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ABSTRACT

The potential economic and environmental benefits of two emerging tools for low 

input weed management are examined in this research. Site-specific weed management 

(SSM) prescribes herbicide treatment for only the portion of a field exposed to weed 

infestations, rather than the entire field. Delayed planting allows weeds to emerge prior 

to planting. Since these weeds are eliminated during pre-plant tillage operations, the 

potential for subsequent weed problems is greatly reduced.

The potential benefits of these instruments are simulated using a variant of 

WEEDSIM, a dynamic bioeconomic weed management model. Differences in model 

performance under SSM and delayed planting strategies as compared to performance 

under standard practices impute value to these weed control tools. Simulations with the 

model were conducted within a deterministic framework.

Simulated results suggest that patchiness in weed distributions is the most crucial 

factor justifying the use of SSM. Other factors such as weed populations and weed 

species mixes only play secondary roles. There is a substantial environmental gain from 

SSM practices under a considerably high degree of weed pressure and aggregation. 

However, the impact of such practices on profit is generally modest. For this reason, it is 

doubtful if farmers will be willing to adopt this strategy without some public support, 

particularly when cost and risk considerations are factored in.

Outcomes from static simulation experiments for delayed planting strategy 

suggest that the practice can be a valuable instrument for optimizing net income and 



viii

herbicide use, especially at high weed populations. The practice may lead to an effective 

control of pre-plant weeds through mechanical means to the extent that the use of pre­

emergence herbicides is not required. Furthermore, the economic benefits of delayed 

planting strategies are not sensitive to hybrid varieties and rotational practices in the short 

run.

In view of the desirable environmental attributes of these two strategies, their use 

deserves support. Cheap and affordable technology, cheap and easy access to 

information on weed population dynamics and crop yield-planting date relationships are 

means of enhancing the adoption of these envirornnentally-friendly practices.



ix

TABLE OF CONTENTS

ACKNOWLEDGEMENTS................................................................................................. iv
ABSTRACT............................................................................................................................vii

TABLE OF CONTENTS ................................................................................................... ix

LIST OF ABBREVIATIONS.......................................................................................... xiii

I. INTRODUCTION......................................................................................................    1
1.1 Weeds, Herbicide Use and the Environment......................................................1
1.2 Directions in Economic Modeling for Weed Management...............................3
1.3 Objectives ............................................................................................................ 8
1.4 Organization of the Thesis..................................................................................9

H. CONCEPTUAL ISSUES IN WEED MANAGEMENT MODELING...................... 10
2.1 General Pest Management Model..................................................................... 10
2.2 Weed Spatial Distribution and Yield Loss........................................................12

2.2.1 Geostatistical Analysis and Field Partitioning.................................. 17
2.2.2 Simulation Method for Partitioning Fields ...................................... 19

2.3 Late Planting, Yield Loss and Weed Control .................................................21
2.4 Economic Thresholds and Spatial Weed Distribution....................................22
2.5 Environmental Impact of Weed Control Strategies .......................................24

111. MODEL DEVELOPMENT AND INPUT PARAMETERIZATION ................... 28
3.1 Model Development..........................................................................................29
3.2 Input Parameterization ..................................................................................... 31

3.2.1 Characterizing Weed Spatial Distribution .............................. 32
3.2.2 Weed Population Dynamics..............................................................33

3.2.2.1 Soil Seedbank.....................................................................34
3.2.2 2: Seedling Emergence Models...........................................38
3.2.2.3 Validation of Seedling Emergence Models...................... 43

3.2.3 Crop Yield-Weed Relations ............................................................. 47
3.2.4 Planting Date, Varietal Selection and Yield Penalty Functions ... 51
3.2.5 Herbicide Costs, Efficacy Ratings and Environmental Indexes .. 54

IV. POTENTIAL BENEFITS OF SITE-SPECIFIC WEED MANAGEMENT....... 57
4.1 Assumptions Underlying the Simulation Experiments....................................57
4.2 . Value of Site-Specific Weed Management.................................................... 61

4.2.1. Value of SSM Under Low Weed Pressures.................................. 65
4..2.2 Value of SSM under Moderate Weed Pressures ...........................70



X

4.2.3. Value of SSM under High Weed Pressures ...................................73
4.3 Comparing Optimal Strategies under Varying Conditions of Weed Pressure 

and Aggregation................................................................................ 76

V. DELAYED PLANTING STRATEGIES ....................................................................82
5.1 Modeling Assumptions and Management Considerations............................. 82
5.2: Potential for Late Planting under Varying Weed Populations and Mixes . . 86
5.3: Delayed Planting and Varietal Selection ........................................................ 92
5.4: Delayed Planting and Crop Rotation Practices ..............................................95

VI: SUMMARY AND CONCLUSION.............................................................................. 98
6.1 : Conceptual Basis for the Study, Model Specification and Estimation .... 100
6.2 Potential Benefits of SSM .............................................................................. 102
6.3 Delayed Planting Strategies ............................................................................ 104
6.4 Conclusion.........................................................................................................106
6.5 Suggestions for Future Research ....................................................................107

APPENDICES ......................................................................................................................110
A. 1. Listing of the MODWSIM Program Code ................................................. Ill
A. 2. Listing of Program Code for NEGBIN, a Program for simulating 

Negative Binomial Variates................................................................. 132
A.3. Sample Model Recommendations for Ten Replicated Field from the

Same Weed Population Parameters.............................................................137
A. 4. Weed Population Maps................................................................................. 138
A. 5. Estimating the Emergence Model ................................................................142
A. 6. Expected Net Incomes and Herbicide Indexes at all Probable planting 

Dates of Com (Full-season) ............................................................... 143

BIBLIOGRAPHY................................................................................................................. 144



xi

LIST OF TABLES AND FIGURES

Figure 2.1: Components of Environmental Impact Quotients 26
Figure 3.1: Program Flow of MODWSIM & WEEDSIM 

30
Table 3.1 : Simulated Weed Population Parameters 37

Table 3.2 : Parameters of the Statistical Model for Weed Seedling Emergence 42

Table 3.3 : t-statistics and Correlation Coefficients of Actual against Predicted 
Weed Seedling Emergence Levels 45

Table 3.4 : Diagnostic tests to detect influential observations in Com/Soybean Data ... 49

Table 3.5 : Competitive Indices of common weeds in com/soybean fields 50

Table 3.6 : Crop Yield Potential as a Function of Planting Dates 53

Table 3.7 : Herbicide Costs, Efficacy Ratings and Environmental Indexes 55

Table 4.1 : Initial Settings of the Biological Parameters for the Simulation 63

Table 4.2 : Initial Settings of the Economic Parameters for the Simulation 63

Table 4.3: Simulated Values of SSM under Low Weed Pressures 
66

Table 4.4: Simulated Values of SSM under Moderate Weed Pressures 71

Table 4.5: Simulated Values of SSM under High Weed Pressures 74

Table 4.6: Effects of Changing Weed Populations and Dispersion on Benefits of SSM 
in Com 77

Table 4.7: Effects of Changing Weed Populations and Dispersion on Benefits of SSM 
in Soybeans 77

Figure 4.1 : Economic value of SSM Information at Different Levels of Weed Pressure 
and Patchiness 79

Table 5.1 : Values of Delayed Planting Strategies at Different Levels of Weed
Populations and Mixes in Com 87



xii

Table 5.2 : Values of Delayed Planting Strategies at Different Levels of Weed 
Populations and Mixes in Soybeans ................................. 88

Table 5.3 : Value of Delayed Planting Strategies for Three Com Hybrids .............93

Table 5.4 : Influence of Rotational Practices on Optimal Planting Dates ........................96



xiii

LIST OF ABBREVIATIONS

SSM 
NBD 
NCSCRL 
EIQ 
PIE
TPI 
PPWC 
WSSA 
PPI
VRT 
USDA 
ODD 
CGDD 
WTA
WTP 
MN 
bu
Pers. comm.

Site-specific management
Negative binomial distribution
USDA-ARS North Central Soil Conservation Res. Lab., Morris, MN

Environmental impact quotient
Pesticide Index Equation
Total Pesticide Index
Pre-Plant Weed Control
Weed Science Society of America
Pre-plant Incorporated
Variable rate technology
United States Department of Agriculture

Growing degree day
Cumulative growing degree day
Willingness-to-accept
Willingness-to-pay
Minnesota
Bushel
Personal Communication



1

I. INTRODUCTION

1.1 Weeds, Herbicide Use and the Environment

The deleterious effects of weeds in agricultural production are well known. By 

competing with crops for soil nutrients and moisture, weeds reduce crop yields. In a study 

commissioned by Weed Science Society of America, Chandler et al. (p. 2) estimate the 

value of average annual yield loss caused by weeds in sixty-four crops at about US$7.5 

billion in the United States during the period 1975-1979. In Canada, they estimate an 

annual loss of about USS 909 million in thirty-six crops considered during the period.

Before the development of herbicides, cultivation was the standard post­

emergence weed control practice worldwide. However, interest in improving the 

effectiveness of mechanical weeding began to wane as herbicides became the principal 

method of managing weeds in developed countries (Mulder and Doll). Herbicides account 

for over 60% of total pesticides used annually on U.S. crops. This translates to 

approximately 460 million pounds of active ingredient per year (Giannessi and Puffer, p. 

1) and expenditure of close to $3 billion at 1994 herbicide prices.

