pth-order autoregressive process, AR(p):

Vt — P o  +  P i U t - i  +  ••• +  0 py t ~ p  +  e t (4 . 1 )

where yt is random  variable to forecast, /30, (3l , ..., /3p are parameters of the model, and 

e t is the error term  (random shock) and is assumed to be a white noise process. Below 

we define white noise for the error term and the  covariance stationarity for random  

variable yt, a property of autoregressive process discussed later in this chapter. These 

definitions can be found in most time series econometric books such as Hamilton and 

Greene.

Definition 1 A sequence {eJ}^:_00 is described as white noise process i f  each element 

in the sequence satisfies:

1. E[e t] = 0

2. Var  [s£] =  cf\

3. Cov [et, eT] =  0 for all t  ^ t .

Definition 2 A stochastic process of variable yt is covariance-stationary or weakly 

stationary i f  it satisfies the following requirements:
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1. E [y t] is a constant, independent of t.

2. Var  [yt] is a constant, independent of t.

3. Cov [y t , ya] is a function of t-s, but not o f  t or s.

The pth-order autoregressive process (4.1), yt = 0 o +  0\Vt- 1 +  ••• +  0 vVt-v +  Et, 

is covariance stationary if (i) et is a  white noise process and (ii) the roots of the 

characteristic equation

he outside the unit circle. Condition (ii) puts restrictions on parameters 0 O, 0 l , .... (3p.

We illustrate here some properties of an autoregressive process for p =  1, which is 

a first-order autoregressive process, AR(1): yt = 0 O + fiiVt-i + £ t- The characteristic 

equation for this process is 1  — 0 xz =  0. The root of this equation is , which lies

The first equation can be written as 0 O = p  (1 — 0 0 .  As E  [?/£+1|?/£] =  0 o+ 0 lyt , we 

have E  [yt+i \yt] =  H (1 — 0)  +  0 yt- Observe th a t if p. > yt , then we have E  [t/£+11 t/f] > 

yt. Since 0 <  (1—0) < 2 (or \0X\ < 1 ), multiplying by (1 — 0)  both sides of p. > yt and

1  — 0 xz  -1- ... -1- 0 pz p — 0 (4.2)

In this condition, 2  is used for finding the roots of the characteristics equation (4.2).

outside the unit circle if |/311 <  1. Hamilton (p. 53) shows that if the error term  is a

white noise process and \0X\ < 1 , then

1. E [y t] = fx =

3. Cov [yt , y t - j \  = E  [ (y t -  p )  ( y t - j  -  p)]  =  •

^ h e  details on AR(1), AR(2), and AR(p) and the proof of covariance stationarity can be found 
in Hamilton (p. 53).
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rearranging the terms yield E  [yt+i \ y t] >  y t - Similarly if p  < y t , then E  [i/t+iM  < Vt- 

and if y t =  p, then E  [yt+i \yt]  =  yt -  This indicates th a t the  series tends to wander 

around its mean value yt.

For an AR(2 ) model, yt = P0 + PiVt-i +  P^Vt-2 +  - t, the roots of the  characteristic 

equation (4.2) he outside the unit circle if and only if \(32\ <  T {(3X +  P2) < 1, and

(@2 ~  P i )  <  1-

4.2 Box-Jenkins Approach

Before estimating the AR(p) model (4.1), we need to  specify the  order of au­

toregression, p. Box and Jenkins provide methods for modeling time series da ta  for 

forecasting. The Box-Jenkins approach is an iterative m ethod, which consists of iden­

tification of p, estimation, and a diagnostic test of the hypothesis th a t the error term 

is white noise. This method finds p so th a t the error term  is white noise. We trans­

form the data, if necessary, so th a t the assumption of a white noise error term  is 

reasonable. For example, we begin with p =  1, estimate the model, and test the null 

hypothesis tha t the error term  is white noise. We increase p until we find tha t error 

term  is white noise (Hamilton, p. 110; Vandaele, p. 87). Estim ation methods and 

diagnostic tests for white noise axe described in next sections.
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For the pth-order autoregressive model (4.1), yt = f.30  +  PiUt-i +  ••• +  0 pyt-P + 

et , we have d a ta  to estimate the model. We have (T +  p) observations indexed 

as ( y -p+i , y - p+1 ,..., yQ, yx, ..., yT)- After adjusting for lagged variables, there are T  

observations for the regression model. Denote

Po

Y  =

Vi 1 y i - i yi-2 2 /i- p

V2
, X  =

1 P 2 -1 2/2—2 • 2/2- p

yr 1 Ut + p -  i yr+p- 2  ■ 2/r 0 P
The ordinary least square (OLS) estimates of (3 and its variance are

,/? =

Var [0\ = a\ (X 'X )~

where a2e =  is variance estim ate for error term, and e =  Fj — X 0  is a residual

vector.

4 .3 .1  P ro p er tie s  o f  E stim ators

Statistical inference about the OLS estimates requires assumptions about the error 

term, et . The prim ary assumption is th a t the error term  is a white noise process, which 

goes without loss of generality because it is required for the Box-Jenkins iterative 

method. We will test this assumption from the data.
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Consider the A R (1 ) model yt = 0 O + fixyt- \  +  et. If we assume that {s£} is an 

independent and identically distributed (i.i.d.) sequence, then it implies that et is 

independent of yt~ However from the autoregressive model, yt is in part determined 

by et . So, for period (t — 1 ), y£_£ is in part determined by et- i ,  therefore yt-\  and 

s£_i are not independent. Also note th a t yt~ 1 depends on y£_2, which is in part deter­

mined by c£_2 - Thus yt- \  also depends on ££_2- This indicates th a t yt~ 1 is dependent 

on (s£_i, e£_2 , -••) and is independent of (s£, ££+i, ...). Therefore, yt- i  is contempora­

neously independent of error term  {e£}. As the regressor is not independent of the 

entire vector of error terms, the OLS estimator f3 is biased. The bias disappears 

as T  becomes large. Therefore, the OLS estim ator can be justified asymptotically 

(Hamilton, p. 215).

If we assume tha t the error term  is normally distributed, Hamilton (p. 122) shows 

that the OLS estim ator /3 for the AR model is the same as obtained by conditional 

maximum likelihood estim ation (MLE) method. Conditional MLE method provides 

consistent estimates, whereas exact MLE method does not.

4.4 Diagnostic Tests

The Box-Jenkins approach requires a white noise test for the error term. The 

autoregressive order is increased if the error term  is not white noise. However, if 

the slope coefficient is not significantly different from zero, then  a lower order au­

toregression may be tested. As mentioned in the previous section, the OLS method
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yields param eter estim ates identical to  those obtained from conditional MLE if the 

error term  is normally distributed. Furthermore, information on the error term  dis­

tribution is also needed in implementation of dynamic program m ing procedure. This 

section provides methods for testing the significance of estim ators, and for testing 

white noise and norm ality of error terms.

4 .4 .1  S ign ifican ce o f  E stim a to rs

The OLS estimates of the slope param eters are tested by a t-test:

H0 : &  =  0, i =  1,2, ...,p,

H\  : Not H0.

Under the  null hypothesis, the t ratio, t =  , /3' . has a  t d istribution with (p 4 - 1)
y J V a r f c )  '

degrees of freedom.

4 .4 .2  T est for W h ite  N o ise

The Ljung-Box (Ljung and Box) test is used to test th a t th e  error term  is a white 

noise process. This test is particularly suitable for regressions w ith lagged dependent 

variables.

Ho : £t is a white noise process,

H\ : Not Hq.
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Under the null hypothesis, the Ljung-Box statistic

k  2
r ^ t  T S \  T ' t T  , o \  V '  r fcQ ( / f )  =  T ( T  +  2) £  7 7 3 7

fc= l  1 K

is asymptotically distributed as chi-squared with K  degrees of freedom,

and {et}J=l axe residuals from the OLS regression. Thiswhere rk

test is performed for each K  =  1 ,2 ,..., up to an appropriate number, say, 15. The 

Ljung-Box statistic  has better finite-sample properties th an  other tests (Greene, p. 

838).

4 .4 .3  T est for N o rm a lity

If we assume tha t the error term  is normally distributed, then the OLS estim ator 

is the same as obtained by conditional maximum likelihood estim ation (MLE). The 

Bera-Jarque test (Bera and Jarque) is used to test for normality.

Ho : £t is normally distributed,

F j  : Not F o ­

under the null hypothesis, the Bera-Jaxque statistic, B J , is asym ptotically distributed 

as chi-squared with two degrees of freedom:

where <x2 =  £  Y, e*, /2 3  =  L ef, and fi4 =  £  £  ef are consistent estim ators of the
x  T  , T

£ = 1  £= 1 £= 1

second, third, and fourth moments respectively.
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For testing the null hypothesis in the above diagnostic tests, we will report t ratio, 

Q(K),  and B J  along with their p-values. The p-value for a test provides marginal 

significance level. For example, a  p-value lower than  0.01 is taken as an evidence to 

reject the null hypothesis at 1  percent significance level.

4.5 Data

The stochastic state equations for the model introduced in Chapter 2 are esti­

m ated using time series data. Gross return from crops per acre, R t , and farmland 

price, Pt, are adjusted for inflation using the Consumer Price Index. Gross return 

is calculated from data for farms tha t belong to the Southwestern Minnesota Farm 

Business Management Association (SWMFBMA), as published in their Annual Re­

ports for the years 1967-99 (Olson et al.). The farm records of this region indicate 

th a t 44 percent of land is used for corn, 44 percent for soybeans, and 12 percent 

for other crops (Olson). Com  and soybeans are produced in the most common crop 

rotation. For simplicity, we assume that only com and soybeans are produced, and 

gross return per acre is calculated for the 50-50 corn-soybean mix. Time series data 

for the price of land are obtained for Southwestern Minnesota for yeaxs 1966-1992 

from the Minnesota Rural Real Estate Market (Schwab and Raup; Brekke, Tao, and 

Raup), and for years 1990-1999 from Minnesota Land Economics (TafF) . 2

2Appendix A provides data series with explanation on constructing the series for estimating the 
equations.
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The investment portfolio model developed in Chapter 2 is at the level of the in­

dividual farm firm. However, tim e series data  at the faxm level are rare and often 

incomplete. D ata described in the above paragraph are the averages of samples from 

the region. Thus, the  estim ation of the variance of error term  may be underestimated 

by using this da ta  set. Nevertheless, in the analysis of comparative dynamics (Sec­

tion 3.2.1), we will explore the effect of increasing the variance on the model results 

(Chapter 6 ).

4.6 Returns from Crops

The state equation for gross retu rn  per acre from crops is modelled as an au­

toregression. The Box and Jenkins approach for forecasting suggests a first order 

autoregression model, A R(1 ). The suitable transformation of the  d a ta  is natural log­

arithm. The gross returns are positive numbers because they are equal to price times 

crop yields, which is always positive. The regression results for the equation of the 

gross return per acre

ki Rt =  0o +  Pi In Rt- \  +  £it (4-3)

are presented in Table 4.1(a). The regression results show th a t the  slope coefficient 

on In R t- \  is significantly different from zero, as its p-value is less than  0.01. This 

specification gives a stable model by the diagnostic test of the  error term . Following 

the Box-Jenkins approach, we test the null hypothesis th a t the  error term  is white
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Table 4.1: Results for Gross Return Equation

(a) Regression Results
Variable Coefficient Estimate Standard Error t-ratio p-value
C onstant 1.052028 0.679087 1.549180 0.1318

In R t - 1 0.821970
r , . . .  ‘>

0.113723 
__  ..

7.227848 0 . 0 0 0 0

Estimated Var[£i] =  0.033155, R“ =  0.635222, adj R2 =  0.623063.

(b) Ljung-Box Test for W hite Noise
K  Q(K)  statistic  p-value
1 0.0035 0.953
2 0.7275 0.695
3 0.7551 0.860
4 0.7747 0.942
5 1.6553 0.894
6 2.4892 0.870
7 3.8131 0.801
8 3.8452 0.871
9 6.5782 0.681
10 7.3832 0.689
11 8.3072 0.686
12 8.5760 0.739
13 10.474 0.655
14 10.684 0.711
15 10.743 0.771

(c) Bera-Jarque test for Normality
B J  statistic_______ p-value

3.160570 0.205916
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noise. To test the null hypothesis, the Ljung-Box test results axe presented in Table 

4.1(b). This test does not reject the null hypothesis, as all p-values are much greater 

than 0.01. Thus, the hypothesis of white noise error term  is maintained.

Normality of the error term  is tested using the Bera-Jarque test. The Bera-Jarque 

test results are presented in Table 4.1(c) to test the null hypothesis tha t the error 

term  is normally distributed. The test does not reject the null hypothesis, as the 

p-value is greater than  0 .0 1 .

4.7 Farmland Price

The specification of the farmland price sta te  equation is based on Burt. The first 

order difference equation of the Burt model is In P£ =  a 0  +  a i In P£_i +  a 2 In P £_ 1  +  e2t. 

W hen the white noise test is performed on the residuals from the above regression, 

the test rejects the null hypothesis of the white noise error term. So, the second 

order difference equation of the Burt model is used and specified as3: ln P £ =  q 0  +  

Qi In P t - 1 +  ct2 In Pt - 2  +  hi R t- i  + a 4 In R t- 2 +  £ 2 1- Since q 4 was not significant, the 

results suggest the following specification:

ln P £ =  a 0  +  o 1 ln P £_i + a 2 ln P £_ 2  + a 3\ n R t- l + e2t (4.4)

Regression results of this model are presented in Table 4.2(a). We test the null

hypothesis tha t the error term  is white noise.The Ljung-Box test is presented in Table

3This specification is also estimated by Burt (p. 19).
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Table 4.2: Results for Farmland Price Equation

(a) Regression Results
Variable Coefficient Estim ate Standard Error t-ratio p-value
Constant 0.077732 0.399551 0.194548 0.8472
logPt-! 1.413025 0.132676 10.65019 0 . 0 0 0 0

log P t - 2 -0.597604 0.123220 -4.849899 0 . 0 0 0 0

log Rt- i 0.214150 0.074244 2.884407 0.0075
Estimated Var[£2] =  0.009398, R2=  0.946916, adj Rz =  0.941228.

(b) Ljung-Box Test for W hite Noise
K Q(K)  statistic p-value
l 0.0062 0.937
2 0.4677 0.791
3 0.8158 0.846
4 0.8198 0.936
5 2.8125 0.729
6 5.4445 0.488
7 5.6545 0.581
8 6.4914 0.592
9 6.4914 0.690
10 6.8153 0.743
11 8.8407 0.637
12 8.9801 0.705
13 9.0528 0.769
14 9.8600 0.772
15 11.029 0.751

(c) Bera-Jarque test for Normality
BJ  statistic p-value

0.030666 0.984784
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4.2(b), and does not reject the null hypothesis. Thus, the hypothesis of white noise 

error term  is maintained. Normality of the  error term  is tested using the Bera-Jarque 

test, and  is presented in Table 4.2(c). The test does not reject the null hypothesis 

tha t the error term  is normally distributed. Finally, we need to  check for a statistical 

relationship between £\t and tha t is, between error term  of return  equation (4.3) 

and error term  of farmland price equation (4.4). The covariance of their residuals is 

computed as 0.00007, and the correlation is equal to 0.003965. Since the covariance 

is close to  zero, the  OLS estimates are efficient. 4

4 .7 .1  R e d u c tio n  o f  S ta te  V ariab les for D P

The estim ated equation of farmland price has two lagged variables, In Pt =  q 0  +  

c*! ln P £_i +  a 2  ln P £ _ 2  +  a!3 which requires inclusion of two sta te  variables.

Burt and Taylor provide a statistical procedure to reduce a sta te  variable for use in 

a dynamic programming problem. This procedure is based on the assumption that 

the stochastic variable follows a stationary process. This assum ption holds when the 

error term  is white noise and |a:2| < L (^ i +  a 2 ) <  L and (a 2  — Qi) <  1  in equation

(4.4). The estim ates of these parameters in Table 4.2(a) satisfy these inequalities, and 

the test of the  white noise error term  is m aintained (Table 4.2(b)). Using the Burt 

and Taylor approach, we reduce a sta te  variable in the land price equation. Table

4.3 presents the estimates obtained by their procedure. The reduced equation can be

4 In the event of high correlation, these two equations may be specified as seemingly unrelated 
regressions (SUR) model, a topic found in most econometric books such as Greene.
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Table 4.3: Reduction of a  Lagged Variable for Land Price Equation

Variable Coefficient Estim ate
Constant 0.048655
In P t-i 0.884465
ln P t_i 0.134044

Var[£2] =  0.014619.

represented by lnP t =  a0  +  ai ln P t_i +  a 2  In R t- i  -+- e2t, where a 0  =  a i = T ^ '

a2 =  and the variance of error term is also adjusted by dividing by ( 1  — (a2)2).:j

4.8 Estimation of Parameters

The farmland investment problem specified in Chapter 2 includes some parame­

ters. Numerically solving the model requires their estimates. The interest rate on 

borrowing is assumed to be r*, =  0.06. This rate  represents in constant dollars. It 

is based on reviewing last five-year interest rate on long-term loans in farm credit 

system (USDA), and is adjusted for inflation. On lending (riskless investment), the 

interest is assumed to be r/ =  0.03.

Estim ation of the following parameters is based on farm d a ta  for Southwestern 

M innesota and an interview with Dale Nordquist, who is familiar with the farm

records. The price of machinery and equipment per acre is k =  $300; the transaction

5Since the farmland price equation has lagged prices along with In R t - i ,  following Burt and 
Taylor (p. 218), we consider the case of two interdependent processes: the gross return equation 
AR(1) and farmland price equations, as specified above. In this general case, the derivation yields 
reduction of lagged farmland price, while the gross return equation remains AR(1).
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cost on farmland purchase per acre is tCp =  0.01 * P£; and the transaction cost on 

selling farmland and machinery and equipment per acre is tcs =  0.06 * Pt + 0.07 * k . 

The borrowing constraint has a limit  on the maximum, debt-to-asset ratio allowed for 

purchasing farmland: p =  0.7.

As described in Section 4.5, corn and soybeans are planted in equal proportion, 

so we calculate cost of production per acre for the 50-50 corn-soybean mix. From 

farm records of SWFBMA for year 1983-99 (Olson et al.), we find the average cost of 

production as $217 per acre. For the farmer’s own labor and management costs, we 

assume an opportunity cost of $30 per acre. Thus, the total costs of production per 

acre is c =  $247.
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Chapter 5 

Model Implementation and 

Accuracy Analysis

Estim ation of the parameters presented in Chapter 4 is required for numerically 

solving the farmland investment problem. This chapter describes the implementa­

tion of the  collocation method and presents the results on an accuracy analysis of 

alternative choices in the collocation method.

5.1 Model Implementation

The farmland investment problem specified in Chapter 2  is a sequential decision 

problem with terminal optimization (Section 3.3). In this problem, there are four 

sta te  variables, gross return per acre from crops, R t, farmland price per acre, Pt, 

farmland acreage, Lt, and net wealth, W t. From Section 3.3 (page 25) for terminal
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optimization, Bellman’s equation for any R, P , L , W, can be w ritten as:

Vt(R, P, L, W )  =m ax {E[Vt+l(Rt+ll Pt+ll Lt+1, W t+l) \ R t = R ,P t = P ,
(5.1)

L t = L ,W t = W, x t = x]} 

subject to  the constraints of the farmland investment problem (2 .2 ) with the terminal 

(boundary) condition:

Kr + 1  (R ,P ,L ,W )  = U ( W )

The value function for each t =  0 ,1 ,..., T,  is defined as:

Vt(R, P, L, W ) =  m ax E  [U (WT+l) \ R t = R ,P t =  P, L t = L ,W t = W] (5.2)

Note th a t we have om itted the subscript t for the sta te  variables in the value function 

because the value function is defined and solved for all states, not just the realized 

state  in period t.