Cost considerations and growing environmental concerns are rousing interest in 

lowering pesticide usage and implementing other forms of reduced chemical weed control. 

Since misapplication of herbicides can be counterproductive in terms of both yield loss and 

high control costs, information that leads to optimal herbicide use should be of interest to 

farmers.
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Recently, renewed efforts to prevent indiscriminate use of pesticides stem from 

concerns about their environmental effects. Herbicides are increasingly being implicated 

as a potential source of ground and surface water pollution and the attendant health 

hazards. Nielsen and Lee (p.vi) estimate that over 50 million Americans rely on 

potentially contaminated groundwater for their drinking needs. Furthermore, a connection 

is now being established between direct exposure to herbicide application and some types 

of cancer (Hoar et. al).

These adverse effects have led to imposition of regulatory actions which range 

from herbicide restrictions to severe measures such as quotas. In the United States, 

atrazine, the most commonly detected herbicide in groundwater, is currently a restricted 

use product. In the Netherlands and Denmark, quotas have been imposed to regulate the 

amount of pesticides that can be used for crop production. The Netherlands aims for 30% 

reduction in herbicides (active ingredient) by 1995 when compared to 1984-1988 use 

levels. The target reduction by year 2000 is 45% (Wossink and Renkema, p.3).

Denmark's goal is to reduce current herbicide use levels by 50% in 1997 relative to 1987 

use levels (Thompson et al. p. 254).

The above evidence suggests that as people become more sensitive to pesticide 

hazards, the current use levels cannot be sustained globally without attracting further 

imposition of stricter regulatory measures. Consequently, the questions of identifying low 

input control strategies that do not have severe adverse effects on crop yields and profits 

are becoming increasingly relevant in Integrated Pest Management (IPM) research.
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1.2 Directions in Economic Modeling for Weed Management

Bioeconomic models for weed management aim at identifying control strategies 

that are consistent with the objective of maximizing either expected utility or net returns. 

The models by Moffitt et al.; Taylor and Burt ; King et al, (1986); and Olson and Eidman 

all fall within this category. These models employ economic threshold concepts to 

prescribe weed control strategies that are responsive to field conditions. In contrast, 

farmers' standard practices often treat weeds prophylactically. As a result, bioeconomic 

models have proved quite useful in optimizing weed control and in causing significant 

reduction in the use of both pre- and post-emergence herbicides (Thornton et al. ).

Representations of the biological relationships between weed populations and crop 

yields are a key component of these models. In representing these relationships, the 

average density of quadrat samples of weeds is used as an index of weed population. This 

approach implicitly assumes that weeds are uniformly distributed throughout the fields or 

that they are characterized by a Poisson distribution. If this assumption is not valid, the 

consequence is that yield estimates may be distorted and recommended strategies may not 

be truly optimal particularly if weeds occur in patches.

However, it is becoming evident that biological data rarely follow a Poisson 

process in nature (Bliss and Fisher). Most studies that have investigated the nature of 

weed distributions in fields have indicated that a patchy, rather than a Poisson random 

distribution, is a better characterization (Marshall; Wiles et al.(1992a)). Furthermore, 

Auld and Tisdell have shown that patchiness in weed distributions causes significant errors 

in estimated yield losses. Based on the strict convexity of the crop yield-weed density 
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functions, they prove that models of uniform weed distributions overestimate yield losses 

for clumped weeds. This implies that there is probably a value to weed management 

information that helps farmers account for the pattern of weed distribution.

Site-specific management (SSM) for weed control prescribes herbicide treatment 

only for the portions of a field infested by weeds, rather than the entire field. SSM, 

otherwise known as variable rate technology (VRT) or precision farming, is already a 

well-established practice for managing soil fertility. For weed control, the practice can 

become a part of preferred management strategies in fields that display considerable spatial 

variability in weed populations. The likelihood of developing increasingly affordable 

geographic positioning systems and spray applicators that permit automated selective 

spraying is now making SSM more attractive. This weed control strategy may provide the 

means for balancing the profit motive of weed control with environmental needs. The 

prospects of reducing herbicide loads, controlling costs and reducing attendant health 

hazards by implementing SSM account for the growing interest in this area of research 

(Hughes; Thompson et al.; Wiles; Brain and Consens).

Thornton et al. show the effects of spatial distribution of weeds on economic 

thresholds. Using simulation techniques to account for spatial weed distribution, they 

conclude that as weeds get more clumped, the threshold level increases and chemical 

application becomes less likely to be the dominant economic strategy. However, their 

simulation experiments were conducted for the static control of a single weed species 

(wild oats) in a single crop (winter wheat).
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Wiles et al. (1992a) conducted simulation experiments to investigate the value of 

information about weed patchiness for improving the recommendations of a 

microcomputer weed management model for soybean, HERB. By fitting theoretical 

distributions to the quadrat counts of broadleaf weeds, they identified a negative binomial 

as the appropriate distributional form. They contend that no significant error in decision 

making will be made by assuming a Poisson or uniform distribution, although a modest 

improvement in the value of information is obtained when the model accounts for weed 

spatial patterns. Their simulation experiments were limited to only broadleaf weeds in 

soybeans. Also, the economic potential of SSM was examined for post-emergence weed 

control decisions only.

Cognizant of the fact that Cousens's rectangular hyperbola - which is widely used 

to describe weed/crop competition - implicitly assumes uniform distribution of weeds, 

Brain and Consens have reformulated the model to incorporate weed distribution effects. 

Under the assumptions that:(i) a negative binomial distribution characterizes weeds in the 

field; (ii) the field can be sub-divided to a number of sub-plots; and (iii) weeds are 

uniformly distributed within each sub-plot so that hyperbolic function relates yield to weed 

density in each sub-plot, they have developed a statistical model which can be evaluated 

using numerical integration.

These attempts at incorporating weed distribution into bioeconomic models have 

been very limited in scope. The models have been developed for a single weed species and 

a single control within a static framework (Thornton et al.; Brain and Consens) or for 

multiple broadleaf weeds and a single control within a static framework (Wiles). None of 
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the studies has examined the influence of weed distribution within a dynamic, multiple 

species, multiple control setting, which truly reflects farmers' decision environment. Also, 

the interest in SSM as a weed control tool has been mainly economical; its environmental 

attributes have received little attention.

A second potential tool for reducing pesticide use and cost is delayed planting 

coupled with mechanical weeding. Some farmers now wholly depend on pre-plant tillage 

supplemented with only inter-row cultivation to control weeds rather than herbicides 

(Femholz). Delayed planting allows weeds to emerge prior to planting. Since all these 

emerging weeds are destroyed by field operations required for final seed-bed preparation, 

the potential for subsequent weed problems is greatly reduced.

A number of studies have been undertaken to determine the optimum planting date 

and the effect of delayed planting on crop yields (Rocheford et al.; Wolf and Edmisten; 

Seymour et al ). Seymour et al. conclude that a piecewise linear relationship generally 

describes the data obtained from various locations in the United States and United 

Kingdom, although the threshold date after which yields are reduced by planting varies 

considerably with locations and varieties.

The effects of delayed planting on economic returns are rather mixed in the 

literature. Further studies are required for conclusive evidence about its influence. For 

instance, Gunsolus contends that producers who delay planting and adopt mechanical 

weed control may be balancing the yield loss due to late planting with the potential yield 

gains from improved weed control without herbicides. Mulder and Doll observe that 

while delayed planting lowers herbicide use, higher economic returns are obtained from 



7

early plantings with herbicide use. Forcella et al. (1993) demonstrate how the knowledge 

of seed-bank ecology of annual weeds is an essential prerequisite for optimizing delayed 

planting and mechanical control of weeds. This can be accomplished through proper 

modeling of weed seedling emergence, weed seed production, weed density/crop relations, 

yield penalty and seed-bed preparation functions.

It is clearly evident from all these studies that delayed planting is a low input 

strategy. The strategy might become more attractive as incentives are put in place to 

induce the adoption of low input strategies or make herbicide users bear responsibility for 

social costs of chemical usage. Further research to address other pertinent issues is 

required. An example is that of establishing the threshold time periods within which 

farmers could achieve effective mechanical control of weeds by delaying planting while 

optimizing yields and net returns under a wide range of environmental and resource 

conditions.

These two approaches to weed control have costs as well as benefits. SSM may 

require additional cost for acquiring information on the spatial distribution of current and 

potential weeds and equipment for selective spraying. On its part, delayed planting can 

result in yield losses. The time-lag in carrying out fieldwork and harvest operations may 

also have costly implications. Therefore, weed management models need to balance the 

private benefits of lower herbicide costs and the social benefits of reduced herbicide usage 

with the costs of implementing SSM and delayed planting before these tools can become a 

part of preferred weed management strategies.
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1.3 Objectives

This study will examine how fuller pest management information obtained by 

accommodating intra-field weed management and delayed planting strategies in 

bioeconomic pest management models improve farmers' weed management decisions. 

Consequently, the broad objective of this study is to explore the benefits and costs of SSM 

and delayed planting strategies as low input weed control instruments. Since over 60% of 

herbicides used on U.S. crops are applied to com and soybean (Giannessi and Puffer, 

p.3), the analysis will focus on these two crops.

The specific objectives of the research are as follows:

(i) To modify WEEDSIM, the dynamic bioeconomic model for the control of multiple 

weed species (Swinton; Swinton and King) such that its decision rules 

accommodate site-specific weed management and delayed planting strategies;

(ii) to use simulation experiments to assess the potential economic and environmental 

benefits of managing for intra-field weed variability under varying weed 

populations, weed species mixes and dispersion;

(iii) to determine planting thresholds that balance the benefits of delayed planting 

strategy against its costs and describe the set of environmental and resource 

conditions under which delayed planting and mechanical weed control can 

become a part of preferred weed management strategies.
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1.4 Organization of the Thesis

Chapter two examines the conceptual issues involved in modeling for optimal 

weed management strategies. It discusses the methodology used in assessing the potential 

economic and environmental benefits of SSM and delayed planting as low input weed 

control instruments. Simulation and geostatistical routines that permit implementation of 

these strategies are discussed. Chapter three highlights the salient features ofWEEDSIM 

- the kernel bioeconomic weed management model - and discusses its variant, 

MODWSIM, which incorporates SSM and delayed planting effects as weed control 

instruments. It presents the nature and sources of data, and also discusses the techniques 

employed in generating parameter estimates for model simulation. Chapter 4 presents the 

assumptions underlying simulation experiments of SSM. It discusses the outcomes of the 

deterministic, dynamic model runs for measuring the potential economic and 

environmental benefits of SSM under varying degrees of weed populations and 

aggregation. Chapter 5 shows the results of static simulation experiments for evaluating 

the potential benefits of delayed planting strategies under: (i) varying degrees of weed 

population and weed species mixes; (ii) varying degrees of weed aggregation; (iii) different 

com hybrids; and (iv) different rotational practices. The final chapter presents the 

summary of major findings and suggests directions for future research.
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n. CONCEPTUAL ISSUES IN WEED MANAGEMENT MODELING

This chapter sets out the conceptual issues involved in modeling for optimal weed 

control. It discusses the relevance of SSM and delayed planting strategies in such models. 

Finally, it presents the methodology used in assessing the potential economic and 

environmental benefits of these tools as weed control instruments in subsequent chapters 

of the thesis.

2.1 General Pest Management Model

Pest control inputs, such as herbicides, are damage control agents whose 

distinctive features rest in their ability to increase the share of potential outputs that 

producers realize by reducing damage caused by weeds. The literature is fairly rich with 

suitable models of pest management under both the assumptions of risk neutrality and 

aversion (Feder; Lichtenberg and Zilberman; Olson and Eidman; Swinton and King).

The typical risk neutral, static single weed management model takes the form:

Max II = PY - RZ - SH 
(H) (2.1)

subject to:

y = r°( 1 - d(iv) ) 
w = w°( 1 - k(H) ) 
Y ° = f(Z)

where II is the profit, P is the crop price, Y is the yield, R is the unit price of other
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variable inputs (Z) that are not connected with weed control and S is the unit price of 

weed control strategy H. Y° is the weed-free yield and D(W) is a damage function which 

establishes the extent of yield loss attributable to weeds. W is the average weed density 

(usually per square meter or foot) and W° is the initial weed population prior to any weed 

control measure. K(H) e [0, 1] is the"kill" function or a measure of herbicide 

effectiveness. By assuming that the profit function in the above model is strictly concave 

and twice differentiable, one can solve for the unique herbicide level that maximizes profit 

(e g., Pannell). Alternatively, the model is sometimes treated as a discrete decision 

problem whereby the set of actions that maximizes profit is identified by evaluating profit 

for all feasible sets of weed control actions (Swinton and King, 1994).

Static single weed models such as (2.1) abstract considerably from reality. They 

fail to capture the dynamic effects of weed seedbank on control strategies. To overcome 

this drawback, Swinton and King (1994) have recast the model into its dynamic form 

which also allows for the control of multiple weed species as shown in (2.2):

Max = £ p, (P(V ij— D(W/)) - RZ ° - (S' /.)*,)
(2.2)

subject to the following state equations :

Wt = W(St4)

S, = S(SM, Wt, W,h)

W,h = [I - k(h)]W, 

where k t is a vector of net profit at t that follow t-path of j control treatments. St is a 
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vector function of ending weed-seed bank densities and St-1 refers to the corresponding 

vector of seedbank densities in the previous season. W, is a vector of cumulative weed 

seedling emergence during the season, Wth is the vector of weed populations surviving to 

reproduce after the control h, has been applied, p is equal to 1/1+r where r is the discount 

rate.

2.2 Weed Spatial Distribution and Yield Loss

The implicit assumption underlying most weed management models is that of 

either uniform or Poisson weed distribution. The damage function, D( ), that is used to 

estimate the quantity of yield loss assumes that weed density, W, is homogeneous. 

However, the estimated yield may be biased if the weed distribution is not uniform.

There is a controversy about which functional form best describes the nature of the 

relationship between weeds and crop yields. However, the hyperbolic function, which 

specifies a strictly convex relationship between crop yield and weeds, enjoys wide support 

(Cousens; Pannell; Swinton and King.). For single weed species, Y in equation (2.1), 

under the assumption of hyperbolic relationship, takes the form:

iw

1 + 
a

where Yo is the weed free yield, a is the yield loss as weed density (w) tends to infinity, 

and i is the yield loss as weed density tends to zero. Following Brain and Cousens, if one 

denotes i/a by c, then the percentage yield loss in (2.3) is:
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(1 + cw ) (2.4)

Modeling for multiple weed species requires a slight modification of single weed 

models. Swinton and King develop the following variant of equation (2.3) for multiple 

weeds:

(2.5)

where the subscript i denotes the weed species. The percent yield loss due to multiple 

weeds in (2.5) is:

ioo£ i w, 
j-i •*

(2.6)

1 + 

Following similar notation as in (2.4), the yield loss in (2.6) can be rewritten as:

100 a £ c w 

_________ i-i
1 + ci"i

(2.7)
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The above yield loss models are appropriate if the assumption of random Poisson 

weed distribution holds. This can be checked by testing whether the hypothesis of a 

Poisson distribution holds when fitted to quadrat counts of weed seeds or seedlings. If 

this assumption fails, there is a need to determine the appropriate distributional form. A 

negative binomial distribution (NBD) has been found to be appropriate in most cases 

(Marshall; Wiles; Brain and Cousens).

A NBD is described by two parameters, m, the mean, and K, which is the index of 

aggregation or patchiness. Both parameters are positive but need not be integers. For 

NBD> if the proportion of quadrats with r weeds is denoted by Pr, then the probability that 

the quadrats will contain r = 0, 1,2 weeds is given by (Brain and Cousens; Ross and 

Preece):

p  f r+K-1 ] ( mVf K V
' ’ k «-I / (.TSkJ ,2'8)

where m is the mean weed density over the entire field. The variance (a2) of the 

distribution is given by (Ross and Preece):

2 m2
° “ m + (2.9)

from (2.9), one can see that the variance will approach the mean as K tends to infinity, or 

the distribution approaches random or Poisson process as K increases. On the other hand, 

the lower the value of K, the more clumped the weeds appear in natural populations. 

Therefore, low K values are consistent with a NBD. Although approximate values of K 

can be obtained from (2.9), its precise estimates can be generated by using either the 
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maximum likelihood iterative method proposed by Bliss and Fisher or the appropriate 

computer software, e g. MLP (Ross and Preece).

Under certain assumptions, single weed models can be easily modified to account 

for weed distribution effects. If it is assumed that: (i) the field can be subdivided into a 

number of sub-plots; (ii) weeds are uniformly distributed in each sub-plot; and (iii) each 

sub-plot contains x weeds, then for the entire field, the equivalent percentage yield loss in 

(2.4) is:

%rE = 100 a £ f cx b (2.10)

x-0 ( 1 + CX / *

where Px is the probability density function of the observed counts of x weeds in each sub­

plot. Brain and Consens prove that the average yield loss function in (2.10) reduces to:

i
Yl = 100 a y*z1/c G1 (z) dz 

o
(2.11)

where G(z) is the first derivative with respect to z of the probability generating function 

(PGF) of the underlying distribution and z is a variable usually lying between 0 and 1. 

Probability generating functions are known for many discrete distributions. For a negative 

binomial distribution, the PGF is (Ross and Preece; Brain and Consens):

G(z)
K \ K

K + v(l-z) ] (2.12)

where w is the weed density and K the index of aggregation. By substituting the
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derivative of the PGF in (2.12) for G(z) in (2.11), Brain and Consens estimate the 

average yield loss in (2.11) using a numerical integration procedure.

For multiple weeds, the joint density function of all weed species present in the 

field is required to predict expected yield loss. If it is assumed that weed species are 

statistically independent, then the joint density will be the product of marginal densities of 

individual weed species. If significant correlations between weed species are indicated, 

then the joint density will also need to account for the nature of interdependency among 

weeds.

There are a number of alternative approaches that simplify the problem of defining 

joint density function required for extending Brain and Cousens's method to multiple 

weeds. Wiles et al. (1992a) estimate yield loss due to weeds from the frequency 

distribution for quadrat counts of weeds and the functional relationship existing between 

yield and weed densities. A similar approach used in this study is to discretize the field 

into a finite number of subfields or management units. Under the assumption of uniform 

weed distribution within each subfield, percent yield loss can be estimated for each 

subfield. In essence, SSM has shifted the decision-making unit from the whole field to 

subfields, and the concept of defining a threshold level for the whole field is no longer 

appropriate. Rather, SSM implies a strategy whereby appropriate weed control actions are 

established for each management unit or subfield. Based on conditions in each subfield, a 

decision will be made regarding whether and how to control weeds in that portion of the 

field. Control decisions will usually vary from one segment of the field to another, 

depending on the pattern of weed distribution. Therefore, rather than the entire field,
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equation (2.1) will be estimated and recommendations will be made for each subfield. 