To solve the problem by dynamic programming m ethod, the range of the four 

state  variables, R t, Pt, L t , Wt, must be defined for estim ation of the value function. 

The value function for this problem is solved for the  following ranges of the states: 

220 < R t < 620, 950 <  Pt < 2,215, 400 <  L t < 2,000, and 0 <  W t < 6,000,000. 

The ranges for R t and Pt are based on a 90 percent region for their distributions, 

based on their estim ated equations. The range for farmland is chosen for fully owned 

farms, where 400 is minimum acreage required for farming, and 2,000 is maximum 

feasible number of acres the manager can own in the  location. The lower bound of 

net wealth is due to the bankruptcy condition ( W t < 0), thus the lower bound Wt > 0
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is the condition for staying in farming. The upper bound of net wealth is arbitrarily 

chosen to allow no debt at the  upper bounds of farmland acreage and its price.

In solving the Bellman equation for each t, we obtain the value function for the 

ranges of the state specified above. However, given the sta te  in period t from the 

above ranges, the Bellman equation contains the value function in period t + 1 , which 

needs to be computed for the states in period t + 1. In backward recursion, we have the 

value function for the states in the above ranges. However, it needs to be computed 

when the state in period t +  1  is not in the above the ranges.

The control variable, x t , is restricted so tha t L t + 1  satisfies the  feasibility constraint: 

400 <  L t+i < 2,000 or L t+i =  0. Given the range of farmland, the value function 

needs to be computed for L t+\ =  0, when all farmland is sold. As assumed in Section 

2 . 1 , once all farmland is sold, the business cannot re-enter farming, and the value 

function for state L t + 1  =  0 can be computed as follows. W hen L t + 1  =  0, the farm 

manager cannot use debt financing, since it is based on farmland as collateral. Thus, 

W t + i  is all invested in liquid assets. First, W t + i is computed by compounding it at 

the liquid asset return rate, and then the utility function is evaluated as U (W t+ \)■ 

Since the liquid asset is a riskless investment, U { W t + i ) is the value function for 

L t+1 =  0, as defined in (5.2).

Net wealth in period t + 1, W t+\, can go out of the bounds from the above range 

due to the stochastic nature of gross return from crops and farmland price. Unlike 

the sta te  variable Lt+1, it is generally not possible to use restrictions on the control
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variable to ensure tha t W t + 1 will be in the allowable range . 1 W hen W t + 1 <  0, the 

value function is computed for the  bankruptcy condition. Under this condition, the 

farm is liquidated if net wealth is negative (W£+i <  0 ) at any time, which makes 

L t+l =  0. Thus, the value function can be computed for L t+i =  0 as described in 

the above paragraph. However, the  compounding is done a t the  debt rate because 

Wt+1 <  0. W hen W t+l is greater than  the upper bound, the ex tra  amount above the 

upper bound earns the liquid asset return rate  and is compounded for period T  + 1 to 

compute the value function . 2 Note that compounding of net wealth for W t = 0 yields 

Wt+i =  0. In order to maintain continuity of the value function, the value function 

for zero current net wealth, Wt =  0, is set as U ( W t + i ) = U (0).

For return  from crops and farmland price, given the sta te  R t and Pt , the state 

equations give Rt+i and Pt+1 - W hen the error term values for these sta te  variables 

are on the tails of their distribution, R t+i and P £ + 1  can go out of the bounds from 

the above ranges. To assure th a t the state  in period t +  1  is w ithin the bounds, we 

assume R t+\ =  m ax(P, min(g(Rt , £i,t+i), R)),  where R  is the lower bound, R  is the 

upper bound from the range of gross return per acre given above, and g (i?t ,c 1£+1) 

denotes the  right hand side in the  state equation of gross return  per acre. This

assumption assigns to the bounds the probability mass for the states beyond the

^ o r  example, W t =  6000000, P t =  1000, L t =  1000, and x t >  —L t . If in the next period, 
Pc+ 1 =  1500 and R t+i  =  250 with some probability, the net wealth will be above 6000000, and 
cannot be put into the bounds with the control variable.

2To compute the value function, which is utility of terminal wealth, first compounded liquid 
assets are added to the wealth from value function, where \Vt+i is greater than the upper bound. 
The utility function of the sum was regarded as the value function.
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bounds. Similarly, we make this assumption for the farmland price s ta te  variable to 

assure th a t Pt+1 is within its bounds. This assumption is made because solving the 

B ellm an equation requires the value function for the  state  in period t + l .3

The objective function in the model is to maximize the expected u tility  of terminal 

net wealth. The utility function described in Chapter 2 in (2.8) is U (W ) = w , 

where 9 >  0 to represent risk neutrality or risk aversion. For the risk neutral case, 

when 6 = 0, utility function U (W)  =  =  W  — 1 is defined all W.  Its strategi­

cally equivalent form is:

U ( W )  = W,

and the objective function is to maximize terminal net wealth. For the  risk averse case, 

9 > 0, the utility function U (W)  =  is specified only for W  > 0. Furthermore,

for 9 =  1 , U (W)  =  z j 1 = h i(lF) is defined only for W  > 0. As described above, 

given the sta te  W t from the nonnegative range, W t+i can be negative or nonnegative 

due to the stochastic variables in the model. In order to define the utility  function '1 

for all W , we respecify it as:

U ( W)  =
U (W)  if W  > b

if W  < b

3Another way to solve this problem, as proposed by Miranda and Fackler, is to widen the ranges 
of the states for given minimum and maximum error term from numerical integration. However, 
applying this method for these equations gives very wide bounds, which are well outside the range 
of value found in the data.

4From the bankruptcy condition, it may be considered that the decision maker is indifferent as 
to the amount of negative wealth. However, given positive current wealth, the decision maker's 
preferences are characterized in the range of negative wealth as an increasing function of wealth. 
Furthermore, indifference with the amount of negative wealth also gives a nonconcave utility function.
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where b >  0 and U ( W )  = w ^ f l for 0 > 0. This specification makes a linear curve 

for W  < b passing through the origin and thus makes a continuous and concave 

function . 5 This specification represents risk neutral preferences for W  < b, while 

maintaining risk preferences by U (W)  =  for W  > b. We assume b =  60000

considering the range of the  net wealth, [0,6000000].

As described in Section 2.2, due to the identity W t = A t + {Pt + k — t c s ) * L t , 

the dynamic program m ing model can be formulated w ith either A t  or W t as a state 

variable. In implementing the  numerical methods of dynamic programming algorithm, 

the grid of all states is made to  solve the problem. Using sta te  A t , there will be many 

states th a t imply negative net wealth, where the bankruptcy condition applies and 

the value function does not need to be estimated. Thus, formulating the model with 

A t as sta te  variable will be numerically inefficient. 6  Considering these issues, we

formulated the model with W t as a state variable.

5Featherstone, Preckel, and Baker (p. 87) also address the problem of defining the utility function 
for negative wealth. Their specification, however, gives a non continuous function. We also con­
sidered another specification by Keeney and Raifa (p. 173): U { W )  =  U {W  -+- B) =  —— .
where B  is chosen so that { W  +  B) >  0. However, this specification does not exhibit constant 
relative risk aversion. Furthermore, for the given ranges, B  needs to be 2,000,000, which makes very 
low marginal utility ( W  +  B)~°  for given W .

6Other normalizations were also considered, such as defining state variable as (Pi+K^[e ^ Li, 
whose range greater than or equal to -1 ensure nonnegative net wealth. However, this formulation 
increases the likelihood of next period state to go out of bounds.
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5.2 Implementation of the Collocation Method

As mentioned on page 30 (Chapter 3, Section 3.4.1), implementing the collocation 

method to solve a dynamic programming problem requires specification of (i) the type 

of collocation basis functions and nodes, and the number of nodes, (ii) an optimization 

method for finding the maximum value, and (iii) a method for finding expected value. 

In this section, we describe these specifications. In Section 5.3, we develop a test for 

accuracy analysis and evaluate alternative choices to find a good approximation for 

solving the farmland investment problem. Based on the accuracy results, we find the 

best specification and present in the  end of this chapter.

5.2 .1  B a sis  F u nction s an d  N o d es

In implementing the collocation method, there are a number of choices available 

for collocation basis functions and nodes. The choice of basis functions and nodes 

depends on the characteristics of the function to be approximated. Besides choosing 

the type of basis functions and nodes, the number of nodes must also be chosen.

“W eierstrass’ Approximation Theorem asserts tha t every continuous function on 

a closed interval can be approximated uniformly to any prescribed accuracy by a 

polynomial” (Schumaker, p. 91). However, he emphasizes tha t this theorem does not 

provide any guidance on the order of polynomials.

Polynomial basis functions have long been used in approximating a function due 

to their properties of smoothness, differentiability, and efficiency in numerically im­
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plementation. Bellman and Dreyfus and Bellman, Kalaba, and Kotkin suggest using 

polynomial basis functions with orthogonality properties, such as Chebyshev and 

Legendre polynomials. Though polynomials have a ttractive properties, they may not 

perform well due to their oscillating behavior. In general the accuracy of polynomi­

als increases as the order of polynomials is increased. However, this does not hold 

for every function to be approximated, due to oscillatory behavior. For example, in 

Runge’s function , when approximated with Chebyshev polynomials and uniform 

nodes, the error grows as the order of polynomials is increased . 7 However, when 

Chebyshev nodes axe used, instead of uniform nodes, the error decreases as the order 

of polynomials is increased.

The choice of basis functions and nodes depends on the characteristics of the 

function to be approximated. Approximation theory suggests that use of Chebyshev 

polynomial basis functions coupled with Chebyshev nodes may be a superior choice for 

smooth functions. However, if the approximated function is not smooth, use of spline 

basis functions coupled with uniform nodes may be a better choice (Miranda and 

Fackler). Approximation with spline basis functions is made piecewise and has narrow 

supports. Thus, it avoids the typical oscillating behavior of polynomial interpolation 

(Santos, p. 338).

We explain here Chebyshev basis functions and nodes, and spline basis func­

tions and uniform nodes. These basis functions and nodes are also explained by

7The reader is referred to Schumaker (p. 101), Santos (p. 335), and Miranda and Fackler for 
examples and their discussion.
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M iranda and Fackler, Gerald and W heatly (Chapters 3 and 10), and Santos (p. 333). 

We illustrate these basis functions and nodes by using a type of Runge’s function 

F ( s )  = 1+7 (3L0  1}2 , where s € [—1,1]- Figure 5.1(a) plots the original function. In 

Figure 5.1(b), this function is approxim ated by Chebyshev polynomial basis functions 

coupled with Chebyshev nodes. In Figure 5.1(c), this function is approximated by 

linear spline basis functions coupled w ith uniform nodes. In both  cases, the number 

of nodes is 5. In Figures 5.2 (a) and (b), we use 9 nodes for approximation. For 9 

nodes, Figures 5.2(c) shows locations of nodes for Chebyshev and uniform (i.e. equally 

spaced) nodes. Chebyshev nodes are more concentrated at the corners. Chebyshev 

nodes are appropriately located to avoid oscillation since Chebyshev interpolation 

is for the whole domain of the interval. However, in the spline interpolation, the 

function is approxim ated by dividing the  domain in smaller intervals.

Note tha t, for bo th  cases, the figures show th a t the approxim ated functions im­

prove their accuracy as the number of nodes is increased from 5 to 9. When we 

compare 5.2(a) and 5.2(b), we find higher maximum absolute error in the spline in­

terpolation than  in the  Chebyshev interpolation. This can be seen on these graphs 

at values of s between 0.1 and 0.2. However, the spline interpolation performs better 

than  Chebyshev interpolation at other values in the domain.
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Figure 5.1: Approximation with 5 nodes
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Figure 5.2: Approximation with 9 nodes
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5.2 .2  O p tim iza tio n

When approxim ating the value function by the collocation methods, the optim al 

value function must be determined for each node using Bellman’s equation. A variety 

of methods axe available for numerical optimization, described in Miranda and Fack­

ler, and Judd  (1998, p. 93). The golden-section search and Nelder-Mead methods are 

derivative-free methods for finding a local optimum. These m ethods work for any con­

tinuous, bounded function defined on a finite interval. The Newton-Raphson m ethod 

is a faster m ethod for finding a local optimum. However, this method requires a twice 

differentiable function. Furthermore, this method only identifies a critical point in 

the function and does not make a distinction between a local maximum and a local 

minimum. This method requires second derivative information to determine whether 

the critical point is a local maximum or a local minimum. This method requires 

more search if we find, for example, a local m inim um  when we are searching a local 

maximum. Another problem with Newton-Raphson’s m ethod is that it may not con­

verge (Judd, 1998, p. 96). It is im portant to note th a t the above methods provide 

a local optimum, instead of a global optimum required for most problems including 

the model of the  study.

The grid search m ethod specifies a grid of points in the interval and finds the 

optimum from those points (Judd, 1998, p. 100). Though this method is slow, it is 

likely to  give a near global optimum, since the grid is specified for the entire range 

of the interval. Use of grid search method with the  collocation method is referred
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to as hybrid method by Fackler and M iranda, because this m ethod discretizes the 

control space while using continuous m ethod for approximating the value function. 

The hybrid m ethod is suitable for implementation in a  m atrix processing environment 

such as MATLAB or GAUSS (Fackler and Miranda). Discretization of the control 

space makes it possible to perform the optim ization step for all elements of sta te  set in 

a m atrix. In the present study, we use this method for maximization in the dynamic 

programming model.

5 .2 .3  In teg ra tio n

In Bellm an’s equation (3.9), the value function depends on the  next period state, 

s£+i. For each stochastic variable, the next period sta te  is a function of a random 

shock, which has a continuous density function. In models with a t least one stochastic 

state variable, the expected value function must be evaluated as part of dynamic 

programming procedure. Numerical integration is a practical approach for evaluating 

the expected value function.

M iranda and Fackler and Judd (1998, p. 251) describe a  variety of methods 

available for numerical integration. The Gaussian quadrature m ethod discretizes 

the continuous random variable to  approximate the integral of a continuous density 

function. This method efficiently chooses these discrete points and their weights for 

approxim ating the integral (Judd, 1998, p. 257). A version of this m ethod for normal 

random variables is called Gauss-Hermite quadrature, which is explained in Miranda
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and Fackler and Judd (1998, p. 261). From Chapter 4, the diagnostic tests indicate 

normal distribution of the error term  for each stochastic variable equation: gross 

return  per acre and farmland price. In the present study, we use Gauss-Hermite 

quadrature for evaluating the expected value function.

5.3 Accuracy Analysis

As noted in Section 3.4.1, solving a dynamic programming model requires the 

value function, which is a  function of continuous-state variables. As in most appli­

cations the dynamic programming problem lacks a closed-form solution, so the value 

function must be numerically approximated by computational methods. It is impor­

tan t to know how accurate is the solution by numerical approximation, and from 

given alternatives, which scheme is more accurate for solving a problem. It is also 

im portant to recognize the limitations of computer storage capacity and of execution 

time. As illustrated in previous section, using more nodes may yield more accurate 

results, however, it requires more computer storage capacity and execution time in 

solving a dynamic programming problem. These limitations are even more serious 

w ith large-scale models and are referred to  as the curse of dimensionality. Thus, there 

is a need to develop techniques for improving both accuracy and efficiency in solving 

large-scale dynamic programming problems.

The issue of accuracy in dynamic programming model is also addressed by John­

son et al., Santos, and Santos and Vigo-Aguiar. As noted in the literature, one
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method for checking accuracy is to  compare the solution with an actual closed-form 

solution. However, this m ethod cannot be applied in the absence of a closed-form 

solution. Another approach is to compare results from one method with results from 

a method assured to  be more reliable (Santos, p. 346). However, this approach can 

be misleading since both numerical methods have error (Judd, 1998, p. 563). In this 

section, we develop a test for accuracy analysis by Monte Carlo simulation. Using 

this test, we examine the accuracy of collocation methods in solving the investment 

portfolio problem and propose techniques for improving their accuracy.

5 .3 .1  A ccu racy  T est

The accuracy test is explained by using the farmland investment problem and 

can be used for any finite planning horizon continuous-state dynamic programming 

model. In this study, this test is used for checking accuracy of the collocation method, 

however, it can aiso be used for checking the accuracy of other methods such as 

discretization.

As discussed in Section 5.2.1, suppose we have chosen a type of basis function and 

method for selecting nodes as required to solve the dynamic programming model by 

the collocation method. In the investment problem, there are four sta te  variables, 

and suppose we have also chosen the number of nodes for each sta te  variable. Let 

N  =  n j= 1 A/j be the to ta l nodes where Nj are nodes for state j  =  1 ,2 ,3 ,4 .

For the accuracy analysis here, we assume a 20-year planning horizon. Following
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the  dynamic program m in g procedure, we approximate the  value function for each t
N

by Vt ( R , P , L , W )  Ci t< t> i (R ,P ,L ,W ) .  Having approxim ated the value function,
1 = 1

the optimal policy x*t for any state, R ,  P, L ,  W ,  can be found by solving:

max d ' t+i<l>i(Rt+i, P t + i , L t+ i , W t + l ) \ R t =  R , P t =  P ,  L t =  L , W t =  W]}
x  i = l

(5.3)

subject to the constraints of the farmland investment problem (2 .2 ).

Suppose we have a initial sta te  Rq, Pq, Lq, Wq. For this initial s ta te  at t =  0 we 

solve the above problem (5.3) using the approximated value function. This gives the 

optim al policy Xq and the maximum objective function a t th a t policy, V, for this 

initial state. We refer to V  as the estimated value function, since it is based on 

estimation by the collocation method.

The dynamic programing method, by using the value function, establishes that 

the optimal policy and its objective function take into account the  future decisions. 

By definition of the  value function of this problem, V  is the  expected utility of net 

term inal wealth for this initial state. To test the accuracy of the solution, we simulate 

the  objective function by the Monte Carlo method. For this initial state  in t = 0, 

we apply the optim al policy Xq derived using (5.3). Given this optim al policy, the 

s ta te  in next period depends on the random shocks. In the model we have error 

term s in each of two stochastic sta te  variable equations: gross retu rn  per acre, R t, 

and farmland price per acre, P t . These error terms have normal density f u n c t i o n s  

and their param eters are estim ated in Chapter 4. We draw a 20-year set of the error
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terms from these density functions. The optim al policy Xq and the error term  in the 

next period determine the state in period t =  1 . Then we find the optimal policy for 

period t =  1. Following this procedure to the end of the planning horizon, we find the 

states for each period. T hat is, this procedure gives a path  of states from the initial 

sta te  to the end of planning horizon state. Of our interest is the sta te  in period T  + 1 , 

R t+ i, Pt+i, T t + i , W t+ i , and we compute U (W r+i).

To compute E  [U (Wy+i)], we draw 500 trails of error terms, and follow the above 

procedure for each of 500 trials. Since there are 20 years, these will be 500 * 20 =  

10,000 sets of error term s for each stochastic variable: R t and Pt. From the above 

procedure, now we have 500 paths of states and 500 values of U ( W t + i ) .  The average 

of these values is the expected utility of net term inal wealth, E  [U (IVV+i)]- We refer 

to this as the expected simulated value function, denoted by E  [ V S i „ , ] .

For the accuracy analysis here, we choose 81 different initial states in period t =  0 

from the sta te  space . 8  For each initial state, we follow the above procedure and 

compute E  [ V s i m ] and V.