Then SSM becomes the preferred management strategy if :

8

V < > n (2.13)

where i is an index of s number of subfields, tt, is the profit at t in each subfield and IIt is 

as defined in (2.1).

The main challenge of this alternative approach is how to partition the field into a 

suitable number of subfields and distribute the field weed population across all subfields. 

There are a number of ways to approach the problem. The first technique is to use weed 

population maps produced via geostatistical analyses such as Kriging. This method 

provides a commercial approach to implementing SSM in practice. Another approach is 

to simulate weed population of the subfields from the parameters of the parent field weed 

population. The next two sub-sections further discuss the conceptual issues involved in 

both approaches and the extent to which they are employed. In this study, estimation of 

the potential economic and environmental benefits of SSM is undertaken from subfields 

whose weed populations are obtained through simulation.

2.2.1 Geostatistical Analysis and Field Partitioning

Patchiness in weed distributions suggests that weeds are spatially 

dependent. For this type of data, a geostatistical interpolation technique known as Kriging 

is a suitable approach for establishing how the weeds are distributed in space. Mortensen 
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et al. define Kriging as a process based on spatial autocorrelation that permits precise 

estimation of variables between sampling points for use in mapping a population.

The first step in Kriging is to quantitatively assess the spatial dependency of the 

process by defining the functional relationship between the spatial pattern of sampled 

points and their observed values. If D is a fixed subset of Rd++, and {Z(S) : s e D} is a 

realization of a random or stochastic process, then a variogram function is defined as:

2y(S1-S2) = Var(Z(Sj - Z(S2)) (2.14)

for all Sb S2 6 D. If the assumption of second-order stationarity property is imposed, then 

the above equation reduces to:

2y(h) = Var (Z (S +h) - Z (S) ) (2.15)

where h is the distance between two points. For Kriging purposes, half of the variogram, 

y(h), otherwise called a semivariogram, suffices. Following Marx and Thompson, a 

semivariogram can be defined as:

Y(h) = £ (Z(S +h) - z(s.) )2 (2.16)
2 i-i J

where m is the number of couples or pairs included in the summation.

Semivariograms must be positive definite to ensure that estimated variances are 

non-negative. Therefore, only a limited number of functions that are positive definite in 

more than one dimension are suitable for constructing semivariograms. The most 

commonly used functions are the spherical, exponential, Gaussian, linear and logarithmic.
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In practice, a scatter diagram of fitted semivariogram values against various distances (h's) 

will suggest the appropriate functional form. Parameters of the fitted functions are used to 

construct Knged values. These Kriged values are in turn used to produce graphic maps 

which provide the basis for partitioning fields into subfields or management units (MU) in 

practice.

Computer programs are now available for producing these maps. One of such 

programs, a geostatistical software for environmental sciences, otherwise known as GS+2, 

was used to generate graphic maps of weed seed and seedling distribution of a typical field 

in the study area. Kriged maps for the field used in this study are shown in Appendix 4.

The need to produce Kriged maps for implementing SSM of post-emergence weed 

control may disappear with time. For example, technological advances which lead to 

development of information-based technologies such as sensor sprayers may eliminate the 

need for prior weed mapping. For post applications, such sensor technologies can let 

control decisions be made automatically based on the foliar characteristics of weeds. This 

has the tendency to reduce costs and enhance the feasibility of implementing SSM in the 

long run.

2.2.2 Simulation Method for Partitioning Fields

As mentioned earlier, the use of geostatistical techniques offers a practical way of 

adopting SSM. However, for evaluating the potential economic and environmental 

benefits of SSM prior to implementation, the simulation approach suffices. Since simulated 

variates are not exact representations of weed distribution in the fields, this method 
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abstracts from reality. However, the strength of the approach lies in its considerable 

flexibility. By continuously reparameterizing the mean, the index of patchiness and the 

correlation matrices, simulation permits the evaluation of potential net benefits of SSM 

under a wide range of weed populations, mixes and dispersion. On the other hand, while 

graphic maps produced by Kriging may be a better depiction of weed patterns in the field, 

the irregular structure of weed distributions in the maps does not facilitate easy estimation 

of SSM gains.

Under the simulation approach, parameters of the discrete distribution 

characterizing the weeds can be employed to generate variates of the distribution. In this 

study, parameters of the negative binomial distribution - the mean and an index of 

patchiness(k) - were employed in generating random variables of the distribution. There 

are a number of computer algorithms for simulating such variates (See Ahrens and Dieter, 

p.244). In this study, the relationship between the negative binomial, gamma and Poisson 

distributions was employed in simulating the variables. Following the approach suggested 

by Rubinstein (p. 106), random variables of gamma distribution were first generated. 

These variables were then fitted to a Poisson algorithm using the acceptance-rejection 

algorithm described by Kelton and Law (p.256). The resultant simulated random variables 

are from a negative binomial distribution. In cases when the algorithms are sensitive to 

small values of K or large mean values or both, rescaling these parameters such that the 

transformed variables are invariant to the scale of transformations, often proves useful. 

The program code for the negative binomial simulation model, NEGBIN, which is written 

in QuickBasic language, can be found in Appendix 2.
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Since the above procedure is suitable for generating single random variables from 

univariate distributions, and such variates do not reflect the nature of interdependency 

occurring among weeds, the multivariate process generator developed by King (pp. 226­

239) was used in transforming these marginal distributions to their multivariate forms. 

The procedure employs the correlated disturbance error terms of empirical equations in 

generating the interdependent variables. Fackler points out the only drawback of this 

method which has to do with the input product moment correlation coefficients that are 

not invariant to transformations of the underlying marginal distributions. To sidestep this 

probable problem, non-parametric rank correlation matrices were used in place of product 

moment correlation. Each sample vector drawn from the joint distribution of weeds 

constitutes the weed population information for a subfield. The difference in model 

performance for the aggregate of all subfields when compared to uniform management of 

these subfields imputes value to SSM.

2.3 Late Planting, Yield Loss and Weed Control

Yield declines if planting is carried out after some optimal planting period. 

Therefore, if planting date becomes an argument in the yield function, then the weed-free 

yield, Yo, becomes:

Yo = Y*o[l - D(Pd)] (2.17)

where Y o is the weed-free yield obtained when timely planting is carried out. D(PJ is 

the yield loss function relating crop yield to planting date.
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Late planting, on its plus side, holds a potential for effective mechanical weed 

control of emerging weeds. As noted earlier, delaying planting allows weeds to emerge 

prior to planting since both crops and weeds require similar conditions for germination. 

The emerging weeds can be controlled by pre-plant tillage. Therefore, if weed-seed 

emergence and seed-bed preparation dates are properly modeled, the cost of achieving a 

comparable effective level of weed control may be less for mechanical control than for its 

chemical counterpart (Forcella; Mulder and Doll). If S represents the cost of weed 

control, then:

SK%[l-D(Pd) ] < SY* (2.18)

The objective of optimizing delayed planting is met if one can identify the planting 

date regions (Pds) such that:

( (Py - s) (y*[ 1 - D(Fd)])) % py y; - s(y•)
(2.19)

The planting date (P**d) for which (2.19) holds with equality defines the planting date 

threshold.

2.4 Economic Thresholds and Spatial Weed Distribution

The Economic threshold (ET) concept hinges on the notion that as weed density 

increases per unit area, the benefit from improved yields exceeds the cost of controlling 

weeds. The threshold weed density (number of plants per acre) is the level of weed 

density at which cost equals the benefit of control. Therefore, for static single weed
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models , control strategy, h, should be chosen at any weed density levels exceeding or 

equal to the threshold density w*“ i.e.:

I hx if P[D(wh0) - D(wh>') ] :> chx 
\ 0 otherwise (2.20)

where hx represents the control strategy that maximizes net revenue at the recommended 

rate, D(wh0) is the damage function if weeds are not controlled and D(w^) is the 

corresponding damage function of the surviving weeds after control strategy h, has been 

applied. C1" is the cost of control. For multiple weeds, h in (2.20) is a vector of control 

strategies.

Static threshold models fail to account for carryover effects of weeds. 

Consequently, the dynamic threshold levels normally occur at lower weed densities than 

the static models. The dynamic version of (2.20) can be written as (following Swinton, 

P 18) :

h J ht i£ PlD(w*°}-D(w*x)l - DVt^w*X'St'hx) > C?

c \ 0 otherwise '

where s, represents other variables and DVt+1(.) is the value of future yield damage 

function.

Since SSM has shifted the decision-making unit from the whole field to subfields, 

the concept of defining a weed density threshold level for the whole field is no longer 

appropriate. Rather, SSM implies multiple density threshold levels whereby threshold level 

is established for each management unit or subfield. Actually, the variation that exists 

among the threshold levels of all subfields of a field is the conceptual basis for SSM.
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2.5 Environmental Impact of Weed Control Strategies

The potential environmental benefit ofSSM and delayed planting strategies is a 

major factor that makes these weed control instruments intuitively appealing. By 

promoting the use of nonchemical weed control strategies, delayed planting has a tendency 

to reduce herbicide use. However, the effects of SSM on the environment are not so 

clear-cut. For optimal weed control under SSM, herbicide use may be required for some 

or all portions of the field. Its intra-field management capability based on multiple 

threshold concepts may necessitate the use of more than one herbicide product in a field. 