It is im portant to recognize that (5.3) has an approxim ated value function which is 

based on specification of the collocation method including the type of basis function, 

method for selecting nodes, and number of nodes. For accuracy analysis, we propose 

two tests. Our first test is for comparing alternative specifications (schemes) of the

collocation m ethod. Each scheme gives an optim al policy and the associated value

8Given the ranges of the state variables in Section 5.1, we choose Rq =  [320,420.520], Po =  
[1265,1580,1900], L 0 =  [800,1200,1600], W0 =  [1500000,3000000,4500000]. We make a grid of 81 
states by their Cartesian product.
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functions. We can compare alternative collocation schemes by determining which 

method gives a higher E  [ V s i m ] ,  since the objective function is to be maximized. This 

comparison provides the gain in the objective function from one scheme to another.

The second test of accuracy is to measure the absolute error in approximating the 

value function. For each initial state level, the absolute error in the value function is 

calculated by dividing the difference between the expected simulated value function 

and the estim ated value function by the expected simulated value function, then 

taking the absolute value:

E [ V sim] - V
Absolute Error =

£ [V sim]

The absolute error is calculated for each of 81 initial states. The maximum ab­

solute error is calculated as the maximum of the absolute error from these 81 initial 

states. The average absolute error is calculated as the mean for 81 initial states. 

Computation of errors in this way provides information on the error in the value 

function associated with a collocation method. For comparing alternative collocation 

schemes, we can also compare the error associated with each scheme.

In our experiments, we will perform both tests. We expect th a t the  smaller the 

absolute error in the value function, the higher the value of E  [Vsim] will be in the ob­

jective function. It is im portant to note th a t the second test provides the  information 

on how well the value function is approximated. The first test provides the gain in 

the objective function, no m atter how much error there is in the approximated value 

function.
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5.3 .2  S p ec ifica tio n  for E xp erim en ts

Chebyshev nodes are not evenly spaced, and their scheme does not assign the 

nodes in the  corners of the  range for interpolation. T he function approximated by 

interpolation may give poor approximation for extrapolation. To avoid extrapolation, 

we increase the range of each sta te  variable for Chebyshev nodes, so th a t the first 

and the last nodes are the  lower and upper bound of the range respectively. Uniform 

nodes are evenly spaced and include the corners of the range for interpolation. Spline 

interpolation gives good approximation with an odd num ber of nodes (Schumaker). 

Thus, we choose odd numbers, 3,5,7,9,..., for the num ber of nodes.

In the present study, we use the Gaussian quadrature m ethod of numerical inte­

gration. In the model, we have two stochastic state variables, R t and Pt. For each 

state we use 5 nodes for the  numerical integration. This gives 25 combinations with 

their probabilities.

All experiments for accuracy analysis are done for the  risk neutral case, 0 =  0, 

and for the value function in period t = 0 with a 20-year planning horizon. All other 

parameters are as specified in Chapter 4.

The dynamic programming model is programmed in MATLAB. For evaluating the 

basis functions and nodes for the collocation methods, and for numerical integration, 

we use MATLAB code developed by Miranda and Fackler. The model was run using 

MATLAB on a  Dell PC w ith 512 MB RAM and a 800 Mhz processor. The CPU time 

is measured in seconds.
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5 .3 .3  C h eb y sh ev  an d  Linear S p lin e

In this section we compare accuracy between (i) Chebyshev basis function and 

nodes and (ii) Unear spline basis function and uniform nodes. For all cases in this 

section we discretize the control space, X , in 81 levels to  find the optimal pohcy.

Table 5.1 presents the CPU time and absolute error for the coUocation with 

Chebyshev and linear spline methods. There are four sta te  variables in the model, 

R t, Pt , L t ,W t, so the value function has four dimensions. The first column of Table 

5.1 indicates the number of nodes in each dim ension. As we increase the number of 

nodes, the average and maximum absolute errors decrease for both Chebyshev and 

linear spfine coUocations. Note that the marginal advantage of increasing the num­

ber of nodes dechnes, as shown in Figure 5.3(a). However, the CPU time increases 

exponentially with increases in the number of nodes, as shown in Figure 5.3(b). This 

is because the model is multidimensional. For example, w ith 3 nodes in each dimen­

sion, the to ta l num ber of nodes is 34  =  81, and with 9 nodes in each dimension, the 

total number of nodes is 94 =  6561. Note tha t the value function estimation makes a 

good approxim ation with 5 nodes in each dimension, as the average error is around 

2  percent.

Table 5.2 presents the average (i.e. mean of 81 initial states) E  [ V S im ] for different 

numbers of nodes for Chebyshev and linear spUne methods. We note that as the 

number of nodes increases, average E  [Vsim] gets higher. Again note th a t the marginal 

advantage of increasing the number of nodes declines, as shown in Figure 5 .3 (c).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



67

Table 5.1: CPU Time and Absolute Error in Value Function

Chebyshev Linear SpUne
Nodes CPU Average Maximum CPU Average Maximum
in each Time Absolute Absolute Time Absolute Absolute

Dim. Error Error Error Error
(Seconds) (%) (%) (Seconds) (%) (%)

3 105 9.65 18.68 219 8.27 26.50
5 500 2.34 4.20 766 1.98 7.38
7 5,959 0.88 2.32 3,858 1.77 5.25
9 66,845 0.93 2.27 24,665 1.18 3.42

Table 5.2: Expected Simulated Value Function

ChebysheV Linear SpUne
Nodes Average Comparison with 9 Nodes Average Comparison with 9 Nodes
in each e \v s i,„] % Decrease % Frequency £ [ v sim] % Decrease % Frequency

Dim. (S106 ) in Average £ [ v sim] ($106) in Average £ [ v sim]
£ [ v sim] decreased £ [ v sim] decreased

3 10.038 0.26150 92.59 10.026 0.3823 98.77
5 10.054 0.11240 90.12 10.048 0.1609 82.72
7 10.065 0.00004 38.27 10.064 0.0058 53.09
9 10.065 ----- ----- 10.064 ----- ------

Also note that, for all cases, the maximum gain in the objective function is less 

th an  0.5 percent. For the Chebyshev approach, the average E  [Vsim] with 3 nodes 

is only 0.26150 percent less than  the average E  [Vsim] with 9 nodes. However, the 

frequency, calculated from 81 initial states, of lower E  [Vsini] from 9 to 3 nodes is 

92.59 percent. For the Unear spline approach, this frequency is 98.77. This indicate 

th a t the probabiUty of poor performance with 3 nodes, as compared to 9 nodes, is 

very high.

Table 5.3 compares the Chebyshev and Unear spline coUocation schemes. As noted 

above, with increase in the number of nodes, the CPU time increases exponentially.
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Table 5.3: Comparison of Chebychev and Linear Spline

Nodes in 
Each Dim.

Ratio of 
CPU Time 

Chebyshev/Spline

Ratio of 
Av. E[Vsini\ 

Chebyshev/Spline

Comparison of 
% Frequency £?[Vsim] increased with
Cheb. vs. Spline Spline vs. Cheb.

3 0.48 1.00126 62.96 37.04
5 0.65 1.00053 37.04 62.96
7 1.54 1.00C11 43.21 56.79
9 2.71 1.00005 59.26 40.74

However, the linear spline collocation takes much less tim e th an  Chebyshev collocation 

with 7 and 9 nodes . 9

As more nodes improve the accuracy, we compare the  results with 9 nodes for 

Chebyshev and linear spline collocations. From Table 5.1, we note tha t 9 nodes 

gives 0.93 percent error w ith Chebyshev collocation and 1.18 percent with linear 

spline collocation. However, the CPU time in Chebyshev collocation is 2.7 times the 

CPU time in linear spline collocation (Table 5.3). Furthermore, the gain in E  [VsilIl] 

with Chebyshev is only by the factor 1.00005, or 0.005 percent (Table 5.3). Thus 

for 9 nodes, the linear spline collocation may be a be tter choice than  Chebyshev 

collocation for this problem. The fourth column of the table shows percent frequency, 

calculated from 81 initial states, E  [Vsim] with Chebyshev is greater than  E  [Vsim] 

with linear spline. The last column of the table compares this frequency for Unear 

spline versus Chebyshev. The frequency percent indicates no clear-cut superiority of

either Chebyshev or linear spline.

9Miranda and Fackler indicate that this is due to the use of sparse function in MATLAB.
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The approxim ation with spline basis functions is made piecewise and has narrow 

supports, thus it avoids the typical oscillating behavior of polynomial interpolation 

(Santos, p. 338). The solution of the model with Chebyshev collocation indicates 

some unexpected behavior of the policy function. Considering this and the above 

accuracy analysis, we choose the linear spline approach for our analysis . 10

5 .3 .4  O p tim iza tio n  P ro ced u re

For the  accuracy analysis presented in the previous subsection, we discretized the 

control space, X , in 81 levels to find the optim al policy. In this section we introduce 

a two-stage grid search method. By this method, we first discretize the control space, 

X ,  in 41 levels to find the optimal policy. For the interval [400,2,000] of farmland 

acreage sta te  variable, L t, this discretizes the farmland purchase/sale control variable, 

x t , w ith a 40-acre increment. Given the optimal policy from the first stage, we find a 

new control space for the second stage optimization For the second stage the lower 

bound is the optim al policy minus 40 acres, and the upper bound is the optimal 

policy plus 40 acres. This new control space is determined such tha t it satifies the 

constraints of the  model. This control space is again discretized in 21 levels. The 

two-stage m ethod of optimization is applied with linear spline basis functions and 

uniform nodes.

10As specified in Section 5.3.2, the accuracy results are presented for the risk neutral case (6 =  0). 
The preliminary results of the risk averse case (9 =  1) indicate that linear spline is much superior 
to Chebyshev by every criterion. As compared to Chebyshev, the linear spline collocation gives a 
higher average £[V»jm], has less absolute error in the value function, and takes less CPU time.
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Table 5 . 4  presents the CPU time, absolute error, and the average E  [Vsim] for the 

two stage optimization with the linear spline method. In this case also, as we increase 

the num ber of nodes, the average and maximum absolute errors decrease and E  [Vs;In] 

gets higher.

Comparison between the one-stage and the two stage optimization methods is 

presented in Table 5.5. The table shows th a t the CPU time is reduced to about 

77 percent with the two-stage method, as compared to the one-stage method. The 

average E  [ V s i , „ ]  for the two-stage method is slightly higher than  tha t for the one- 

stage method, as their ratio is greater th an  one, shown in Table 5.5. Furthermore, 

the frequency percent (defined in the previous subsection) also indicates a higher 

probability of better performance with the two-stage method than  th a t with the one- 

stage method. The average absolute error for both methods is identical, which can 

be noted by comparing Table 5.4 and Table 5.1 for the linear spline case. These 

results show that the two-stage method is more efficient, as it takes less CPU time 

and performs slightly better than  one-stage method. Thus we use two-stage with 

linear spline for our analysis.

5 .3 .5  N o d e  C on figu ration

The accuracy analysis presented in the above subsections shows tha t accuracy in­

creases as we increase the number of nodes, however this comes at a  cost of increased 

CPU time. Despite advances in computer technology, solving a large-scale multidi-
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Table 5.4: Two-stage Optim ization with Linear Spline

Nodes 
in each 

Dim.

CPU
Time

(Seconds)

Average
Absolute

Error
(%)

Maximum
Absolute

Error

(%)

Average
£ [ v sim]

(S106)
3 165 8.27 26.5 10.026
5 584 1.98 7.38 10,048
7 3,006 1.77 5.24 10.064
9 18,946 1.18 3.42 10.064

Table 5.5: Comparison of Two-stage and One-stage Optimization with Linear Spline
Nodes in Ratio of Ratio of Comparison of

Each Dim. CPU Time Av. £[V sim] % Frequency £ [V sim] increased
2-stage/ 1-stage 2-stage/ 1-stage 2-stage vs. 1-stage 1-stage vs. 2-stage

3 0.76 1.00001 70.07 29.93
5 0.76 1.00001 60.49 39.51
7 0.78 1.00001 71.60 28.40
9 0.77 1.00001 64.20 35.80

mensional dynamic programming model can only be done by limiting the number 

of nodes. The farmland investment problem has four sta te  variables ( Rt , Pt .L t ,W t ) 

requiring specification of the number of nodes for each sta te  variable. We note that 

CPU tim e increases exponentially when we increase number of nodes in each dimen­

sion. Since this is a  multidimensional approximation, it is possible th a t some state 

variables may need more nodes and other sta te  variables may need less nodes. In this 

subsection we perform an accuracy analysis for alternative node configurations. We 

use two-stage optimization with linear spline collocation.

Previous results and results in Table 5.4 show th a t the model performs poorly with 

3 nodes. Thus, for node configurations we s ta r t comparing 5 and 9 nodes. Rather 

than  increasing nodes in every dimension, we first increase nodes in each dimension
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separately. Table 5.4 shows tha t the average E  [Vsim] is 10.048 * 106  when each sta te  

variable has 5 nodes (5,5,5,5). The following table shows the number of nodes for 

each s ta te  variable ordered by (R t , Pt, Lt, Wt) with their average E  [Vsim]:

Nodes: (9,5,5,5) (5,9,5,5) (5,5,9,5) (5,5,5,9)
Average £ [V sim] (106) : 10.052 10.053 10.049 10.062

The results show th a t average E  [Vsim] improves the most, from 10.048* 106  to  10.062* 

106, when we increase the number of nodes for the sta te  variable net wealth, W t, from 

5 to 9. The results also show that the average E  [ V s i n i ] improves the least when we 

increase number of nodes for the sta te  variable farmland acreage, L t , from 5 to 9. 

Thus this indicates the marginal benefit of increasing nodes is low for L t and high for 

Wt.

Given these results, we start with 9 nodes in Wt and 5 nodes in the other state  

variables (5,5,5,9), where the average E  [ V s j m ] is 10.062 * 106, from the above table. 

Now we experiment of increasing number of nodes for R t,P t ,L t. W hen we increase 

the nodes of L t from 5 to 9, (5,5,9,9), the average E  [ V s i r i l ] remains unchanged, i.e. 

10.062 * 106. However, for each R t, (9,5,5,9), and Pt, (5,9,5,9), the average £ [V silll] 

improves from 10.062 * 106  to  10.065 * 106. Also, the average is 10.065 * 106

for (7,7,5,9).

It is im portant to note th a t the to ta l number of nodes is equal to the product of 

number of nodes for each state  variable (N  =  Ni  * N 2 * A 3  * A/4 ). The CPU time 

increases as N  increases. For node configuration (7,7,5,9), N  =  2,205. If we increase
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two nodes of L t, (7,7,7,9), N  =  3,087. If we increase two nodes of W t , (7,7,5,11), 

N  = 2 ,695, which is much less than  3,087.

Table 5.6 presents the CPU time, absolute error, and the average E  [ V s i n i ]  with 

two stage optimization and the linear spline method for different number of nodes for 

Wt- In this case also, as we increase the number of nodes, the average and maximum 

absolute errors decrease and average E  [ V S i m ]  gets slightly higher. The results are 

compared w ith increasing number of nodes in every dimension in Figure 5.4. Figure 

5.4(a) plots the average absolute error as a function of time. The figure shows that 

changing the node configuration gives less average absolute error for a given CPU 

time. Similarly, Figure 5.4(b) shows a higher average E  [ V H i m ] with changed node 

configuration for a given CPU time.

From Table 5.6, we have results with nodes (7,7,5,21), where average E  [Vsim] is 

10.067* 106, the maximum absolute error is 1.7 percent, and the average absolute error 

is 0.6 percent. W ithout changing the node configuration, we have results for (9 ,9 ,9 ,9) 

in Table 5.4, where average E  [ V S i m ] is 10.064 * 1 0 6, the maximum absolute error is 

3.42 percent, and the average absolute error is 1.18 percent. Thus, chang in g  the node 

configuration yields more accurate approximation by each criterion. Furthermore, it 

is even more efficient, as the CPU time is 7,899 seconds with nodes (7 ,7 ,5 ,21), which 

is much less than  with nodes (9 ,9 ,9 ,9 ), where CPU time is 18,946. This is due to the 

fact that the multiplication of number by increasing each number becomes a bigger 

number: 9 * 9 * 9 * 9  =  6 ,561, whereas, 7 * 7 * 5 *  21 =  5,145.
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Table 5.6: Nodes Configuration with Two-stage Linear Spline

Spline Two Stage
Nodes CPU Average Maximum Average
in each Time Abs. Error Abs. Error £ [V sim]
Dim. (Seconds) (%) (%) ($106)
7,7,5,9 2,435 1.10 3.28 10.065

7,7,5,13 3,877 0.73 2.28 10.067
7,7,5,17 5,568 0.63 1.84 10.067
7,7,5,21 7,899 0.60 1.70 10.067

These results show that a change in node configuration can improve the perfor­

mance of approximation with reduced error and less CPU time. This is because the 

multidimensional function may be related differently with its variables, some vari­

ables may require only few nodes and other variables may require more nodes to 

approximate it for a desired accuracy level.

From the accuracy analysis, we can search for the best specification for approxi­

m ation of a problem. Furthermore, these accuracy results show the robustness of the 

approximated function.

For farmland investment model results in the next chapter, we use the two-stage 

with the linear spline and nodes (7 ,7 ,5 ,21). As in the accuracy analysis, for the 

model results we also use 41 control levels for the first stage and 21 control levels for 

the second stage of the optimization. Also for numerical integration, we use 5 nodes 

for each of the two stochastic sta te  variables, which gives 25 combinations with their 

probabilities.
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Figure 5.4: Node configuration
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Chapter 6 

Results

This chapter presents results from the farmland investment model specified in 

Chapter 2. F irst we present the model results for the risk neutral case. Next, for 

comparative dynamics, we present results after changes in the planning horizon, in­

terest rate, variances of stochastic shocks, and relative risk aversion.

Before presenting the results, we rewrite the farmland investment problem with 

specification of the objective function and stochastic equations and with a summary 

of model param eters, based on Chapters 4 and 5.

The farm land investment model has four state variables: gross return per acre 

from crops, i?t, farmland price per acre, Pt, farmland acreage, L t , and net wealth, 

W t. The model has one control variable, x£, which is number of acres of farmland 

purchased or sold. A positive value of x t represents purchase, while a negative value 

represents sale of farmland.
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The farmland investment problem specified in Chapter 2 can be w ritten as : 1

max E q \u  (Wt+i)1 (6-1)
{*dr=o L 1

subject to :

l n P t + i  =  P o  +  P i  Ih R t  +  S'lt+ii

ln P t+i =  ao +  ai In Pt +  <22 In R t -+- £2 ,t+i >

Lt+i =  L t + x t,

Wt+i =  ( 1  + r)[{W t -  (Pt + k -  tcs) * L t} -  (Pt + k + tc) * x t -  c*  L t+i\

+Rt+ 1  * Lt+i +  (Pt-t-i +  K ~  tca) * Lt+1 , 

x t £  X u for t =  0,1 ,2 , (Ro, P0, L 0,W 0) are given,

where

rb if [{Wt — (Pt + k, — tcs) * L t) — (Pt + k + tc) * x t — c * L t+i] > 0 

r/ otherwise,
r  =

tc  =  <
tCp if x t > 0

—tcs otherwise.
The objective in the model is to maximize the expected utility of terminal net 

wealth. For the risk neutral case, when 0 = 0, the utility function U (W ) = IIq" " 1 =  

W  — 1, which is defined for all W . Its strategically equivalent form is U (W ) =  W , in 

which case the objective is to maximize expected terminal net wealth. For the risk 

averse case, 9 >  0, the utility function, U (W ) =  — , is specified only for W  > 0.

4  +  1 is time index used as a subscript in all variables including where is random shock
in state equation of R t .
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Furthermore, for 0 =  1 , U (W ) =  =  ln(W ) is defined only for W  > 0 .  To

define preferences for all W  including W  < 0, as described in C hapter 5 on page 51, 

we have U (W ) =  if W  ^  b, and U (W ) = f  if W  < 6 , where b > 0.