Since various herbicide products are different in terms of their toxicological impact on the 

environment, numerical herbicide loads may be inappropriate for comparing environmental 

effects of control strategies under SSM with standard practices. For instance, while 

numerical loads of herbicide usage may be less under SSM, environmental effects can be 

more severe if control strategies that use more toxic herbicide products are selected.

Kovach et. al propose a method used for computing environmental impact 

quotients (EIQs) for different herbicide products. The EIQ field rating is suitable for 

comparing different pesticide and pesticide control programs to ultimately determine their 

environmental effects. EIQs are computed from diverse sources of information regarding 

the health and environmental effects of various pesticide products. Based on the ranking 

of available toxicological information on the impact of pesticide products on every 

segment of the ecosystems, EIQs assign penalty weights on various pesticide products. 

Thus, the resultant EIQs are a synthesis of environmental concerns of farm workers, 

consumers and ecological considerations as shown in Figure 2.1.
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EIQs for common pesticide products can be found in Kovach et al.

However, these values do not consider the frequency and rates of pesticide applications.

Therefore, they are not suitable for comparing alternative pest management strategies. 

The variant of EIQs which facilitates such comparison is EIQ field use rating. The EIQ 

field use rating is obtained by multiplying EIQ by the percentage active ingredient

Figure 2.1: Components of Environmental Impact Quotients

EIQ

ECOLOGICAL CONSUMER FARMWORKER

AQUATIC TERRESTRIAL CONSUMER GR.WATER PICKER APPLICATOR

EFFECT EFFECT EFFECT EFFECT EFFECT EFFECT

(Source: Kovach et. al, p.2)

in the formulation and the label rate of the pesticide. Forcella and Wyse have 

reformulated this EIQ field use rating to produce a Pesticide Index Equation (PIE) suitable 

for assessing the environmental impact of pest control strategies in North Central Region 

of United States. The PIE is given by:

PIEi = 1 - EIQ 
100

/
Dose1

NAppli

Label1
(2.22)X
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where PIE, is the Pesticide i Index Equation, Dose, is the amount of active ingredient per 

application in the formulation for pesticide i, Nappl; is number of applications and Label i 

is the legal labeled rate for pesticide i. PTEj e [0, 1], The closer the value is to unity, the 

better the strategy is in terms of its desirable environmental attributes. If more than one 

pesticide is applied to a crop during a growing season, then the above PIE; needs to be 

modified. Simple summation of PIE values for all applications may yield values that 

exceed one, which is not appropriate. Also, averaging PIE values over all herbicide 

applications may not reveal the potential environmental hazards of using more than one 

herbicide product on a field. One possible solution to the problem is the use of Total 

Pesticide Index (TPI) which is the product of the individual indexes of pesticide applied to 

the crop, i.e.:

TPI = PIE± (2.23)

Like PIE;, TPI values are e [0, 1] and the closer the values are to one, the more desirable 

the control strategies are.

Although the primary decision criterion is the selection of a control strategy that 

yields highest expected net return, TPIs can serve a number of purposes. They facilitate 

comparisons of environmental impacts associated with site-specific and delayed planting 

strategies to those for standard practices for weed control. Furthermore, the difference 

between net returns of the profit maximizing strategy and one with more environmentally- 
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desirable attributes is an indication of tax premiums or willingness-to-accept (WTA) that 

can induce the use of preferred strategies by farmers.



28

111. MODEL DEVELOPMENT AND INPUT PARAMETERIZATION

WEEDSIM (Swinton p.28; Swinton and King) is the foundation for efforts to 

incorporate SSM and delayed planting strategies into decision support models. 

WEEDSIM is a computer-based weed management model for com and soybeans. The 

program, which is written in Microsoft QuickBasic, is an innovative bioeconomic weed 

management model which incorporates weed population dynamics into decision 

framework while accommodating multiple weeds and control treatments.

WEEDSIM identifies the path of weed control treatments that maximizes net 

returns over a two-year time horizon. Weed control treatments in the model include 

herbicides and mechanical control, as well as a no control option for instances when weed 

densities are below economic threshold levels. In recommending strategies ranked on the 

basis of their net returns, WEEDSIM employs information on crop prices, input costs, 

weed-free yield and weed population provided by the user. This two-year time horizon 

captures the dynamic impact of weed control decisions. It enables the model to track the 

carryover effects of current weeds and weed control measures on the levels of weed 

pressures, weed control strategies and profit in the succeeding year. Further information 

regarding the program and its flow chart can be found in Swinton and Swinton and King.

In this study, the basic WEEDSIM model is extended in two main dimensions, by 

adding a weed emergence model and by expanding the decision modules to incorporate 

SSM and delayed planting strategies. In the next section, specific modifications made to 

WEEDSIM will be discussed.
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3.1 Model Development

MODWSIM is an extension ofWEEDSIM which is specifically developed to 

improve upon existing models by incorporating two new types of weed control strategies 

into its decision rules. MODWSIM retains most of the essential features ofWEEDSIM. 

It computes expected pre- and post-planting weed germination based on the initial weed 

seed counts supplied by the user. Thereafter, it employs specified levels of weed 

population, crop yields, output prices and input costs to evaluate the expected net returns 

and yields of all feasible combinations of pre- and post-emergence weed control 

treatments. Optimal strategies are ranked on the basis of net returns.

MODWSIM has some unique attributes. As shown in its program flow in Fig. 3.1, 

the decision-making unit in MODWSIM is the subfield, rather than the entire field as in 

WEEDSIM. Its main routine prompts the user for the type of weed control 

recommendations, i.e., whether recommendations should be based on standard practices 

of uniform weed distribution or SSM. A choice of the second option directs MODWSIM 

to use routines designed for evaluating SSM. Model recommendations over all subfields 

are eventually aggregated to indicate overall performance for the field. The composite 

model recommendations can be compared to WEEDSIM recommendations to determine if 

SSM improves upon standard practices.

MODWSIM includes a weed seedling emergence routine which associates time 

with proportional extent of weed emergence. This is an essential feature of delayed 

planting strategies. Also, the subroutine for penalizing crop yield in MODWSIM has been 

expanded in view of its importance in establishing delayed planting thresholds.
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Figure 3.1: Program Flow ofMODWSIM & WEED SIM
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Cognizance of the fact that implementing SSM may involve substantial startup 

costs, and that such costs may be spread over a considerable length of time. MODWSIM 

is capable of implementing dynamic maximization problems for any finite number of years. 

This is accomplished through seasonal revision of weed seedbank which serves as a link 
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between current and future potential weed problems. However, its recommendation 

module still prescribes strategies for any year based on a two-year planning horizon.

Finally, MODWSIM also calculates herbicide indexes which may be a better 

measure of environmental impact of herbicide usage than numerical loads that WEED SIM 

provides. Full program code of MODWSIM is shown in Appendix 1.

3.2 Input Parameterization

Simulation with MODWSIM requires extensive data on a wide range of activities 

connected with com and soybean production. In this study, input data will focus on 

weeds that are economically relevant to the production of these crops in Minnesota. 

These are mainly annual weeds. The major ones are: Green and yellow foxtails (Setaria 

spp L. ) (SET sp) , common lambsquarters ( Chenopodium album L), (CHEAL), redroot 

pigweed, (Amaranthus retroflexus L.\ (AMARE), Pennsylvania smartweed, (Polygonum 

pensylvanicum L ), (POLPY) and wild mustard (Brassica kaber (DC.) L.C.Wheeler), 

(SINAR). Their Weed Science Society of America (WSSA) approved computer codes 

are shown in parentheses. Though some perennial weeds - e g. Canada thistle, (Cirsium 

arvense L.) - are also pertinent, biological information about their weed population 

dynamics is too limited to permit their inclusion in dynamic bioeconomic models at the 

moment.

Swinton (p.58) presents some input parameters for running WEEDSIM. Some of 

these parameters were estimated from a limited data set obtained from 1985-1986 

experiments conducted in Morris, MN. This has important ramifications for
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generalizing the parameters. For this reason, the input parameters that MODWSIM share 

in common with WEEDSIM have been re-estimated to take advantage of the availability 

of additional data. Also, new input parameters for additional features of MODWSIM 

have been developed. The remaining sections of this chapter discuss the techniques used 

in producing input parameters of both the biological and economic components of the 

model.

3.2.1 Characterizing Weed Spatial Distribution

A number of probability distributions have been employed to describe biological 

data. These include Poisson with zeros, Neymann Type A, logarithmic with zeros and 

negative binomial. These distributions have been chosen because they cover the extremes 

with respect to kurtosis and skewness (Mortensen et al ). For weeds, the relevant 

distribution has either been Poisson or a negative binomial. For Poisson distribution, the 

expected variance is equal to the mean, hence a simple test of the distribution is to 

compare the value of its sample variance to sample mean. Fit can be determined by using 

the Chi-squared (%2) test.

The negative binomial distribution indicates weed aggregation. It is characterized 

by two parameters, mean and K. The latter is the index of aggregation. A small value of 

K suggests there is a considerable patchiness in weed distribution. This value increases as 

the distribution tends toward Poisson.

The data for testing consistency with a negative binomial distribution were 

obtained from actual farmers' fields in west central Minnesota. These farmers are
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collaborating with the USDA North Central Soil Conservation Research Laboratory 

(NCSCRL), Morris, MN in the execution of its research agenda. The frequency 

distribution of weed seed extraction estimates per core was tested for conformity with 

Poisson and negative binomial distributions. While the assumption of Poisson weed 

distribution was rejected in all cases, the hypothesis of a negative binomial distribution 

could not be rejected at the 5% level in about eight out of ten sets of weed distribution 

data examined. Using the approach suggested by Bliss and Fisher, fitted K values range 

from 0.08 to 0.4 for all weed species in the models. These values fall within the 0.01 and 

2.79 range of K values estimated for broadleaf weed populations in fourteen double­

cropped soybean fields in North Carolina by Wiles et al. (1992a). The values suggest that 

weed distributions are indeed patchy, and that there is variation in the degree of weed 

patchiness across weed species and from one field to another.

3.2.2 Weed Population Dynamics

Weed population dynamics is the kernel of dynamic bioeconomic weed 

management models. The seedbank and seed production set a limit to potential weed 

problems in the current and succeeding seasons. The patterns of seed emergence, 

germination and mortality all play a vital role in deciding the choice of control strategies 

and annualized values of net returns over the entire planning horizon.

Parameters of weed emergence models and other components of weed population 

dynamics that were not developed for WEEDSIM have been estimated. As noted earlier, 

other input parameters that MODWSIM shares with WEEDSIM have been re-estimated.
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New data are now available from experiments conducted in various parts of Minnesota 

between 1985 and 1993. Employing this richer data set than 1985-86 experimental data 

used for previous estimation improves the quality of parameter estimates.

3.2.2.1 Soil Seedbank

Soil seedbank is the source of future weed infestations. It is the reasonable 

starting point for deciding whether and what form of pre- and post-emergence control 

decisions will be necessary. However, estimates of weed seed production are rather 

varied in literature, and these estimates are contingent upon a host of conditions. 

Production estimates per plant for foxtails have ranged from 600 to 3200 and between 

12,000 and 42,000 for pigweed and lambsquarters, respectively (Crook and Renner; 

Harris). Cultivation and tillage practices, soil depth, pattern of competition among weeds 

and between crops, crop rotation and prior weed control strategies are among the factors 

affecting soil seedbank and production.

Tillage and cultivation practices have a mixed impact on weed seed production. 

Tillage may increase seed production by stimulating increased germination of otherwise 

dormant seeds in the seedbank (Mulder and Doll). It can also reduce seedbank population 

by exposing buried weed seeds to predation. Herbicides are known to reduce seed 

production by increasing plant mortality and seed production per surviving plant (Yenish 

et al.; Schreiber). Yenish et al. also observe that weeds surviving herbicide treatments 

produce far fewer seeds than survivors of exclusive mechanical treatments.
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For the above reasons, the literature does not provide satisfactory estimates of 

seed viability and mortality rates for seeds of certain weed species as these values tend to 

be specific to cropping patterns under consideration. Following a similar approach used 

by Swinton and King, total seedbank in a particular season is defined as a function of 

seedbank, seed emergence and mortality rates and the control practices in the preceding 

season as follows:

= (1 - ott - Pt)S£ + Yt(iVt[l - 9]) (3.1)

where St+1 is the total seedbank in year t+1, at e [0, 1] is the proportion of seeds that 

geminate in year t, 0, e [0, 1] is the seed mortality rate, yt e [0, ») is the number of 

seeds produced by weeds that survive control strategy that eliminates 6 proportion of 

weeds in year t.

One way of obtaining the parameters of the equation (3.1) is through statistical 

estimation. However, there are only few instances when such parameters have been 

estimated statistically (e.g. King et al., 1986) as a suitable pooled data set that permits 

such estimation is often lacking. The alternative approach is to employ a simulation 

routine to search for the range of values that are consistent with the observed patterns of 

seed populations over time.

Seedbank and seedling emergence data were obtained from weed seedling 

emergence experiments conducted by NCSCRL in Rosemount between 1990 and 1993. 

These on-going experiments were designed to gather information on the seedbank, timing 

and proportional emergence of weed seedlings on designated plots for a consecutive 
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number of years. At present, the data are too meager to permit statistical estimation of the 

parameters. Therefore, parameters of equation (3.1) were simulated.

For the simulation, some of these parameters were determined exogenously. 0 is 

the efficacy rating of a typical control treatment in the model. The efficacy ratings of 

these herbicides were obtained from Durgan et al. The proportion of seedling counts in 

relation to seedbank population averaged over a number of years was used to 

approximate the proportion of seeds that germinates in a year (a). Estimates of seed 

mortality rates (P) were inferred from literature (Egley and William; Yenish et al.; Crook 

and Renner; Swinton and King). Using these parameters, specification searches were 

conducted to figure out seed production numbers (y) that are consistent with observed 

weed and seed populations over time. The resultant parameter estimates are shown in 

Table 3.1.

Apart from seed production levels, the parameters fall within ranges reported in 

other studies (Egley and William; Yenish et al. ; Crook and Renner). Moreover, all the 

parameter values compare favorably with the estimates by Swinton and King. The 

two sets of parameter estimates have one feature in common; the seed production 

estimates (yt) are considerably lower than some estimates in the literature (Schreiber et 

al.; Hams; Crook and Renner). However, under the specified conditions of seed 

mortality, seed emergence and herbicide efficacy ratings, the modest seed production 

figures in Table 3.1 are those that support observed seed and weed populations in 

cultivated fields of west central Minnesota. Perhaps the rivalry among weeds and
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Table 3.1: Simulated Weed Population Parameters

Weed Yt Pi “t

(WSSA Seed prod. Seed Seedling

Code ) per plant mortality emergence

Foxtails 150 (90’) 0.83 (0.71) 0.27

(SET)

Lambsq. 200 (120) 0.84 (0.82) 0.15

(CHE AL)

Pigweed 200(130) 0.89(0.17) 0.10

(AMARE)

Mustard 100 0.88 0.33

(SINAR)

Smartwd. 100 0.91 0.31

(POLPY)

Values in parentheses are corresponding estimates by Swinton and King (1994, p. 323)

competition between weeds and crops do not permit such high production of weed seeds 

per plant under cultivation conditions.

These parameter estimates have important consequences regarding the optimality 

of choice strategies. Model recommendations are very sensitive to the parameter values.
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Therefore, dynamic weed management models will undoubtedly benefit from agronomic 

research that provides more precise information on the ranges of these parameter 

estimates.

3.2.2.2: Seedling Emergence Models

The effectiveness of weed control from pre-plant tillage operations is a key factor 

in opting for delayed planting. Therefore, proper modeling of weed seedling emergence 

patterns is an important step in simulating potential benefits of this strategy as a weed 

control tool. Seedling emergence models forecast the timing and magnitude of weed 

seedling emergence based on seedbank and other factors.

The literature is fairly rich in models for predicting seedling emergence of annual 

weeds (Forcella; Forcella et al.(1993); Harvey and Forcella). These models generally fall 

into two categories, the seedling emergence models based on soil temperature and rainfall 

and models based on growing degree day concept. For the first category of emergence 

models (based on soil temperature and rainfall), data for model estimation were obtained 

from observed patterns of seedling emergence in the growth chambers under controlled 

experimentation. Based on the observed timing and extent of seedling emergence as a 

function of daily soil temperature within the seed zone (5cm. soil depth) and daily rainfall 

in these experiments, Forcella and Harvey and Forcella have come up with the following 

emergence models for some weed species that are important in com/soybean fields:
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GRW ( 1-EMEKGj )
EMERG^ = EMERGW +

100
(3.2)

where EMERG(i+1) is the predicted cumulative daily emergence percentage at day i +1 of 

the weed species, EMERG(j) is the predicted cumulative daily emergence percentage at 

day i, GR<i) is the germination rate of the weed species at day i. The germination rates 

for some of the weed species considered in this study are:

For Lambsquarters:

5.89exp-35-22/HMP'

-9.05 . 526~08
TEMP1

6818.31
TEMP1

IF TEMP1 <.22°C

IF TEMP4 > 22° C (3.3)

Giant foxtails: GR(i)= 466 - 0.082TEMP; -36.938/TEMPj

Yellow foxtails: GR(i)= 3.643 - 0.71TEMP, - 23.32/TEMPj

Green foxtails: GR(i) = -0.375 + 0.145 - 0.036TEMP;

Redroot Pigweed: GR(i)= 1.39TEMPr 12

where TEMP; is the soil temperature, preferably within the seed zone (5cm. depth), at day 

i measured in degrees centigrade.

The high predictive capabilities of these models have been demonstrated and they 

are regarded as a better predictor of seedling emergence than models based on growing 

degree day concept (Forcella; Harvey and Forcella). The major weakness of these models 

is that they are specific to individual weed species. They may be difficult to incorporate 

into bioeconomic models for multiple weeds particularly when the GR models have not
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been established for all weed species of interest. Also, data for soil temperature may not 

be readily available. For these reasons, an alternative statistical model based on the 

concept of growing degree day has been developed. This has a wider appeal since the 

model can be fitted to any weed species. The statistical model specifies seed emergence as 

a finite distributed lag model of growing degree days weighted by cumulative growing 

degree days and the seedbank:

-inter?.
%inter? ^1-1

GDDi-1

CGDD1-1
Si-1 Di-1 (3.4)

where is the cumulative total of emerged weed seedlings that are counted on the 

scouting day, GDD, is the April growing degree days on day i, CGDD, is the cumulative 

April growing degree days, on day i, i=l to interv. are daily lagged values of the variables 

within the scouting intervals, P^ is the estimated coefficient and Dj is a dummy variable 

which takes the value of zero if CGDDj is below the threshold CGDD level for which 

seedling emergence is possible. Full discussion of the estimable model and estimation 

technique of (3.4) can be found in Appendix 5.