The above specification of the state  equations for R t and Pt, their estimates, 

and other param eters are described in Chapter 4. Estim ates for R t equation are 

/ ? 0  =  1.052028, =  0.82197, and error term  £i ~  7V(0,0.033155), denoting a normal

distribution with its mean and variance. Estimates for Pt equation are ao = 0.048655, 

a x =  0.884465, a 2  =  0.134044, and error term  £ 2  ~  Af(0,0.014619). Bo is the expec­

tation operator over the random shocks £i,t+i, £2,1+1- The interest rate  on borrowing 

is rb = 0.06. On lending (riskless investment), it is r/ =  0.03. The price of machinery 

and equipment per acre is k  =  $300; the transaction cost on farm land purchase per 

acre is tCp =  0 . 0 1  * Pt\ and the transaction cost on selling farm land and machinery 

and equipment per acre is tcs =  0.06 *Pt + 0.07*k. The costs of production per acre is 

c =  $247. As described in Section 2.1, the control space X t is defined by a set of four 

constraints including a borrowing constraint, where the maximum debt-to-asset ratio 

allowed for purchasing farmland is p =  0.7. To solve the above problem, Chapter 5 

describes implementation of collocation method of dynamic programming.

Dynamics of the four state  variables are given by the sta te  equations of the model. 

Gross return  and farmland price per acre, R t and Pt, are stochastic and are unaffected 

by the control variable x t because this is a firm level decision model where returns 

and prices cannot be affected by an individual firm’s action.
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Net wealth, W t, is the  sum of liquid assets and the net sale-value of farm assets, 

which is equal to  the value of farmland and the associated farm machinery and equip­

ment minus the transaction costs of selling them. The difference between net wealth 

and the net sale-value of farm assets determines liquid assets, which can be negative 

implying debt financing or positive implying riskless investment. Though the invest­

ment decision is the  num ber of acres purchased or sold, this decision implicitly also 

determines the am ount of either debt financing or investment in the riskless asset. 

The dynamics of farm land acreage, L t, is determined through the purchase and sale 

decision x t. This decision along with values of the  two stochastic variables, R t and 

P£, determines the dynamics of net wealth, Wt.

The dynamics of gross return  per acre from crops, R t, and farmland price, Pt, are 

given by their respective sta te  equations. Note th a t R t and Pt follow mean reverting 

Markovian stochastic processes. At the beginning of each year, when the investment 

decision is made, these sta te  equations are the basis for forecasts of the d is tr ib u t io n  

of the gross return  and farmland price in next period, given current gross return and 

farmland price.

There are two im portant properties of these processes, which are illustrated here 

for the gross return  equation. First, the forecasted expected gross return is increasing 

in the current gross return , as the slope coefficient f31 is positive. Second, in the long 

rim, the expected crop return  approaches the long-run mean, regardless of the current 

return, and is therefore referred to as a mean reverting process. The long-run mean of
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the gross return  is $390 per acre. As described on page 33, if the current gross return 

is $390, the expected gross return in the next period is $390. If the current gross 

return  is greater than $390, say R t =  $450, the expected gross return in next period 

is greater than  $390 but less than  $450. Similarly, when the current gross return is 

less than  $390, the expected gross return  in next period is less than $390 but greater 

the current return.

The expected farmland price depends on both the current farmland price and the 

current gross returns. It is increasing in the current farmland price and the current 

gross return. Farmland price also follows a mean reverting process with a long-run 

mean of $1,500 per acre.

As our analysis is at the level of the individual farm firm, the results are presented 

as a behavior of an individual firm solving the above problem in the given economic 

environment. The model results can also be analyzed to compare the optimal invest­

ment decision of farms with different wealth levels, planning horizon, riskiness, or risk 

preferences.

6.1 Results for Risk Neutral Case

This section presents results of the model for the risk neutral case, 9 = 0, and 

for a 2 0 -year planning horizon, where decisions are made at the beginning of each 

year t = 0 , 1 ,..., 19. At any time t the farm manager can choose the number of 

acres to  purchase or sell, subject to constraints based on current wealth and land
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ownership. In this section, we first present the optimal investment policy function at 

time t =  0. Next, we present the stochastic dynamic path, which examines how the 

process evolves over time starting from some initial state.

6 .1 .1  O p tim al In vestm en t P o licy  F u n ction

The optimal investment policy is a function of current states: gross return, R t, 

farmland price, Pt, farmland acres, L t , and net wealth, Wt. Figure 6.1(a) presents 

a graph of the optimal farmland investment policy, x*, as a function of farmland 

price and the gross return, (Pt , R t), for L t =  600 and W t = $300,000 at tim e t =  0. 

The optimal policy is also plotted in a two dimensional graph as a function of only 

farmland price for the gross returns of $350 and $450 in Figure 6.1(b). In this figure, 

when R t =  450, the optimal investment policy is to buy 203 acres at the farmland 

price Pt =  $950. The optimal policy, x*, decreases as Pt increases until Pt reaches 

$1480, where x* =  0. This remains optimal up to Pt =  $2,075. For Pt > 2,075,

is negative and nonincreasing. This shows that the optimal policy function is 

nonincreasing in Pt for given R t. These graphs also show that the optim al policy 

function is nondecreasing in R t for given Pt. For Pt =  $950, the optimal policy is 

to buy 203 acres for all R t ranging from $350 to $450. For Pt =  $1200, the o p tim al 

policy is x* =  0 for R t from $350 to  $380. For R t > 380, x*t is positive and increases 

in R t. The optimal policy is to buy 89 acres for R t ranging from $400 to $450.
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Figure 6 . 1 : Optimal farm land investment policy, x j, as a function of farmland price 
and the gross return, (Pt , R t ),  for L t =  600 and W t =  300,000.
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The optim al investment function can be divided into three categories: positive 

investment (x* >  0 ), zero investment {x*t =  0 ), and negative investment (x* < 0 ). 

A positive investment represents a decision to  pay the partially irreversible invest­

ment cost and, in return, acquire an asset whose value can fluctuate. The rate of 

return  on th a t asset also fluctuates over time. The optimal investment function is 

nonincreasing in farmland price because farmland price, along with farm machinery 

and equipment costs and transaction costs, determines the investment cost per acre. 

It is nondecreasing in the gross return  because the forecasted expected gross return 

is increasing in the current gross return. The higher current gross return  implies a 

higher stream  of future expected gross returns, though both return  stream s converge 

to the  long-run mean. Thus, the optim al investment policy depends on investment 

costs and the  future stream  of returns. The optimal policy also considers the sale of 

some or all of current farmland, and it depends on the current state.

For positive and negative investments, the investor chooses not only the purchase 

or sale decision, but also the optimal number of acres to purchase or sell. The optimal 

investment policy function takes into account future decisions and the flexibility of 

the option to  wait. In addition to positive and negative investments, xj =  0 is optimal 

over a  range of state  variable values, which is referred to as the range of inaction. 

Figure 6 . 1 (b) shows a range of inaction from Pt =  $1,480 to $2,075 when R t = $450. 

The range of inaction for R t = $350 is from Pt =  $1,040 to $1,415. Figure 6 .1 (a) 

shows the ranges of inaction for additional values of R t ranging from $350 to  $450.
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There are three causes for the range of inaction. First, there are transaction costs 

on buying or selling farmland. The range of inaction encompasses the states where 

it is not profitable either to purchase or to  sell farmland. For a given value of Pt, the 

effective farmland price with the selling transaction cost is 0.94 * Pt , which is lower 

than  Pt. The effective price with buying transaction cost is 1.01 * Pt, which is greater 

than  Pt. Thus there is a gap between the effective purchasing and selling price. In 

the range of inaction, the effective price is too high to  purchase and too low to sell 

farmland at this time period. Similar to these costs, the second cause of the range 

of inaction is the transaction cost on selling farm machinery and equipment, which 

is associated with the farmland investment decision. Third, there is a constraint 

on buying farmland through the debt-to-asset ratio borrowing constraint. When this 

constraint is binding, the investor is not allowed to purchase farmland due to financial 

constraints. However, the investor can choose to sell farmland or do nothing. Thus, 

the optimal decision can be to do nothing for a range of states when this constraint 

is binding.

In Figure 6 .1 (b), the range of inaction for R t = $350 is from Pt =  $1,040 to 

$1,415, an interval of $375. The range of inaction for R t = $450 is from Pt = $1,480 

to 2,075, an interval of $595. Figure 6.1 shows that the size of the  range of inaction 

increases as the gross return increases. This is due to the fact th a t the  farm m an ager  

chooses not to sell when the gross returns are higher. From the buying side, actions 

are restricted by the availability of finances to buy farmland.
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As compared to  Figure 6.1, Wt replaces Rt in Figure 6.2. Figure 6.2(a) presents a 

graph of the optim al farmland investment policy, i j ,  as a  function of farmland price 

and net wealth, (Pt,W t), for L t = 600 and R t = 390. The optim al policy is also 

plotted in a two dimensional graph as a function of only farmland price, Pt, for net 

wealth levels of $100,000 and $1,900,000 in Figure 6.2(b). These graphs show that 

the optimal investment function is nonincreasing in Pt and nondecreasing in Wt. As 

described above, the  optimal investment policy depends on the investment costs and 

future returns. It is nonincreasing in farm land price because farmland price deter­

mines the investment cost per acre. The optimal investment policy is nondecreasing 

in Wt because of the lower opportunity cost of finances with a higher wealth level. 

This is due to the difference in interest rate on borrowing and lending. In addition, 

a wealthier farmer has access to more funds because the borrowing constraint due to 

the restriction on the debt to asset ratio is less binding.

As can be seen in Figure 6.2, for a given gross return, the length of the range 

of inaction decreases as Wt increases. This is because a wealthier farmer has access 

to  more funds. Furthermore, the manager faces lower financial risk, such as risk of 

bankruptcy, with a higher wealth level.

In Figures 6.1 and 6.2, there is also a range of selling 200 acres. Given Lt =  600, 

the farmland acreage after selling 200 acres is 400 acres, which is the m inim um  acreage 

required to stay in farming. In Figure 6 .1 (b ), x* =  —200 from Pt =  $ 2 ,0 9 0  to $ 2 ,2 1 5  

for Rt =  $450, and from Pt =  $ 1 ,450  to $ 2 ,2 1 5  for R t = $350. Similarly, we have
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Figure 6.2: Optimal farmland investment policy, xj, as a function of farmland price 
and net wealth, (Pt , Wt), for Lt =  600 and R t =  390.
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ranges of staying in farming for levels of Wt in Figure 6.2. There are two reasons 

a ttribu ted  to this behavior. F irst, the farm manager wants to  keep the option open 

to remain in the farm in g . Second, the farm manager cannot choose farmland acreage 

between 0 and 400.

The dashed line of Figure 6.2(b) shows that when the farm land price is $2,200 

or higher, the optimal investment policy is to sell all land for W t =  $ 1 0 0 , 0 0 0  and 

R t =  $390. The manager chooses to sell all land to avoid bankruptcy risk and 

considering the profitability of farmland investment.

Figures 6.1 and 6.2 show how the optimal policy depends on the current states. 

Thus the optimal portfolio of farmland and liquid assets or debt financing depends 

on investment costs and expectations about the future stream  of returns based on 

information from current states. The optimal portfolio also takes into account the 

possibility of adjusting the portfolio in the future. To study the dynamic behavior, 

the next section presents transitional dynamics.

6 .1 .2  T ransitional D y n a m ics

Analysis of transitional dynamics examines how variables in the model evolve 

along the  transition path  starting  from some initial state. For a deterministic problem, 

it describes an exact path  for a given initial state level. However, for a stochastic 

problem, it provides distributions of the variables along the path. The expected path 

only provides an incomplete sum m ary information about the distributions of the state
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variable levels along the time path. However, the expected pa th  can also be analyzed 

for comparative dynamics, such as comparing the overall difference in paths due to 

changes in the initial sta te  or param eters of the model.

It is im portant to note th a t the optimal policy depends on the sta te  in each period 

of time, as required under the Principle of Optimality sta ted  on page 22. When at 

least one variable is stochastic, the optimal policy can be determined for the initial 

state, but for each of the remaining periods the optimal policy is a contingency plan. 

These contingency plans depend on the state, which will be known only after the 

realization of shocks in the stochastic variables.

Suppose the farm manager’s initial state at time t =  0 is: gross return R q =  $390. 

farmland price Pq = $1,500, farmland acreage L 0 = 600, and net wealth W0 = 

$300,000. The optimal policy at this sta te  is Xq =  0. This says th a t farmland at time 

t = I, L i, will also be 600 acres. But, R x and Pi are stochastic and have distributions 

th a t are conditional on the current state. Since Wi depends on R\ and Pi, there is 

also a distribution of W \. The optimal policy at time t =  1  depends on the state at 

time t  = 1, which will only be known at time t = 1. Thus, there are infinitely many 

possible paths when stochastic variables have continuous distributions.

To explore the dynamic nature of the process over time, we use Monte Carlo

simulation methods. We draw 500 trials for each year, which will be 500*20 =  10,000

sets of error terms for each of the two stochastic variables R t and Pt.2 Using these

2These sets of error terms axe the same as used for accuracy analysis in the last chapter.
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error term s and following the  optim al policy for each sta te  in each tim e period yields 

500 paths.

Figure 6.3 presents histograms of Wt for years t =  1 , 5 and 10, given the initial 

sta te  at time t =  0 of Ro = $390, Pq =  $1,500, L q =  600, W q =  $300,000. These 

histograms describe the  distributions of W t , and describe the cumulative effect of 

uncertainty and the  optim al policy. There is a zero probability of bankruptcy in year 

1, as W t in Figure 6.3(a) is always positive. However, Figures 6.3(b) and 6.3(c) show 

the possibility of negative net wealth in years 5 and 10, the result of bankruptcy. On 

positive side, it is also possible to accumulate considerable amount of net wealth over 

time.

Figure 6.4 presents histograms of L t for years t = 1 , 5 and 1 0 . As noted above, 

the optim al policy in period 0  is x \  =  0 , the farmland in year 1  is unchanged and is 

600 acres. The optim al policy in the  remaining periods depends on the state. Besides 

bankruptcy, the farm manager can also choose to  sell all land. The probability of 

exiting farming, either by bankruptcy or choice, by year 1 0  is shown at L  =  0  in the 

Figure 6.4(c). The figure shows th a t the distribution of farm land acreage is bimodal, 

with 0.43 probability of 400-499 acres and 0.18 probability of 2000 acres.

Table 6.1 presents summary statistics of simulation results for each of 10 years. 

The fourth column of the table shows th a t the  probability of bankruptcy by year 10 

is 0.036, which is also illustrated by the histogram  with negative net wealth in 6.3(c). 

The sixth column of Table 6.1 shows th a t the  probability of exiting farming, either
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Table 6.1: Simulation Results of Expected P a th  and Probabilities

Expected P a th  of Probability of Sell All by If still farming

Year
t

Net
Wealth

w t

Farmland
acres
L t

Bank­
ruptcy

Choice Bankrupty 
+  Choice

Farmland
acres
L t

Prob.
, .  LA 
l <  TK 
< -0 .7

0 300,000 600 ---- ---- ---- 600 -0.70 ----
1 346,724 600 0 0 0 600 -0.67 0.36
2 399,337 568 0 0 0 571 -0.60 0.20
3 449,372 588 0.004 0.002 0.006 594 -0.57 0.16
4 520,234 631 0.008 0.006 0.014 642 -0.53 0.13
5 603,958 697 0.012 0.008 0.020 715 -0.51 0.13
6 689,042 761 0.014 0.022 0.036 792 -0.48 0.15
7 785,165 811 0.022 0.028 0.050 854 -0.44 0.15
8 892,488 831 0.028 0.036 0.064 891 -0.38 0.12
9 998,480 851 0.032 0.048 0.080 927 -0.30 0.10
10 1123,020 880 0.036 0.048 0.084 963 -0.22 0.10

by bankruptcy or choice, by year 1 0  is 0.08, which is also illustrated by the histogram 

at 0 farmland acreage in Figure 6.4(c).

As simulation results provide 500 paths, the expected path  can be computed by 

taking the average for each year. The second and th ird  columns of Table 6 . 1  provide 

expected paths of W t and L t respectively. The results show th a t expected farmland 

acreage is 880 acres in year 10, given the  initial farmland 600 acres. From the policy 

analysis, we found th a t a farmer with higher net wealth purchases more acres of 

farmland. The growth in expected farmland is due to  growth in expected net wealth 

over time.

Net wealth, W t, is the sum of liquid assets and the after-sale net value of farm 

assets, including farm land and associated farm machinery and equipment. Thus,
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liquid assets can be calculated for each state level as W t minus the  after-sale net value 

of farm assets. Positive liquid assets represent riskless investment in this model, while 

negative liquid assets imply debt financing. Table 6.1 also shows the liquid asset to 

farm asset ratio (LA/FA) in the eighth column. At the initial sta te  a t t =  0, LA/FA 

is —0.7, which implies a 0.7 debt-to-asset ratio. T he results show th a t if the  manager 

stays in farming, the  mean debt-to-asset ratio is reduced from 0.7 to 0.22 in 10 years. 

The tab le  also presents the expected farmland acreage and the probability of the debt 

to asset ratio  being greater than  0.7 and less th an  1 if the manager stays in farming. 

These exclude the farms th a t exit farming by bankruptcy or choice. As expected 

their expected farmland is higher than overall expected farmland presented in the 

th ird  column. As net wealth grows over time, the results in the  last column of the 

table show a reduction in the probability of a debt to asset ratio greater than  0.7 or 

less th an  1 .

Effect of Initial State

The above analysis of transitional dynamics was described by specifying an initial 

sta te  a t tim e t =  0 for each sta te  variable. In this section, we investigate how the 

transition  pa th  is affected by changes in the initial sta te  of net wealth and farmland 

acreage.

Figure 6.5 presents the expected paths of farm land acreage with three different 

initial net wealth levels: W q =  $300,000, $700,000, and $1,000,000, while keeping
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Figure 6.5: Expected paths of farmland acreage with different initial net wealth levels 
(Wo)

the initial state of the remaining state variables at R q =  $390, P q =  $1,500, L0 =  600. 

The optim al investment policy at time t  = 0 is Xq =  0 for all three initial states of 

net wealth, thus farmland at time t =  1 remains 600 acres. For given current state of 

Ro and Pq, there are distributions of their states for t > 1 . Thus optimal investment 

policy for t > 1 depends on the state at th a t time, and Figure 6.5 shows the expected 

value of farmland acreage. The figure shows that, with a higher initial net wealth level, 

expected farmland acreage starts growing faster at t =  1  and has higher expected level 

along the  transition path . This is because a farmer with a higher net wealth has more 

farmland acreage in the  portfolio. Since the initial farmland acreage is identical in 

all three cases, the farmer with higher initial net wealth grows faster to  adjust the 

portfolio.

Next we analyze transitional dynamic paths with a fixed initial net wealth level 

but w ith different initial farmland acreage to explore adjustm ent in the portfolio by
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farmland purchase or sale decision. Figure 6 .6 (a) presents expected paths of farmland 

acreage w ith three different initial farm land acreage, L q =  400, 600, and 800, while 

keeping the  initial state of the remaining s ta te  variables at R o  =  $390, P q = $1,500, 

Wq =  $700,000. Figures 6 .6 (b), (c), and (d) present distributions of liquid asset to 

farm asset ratio (LA/FA) in year 10 for initial farmland acreage L q =  400, 600, and 

800 respectively. Figure 6 .6 (a) shows th a t, with a lower initial farmland, expected 

farmland acreage starts growing faster to adjust the portfolio. Since the initial net 

wealth level is identical in all three cases, the figure shows th a t expected farmland 

acreage converges along the path.

It is im portant to note that the investment policy analysis presented in Section 

6.1.1 represents short-term portfolio adjustm ents. For given gross return and farm­

land price, wealth is allocated between farmland investment and liquid assets. When 

farmland investment is more profitable, a higher farmland investment is possible with 

debt financing. When farmland investment is not profitable a t current gross returns 

and farm land price, the investor would not purchase additional land or may even sell 

farmland.

Following the optimal policy in each year gives the transition path. Figure 6 .6 (a) 

shows th a t adjustment in the expected farm land acreage occurs up to  year 6 , after 

which it converges to the level for the long-term portfolio. This can also be seen in 

distributions of LA/FA in year 10 presented in Figures 6 .6 (b), (c), and (d). These 

figures show a similar distribution for each case.
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Table 6.2: Expected Paths of Farmland, Net Wealth, and  Liquid Asset to Farm Asset 
Ratio for Different Initial Farmland Acreage

Year t
L0 =  400 L q =  600 L0 = 800

Lt W t LA
fa L t w t LA

FA L t Wt LA
FA

0 400 700,000 0.04 600 700,000 -0.31 800 700,000 -0.48
1 400 761,149 0 . 1 2 600 770,724 -0.25 800 780,299 -0.43
2 715 835,421 -0 . 1 2 817 856,523 -0.28 916 877,866 -0.36
3 891 932,802 -0.17 946 961,397 -0.24 997 990,357 -0.27
4 1,005 1,076,180 -0.17 1,037 1,108,337 -0.19 1,065 1,140,986 -0 . 2 0

5 1,138 1,230,954 -0.19 1160 1,267,104 -0.19 1,174 1,303,955 -0.19
6 1,180 1,389,300 -0.13 1189 1,429,520 -0 . 1 1 1,196 1,469,669 -0 . 1 0

7 1,214 1,558,151 -0.08 1 2 2 0 1,600,281 -0.06 1,226 1,642,741 -0.04
8 1,233 1,737,664 -0 . 0 0 1241 1,782,041 0 . 0 2 1,249 1,826,326 0.03
9 1,250 1,924,549 0 . 1 0 1261 1,972,076 0 . 1 2 1,270 2,017,622 0.14

1 0 1,271 2,130,410 0 . 2 2 1280 2,180,861 0.25 1,288 2,228,640 0.27

Table 6.2 presents expected paths of farmland, net wealth, and the liquid asset 

to farm asset ratio for each case of initial farmland acreage. Though there is a 

long-term portfolio for a given wealth level, as seen in Figure 6 .6 , Table 6.2 shows a 

slightly higher expected farmland in year 1 0  with a higher initial farmland acreage. 

A farm with initial farmland of 400 acres has 1,271 acres in year 10, and a farm with 

initial farmland of 600 acres has 1,280 acres in year 10. Besides time as a factor of 

adjustm ent in the portfolio, the difference is also due to a difference in net wealth 

level. A farm with initial farmland of 400 acres has expected net wealth $2,130,410 

in year 1 0 , and a farm w ith initial farmland of 600 acres has expected net wealth 

$2,180,861 in year 10. The difference in the net wealth is due to transaction costs 

on the purchase of farmland and the rate of return in farm land investment. As noted 

above, expected farmland acreage grows faster with a lower initial farmland for the
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long-term adjustment. A farm with 400 initial farmland acreage has to purchase more 

farmland to get to  expected farmland of 1,271 in year 10, as compared to  a farm that 

grows from initial farmland of 600 acres to 1,280 expected farmland acreage in year 

10. As there is a transaction cost on farm land purchases, the farm with 400 initial 

farmland acreage would result in a lower expected wealth level.

In addition, the difference in net wealth is due to the rate of return on farmland 

investment. Though initial net wealth is identical for each case, a farm with a lower 

initial farmland level has a lower rate of return on wealth due to less investment 

in farmland during the adjustment to the long-term portfolio. This can be seen in 

Table 6.2 from the growth in net wealth from year 0 to year 1 . W hen farmland is 

400 acres in year 0, expected net wealth grows from 700,000 to 761,149, however, 

when farmland is 600 acres in year 0, the expected net wealth grows from 700,000 to 

770,724.

Table 6.2 also presents expected values for the liquid asset to farm asset ratio 

(LA/FA) for each year. Its value in year 0 is 0.04, -0.31, and -0.48 for initial farmland 

of 400, 600, and 800 acres respectively. The expected value of LA/FA in 10 years 

converges to similar levels: 0.22, 0.25, and 0.27 for initial farmland of 400, 600, and 

800 acres respectively. Like net wealth, we also find a slightly higher expected LA/FA 

with a  higher initial farmland.
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6 .1 .3  C om p arative  D yn am ics

In this section we investigate how optimal portfolios are affected by changes in 

param eters of the model, such as the length of the planning horizon, interest rate, 

variances of stochastic shocks, and risk aversion . 3  The effect of changes in parameters 

of the model is analyzed for the optimal policy function and transitional dynamic 

path.

It is im portant to  note tha t the optimal policy depends on the current state 

considering future optimal policy and states. For comparative dynamics, the optimal 

policy function is compared for a given state. Suppose, a change in some parameter 

leads to less investment in farmland investment under the optim al policy. However, 

the current policy also affects future state. Thus, future policy is affected not only 

by the change in the parameter, but also by the change in states resulting from 

adjustm ent of the current policy. When the transitional dynamic path  is drawn, the 

change in current and future policy is also taken into account. We refer these effects 

as policy effects.

The transitional dynamic path is affected only by policy effects when comparative 

dynamics is done for changes in parameters which are not in sta te  equations of the 

model. These param eters include length of planning horizon and risk aversion. When 

comparative dynamics is done for changes in param eters which are in sta te  equations

of the model, there can be a  state effect as well as a policy effect on transitional

3In the previous section, the analysis of changes in initial state is also considered as comparative 
dynamics.
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dynamic path. These param eters include interest ra te  and variances of stochastic 

shocks. Note th a t the optim al investment policy function is draw n for a  given state, so 

comparing it captures the policy effect only. The transitional dynamic path  captures 

both policy effect and sta te  effect.

Effect of Planning Horizon

In previous sections, the optimal investment policy and transitional dynamics were 

analyzed for a  20-year planning horizon. In this section we compare the results of 

2 0 -year and 30-year planning horizons. Figure 6.7(a) presents the  optim al investment 

policy, x j, as a function of farmland price at time t =  0 for 20-year and 30-year 

planning horizons. This investment policy is for R t =  $390, L t =  600, and Wt = 

$700,000. Figure 6.7(a) shows that, a t price 1220, the optim al policy for the 20-year 

planning horizon is to  purchase 820 acres. However, for the 30-year planning horizon, 

it is 814 acres. Purchase levels are lower for the 30-year planning horizon for prices 

ranging from $1220 to $1375. The optimal policy is identical for farmland prices 

ranging from $950 to  $1219 because there is a constraint on the  purchase imposed by 

the maximum allowable value for the debt to asset ratio. Similar differences in policy 

are seen at higher farmland price levels. Across the entire range of prices, the optimal 

investment policy for 30-year planning horizon is always less th an  or equal to that for 

the 20-year plan n ing horizon. The difference in optimal investment policy can also be 

seen by the analysis of transitional dynamics. Figure 6.7(b) presents expected path
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Figure 6.7: (a) Policy function, (b) expected pa th  of farmland

of farmland acreage when the initial sta te  is: R q =  $390, P q =  $1500, L q = 600, and 

W0 =  $700,000. The figure shows the expected farmland acreage in year 10 for the 

20-year planning horizon is 1280 acres, while it 1252 acres for the 30-year planning 

horizon. These results show that a farmer with a longer planning horizon tends to 

invest less in risky asset. Though the difference in farm land investment is small, this 

reflects risk avoiding behavior. Collins and Karp (p. 233) explain this behavior by 

stating “[i]f the horizon is sufficiently long, young farmers tend to be cautious because 

the value of farming is very large relative to the value of the nonfarm alternative."

There is also an end period effect on policy. The analysis of the optimal policy, 

not presented in graphs, indicates that farmland purchases are much lower during the 

last 5 years near the end of planning horizon. Furthermore, there is more probability 

of selling some or all land for earlier retirement near the end of planning horizon.
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Effect of Borrowing Interest Rate

In previous sections the interest rate on borrowing funds was set a t 0.06. To 

explore the effect of a change in the borrowing interest rate, the model was also solved 

with the rate  of 0.07. In both cases, the interest rate is assumed to be deterministic 

and constant over time. Other parameters are unchanged -  e.g., the interest rate 

on riskless investment remains at 0.03 and the planning horizon is 20 years. Figure 

6 .8 (a) presents the  optimal investment policy, i* , as a  function of farmland price at 

time t =  0 for borrowing interest rates 0.06 and 0.07. This investment policy is for 

R t =  $390, L t =  600, and W t =  $700,000. Figure 6 .8 (b) presents expected path 

of farmland acreage when the initial sta te  is: R q = $390, P q  =  $1500, L q =  600, 

and W q — $700,000. Expected farmland acreage in year 10 is 1280 acres when the 

interest ra te  on borrowed funds is 0.06, while expected farmland is 1186 acres when 

the interest rate is 0.07. As expected, these results show that farmers tend to invest 

less in farmland when interest rates rise.

As described above, the interest rate is in the sta te  equation of net wealth, so 

a higher borrowing interest rate has both policy and state  effects. A higher rate 

increases interest costs on borrowed funds, leading to less purchase or more sale of 

farmland. Higher interest cost also reduces expected net wealth accumulation over 

time. Thus, less investment in farmland is also due to less net wealth.
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Effect of Variances of Stochastic Shocks

In the investment model, there are two stochastic variables, gross return , R t, and 

farmland price, Pt. The state  equation of each of these sta te  variables has an error 

term, which was estim ated and presented with estimation of the equation in Chapter

4. In this section, we explore the  effect of change in the variances of bo th  error terms. 

The model is also solved after a  40 percent increase in the variances of error terms of 

both stochastic equations: R t and Pt. Figure 6.9(a) presents the optim al investment 

policy, i j ,  as a function of farmland price at time t =  0  for the base and higher 

variances. This investment policy is for R t = $390, L t = 600, and W t =  $700,000. 

Figure 6.9(b) presents the expected path  of farmland acreage when the  initial state  

is: R q = $390, P 0  =  $1500, L0 =  600, and W 0 =  $700,000.
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In the two stochastic equations, the state  variables R t and Pt are transformed 

into natural logarithms. As the sta te  equations have additive error terms, which 

are normally distributed, the sta te  variables R t and Pt have lognormal distributions. 

Thus, higher variances of error term s increase not only riskiness of R t and Pt but also 

their expected values. Both factors affect the  optimal investment policy. Figure 6.9(a) 

shows th a t optimal investment policy for higher variances is less than  or equal to that 

for the base variances across the range of farmland prices. T he difference in optimal 

policy suggests tha t the effect of increased risk outweighs the effect of the higher 

expected return  from increasing variances. In addition to this policy effect, there are 

also sta te  effects, as change in variances modifies the distributions and expected values 

of gross return  and farmland price. Higher farmland price leads to  less investment in 

farmland, while higher gross return  leads to more investment. Figure 6.9(b) shows
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th a t the transitional dynamic path of expected farmland is only slightly changed due 

to both policy and sta te  effects.

6.2 Risk Aversion

Previous sections presented results for the risk neutral case, with zero constant 

relative risk aversion, 0 = 0. In this section we investigate how optimal portfolios 

are affected by a change in relative risk aversion. Recall from Section 2.2.2 that lim 

—̂_9g~I =  In (W ) which has constant relative risk aversion equal to 1, 9 =  1. In this 

section we compare the results of risk neutral case to the risk averse case with relative 

risk aversion of 1 .

Figure 6.10(a) presents the optimal investment policy, x *t , as a function of farmland 

price at time t = 0 for risk neutral and risk averse cases. This investment policy is for 

R t =  $390, L t =  600, and W t = $700,000. Across the entire range of farmland prices, 

the optimal investment policy for the risk averse case is always less than  or equal 

to that for the risk neutral case. Less investment in farmland reflects risk avoiding 

behavior of the risk averse farmer. This graph also shows that, a t low farmland prices 

ranging from $950 to $1300, the risk neutral farmer chooses to purchase farmland 

where the debt to  farm asset ratio constraint is binding. However, for the risk averse 

case, the constraint is biding only at very low price, only from $950 to $1000, and it is 

not binding from $1000 to $1300. This indicates th a t risk averse farmers have internal 

credit rationing, whereas there is external credit rationing for the risk neutral case.
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To analyze transitional dynamics, suppose the farm m anager’s initial sta te  at time 

t = 0 is : R q = $390, P0  =  $1500, L 0 =  600, and W0 =  $700,000. At this state, the 

optim al policy at time t =  0  is Xq =  0  for both  the risk averse and risk neutral cases. 

The policy is identical because the initial state  is within the range of inaction for each 

case. Thus, the state  at time t =  1 is identical for both cases. Though farmland at 

time t =  1 , Li, is still 600 acres, the gross return, R i , and farm land price at time 

t =  1, R i and Pi, are stochastic and have their distributions. As net wealth at time 

t =  1, W i, depends on Ri and Pi, there is also distribution of W \. For transitional 

dynamics we use Monte Carlo simulation method, as described in Section 6.1.2.

Figure 6.10(b) presents the expected paths of farmland acreage for risk averse and 

risk neutral cases when the initial sta te  is: R q =  $390, P q =  $1500, L0 = 600, and 

W q =  $700,000. Table 6.3 presents expected paths of farm land and net wealth and 

the pa th  of standard deviation of net wealth for both cases. As described above that 

the initial optimal policy Xq =  0  is identical for both risk averse and risk neutral 

cases, expected farmland, expected net wealth, and standard deviation at time t = 1 

are also identical for these cases.

For tim e t > 2, Figure 6.10(b) and Table 6.3 show th a t the  risk averse farmer 

has less expected farmland along the  path. Expected farm land in year 1 0  for the 

risk neutral case is 1280 acres, while for the risk averse case, expected farmland is 

1147 acres. Like the policy function, the expected path of less investment in farmland 

reflects risk avoiding behavior of risk averse farmer. As the risky farmland investment
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Table 6.3: Expected Paths of Farm land and Net Wealth and the  P a th  of Standard 
Deviation of Net W ealth for Risk N neutral and Risk Averse Cases

Risk neutral Risk averse
Year t E (L t) E (W t) S D {W t) E (L t) E (W t) SD {W t)

acres $ $ acres $ $
0 600 700,000 0 600 700,000 0
1 600 770,724 118088 600 770724 118088
2 817 856,523 230416 644 854346 202338
3 946 961,397 351221 742 948875 303526
4 1,037 1,108,337 536938 836 1082241 474809
5 1160 1,267,104 705155 945 1227268 631849
6 1189 1,429,520 846159 1019 1374418 772468
7 1220 1,600,281 995691 1051 1537276 919471
8 1241 1,782,041 1149603 1077 1707447 1071887
9 1261 1,972,076 1267853 1119 1880548 1185280

10 1280 2,180,861 1407079 1147 2078243 1320962

has a higher expected rate  of return and a  higher variance than the riskless investment, 

less investment in farmland by the risk averse farmer reduces both  the expected value 

and the variance of net wealth along the  path, as presented in Table 6.3. The expected 

wealth in year 10 for the risk averse case is $2,078,243, while it is $2,180,861 for the 

risk neutral case. The standard  deviation of wealth in year 10 for risk averse case is 

$1,320,962, while it is $1,407,079 for the  risk neutral case.

To explore adjustment in the portfolio, we analyze transitional dynamic paths with 

different initial farmland acreage but w ith a fixed initial net wealth level, farmland 

price, and gross return. For the risk neutral and risk averse cases respectively Figures 

6 .1 0 (c) and (d) present expected paths of farmland acreage with three different initial 

farmland acreage, L q =  400, 600, and 800 acres, while keeping the  initial state  of 

the remaining state variables at R q =  $390, P q =  $1,500, W q =  $700,000. The
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risk neutral case is discussed on page 96. As in the risk neutral case, we observe 

a similar portfolio adjustm ent in the risk averse case. Since the initial net wealth 

level is identical in all three cases of initial farmland, the figure shows th a t expected 

farmland acreage converges along the path. However, the risk averse case has less 

farmland acreage in the portfolio.

Results of comparative dynamics for a change in risk aversion show th a t a risk 

averse farmer makes a lower investment in risky farmland reflecting risk avoiding 

behavior. Differences in investment behavior are often a ttribu ted  to the risk aversion. 

The literature in finance has raised the issue of big difference between returns on 

stocks and Treasury bills, and point out that unless a very high level of risk aversion 

is assumed, risk aversion alone cannot explain this difference (Chavas and Thomas; 

Kocherlakota). We find th a t, besides risk aversion, risk avoiding behavior of choosing 

the investment portfolio can also be attributed to other factors. In the previous 

section, with risk neutral preferences, the results show th a t a change in the planning 

horizon affects the  investment decisions. Furthermore, unlike in a static model, a 

change in riskiness of returns and farmland prices also affects the investment decision 

in a dynamic model, even when the decision maker is risk neutral.
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Chapter 7 

Extended Model and Results

Results presented in Chapter 6  are for the base model specified in Chapter 2. 

The base model is a multiperiod investment portfolio problem  with a risky farmland 

investment and with a riskless nonfarm investment or debt financing on farmland. 

T his portfolio problem is solved in the presence of transaction costs, credit constraints, 

bankruptcy, and stochastic farmland prices and farm returns. In this chapter we 

extend the base model by adding a risky nonfarm investment, such as a m utual fund. 

The model implementation and results are also presented in this chapter.

7.1 The Extended Model

The extended model is a multiperiod investment portfolio problem with a risky 

farmland investment, risky nonfarm asset, and a riskless nonfarm asset or debt fi­

nancing on farmland.
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Risk in farmland investment is incorporated through both the farmland price and 

gross returns per acre (Pt , Rt), which follow Markov processes and are described by 

their sta te  equations. Farmland investment is represented in units of acres. The state 

variable L t is current farm land acreage and can be changed over tim e by control vari­

able x t. There are credit constraints, bankruptcy, and transaction costs on purchase 

and sale of farmland.

In this analysis, the risky nonfarm asset is an S&P (Standards and Poors) index 

m utual fund, which will be hereafter referred to as mutual fund. Investment in mutual 

fund is in units of dollars. Risk in the m utual fund investment is through its annual 

ra te  of return, which accounts for both  the gain or loss in the value of the asset and 

the dividend in each year. The m utual fund rate of return plus 1  is denoted by M t. 

We assume that there are no transaction costs on purchasing or selling of the mutual 

fund asset . 1

Including the m utual fund in the  model would generally require adding two state 

variables, one for its returns M t and another for the dollar amount invested in mutual 

fund asset, and one new control variable representing the amount invested. However, 

given the data  on its returns and assumption of no transaction costs in the mutual 

fund, the mutual fund investment opportunity can be added to the model by adding 

only a control variable xmf, which denotes the dollar amount invested in m utual fund.

1 We make this assumption for simplicity. However, there are many mutual fund assets available 
in the market that can be bought or sold with almost no or very little transaction costs.
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As described in the next section (Section 7.2), the Box-Jenkins approach for fore­

casting yields a zero degree of autoregressive model for the equation of Mt. This result 

can be interpreted to  mean that the forecasted m utual fund return in next period, 

M t+1 , is stochastic and has a distribution which is not conditional on the current 

year’s m utual fund returns, Mt. Thus, the m utual fund return equation does not add 

a sta te  variable in the model.

Since there are no transaction costs on purchasing or selling the mutual fund asset, 

the amount invested in the mutual fund can be decided every year and adjusted 

accordingly no m atter how much investment is already made in the mutual fund. 