There is a dearth of information about the threshold CGDD below which no 

emergence takes place for weeds. Consequently, specification searches were conducted to 

determine the threshold CGDDs of weed species by successively increasing the CGDDs 

and choosing threshold CGDDs on the basis of statistical properties. For most weeds, 

these CGDDs fall between 50 and 75.
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The estimable form of equation (3.4) was fitted to experimental weed emergence 

data from Rosemount, Minnesota between 1990 and 1993. For the average scouting 

interval of seven days, a specification search was conducted to determine the appropriate 

lag length. Criteria used for choosing lag length include sequential F-tests and Akaike 

Information Criterion (Green, p.515). Using both criteria, a maximum lag length of 

between 2 and 3 days suffices for most weed species. The advantage of the short lag 

length is that the problem of multicollinearity is not severe. When multicollinearity is 

present, eliminating one of the lagged variables usually resolves the problem.

Models of finite distributed lagged variables often suffer from severe problems of 

serial correlation of error terms. Ordinary least squares estimation of such models may 

yield biased and inconsistent estimates. For this reason, generalized least squares (GLS) 

method which yields unbiased and consistent estimates was employed.

Table 3.2 presents the parameter estimates for all the weed species in the model. 

From the Table, the t-tests suggest that the estimated coefficients are significant at the 5% 

level. In most cases, one lagged regressor is sufficient for predicting the seedling 

emergence. Often, the coefficients of other lagged variables are not significantly different 

from zero at any level and omitting them does not affect the power of the models.
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Table 3.2: Parameters of the Statistical Model for Weed Seedling Emergence

Weed Threshold Pm P1-2 R2

(WSSA Code) CGDDt-1

Foxtails 50 0.1305 0.53

(SET) (9.42)

Lambsquarters 50 0.0594 ■ 0.18

(CHEAT) (6.55)

Pigweed 75 0.0455 0.28

(AMARE) (4.05)

Wild Mustard 50 0.0983 0.06

(SINAR) (3.00)

Smartweed 50 0.1736 0.26

(POLPY) (4.65)

n=54. t-statistics are in parentheses. Missing values are not significant at any level.
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3.2.2.S Validation of Seedling Emergence Models

The objective of model validation is to examine how accurately the model 

estimates mirror the real systems under investigation. Results of validation exercises are 

useful in evaluating goodness of fit and in deciding whether further calibration is required 

before the models are considered fair representation of actual processes. Kelton and Law 

(p.338) outline three main steps in validation exercises which are:

(i) testing the validity of a model;

(ii) testing underlying theoretical assumptions;

and (iii) testing how closely a given model resembles the actual systems.

The seedling emergence models were developed jointly with experts in weed 

management, and the underlying assumptions are logically appealing. Therefore, the 

models satisfy the first two conditions. The third criterion can be accomplished through 

statistical validation. Statistical tests used to validate the models are the t-tests and 

correlation coefficients. Testing how closely a given model resembles the real system is 

similar to testing how model forecasts diverge from real observations. By estimating the 

differences between both sets of values, one can test the hypothesis that the true mean of 

these differences is zero. Non-rejection of the hypothesis indicates that the model is 

unbiased and fairly approximates the real process. Pindyck and Rubinfeld (p.38) indicate 

that the appropriate paired-t difference test is given by:
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where x is the mean, Sx is the standard deviation of the differences and N the number of 

observations.

Correlation coefficients are scale-free, normalized measures of association between 

model forecasts and actual observations. Correlation coefficient which is another 

measure of the goodness of fit lies between -1 and 1. The closer the absolute value is to 

one, the higher the degree of linear dependency between predicted and actual values.

The two sets of emergence models were validated to evaluate their predictive 

abilities using data from seedling emergence experiments conducted in Morris and 

Rosemount, Minnesota between 1990 and 1993 by NCSCRL. For forecasting the 

emergence level for any given year, the averages of long run weather variables were used 

to run the models based on daily soil temperature and rainfall. The timing and 

proportional extent of weed seedling emergence were predicted from the long run 

averages (from 1983 to 1993) of these weather variables for Morris and Rosemount 

obtained from Seeley et al.

For the seed emergence models based on the growing degree day concept, the 

pooled weed seedling data between 1990 and 1993 constitute the observed data. 

Statistical models were fitted to a subset of the data and the fitted equations were used to 

predict seedling emergence for periods excluded from the regression models. For 

instance, parameters obtained from fitting the model to 1990 -1992 data were used to 

obtain 1993 seedling forecasts. Thus, validation of statistical models was undertaken with 

out-of-sample data. Table 3.3 presents the results.
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Table 3.3 shows how the weed seedling forecasts of the models compare with 

actual observations. The first set of results in the second column compares actual 

observations with forecasts of models based on soil temperature and rainfall. The next

Table 3.3: t-statistics and Correlation Coefficients of Actual against Predicted Weed

Seedling Emergence Levels

Weeds Actual Vs Actual Vs MSTR Forecasts

Forecasts by Forecasts by Vs.

Models of Models of Growing MGDD Forecasts

Soil Temp. & Degree Day

Rainfall (MSTR) (MGDD)

For Foxtails ■ the model for yellow foxtails was used. n.a implies not available as their Germination Rate 

models have not been developed. 'Significant at the 5% level

R2 t-stat. R2 t-stat. R2 t-stat.

Foxtails* 0.87 0.78 0.81 2.04’ 0.91 1.36

Lambsq. 0.93 0.36 0.95 1.31 0.97 0.58

Pigweed 0.92 1.17 0.88 1.22 0.96 2.70=

Mustard n.a n.a 0.95 0.58 n.a n.a

Smartw. n.a n.a 0.92 2.36’ n.a n.a
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column shows how actual observations compare with forecasts obtained from emergence 

model based on growing degree day concept. The last column in the Table compares the 

forecasts of both models. In general, the results of the validation exercises show that both 

models predict observed emergence levels fairly accurately. In some cases, the correlation 

coefficients approach unity and the paired-t difference test is statistically different from 

zero at the 5% level in only two instances. These results are similar to those reported by 

Harvey and Forcella.

. The t-tests that compare forecasts of both models show that the differences in the 

forecasts are only significant at the 5% level in one instance. Their correlation coefficients 

are also high and close to unity. It is therefore safe to conclude that the predicted weed 

seedling emergence levels of both models compare favorably well. Thus, the validation 

exercise finds some merit in using emergence models of growing degree day concept once 

the functional relationship is properly specified.

While the validation tests suggest that either of the emergence models will suffice, 

the models of soil temperature and rainfall are preferred because they involve some 

elements of process simulation. Consequently, these models were used for relevant weed 

species in the model. The alternative model of growing degree day concept was used to 

simulate seedling emergence levels for weed species whose process models are not 

readily available.
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3.2.3 Crop Yield-Weed Relations

Swinton (p.94) suggests a linear way of fitting hyperbolic function to crop 

yield-weed density data which tends to overcome some of the problems associated with 

non-linear estimation of yield loss from experimental data. By setting the asymptotic 

maximum percentage yield loss (A) to 100, and the weed-free yield (Y^) to the 

experiment's maximum yield, the model can be expressed as a linear function of weed 

densities which is given by:

QA v _T3 = Ç 0-6)

where:

/ y
Q = 100 1 - — (3.7)

Y is the yield and w the weed density. A and Y^ are as previously defined.

Experimental data from Morris and other sites in Minnesota between 1985 and 

1992 were used to estimate the competitive indices of weeds in com and soybeans. 

Although the experiments were designed for a number of different objectives, the data set 

includes information on crop yields and weed populations at harvest. These variables are 

all that are required to fit Cousens's hyperbolic function for estimating yield loss due to 

weed infestations. However, data of such diverse backgrounds need be examined for the 

presence of influential observations. For this reason, regression diagnostic procedures 

were undertaken to detect the presence of such variables.
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Belsey et al. (p.6+) provide a number of diagnostic tests for checking the presence 

of influential variables. The hat matrix, *H, measures the leverage of the observation. Its 

value is high for an observation that is quite different from the majority of other 

observations. The rule of thumb is to suspect whose absolute value exceeds 2K/N 

where K and N are the number of variables and observations in the model, respectively. 

Studentized residuals are measures designed to detect large errors. These residual values 

are approximated by t-distribution, hence, absolute values that are less than 2 are generally 

acceptable. The final diagnostic test employed is DFFITS. This examines the influence of 

the i;h observation on the model prediction. Also, the higher its value, the greater is its 

influence. The rule of thumb for DFFITS is to regard absolute values in excess of 

2(a/K/N) as being influential. The diagnostic results of these tests are shown in Table 3.4. 

The results suggest that a significant number of observations are influential. For the data, 

one method of ensuring that classical regression assumptions will not be violated for OLS 

estimation is to omit the influential observations. However, Belsey et al. (p.6-28) and 

Judge et al. (p. 887-897) have shown that omitting such observations from the regression 

can impair efficiency. On the other hand, if the observations are included, least square 

estimators will no longer produce efficient and asymptotic efficient estimates of 

coefficients and variance of P. For this reason, an alternative estimation procedure which 

overcomes this problem was used.