Each year the control variable x mt > 0 determines m utual fund investment, which is 

financed from the current liquid assets through the net wealth equation. The invested 

dollar amount x mt yields M £ + 1  * xmt in the next year, which is added to liquid assets 

in the next year. Thus, the mutual fund amount does not add a state variable in 

the model. Note that, without an additional sta te  variable in the model, the control 

variable amount also represents the amount (state) in the mutual fund after the 

investment decision, and M t + 1  * xmt represents end of year’s amount (state) in the 

m utual fund.

Net wealth, W t, is the sum of liquid assets and the net sale-value of farm assets 

including farmland and the associated farm machinery and equipment. Farm expenses 

and all investment costs are financed from the current liquid assets, and all returns 

are added to liquid assets in next period through the sta te  equation for net wealth.
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For a given net wealth level, investment decisions for farmland and the mutual

fund, (x t , x mt), implicitly also determine debt financing or investment in riskless asset.

Negative value of liquid assets after all expenses represents debt financing, and a 

positive value represents investment in the riskless investment.

The farm manager’s objective is to choose an optimal policy { x * , t h a t  

maximizes the expected utility of net terminal wealth subject to relevant constraints:

m a x  E q \U  ( W t ’+ 1 )1
{(Xt,xmt)}j?l0

subject to  :

lnf?t+i =  0o +  Pi In R t + £i,t+i,

In Pt+i — cto +  <2 i In Pt +  0.2 In Rt +  £2,t+i i

In M t + 1 =  7 0  +  ^3 ,£+i

Lt+ 1  =  Lt + x t ,

W t + 1 =  ( 1  +  r)[{W t — (Pt + k — tcs) * L t} — (Pt + k + tc) * x t — c * L t+i

— Xmt\ +  Pt+l * L t + 1 +  (Ft+l +  K — tcs) * L t + 1 +  Mt+l * x mt,

x t E X t, x ^  E X mti for t =  0, 1 , 2, ..., T ,

(Rq, Pq, L q, W q) are given,

where

rb if [{Wt - ( P t  + K — tcs) * L t} -  (Pt + K  + tc) * x t -  c*  L t + 1  -  xmt] > 0  

r  =
r/ otherwise,
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t c  =  <
tCp if x t > 0

—tcs otherwise,

0 < p < l , 2 E q is expectation operator and U is the  utih ty  function.

In this model, we have four state  variables: gross return  per acre from crops, R t, 

farmland price per acre, P£, farmland acreage, L t , and net wealth, Wt. The model has 

two control variables: x t is number of acres of farm land purchased or sold, and xmt is 

dollar value of the  m utual fund. There are three stochastic variables, R t, Pt, and M t. 

and their random shocks are e u , £2«, and e^t respectively. There are four constraints on 

farmland purchase or sale decisions, which are denoted by x t € X t. These constraints 

include the feasibility constraint, bankruptcy condition, credit constraints, and the 

choice of exiting farming, which are described in Section 2.1.

The credit constraint allows purchase of land and the associated machinery and 

equipment as long as the debt to  asset ratio is less than  or equal to p, where 0  <  p < 1 ,

— {W t — (Pt + K — t C s ) * L t} +  (Pt +  K +  t C p )  * x t
(Pt + k — t c 3 ) * (L t +  x t) ~  P

This constraint can be written as:

x t <  m a x  f o ,  %  ~  (1 ~  P\*  ( P ‘  + ; "  '~  tC-] *  L\  )
\  (Pt + K + tCj , )  -  p *  (Pt + K -  t C s ) J

The above constraint (7.1) describes the maximum availability of debt financing, 

which depends on W t, Pt, L t, x t, and constants of the model. The farm manager can 

potentially use available debt finances based on the farmland investment decision,

2Control spaces X t and X mt depend on state variables Pt , L t , W t , and other constants including 
p, which is described below in this section.
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and can also invest in m utual fund. Thus for given Wt, Pt , L t , x t, the constraint on 

m utual fund investment x mt is given by:

-  {W t -  (Pt +  k — tcs) * L t} +  (Pt +  +  tCp) * x t + x mt <
(Pt + k -  tcs) * (Lt + x t) ~  P

This constraint can also be w ritten as:

Xmt <  m ax(0 , [Wt — (Pt + k — tcs) * L t -  (Pt +  k +  tc) * x t

+p * (Pt + k — tcs) * (L t + x£)])

In the model, X mt denotes a set of levels of x mt th a t satisfy the above constraint and 

Xmt >  0-

As described in Chapter 5 on page 51, the utility function needs to specified for all 

W .  For the risk neutral case, when 6 = 0, we have the utility function U  ( W )  =  W ,  in 

which case the objective function is to maximize expected terminal net wealth. For the 

risk averse case, 9 > 0, we have U (W ) = if W  > 6 , and U  ( W )  =  6l~^~L * ^ i f

W  < 6 , where b > 0. Estim ation of stochastic equations for state  variables R t and Pt 

and other param eters are used the  same as for the base model, presented in Chapter 

4 and summarized on page 79 (Chapter 6 ).

7.2 Estimation

In this section we estim ate the  equation for forecasting m utual fund return, Mt, 

using methods described in Chapter 4. For da ta  on Mt, we use inflation-adjusted
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compound annual to tal return for the S tandard and Poor’s 500 Stock Composite 

Index (S&P 500) for year 1967-99 reported in Ibbotson Associates . 3

The equation for mutual fund return, M t, is modelled as an autoregressive model. 

M t is one plus the rate  of return per dollar invested. As the value of asset cannot 

be nonpositive, M t is positive and the suitable transformation of d a ta  is natural 

logarithm. The first order autoregression model AR(1) is lnM t =  7 0  +  7 i In M t~i +  

c3t. W hen this model was estimated, and 7 : was nonsignificant with p-value 0.65. 

Furthermore, the Box-Jenkins approach suggests this specification: In M t =  7 0  +  ?3t- 

The estim ation results are presented in Table 7.1(a). This specification gives a stable 

model by the diagnostic test of the error term  following the Box-Jenkins approach, 

as described in Chapter 4. The Box-Jenkins approach requires a white noise error 

term. The Ljung-Box test is used to test the  null hypothesis that the error term  is a 

white noise process, and is presented in Table 7.1(b). The test fails to reject the null 

hypothesis, as all p-values are greater than  0.01. As the hypothesis of white noise 

error term  is maintained, this model represents the result of Box-Jenkins approach.

Implementation in dynamic programming model requires distribution of error 

term. Normality of the error term  is tested using the Bera-Jarque test, and is pre­

sented in Table 7.1(c). The null hypothesis is th a t error term  is normally distributed. 

As the p-value is 0.020781, the test does not reject the null hypothesis a t the signifi­

cance of 0 .0 1 .
3Ibbotson Associates report the S&P returns as large company stocks: inflation adjusted total 

returns (compound annual return).
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Table 7.1: Results for M utual Fund R eturn Equation

(a) Regression Results
Variable Coefficient Estim ate Standard Error t-ratio p-value
Constant 0.074476 0.028291 2.632527 0.0129
Estimated Var[S3 ] =  0.026412

(b) Ljung-Box Test for W hite Noise 
K  Q(fC) statistic p-value
1 0.2512 0.616
2 1.4435 0.486
3 2.5108 0.473
4 7.2091 0.125
5 7.2998 0.199
6 7.4949 0.277
7 7.5139 0.377
8 7.6580 0.468
9 7.6924 0.565
10 7.7233 0.656
11 7.9295 0.720
12 8.0797 0.779
13 9.1235 0.764
14 9.5314 0.796
15 9.9251 0.824

(c) Bera-Jarque test for Normality
B J  statistic p-value

7.747479 0.020781
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7.3 Model Implementation

The extended model is a sequential decision problem with term inal optimization. 

In this problem, there are four sta te  variables, gross return  per acre from crops, R t, 

farmland price per acre, Pt, farmland acreage, L t , and net wealth, W t. From Section

3.3 for term inal optimization, Bellman’s equation for any R , P, L, W, can be written 

as:

Vt(R, P, L, W )  =  max {i?[Vt+i(i?t+i, Pt+i> L t+i, W t+l) \ R t = R ,P t = P,

L t =  L , W t — W , Xt  =  x ,  x mt =  x m ] }• 

subject to the constraints of the extended model with the term inal (boundary) con­

dition: VT+i (R, P, L ,W )  =  U (W ). The value function for each t =  0 ,1 ,.. .,T , is 

defined as:

Vt( R ,P ,L ,W ) =  max E  [U {WT+l) \ R t = R, Pt = P, L t =  L, Wt =  W]
{(X r ,X m T ) } ^ =£

To solve the problem by the dynamic programming method, the range of the  four 

state  variables, R t, Pt, L t,W t , must be defined for estimation of the value function. 

We use the identical ranges here as defined for the base model on page 5.1 in Chapter

5. The value function in dynamic programming is solved for the following ranges of 

the states: 2 2 0  <  R t < 620, 950 <  Pt < 2 ,215, 400 <  L t < 2 , 0 0 0 , and 0  <  W t < 

6 , 0 0 0 , 0 0 0 .

In solving the Bellman equation for each t , we obtain the value function for the 

ranges of the  sta te  specified above. However, given the sta te  in period t from the
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above ranges, the Bellman equation contains the value function in period t +  1, which 

needs to be computed for the  states in period t +  l . 4

As assumed in the model, once all land is sold, the business cannot re-enter farm­

ing, and the value function for state L t — 0 can be computed as follows. When 

L t =  0 , the farm manager cannot use debt financing, since it is based on farmland as 

collateral. In this case, the  above investment problem is to choose optimal portfolio 

of nonfarm assets: m utual fund and a riskless asset. Thus, the value function for 

L t =  0  is E[U (Wr+i)] from the nonfarm asset portfolio.

Net wealth in period £ +  1, Wt+1 , can go out of the bounds from the above range 

due to the stochastic nature  of gross return from crops and farmland price. When 

Wt+i < 0, the value function is computed for the bankruptcy condition. Under this 

condition, the farm is liquidated if net wealth is negative a t any time, which makes 

Lt =  0. In this case also, the value function can be computed, however, E[U (WV+1)] 

is calculated by compounding Wt at the debt rate. When W t+\ is greater than the 

upper bound, the extra amount above the upper bound earns return rate from the 

portfolio of nonfarm assets: a combination of the m utual fund and the riskless asset. 5

In this extended model, we have three stochastic variables, R t, Pt, and M t. For 

each variable we use 3 nodes for the numerical integration. This gives 27 combinations

with their probabilities. In this model there two control variables. For optimization,

4 For details on implementation, the reader is referred to model implementation of the base model 
in Chapter 5.

5To compute the value function, which is utility of terminal wealth, first returns from nonfarm 
asset portfolio are added to the wealth from value function, where W t + i is greater than the upper 
bound. The utility function of the sum was regarded as the value function.
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we discretize the control spaces X t in 41 uniform levels and X mt in 25 uniform levels. 

This gives 1025 combinations. The optimal policy is found in two steps. First, for 

each element of X t, we find optim al xmt. Then, we find optim al {x£, xm£}.

7.4 Results

This section presents results for the extended model specified in Section 7.1. We 

present the model results for the  risk averse case with relative risk aversion coefficient 

9 = 1, and for 2 0  year planning horizon, where decisions axe made a t the beginning 

of each year t =  0 ,1 ,..., 19. At any time t the farm manager can choose the number 

of acres to purchase or sell, and dollar amount of m utual fund investment, subject to 

the constraints of the model. We first present the optimal investment policy function 

at time t = 0. Next, we present the stochastic dynamic path, which examines how 

the process evolves over time starting  from some initial state. We also compare these 

results with the base model results of the risk averse case to investigate the effect of 

including m utual fund asset in the investment portfolio.

7 .4 .1  O p tim al In v estm en t P o licy  F u n ction

There are two control variables in the extended model: number of acres to purchase 

or sell, x£, and dollar amount of m utual fund investment, xm£. The optim al policy for 

each control variable is a function of current states: gross return, R t, farmland price,
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Pt, farmland acres, L t, and net wealth, Wt. We present the optimal pohcy at tim e 

t =  0 .

Table 7.2 presents the  optimal pohcy, ( r* ,x ^ t), as function of net wealth, W t, 

when R t =  390, L t =  600, and Pt =  1325. T he table shows the liquid asset to 

farm asset ratio (LA/FA) for each level of W t. As expected, the optimal farmland 

pohcy, x*, is nondecreasing function of Wt, ranging from —600 to 600 acres, which 

includes a pohcy of inaction, x* =  0. The optimal m utual fund purchase pohcy, x ^ £, 

is increasing function of W t.

As described in the model, for each given wealth level and other states, the optimal 

decisions for farm land acreage and mutual fund investment implicitly also determine 

either debt financing or investment in a riskless asset. Table 7.2 shows LA/FA (*) 

which is LA/FA after the optimal decisions of (x£,x ^ £). Except for Wt =  300,000, 

the results show th a t the  optimal choice of LA/FA (*) is —0.7, which imphes a 0.7 

debt to farm asset ratio, the maximum limit allowed through the credit constraint. 

This is because the interest rate on debt financing is 0.06 and the expected m utual 

fund retu rn  ra te  is 0.091641, based on the estim ated equation for M t. The table also 

shows (L A + x ^ J /F A  (*), which adds mutual fund investment and the liquid assets. 

This ratio is realized by the farm manager, since m utual fund investment is also liquid 

th a t can be used for financing farm expenses. However, note th a t mutual fund returns 

are also stochastic. W hen Wt =  300,000, the optim al policy is to sell all farmland 

and invest in the  m utual fund due to bankruptcy risks from the possibility of a drop
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Table 7.2: Optim al Policy for Farmland and M utual Fund

Pt =  1325 Pt =  1500

w t
$

LA
FA x t

acres
X*mt

$

LA
FA
(* )

LA+Im.
FA-

(*)

LA
FA x t

acres
X’mt

$

LA
FA

(*)

LA+x*,,
FA-
(*)

300,000 -0.67 -600 300,000 ----- ----- -0.70 -600 300,000 ----- -----

500,000 -0.45 0 225,590 -0.70 -0.45 -0.51 0 146,985 -0.65 -0.51
700,000 -0.23 0 425,590 -0.70 -0.23 -0.31 0 395,980 -0.70 -0.31
900,000 -0.02 59 591,848 -0.70 -0.11 -0.11 0 595,980 -0.70 -0.11

1,100,000 0.20 200 711,370 -0.70 -0.12 0.09 0 795,980 -0.70 0.09
1,300,000 0.42 280 865,682 -0.70 -0.05 0.28 0 995,980 -0.70 0.28
1,500,000 0.64 600 882,930 -0.70 -0.22 0.48 0 1,195,980 -0.70 0.48
(* ) indicates the ratio after investment decisions are made.

in farm land price and /or gross returns. When Pt = 1500, Table 7.2 also shows the 

similar results for the optimal pohcy. However, when the farmland price is higher, 

there is a less purchase of farmland as compared to th a t w ith Pt = 1325.

As shown in Table 7.2, the  optim al choice of debt to asset ratio is 0.7 due to 

the m utual fund. It is im portant to note that, a t a  0.7 debt to asset ratio, the 

amount of debt depends on farmland acreage along with farmland price. Now we will 

investigate the effect of including the mutual fund asset in the investment portfolio on 

the optim al pohcy for farmland purchase or sale. For this, we compare the farmland 

investment pohcy as a function of its price between the base and extended models. 

Figure 7.1(a) presents the optim al farmland investment pohcy, as a function of 

farmland price at time t =  0 for the base and extended models. This investment 

pohcy is for R t =  $390, Lt =  600, and Wt = $700,000. The figure shows that, when 

the farmland price is low, the optim al farmland pohcy for the extended model is to
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Figure 7.1: Policy function

purchase more farmland as compared to th a t for the base model. W hen the farmland 

price is high, there is a slight difference in the  policy. However, when the farmland 

price is very high, it is optimal to  sell all farmland in the extended model. When 

all farmland is sold in the extended model, all wealth is invested in the m utual fund 

where the expected rate of return is 0.091641. In the base model, it is not optimal to 

sell all land because the rate of return on the riskless asset is only 0.03. Figure 7.1(b) 

presents the graph for a higher wealth level, Wt =  $1,900,000. Since the  wealth level 

is high, the figure shows tha t in the base model it is optimal to purchase 300 acres 

at price 1450. However, in the extended model the farmer does not purchase or sell 

farmland, x t =  0. Again, this is because the  only alternative nonfarm investment 

opportunity in the base model is riskless asset with 0.03 rate of return. However, in 

the extended model, in addition to  the riskless asset, there is also a m utual fund.
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7 .4 .2  T ran sition a l D y n a m ics

The above analysis shows how the optimal pohcy depends on the current states. 

This section presents transitional dynamics starting from some initial state, using the 

Monte Carlo simulation method, as described in Section 6.1.2 (Chapter 6 ). Tables 

7 .3 (a) and (b) present the  transition paths for the base model and extended model 

respectively. For both cases, the initial state at time t  =  0 is: gross return per acre 

R 0 -= $390, farm land price Pq =  $1,500, farmland acreage L q =  600, and net wealth 

Wo =  $700,000. For both  cases, the  farmland optimal pohcy at this sta te  is x j =  0, 

thus, the farmland a t tim e t  =  1  is 600 acres. In the extended model however, the 

farmer manager can also invest in the mutual fund, and the optimal pohcy is to 

allocate $395,980 to the m utual fund. The expected value of the m utual fund in 

year 1 is $427, 275. The expected net wealth in year 1 is $770,724 in the base model, 

however, it is 778,260 in the extended model due to the  m utual fund.

Comparison of the results for the base model and the extended model can be 

viewed as comparative dynamics, as described in Section 6.1.3. In this case, compar­

ison of the results is not ju st for a change in a param eter of the model, but also for 

a  change in the economic environment of the model. In the  extended model we have 

added the m utual fund as an alternative investment opportunity. As discussed in Sec­

tion 6.1.3, there are pohcy and sta te  effects on the results. In the last section, Figure 

7.1 shows the pohcy effect of adding the m utual fund in the model -  the change in 

optimal pohcy for a given sta te  due to mutual fund. Along the dynamic path, adding
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Table 7.3: Comparison of Base and Extended models w ith Risk Averse
(a) Base Model

Year
t

E {W t)
$

S D {W t)
$

E (L t)
acres

Prob
exit

E (L t/farming)

0 700,000 0 600 600
l 770,724 118088 600 0 600
2 854,346 202338 644 0 644
3 948,875 303526 742 0 742
4 1,082,241 474809 836 0 836
5 1,227,268 631849 945 0 945
6 1,374,418 772468 1019 0.002 1,021
7 1,537,276 919471 1051 0.002 1,053
8 1,707,447 1071887 1077 0.002 1,080
9 1,880,548 1185280 1119 0.002 1,121

10 2,078,243 1320962 1147 0.002 1,150

(b) Extended Model
Year

t
E (W t)

$

S D (W t)

$

B (L t )

acres

Prob. 
of exit

E (L t/  
farming) 

acres

EiXfn^t — l /
farming)

$

E (M t * x Tn̂ l/  
farming)

$
0 700,000 0 600 — 600 -----
1 778,260 133,766 600 0 600 395,980 427.275
2 875,229 234,942 700 0.002 701 400,134 434,991
3 995,978 355,849 789 0.032 815 440,477 482,109
4 1,160,160 537,164 877 0.050 923 502,625 550,728
5 1,343,970 689,667 957 0.080 1,040 626,955 689,807
6 1,532,417 849,276 988 0.100 1,098 803,562 877,576
7 1,745,440 1,045,669 979 0.114 1,105 1,018,577 1,115,410
8 1,984,503 1,254,115 937 0.132 1,079 1,275,737 1,400,663
9 2,234,284 1,456,560 930 0.148 1,092 1,556,755 1,698,547

10 2,559,297 1,735,698 922 0.162 1,100 1,856,309 2,074,514
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the m utual fund also increases the expected net wealth and other states. Thus, the 

future optim al policy is also affected by change in the state.

Table 7.3 shows th a t the expected path  of net wealth is higher for the extended 

model than  th a t for the base model. Again, this is due to the high expected return 

on the  m utual fund. However, the mutual fund is a risky asset. Thus, the standard 

deviation of net wealth along the path is also higher for the extended model than 

tha t for the base model.

Table 7.3 also presents the probability of exiting farming. In both cases, the 

probability of exiting farm in g  is by choice, since the probability of bankruptcy is zero 

along the pa th  for the initial state. The probability of exiting farming in 10 years is 

0.002 for the base model, however, it is 0.162 for the extended model. The higher 

probability in the extended model is due to availability of the mutual fund in addition 

to the  riskless asset. Table 7.3 also presents the expected path of farmland acreage 

if the farmer stays in farming. In the extended model, expected farmland acreage in 

year 10 is 1 ,100 acres, while it is 1,150 acres in the base model. Note that there are 

both policy and state effects. The expected farm land along the path is also affected 

by the expected net wealth along the path. The expected net wealth in year 10 for 

the base model is $2,078,243, and its is $2,559,297 in the extended model. We find 

a lower farmland acreage, 1 , 1 0 0  acres, in the extended model even with a higher net 

wealth levels due to the  m utual fund. This result shows th a t the optimal portfolio has 

a lower overall farmland acreage to accommodate the  m utual fund in the portfolio.
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Chapter 8 

Summary and Conclusions

Growth in average farm size and the decline in the number of farms have motivated 

farm firm growth analysis focusing on farmland purchase and sale decisions to explain 

the process of change from the individual farm standpoint. In addition, farm growth 

analysis investigates farmers’ investment strategies under uncertainty and addresses 

the financial management and faxm survival issues.

We develop a m ultiperiod investment portfolio problem with a risky farmland 

investment and w ith a riskless nonfarm investment or debt financing on farmland. 

Farmland prices and farm returns are stochastic, and there are credit constraints, 

bankruptcy, and transaction costs on purchase and sale of farmland. The investment 

portfolio problem is formulated as a stochastic dynamic programming model. We 

present an overview of the dynamic programming approach and numerical methods 

for solving the model. Solving the investment portfolio problem requires estimates
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of param eters of the  model. Farmland price and farm  returns are modelled using 

time series da ta  for Southwestern Minnesota farmers. The econometric results yield 

Markov processes for farm land prices and farm returns.

The investment portfolio problem has four continuous sta te  variables of which 

two variables are stochastic. Like in most applications, this dynamic programming 

model lacks a closed-form solution. We solve the model numerically using collocation 

methods. In the absence of a closed-form solution, it is essential to examine accuracy 

of the numerical approxim ation of the solution to the model, especially in a large-scale 

problem. In this dissertation, we develop a method for testing the accuracy of the 

numerical solution to  a  dynamic programming model. Using this method, we examine 

the accuracy of collocation m ethods in solving the investment portfolio problem and 

propose techniques for improving their accuracy.

Results of the investm ent portfolio problem show th a t the optimal investment 

pohcy depends on farm  returns, farmland price, and liquid assets. This indicates 

th a t the policy is influenced by investment costs and the future stream of returns. 

There are also ranges of inaction -  the states where the  optim al pohcy in the current 

year is to wait, neither purchasing nor selling farm land.

The study explores the influence of planning horizon, interest rate, riskiness, and 

risk aversion on the  farm land investment decisions. Results show tha t a risk averse 

farmer makes a lower investment in risky farmland reflecting risk avoiding behavior. 

We find that, besides risk aversion, risk avoiding behavior in choosing an investment
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portfolio can also be a ttribu ted  to other personal characteristics, such as the planning 

horizon. Even when the decision maker is risk neutral, a  change in riskiness of returns 

and farm land prices affects the  investment decision in a dynamic model.

We extend the investment portfolio problem by adding a risky nonfarm asset: a 

m utual fund. The results of the  model show th a t it is optimal for farmers to include 

the m utual fund in the portfolio with farmland investment. Furthermore, higher 

debt financing on farmland is optimal with the m utual fund. However, we find th a t 

optimal farm land investment levels axe generally lower and th a t the probability of 

exiting farming increases due to  the mutual fund investment opportunity.

This study focuses on the fact tha t farm firm growth is a dynamic process. Results 

of this study show tha t growth depends on many factors, including initial wealth, 

initial farm size, length of the  planning horizon, interest rate, riskiness of returns, 

risk aversion, and nonfarm investment opportunities.
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Appendix A 

Data Series

Time series d a ta  for the farmland price are obtained for years 1966-1992 and for 

year 1990-1999. Denote P R as farm land price from the first series and P T from 

the second series. These two series are for Southwestern M innesota with slightly 

different sample of locations within the  region. We found th a t P T =  0.86PH in 

each year 1990-1992. These prices are averages of very large samples and may be 

representative. Furtherm ore, this transform ation affects only the intercept in the 

farmland price equation. Since series of P T are more recent data , we combined the 

two series in the scale of P T.

As described in Section 4.5, gross retu rn  per acre is calculated as 0.5 * RCt+ 

0.5 * R S t , where R C t and R S t denote gross return  per acre from corn and soybeans 

respectively.
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D ata on the farmland price and gross return  per acre are adjusted for inflation. 

Given the time series, we divide the value for each year by its CPI. We multiply all 

years of da ta  by CPI of 1999 to represent d a ta  in dollars of 1999. The adjusted data 

are given in Table A.I.
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Table A .l: Data for Estimating Gross R eturn and Farmland Price Equations

Year R t P t
$ $

1966 ----- 1101.373
1967 350.6082 1255.9
1968 377.9139 1295.552
1969 370.1516 1247.524
1970 453.8562 1200.841
1971 358.8482 1160.586
1972 538.5405 1198.911
1973 730.1508 1265.742
1974 673.6655 1751.463
1975 491.8571 2149.548
1976 425.4741 2687.036
1977 525.9859 3031.099
1978 582.0396 2775.843
1979 468.3158 3170.164
1980 640.6013 3106.952
1981 465.7194 3022.054
1982 380.9184 2871.816
1983 444.7517 2575.638
1984 411.3208 2186.923
1985 364.6233 1504.097
1986 310.0949 1037.281
1987 317.8306 910.2838
1988 327.6725 1055.175
1989 350.7132 1187.361
1990 334.1815 1148.055
1991 296.0147 1192.942
1992 260.9849 1272.665
1993 218.6841 1285.708
1994 284.9175 1206.306
1995 318.0595 1163.986
1996 334.0176 1198.979
1997 302.9265 1242.545
1998 277.8438 1349.33
1999 255.625 1264.341
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Appendix B 

MATLAB Programs

The MATLAB program s used in this study are presented in this Appendix. These 

programs use functions, which are also coded and presented here. Furthermore, these 

programs also use functions and utilities created by Miranda and Fackler.1 Their 

book comes w ith a toolkit th a t contains these function and utilities. We used their 

toolkit that was downloaded in 1999.2

1 Examples in Miranda and Fackler have been very helpful in implementing the procedure and in 
learning MATLAB programming.

2We notice a change in their toolkit. In toolkit of 1999, the tensor product of (p3 for j  =  1, 2,...  J 
is made by $  =  ® <fi2 ••• ® <t>j- In a toolkit of 2001, it is <5 =  <f>j 4>j_ ! C& ... <t>\-
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For Base Model
%%%%%%%%%%%%%%%%%%%%%%file name: Parameters.m %%%%%%%%%%%%%%%%%%%%%%%% 
% Base Model:
%Obj . func: Max: EU(W(T+1))
clear all;
tic;
%profile on -detail builtin
%

global basis betaO betal alphaO alphal alpha2 cost sminv smaxv smin... 
smax n rp rn tcs tcb fme fds q qf e w T theta b valuef bound dau

% Parameters

filel = 'ch77521thl.txt'; %Saving in text file
file2 = 'ch77521thl'; %Saving the work space
nl=9; n2=9; n3=9; n4 = 9; %Number of nodes for each state

%Number of x levels used to max
%Bellman's eqn

%q = 81; qf = 0; %one-stage hybrid method
q = 41; qf = 21; % two-stage hybrid method

%basis = 'chebbas'; 
%node = 'chebnode'; %Chebychev polynomial basis

% functions and nodes
basis = 'splibas'; 
node = 'nodeunif'; % Linear Spline basis functions
a %and uniform nodes
o
if qf==0

vmaxh = 'vmaxhl'; %one-stage hybrid method
else

vmaxh = 'vmaxh2'; % two-stage hybrid method
end

valuef = 'valuefw'; % Value function
bound = 'boundi';
%
ml=5; m2=5;

% Constraints on control

%Number of nodes for
% approximating integration

theta = 1; % Utility function parameters
b = 60000; 
T = 19; % Planning horizon
tl = 1;
betaO = 1.052028; % Parameters for R state eqn
betal = 0.821970; 
alphaO = 0.048655; % Parameters for P state eqn
alphal = 0.884465; % (state reduced eqn)
alpha2 = 0.134044; 
Ee = zeros(2,1); % Mean of error terms for R and P
eqns
VarCov = zeros( 2 , 2 ) ; %Variance-covariance matrix
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VarCov(1,1) = 0.033155;
VarCov(2,2) = 0.014619; 
cost = 247.0;

Rmin = 220.0; Rmax = 620.0;
Pmin = 950.0; Pmax = 2215.00;
Lmin = 4 00.0; Lmax = 2000.0;
Wmin = 0; Wmax = 6000000;
sminv = [Rmin Pmin Lmin Wmin];
smaxv = [Rmax Pmax Lmax Wmax] ;
n = [nl n2 n3 n4];
m = [ml m2]; 
i f node=='chebnode'

smin - sminv - ((sminv-smaxv) 
(sminv-smaxv)./2); 
smax = smaxv + ((sminv-smaxv) 
(sminv-smaxv). 1 2 ) ; 

else
smin = sminv; 
smax = smaxv;

end

% cost of production per acre 
% Ranges of state variables:
% Gross Return per acre 
% Price of land (dollars)
% Land (acres)
% Net wealth (dollars)
% All states in a vector

/(2.*(cos((n-1+0.5).*pi./n)))+.. 

/(2.*(cos ( (n-1 + 0.5) .*pi./n)) )+..

rp = 0.03; 
rn = rp + 0.03; 
tcs = 0.06; 
tcb = 0.01; 
fme = 300; 
fds = 0.07; 
dau = 0.7;

% Lending Interest rate 
% Borrowing Interest rate 
% Transac. cost on selling land (%) 
% on buying land {%)
% Farm mach. Equip, per acre (%)
% fme selling deduction (%)
% Debt-to-asset ratio (upper bound)

%%%%%%%%%%%%%%%%%%%%%%file name: Invest.m %%%%%%%%%%%%%%%%%%%%%%%% 

Parameters;
fid = fopen(filel,'w+t'); % Creating a file for output

% w+t for deleting old contents, and for 
%reading and writing new output in text 

fprintf (fid, 'Max: E[(J(Net Wealth (T+l))] \n') ;
fprintf(fid,'Number of nodes for states = %3i %3i %3i %3i\n',nj; 
fprintf(fid,'Number of x levels to find max = %3i %3i\n',q,qf); 
fprintf(fid,'Theta in utility func = %g\n',theta); 
fprintf(fid,'Time horizon T = %3i\n',T);
fprintf(fid,'Number of nodes for error terms = %3i %3i\n\n',m);

%g prints the number in compact notation 
%3i is for printing integer which holds 3 digits 

% \n is for starting new line in printing 
yearnorm = ' Year normlratio norm2ratio max&mean(abs(x-xold)
P(=<1) ';
fprintf(yearnorm) % For displaying
fprintf(fid,yearnorm); % For saving in the file
%

i

[e w]=qnwnorm(m,Ee,VarCov); % Normal distri of error terms
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D = length(n); % Computes number of states
phiinv = cell(l,D);
si = cell(l,D); % For nodes
for d=l:D

si{d} = feval(node, n(d),smin(d),smax(d)); % (n(d) by 1)
if basis=='splibas'

phiinv(d) = inv(feval(basis,n(d),smin(d),smax(d),si{d },0,1));
% For linear spline

else
phiinv(d) = inv(feval(basis,n(d),smin(d) , smax(d),si{d)));

end
end
st = cgrid(si); 
pn = size(st,1); 
copt = zeros(pn,T);

% First
wi = find(st(:,4)>1); 
s = st(wi,:); 
nn = size(s,1);

% Algorithm for 1:T (for finding 
c = [ ] ; 
x = -s(: , 3) ; 
for t=T:-1:tl 

xold = x;
[x,v] = feval(vmaxh,s,c,t); 
vt = ones(pn,1) .*utility (0); 
vt(wi) = v; 
c=ckronx(phiinv,vt); 
copt ( :,t) = c; 
change = (x-xold); 
mchange = max(abs(change)); 
achange = mean(abs(change)); 
nlchange = (norm(change,1))/(norm(xold,1)); 
n2change = (norm(change))/(norm(xold));
pchange = 100.*size(find(abs(change)<=1), 1)/size(change, 1) ; 
fprintf('\n%3i\t %4.6f\t %4.6f\t %6.4f\t %6.4f\t %6.4f\n',...

t,nlchange,n2change,mchange,achange,pchange) . % For displaying
fprintf(fid,'\n%3i\t %4.6f\t %4.6f\t %6.4f\t %6.4f\t %6.4f\n',... 

t,nlchange,n2change, mchange,achange,pchange);
end
clear phiinv s st change mchange achange pchange wi v vt c x xold d D 
yearnorm
% ___________________________________
toe; % Elapsed time since tic was
used
seconds = toe;
fprintf(fid,'\nCPU Time seconds= 
file
fclose(fid); % Returns 0 if
save(file2);
disp('For output, run result**.m');
%profile report invest;

% 15.2f\n',toe); % For saving in the 

successful in closing output file

% pn=prod(n)=nl*n2*n3*n4 
% Matrix for c for 1:T 

node w=0, others are big amounts>l 
% To avoid rounding error for w>0

value function)

% x in T+l

% Store old value for comparing
% Solve Bellman equation at nodes.
% v=u(0) for w=0
% opt solution for w>0
% Coef. c for value funct in each t
% Store them in the matrix (nn x T)

% Compute maximum change
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%%%%%%%%%%%%%%%%%%%%%%file name: vmaxhl.m %%%%%%%%%%%%%%%%%%%%%%%% 

function [x,v] = vmaxhl(s,c,t);
% Solves Bellman equation at state nodes: stochastic problem 
% Uses 1-stage hybrid method:
% Calculates optimal v and x for each set of state nodes

global bound
% compute bounds of x for s: xl,xu are nn by 1 

% rows of s =rows of xl=rows of xu
[xl,xu] = feval(bound,s); 
nn = size(s,1);
[vxq xq] = vx(s,c,t,xl,xu) 
[v ind] = max (vxq); 
x = zeros(1,nn); 
for j=l:nn

x (j) = xq(ind(j) , j) ;
end
v = v ' ; 
x = x ' ;

% vxq is (q+2 by nn), xq is (q+2 by nn) 
% v is (1 by nn), ind is (1 by nn)
% x is (1 by nn)

% now v is (nn by 1) 
% now x is (nn by 1)

%%%%%%%%%%%%%%%%%%%%%%file name: vmaxh2.m %%%%%%%%%%%%%%%%%%%%%%%% 

function [x,v] = vmaxh2(s,c,t);
% Solves Bellman equation at state nodes: stochastic problem 
% Uses 2-stage hybrid method:
% Calculates optimal v and x for each set of state nodes 

global bound q
% compute bounds of x for s: xl,xu are nn by 1 

% rows of s =rows of xl=rows of xu
[xl,xu] = feval(bound,s); 
nn = size (s,1);
[vxq xq] = vxi(s,c,t,xl,xu); % vxq is (q+2 by nn), xq is (q+2 by nn)
[v ind] = max(vxq); % v is (1 by nn), ind is (1 by nn)
xopt = zeros(l,nn); % xopt is (1 by nn)
for j=l:nn

xopt(j) = xq(ind(j),j);
end
x = xopt'; % x is (nn by 1)

clear vxq xq ind

xas = 1600/(q-1); % Lmax-Lmin = 1600
xlf = max(xl,(x - xas)); 
xuf = min(xu,(x + xas));
[vxq xq] = vxf(s,c,t,xlf,xuf);% vxq is (q+2 by nn), xq is (q+2 by nn)
[v ind] = max(vxq); % v is (1 by nn), ind is (1 by nn)
xopt = zeros(l,nn); % xopt is (1 by nn)
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for j=l:nn
xopt(j) = xq(ind(j),j);

end
v = v ' ; 
x = xopt';

% now v is (nn by 1) 
% x is (nn by 1)

%%%%%%%%%%%%%%%%%%%%%%file name: vx.m %%%%%%%%%%%%%%%%%%%%%%%%

function [vxq,xq] = vx(s,c,t,xl,xu);
% For each node, it computes v as a function of x 
% when we plug state equation into value function and 
% then plug a specific state s (the state node) 
s vxq is (q+2 by nn), xq is (q+2 by nn)

global q valuef

nn= size(s,l); % rows of s =rows of xl=rows of xu
xq = zeros(q+2,nn); 
vxq = zeros(q+2,nn); 
rxlu = xu-xl;
Range from xl to xu 
gap = rxlu ./(q-1); 
xqi = zeros(nn,1); 
vxqi = zeros(nn,1); 
for qi=l:(q+2) 

if qi==l
xqi = zeros(nn,1); 

elseif qi==2
xqi = -s(:,3) ; 

else
xqi = xl+(gap.* (qi-3));

end
vxqi = feval(valuef,s,c,t,xqi); % xqi is nn by 1, s is nn by 4 
xq(qi,:)=xqi'; 
vxq(qi,:) = vxqi';

end

%%%%%%%%%%%%%%%%%%%%%%file name: vxi.m %%%%%%%%%%%%%%%%%%%%%%%%

function [vxq,xq] = vxi(s,c,t,xl,xu);
% For each node, it computes v as a function of x when we plug state 
equation
% into value function and then plug a specific state s (the state node) 
% vxq is (q by nn) , xq is (q by nn)

global q valuef bound
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nn= size(s,l); % rows of s =rows of xl=rows of xu
xq = zeros(q,nn); 
vxq = zeros(q,nn);
rxlu = xu-xl; % Range from xl to xu
gap = rxlu ./(q-1);
xqi = zeros(nn,1);
vxqi = zeros(nn,1);
for qi=l:q

xqi = xl+(gap.* (qi-1));
vxqi = feval(valuef,s,c,t,xqi); % xqi is nn by 1, s is nn by 4 
xq(qi,:)=xqi'; 
vxq(qi,:) = vxqi';

end

%%%%%%%%%%%%%%%%%%%%%%file name: vxf.m %%%%%%%%%%%%%%i%%%%ssi%t 

function [vxq,xq] = vxf(s,c,t,xl,xu);
% For each node, it computes v as a function of x when we plug state 
equation
% into value function and then plug a specific state s (the state node) 
% vxq is (qf+2 by nn), xq is (qf+2 by nn)

global qf valuef

nn= size(s,1); % rows of s =rows
of xl=rows of xu 
xq = zeros(qf+2,nn); 
vxq = zeros(qf+2,nn);
rxlu = xu-xl; %
Range from xl to xu 
gap = rxlu ./(qf-1); 
xqi = zeros(nn,1); 
vxqi = zeros(nn,1) ; 
for qi=l:(qf+2) 

if qi==l
xqi = zeros(nn,1); 

elseif qi==2
xqi = -s ( :,3) ; 

else
xqi = xl+(gap.* (qi-3));

end
vxqi = feval(valuef,s,c,t, xqi); % xqi is nn by 1, s is nn by 4 
xq(qi,:)=xqi'; 
vxq(qi,:) = vxqi';

end
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%%%%%%%%%%%%%%%%%%%%%%file name: valuefw.m %%%%%%%%%%%%%%%%%%%%%%%% 

function v = valuefw(s,c,t, x)
%VALFUNCW: value function for one control, 4 number of states 
%s is set of all states
%x is (nn by 1), c is (nn by 1), s is (nn by 4) , t is scalar

global basis n sminv smaxv smin smax e w T rp rn tcs tcb fme fds fdb si

nn = size (s, 1); 
v = zeros (nn, 1) ; 
vval = zeros(nn,l);
TWval = zeros(nn,1);
K = size(e,1);

if (nargin==3)
K=l; wk=l;

elseif ( (s (:,3)+x)<1) % this is for g(:,3)==0 or <1
K=1 ;

end

for k = 1:K
if (nargin==3) 

g = s; 
else

if ((s(:,3)+x)<1) 
wk - 1 ; 

else
wk = w ( k) ;

end
ek = e ( k, : ) ;
g = feval('gstate',s,x,ek);

end
% g gives R, P, within bounds
% Lt in bounds, but g3:L(t+l) is 0 or in bounds 
% W can go out of bounds % W is computed from bounded R, P.

if g (:,3)<1 % if g (:,3)==0,sell all land
gA = g(:,4); % g ( :,4) is all liquid

% asset since gL=0
r = ones(nn,1).*rp;
ngi = find(gA<0); %Negative gA index
r(ngi) = rn;
vval = utility((((1+r).~(T-t)).*gA)); 

else % (2)
if isempty(c) % (2.1)

TW = g(:,4); % Terminal period net wealth
vval = utility(TW); % utility function

else % (2.2)
gf4 = g (:,4) ;
nbri = find(gf4>0); % No bankruptcy index
if isempty(nbri)==0 %(2.2.1)
gm4 = min(gf4,smaxv(4));
gd = gf4-gm4; % Out of bounds 4th state
g ( : ,4) = gm4;
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% g(:,4) within upper bound
D = length(n); 
phi = cell(1,D); 
for d=l:D

if basis=='splibas' 
phi{d} =
feval(basis,n(d),smin(d),smax(d),g(nbri, d) ,0,1);

else
phi{d} = feval(basis, n(d) , smin(d),smax(d),g(nbri, d));

end
end
vval(nbri) = cdprodx(phi,c);

% s(t+l)=g that computes v(s(t+l)) 
TWval(nbri) = invutility(vval(nbri));

ewi = find(gf4>smaxv(4));
% Positive land and more than Nmax state index 

if isempty(ewi)==0 %(2.2.1..)
vval(ewi) = utility((TWval(ewi) + ...
(((1 + rp) .~(T-t)) .*gd(ewi)))) ;

end
end

bri = find(gf4<=0); %Positive land and Bankruptcy index
if isempty(bri)==0 %(2.2.2)

vval(bri) = utility(((1 + r n ) ( T - t )).*gf4 (bri));
end
end % end of: if isempty(c)

end % end of: if g(:,3)==0
v = v + vval.*wk; 

end % end of: for k = 1:K

%%%%%%%%%%%%%%%%%%%%%%file name: boundi.m %%%%%%%%%%%%%%%%%%%%%%%4

function [xl,xu] = boundi(s);
% Bound function for one control

global sminv smaxv dau fme tcs tcb fds

xl = sminv(3)-s(:,3); % Bounds from Land state

xu3 = smaxv(3)-s(:,3);
s2v = (1-tcs) .*s ( :,2) + (1-fds) .*fme; % selling price: for
normalization
s2b = ((1+tcb).*s{:,2)) + fme; % buying price

xdm = max(0, ((s(: , 4) - (1-dau) .*s2v.*s(:,3)) ./(s2b - dau.*s2v))); 
xu = min(xu3,xdm);
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%%%%%%%%%%%%%%%%%%%%%%file name: gstate.m %%%%%%%%%%%%%%%%%%%%%%%% 

function g = gstate(s,x,ek);
% State transition function for 4 states s,
% 1 control buy or sell land: x, error term for first 2 states

global betaO betal alphaO alphal alpha2 cost rn rp tcs tcb fme fds 
sminv smaxv

[nn d]= size (s); 
g = zeros(size(s));
gfl = exp(betaO + (betal.*log(s(:,1))) + ek(:,l));

% R state eqn
gf2 = exp(alphaO + (alphal.*log(s(:,2))) + alpha2.* log(s ( :,1) ) +
ek(:,2)); % P state eqn
g(:,l) = max(sminv(1),min(gfl,smaxv(1)));
g(:,2) = max(sminv(2),min(gf2,smaxv(2)));
g (:,3) = s (:,3) + x; % Land state eqn

s2bs = ((1+tcb) .*s ( :,2)) + fme; 
nxi = find(x<0);
s2bs(nxi) = ((1-tcs).*s(nxi,2)) + (1-fds) .*fme;

s2v = (1-tcs).*s(:,2) + (1-fds).*fme; % For normalization
g2v = (1-tcs).*g(:,2) + (1-fds).*fme; %

At = s (:,4)-(s2v.*s(:,3)); 
r = ones(size(s,1),1).*rp;
if g(:,3)<l % this is for if g(:,3)==0, sell
all land

ia = At - (s2bs.*x); % selling: x is negative
nai = find(ia<0); % Negative amount index
r(nai) = rn; 
g (: , 4) = (1 + r) .*ia; 

else
ia = At - (s2bs.*x) - (cost.*g(:,3));
nai = find(ia<0); % Negative amount index
r(nai) = rn;
gAt = ( (1 + r) . * ia) + (g(:,1) .*g(:,3) ); 
g(:,4) = gAt + g2v.*g(:,3);

end
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%%%%%%%%%%%%%%%%%%%%%%file name: utility.m %%%%%%%%%%%%%%%%%%%%%%%%

function u = utility(y)
% Utility function

global b theta

if theta==0 
u = y; 

elseif theta==l
u = (log (b) . /b) . *y;

byi = find(y>=b); 
u(byi) = log(y(byi)); 

else
disp('utility function for theta=0 or 1’ ) ;

end

%%%%%%%%%%%%%%%%%%%%%%file name: utility.m %%%%%%%%%%%%%%%%%%%%%%%%

function y = invutility(u)
% Inverse of: utility function

global b theta

if theta==0 
y = u; 

elseif theta==l
y  -  (u.*b) ./log(b); 
bui = find(u>=log(b)); 
y(bui) = exp(u(bui)); 

else
disp('utility function for theta=0 or 1');

end

Simulation for Accuracy:
%%%%%%%%%%%%%%%%%%%%%%file name: errors.m %%%%%%%%%%%%%%%%%%%%%%% I

% Error terms: generating randomly 
clear all;

Ee = zeros(2,1); % Mean of error
terms for R and P eqns
VarCov = zeros (2,2); % Variance-covariance
matrix
VarCov(1,1) = 0.033155;
VarCov(2,2) = 0.014619;
TRIALS = 500;
YEARS = 20;
TY = TRIALS*YEARS;
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Em = MVNRND(Ee,VarCov, TY) ;
Eml = Em( : , 1) ;
Em2 = Em(:,2);
Erl = reshape(Eml,TRIALS,YEARS); 
Er2 = reshape(Em2,TRIALS, YEARS) ;
E = cell(1,YEARS); 
for YR = 1:YEARS

E {YR} = [Erl(:,YR) Er2(:,YR)];
end

isave errors 
save errors E;

%%%%%%%%%%%%%%%%%%%%%%file name: simulatetr.m %%%%%%%%%%%%%%%%%%%%%%%%

clear all; 
tic;
load errors 
load su59521
sfilel = 'simsu59521.txt'; 
sfile2 = 'simsu59521';

R = [320;420;520]; P=[1265;1580;1900];L=[800;1200;1600];
W=[1500000; 3000000 ,-4500000] ;

S = cell (1,4) ;
S ( 1 > = R; S {2 ] = P; S{3) = L; S {4 } = W; 
sO = cgrid(S);

J = size(sO,1); 
gj = cell(1,J);
Eutil = zeros ( J , 1); 
years = length(E);
trials = size(E{1},1) ; % E{1] = [el,e2, . . .,e (T + l) ] '
yri = T + 1 - years;

%%%%%%%% Estimation of vO from value function %%%%%%%%%% 
if yri==T 

cl = []; 
else

cl = copt(:,yri+1);
end
[xO vO] = feval(vmaxh,sO,cl,yri);

%%%%%%%% Estimation of vO by simulation %%%%%%%%%%

for j = l:size(s0,l) 
sj = s 0 (j , : ) ;
j
util = zeros(trials,1); 
sjt = zeros(trials,4); 
gjt = zeros(size (sjt)); 
sjt(:,1) = sj (1);
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sjt ( : ,2 ) =  sj ( 2 ) ;
sjt ( : ,3) = sj (3) ; 
s j t ( : , 4 ) = sj (4 ) ; 
for yr = yri:T 

if yr==T 
cl = []; 

else
cl = copt(:,yr+1);

end
ini = find(sjt(:,3)>=(sminv(3)-1) & sjt(:,4)>0); %note 

L=[0, 4 00:2000],sminv(3)=400
outi = find(sjt(:,3)<1 I sjt(:, 4)<=0); 
sk = sj t (ini, : ) ; 
xk = feval(vmaxh,sk,cl,yr); 
gk = zeros(size(sk)); 
eyr = E{yr-yri+l); 
eyrl = eyr(ini,:); 
gk = gstate(sk,xk,eyrl); 
gjt(ini,:) = gk; 
if isempty(outi)==0 

gjt(outi,3) = 0; 
s4o = sjt(outi,4); 
ro = ones(size (s4o,1),1) .*rp; 
oi = find(s4o<0); 
ro(oi) = rn;
gjt(outi,4) = (l+ro).*s4o;

end
sjt = gjt;

end
%gJ{j) = gj t;
wealth = gjt(:,4); % Wealth at T+l
util = utility(wealth);
Eutil(j) = mean(util);

end

EutilvOsO = [Eutil,vO,sO]'; 
fid = fopen(sfilel,'w+t');
fprintf(fid,'Number of nodes for states = %3i %3i %3i %3i\n\n',n); 
fprintf(fid,' E[U(W(T+1))] vO R0 P0 L0
W0\n');
fprintf(fid,'\n%15.2f %15.2f %7.0f %7.0f %7.0f %7.2f\n',EutilvOsO); 
toe; % Elapsed time since tic was used
fprintf(fid,'\nCPU Time seconds= %15.4f\n',toe); % For saving in the 
file
fclose(fid); 
save(sfile2);
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Foe Some Result Output (graphs)
%%%%%%%%%%%%%%%%%%%%%%file name: figxprdata.m %%%%%%%%%%%%%%%%%%%%%%%%

% Policy Function 
clear all;
load su77521 % Loading
workspace of run model

t = 0; 
if t==T 

c = [ ] ; 
else

c = copt(:,t+1);
end

Lt = 600;
Wt = 300000;
P = [Pmin:5:Pmax];
R = [350:10:450]';
%W = [1000000;4000000];
% _______________________________________________________________
% Policy Function x(P) for different states gievn

S = cell(1,length(R) ) ;
XP = zeros(length(P),length(R) ) ; 

for ri = l:length(R)
Rt = R (r i ) ;
S{ri] = zeros(length(P),length(n));
S { ri } ( :, 1) = Rt;
S{ri}(:,2) = P;
S { ri} (:,3) = Lt;
S { ri} ( : , 4 ) = Wt;
XP(:,ri) = feval(vmaxh,S{ri},c,t);

end
save figxprdata

%%%%%%%%%%%%%%%%%%%%%%file name: figxpr.m %%%%%%%%%%%%%%%%%%%%%%%%

clear all; 
load figxprdata 
figure(2);
plot(P,XP(:,end), 'k-' , P, XP(:, 1) , 'k— ', 'linewidth’,1.3);
set(gca, 'fontsize',10, 'xtick', [Pmin:250:2210] , 'ytick', [-200:50:200] )
set(gef,'papersize*,[S.5,5.5]);
%xlabel('\itP', ' fontsize',12)
%ylabel('Net Wealth: W ($1000) ', 'fontsize', 10)
ylabel('\itx_{t}*','fontsize',16)
legend('\itR_{t} = 450 ','\itR_{t} = 350 ’ , 1)
% text(1620,2 6 5 \itR = 4501, 1f o n t s i z e 12);
%text(1450,-170, '\itR = 3 5 0 fontsize',12);
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xlim([Pmin Pmax+30]) 
ylim([-240 240]);
% -----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

[p,r]=meshgrid(P, R) ; 
p = p 1; r=r' ;

figure {1) ;
plot3(p,r,XP,' k- ’,'linewidth’,1.1); 
view([6,14]);
set(gca, 'fontsize',10, 'xtick', [Pmin:250:2210], 'ytick', [min(R) :50:max (R 
] ) ;

% 'ztick’ , [-Lt, [(400-Lt) :200:Lmax-Lt] ] ) ; 
box on; set(gcf, 'papersize', [8 . 5,5.5]);
%xlabel('\itP_[\itt}','fontsize’,10)
%ylabel('\itW_{\itt] ($1000)','fontsize',10) 
zlabel('\itx_{t}*','fontsize',16) 
ylim([325 525]); 
zlim([-200,205]);

%%%%%%%%%%%%%%%%%%%%%%file name: pathdist.m %%%%%%%%%%%%%% Vs isI  %i *s*

clear all; 
load errors

load su77521

sfile2 = 'pathdistw700L800';

R = 390;
P = 1500;
L = 800;
W = 700000; 
syear = 0;
%syear = [0,10,20,30];

years = 10;
%years = length(E); 
sO = [R P L W]; 
gs = cell(1,3); 
t=l,5,10
glafa = cell(1,3); 
gT = cell(1,1) ; 
gT{l) = zeros(years,4); 
%gT{2] = zeros(years,4); 
%gT{3) = zeros(years,4); 
%gT{4) = zeros(years,4); 
%gT{5] = zeros(years,4); 
%gT{6} = zeros(years,4); 
%gT{7] = zeros(years,4); 
pout = cell (1,1); 
t=l,5,10,20
pout(l) = zeros(years,6);

% E = [el,e2, . . .,e (T + l) ] ’

%storing for selected t distributions:

%for storing only means for all years

%storing for selected t distributions: 

%for storing only means for all years
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%pout{2} 
%pout{3} 
%pout{4} 
%pout{5} 
%pout{6} 
%pout{7}

zeros(years,6) 
zeros(years,6) 
zeros(years,6) 
zeros(years,6) 
zeros(years,6) 
zeros(years,6)

trials = size(E{1},1); 
s j = s 0;

% each e is trials 500 by 2 for 2 states

for tind = 1:length(syear) 
yri = syear(tind);
%yri = 0;
sjt = zeros(trials,4); 
gjt = zeros(size (sjt)); 
s j t ( : , 1) = s j (1) ; 
sjt(:,2) = sj(2); 
sjt(:,3) = sj (3) ; 
s j t ( : , 4 ) = s j ( 4 ) ;

for yr = yri: (vri+years-1) %0:T (0:19)
if yr==T 

cl = []; 
else

cl = copt(:,yr+1);
end
ini = find(sjt(:,3)>=(sminv(3)-1) & sjt(:,4)>0);

%note L=[0,400:2000] , sminv(3)=400 
outi = find(sjt(:,3)<1 I sjt ( :,4)<=0);

%Besides bankruptcy, for W=0 also, V is known 
sk = sjt(ini,:);
xk = feval(vmaxh,sk,cl,yr); %%%%
gk = zeros(size(sk)); 
eyr = E(yr-yri+l}; 
eyrl = eyr(ini,:); 
gk = gstate(sk,xk,eyrl); 
gjt ( ini, :) = gk; 
if isempty(outi)==0 

gjt(outi,3) = 0; 
s4o = sjt (outi,4); 
ro = ones(size(s4o,1),1).*rp; 
oi = find(s4o<0); 
ro(oi) = rn;
gjt(outi,4) = (l+ro).*s4o;

end
gT{tind}(yr+l-yri,3:4) = mean(gjt(:, 3 : 4 ) , 1) ;

% % % %

gT{tind}(yr+l-yri,1:2) = var(gjt(:,3:4),1);
outbrOi = find(gjt(:,3)<1 I gjt(:,4)<=0) ;
inibrOi = find(gjt(:,3)>=(sminv(3)-1) & gjt(:,4)>0);
outbri = find(gjt(:,4)<=0);
pout{tind} (yr+l-yri,3) = length (outbrOi)./500; %prob of cut of

farming = BR+choosing out
pout{tind}(yr+l-yri,1) = length(outbri)./500; %prob of BR
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pout{tind}(yr+l-yri,2) = (length(outbrOi) - length(outbri))./500;
%prob of choosing out

gjt2v = (1-tcs).*gjt(inibrOi,2) + (1-fds).*fme; 
if isempty(inibrOi)==0
outdau = find((gjt(inibrOi,4) - (1-dau).*gjt2v.*gjt(inibrOi,3))<=0);
pout{tind}(yr+l-yri,4) = length(outdau)./length(inibrOi); 
pout{tind} (yr+l-yri, 5 ) = 

mean ( (gjt (inibrOi, 4) ./(gjt2v.*gjt (inibrOi, 3) ) ) ) -1,- 
pout {tind} (yr+l-yri, 6) = mean(gjt(inibrOi,3)); 
end
sjt = gjt; 
if yr==0

gs(1} = gjt; %for years 1,5,10
glafa{l} = (gjt(inibrOi,4)./(gjt2v.*gjt(inibrOi,3)))-1; 

elseif yr == 4 
gs{2} = gjt;
glafa{2} = (gjt(inibrOi,4)./(gjt2v.*gjt(inibrOi,3)))-1; 

elseif yr == 9 
gs(3} = gj t;
glafa{3} = (gjt(inibrOi,4)./(gjt2v.*gjt(inibrOi,3)))-1;

end
end
end
save(sfile2);

%%%%%%%%%%%%%%%%%%%%%%file name: pathdistfig.m %%%%%%%%%%%%%%%%%%%%%%%%

clear all; 
load pathdistw;

syears = [1,5,10];

syear = 1; %choose 1,2, or 3 (upto length(syears))

%minWl = min(gs{syear} (:,2) ) ;
%maxWl = max(gs{syear} {:,2));
minWl = -140000;
maxWl = 54 60000;
rangel = maxWl - minWl;
gapl = rangel/40;
edgel = [minWl:gapl:maxWl];
fpl = histc(gs(syear}(:,2),edgel);
figure;
bar(edgel/1000,fpl/500, 1, 'c') ; 
xlim([-1000 5500]) 
ylim([0,0.45])
set(gcf, 'papersize', [8.5,5.5]);
set(gca, 'fontsize’, 12, 'layer', 'top')%, 'ytick1, [0:0.02:0.23] ); 
xlabel(['\itW' ' in Year ' num2str(syears(syear) ) , '
($ 1000) ' ], 'fontsize',16)
ylabel('Probability','fontsize',16)
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edge2 = [0,Lmin:50:Lmax];
fp2 = nistc(gs{syear}(:,1),edge2);
figure;
bar(edge2,fp2/500,1,'c'); 
xlim([-150,2150]); 
ylim([0,1.02])
set(gcf, 1 papersize ' , [8 . 5, 5 . 5] ) ;
set(gca,1fontsize',12,'layer','top','xtick',[0,400,800,1200,1600,2000]; 
xlabel(['\itL' ' in Year ’ num2str(syears(syear))],'fontsize',16)
ylabel('Probability','fontsize',16)
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