Robust estimation techniques (e g. least absolute error (LAE), Trimmed least 

squares) yield reasonably efficient estimates irrespective of the underlying distributions.
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Table 3.4: Diagnostic Tests to Detect Influential Observations in Com/Soybean Data

tests/

parameters

Number of observations

Com Soybeans

N 298 96

K 11 11

1 Hl >2K/N 109 10

1 Residuals 1 > 2 8 7

1DFFITS1 > 2(/K/N) 12 9

Judge et al. (p.903) show that LAE estimation will be more efficient than least squares 

particularly in distributions where outliers are prevalent. Most econometric programs, e g. 

SHAZAM, now incorporate routines that detect the presence of influential variables and 

perform robust estimation.

Table 3.5 presents the estimated coefficients of the model obtained with the LAE 

and Tukey Trimmed Mean procedures. Although asymptotic t-tests show that these 

coefficients are, in general, statistically significant at the 5% level, except for smartweed, 

Judge et al. indicate that Likelihood Ratio (LR) or Langrange Multiplier (LM) tests with 

^-distributions are more appropriate for testing the significance of the 0 coefficients. 

However, coefficients that are significant under LM tests are consistent with t-distribution 

in Table 3.5.
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Table 3.5: Competitive Indices of Common Weeds in Com/Soybean Fields

Weeds Com Soybeans

(WSSA Code) (n=296) (n=98)

Foxtails 0.00178 0.00121

(SET) (2.589) (4.023)

Lambsquarters 0.01756 0.01113

(CHE AL) (5.91) (2.58)

Pigweed 0.01350 0.00602

(AMARE) (9.469) (4.42)

Mustard 0.00186 0.00342

(SINAR) (3.14) (3.18)

Smartweed -0.0337 0.00629

(POLPY) (-2.17) (0.21*)

Other broadleafs 0.0115 0.00131

(6.74) (7.42)

Asymptotic t-statistics are in parentheses. * not significant at any level

From the results, one can see that lambsquarters and pigweed are the most 

competitive of all weeds in both crops. Foxtail grasses are not as competitive as broadleaf 

weeds. For smartweed, which is not significant in soybeans and whose value for com is
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suspect, the coefficients for other broadleafs are used instead. In general, the parameter 

estimates are satisfactory and the ranking of these weeds is consistent with ranking of 

major weeds in United States based on survey results (Bumside (Pers. Comm.)).

Nonetheless, the estimated competitive indices are rather low. This may be attributed to 

the inherent bias in the use of experimental data. Due to superior management practices, 

crops under controlled experimentation compete more vigorously with weeds than crops 

in farmers' fields. For this reason, estimates of the potential yield loss due to weed 

infestations may be lower when they are based on experimental data.

3.2.4 Planting Date, Varietal Selection and Yield Penalty Functions

A number of factors influence the choice of planting dates for crops. These include 

potential crop yield, varietal selection, planting depth, planting rate, planting location, 

frost, weed control, fertilizer and harvest considerations. Hicks and Peterson explain how 

these factors influence the choice of planting dates. Early planting produces the maximum 

yield, usually from full-season varieties. Yield declines as planting is delayed, which for 

com and soybeans, beyond the early weeks in May.

Varietal selection plays a role in the choice of planting dates. Com, for instance, is 

usually classified into three categories namely; full-season, mid-season and short-season 

varieties. Full season com requires 110-115 days to mature. Full season varieties have 

the highest yield potential but they are also very sensitive to late planting. Mid-season and 

short-season hybrids have fewer days to mature. They have less yield potential but are not 

as sensitive to delayed planting as full season com.
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Early planted crops may be susceptible to frost damage from late spring frost. 

Shallow planting and lower percent seed germination due to low soil temperatures are also 

common. Harvest considerations, however, support the choice of early planting. The 

effects of weed control and fertilizer applications are rather mixed.

It is clear from the above that an ideal model of crop yield- planting date 

relationships should also account for the influence of all factors. However, due to the 

stochastic nature of some of these variables, existing models have simply expressed yield 

as a stepwise linear function of planting dates, while assuming that the influence of all 

other factors is constant.

Based on the results of delayed planting experiments conducted in various parts of 

Minnesota over several years, Hicks and Hicks and Peterson have developed estimates of 

yield loss for soybeans and three com hybrids as a function of planting dates as reported in 

Table 3.6. These yield loss estimates were incorporated into MODWSIM so as to 

penalize crop yields as planting is delayed. A simple interpolation routine was included to 

estimate yield for planting at any day within the range in Table 3.6. Due to institutional 

constraints, e g. crop insurance programs, delaying planting beyond June 14 is prohibited 

by setting the potential yield loss at 100 percent.

At the moment, work is in progress towards developing more rigorous models of 

crop yield as a function of planting date and other variables'. However, tentative results

G. Toichoa Buaha and Jeff Apland of the department of Applied Economics, University 
of Minnesota are presently developing models of crop yield as a function of planting dates, 
varietal selection and planting locations using experimental time-series data from several locations 
in Minnesota.
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Table 3.6: Crop Yield Potential as a Function of Planting Dates

% Crop Yield Potential

Compiled from Hicks and Hicks and Peterson.

Full Mid

Com

Short-season

Soybean

Full

Potential Yield(bu/acre)

Planting

Date_____________________

110 96 84 40

May 1 100 100 100 100

May 10 94 96 98 97

May 20 88 92 96 92

May 30 83 88 94 85

June 9 77 83 91 75

June 14 75 81 90 69
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from this modeling endeavor do not suggest a significant departure from results shown in 

Table 3.6. In general, soybeans tend to be more sensitive to late planting than com. 

Inclusion of yield potentials for various com hybrids facilitates evaluation of varietal 

selection on the choice of delayed planting strategies. For instance, when there is a 

preponderance of high populations of late-emerging weeds, delayed planting and short 

season com may provide a superior weed control strategy.

3.2.5 Herbicide Costs, Efficacy Ratings and Environmental Indexes

Information on herbicide efficacy ratings and application rates was obtained 

from extension literature (Durgan et. al, p. 16, 54). The effectiveness of herbicides on 

major weeds of com and soybeans is assigned qualitative ratings of good, fair, poor or 

none. These ratings are believed to vary depending on soil characteristics, management 

factors, environmental variables and rates applied. These ratings are the qualitative 

counterparts of the "Kill function" concept that was discussed in section 2.1 of Chapter 2.

The assumption governing this analysis is that herbicide treatment, if required, will 

be applied at recommended rates under suitable conditions such that the ratings of 

herbicide effectiveness conform to those given by Durgan et. al and reproduced in Table 

3.7. These qualitative ratings of herbicide effectiveness were transformed to percentage 

efficiency ratings based on subjective but informed expert opinion (Gunsolus; Forcella, 

(Pers. Comm.)). Herbicide treatments that are included in the model are not 

exhaustive of all effective herbicide products for major weeds in com and soybeans in
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Table 3.7: Herbicide Costs, Efficacy Ratings and Environmental Indexes

Control Dose Applic. Cost Herbicide Effectiveness Rating
Treatment (a.ilb/A) Type (S/acre)

FOXT LAMB PIG MUSTA SMART EIQ
Corn:
Cyanazine 4.750 PPI 31.89 G G F G G 0.80
Eradicane 6.000 PPI 26.60 G F/G F P P 0.87
Alachlor 3.000 PPI 23.85 G F/P G P P 0.79
Cyanazine 4.750 Pre 28.47 G G F G G 0.80
Dicamba 0.500 Pre 10.08 P G G G G 0.83
Alachlor 3.000 Pre 20.43 G F/P G P P 0.79
Rotary Hoe n.a Pre 3.00 F P P P P 1.00
No Control n.a Pre/Post 0.00 N N N N N 1.00
Cyanazine 2.000 Post 12.80 G G F G G 0.80
Dicamba 0.500 Post 10.08 N G G F G 0.83
Bromoxynil 0.380 Post 10.36 N G F/G G G 0.75
Nicosulfuron 0.031 Post 19.21 G P/F G G G 0.70
2-4-D 1.000 Post 3.88 N G G G P 0.44
Bentazon 0.750 Post 13.26 N F P G G 0.61

Soybeans
Alachlor 3.000 PPI 23.85 G F/P G P P 0.79
Imazethapyr 0.063 PPI 22.69 F/G F/G G G G 0.81
Metribuzin 0.500 PPI 17.74 F G G G G 0.65
Trifluralin 1.000 PPI 11.89 G F/G G N P 0.73
Alachlor 3.000 Pre 20.43 G F/P G P P 0.79
Rotary Hoe n.a Pre 3.00 F P P P P 1.00
Metribuzin 0.500 Pre 17.74 F G G G G 0.65
No Control n.a Pre/Post 0.00 N N N N N 1.00
Bentazon 0.750 Post 13.26 N F P G G 0.61
Imazethapyr 0.063 Post 19.27 G P G G G 0.81
Acifluorfen 0.380 Post 12.37 P P G G G 0.48
Sethoxydim 0.190 Post 15.27 G N N N N 0.73
Thifensulfiiron 0.004 Post 8.27 N G G G G 0.78

PPI= Pre-plant incorporated; Pre= Post-emergence control; Post=Post-emergence control;

a.i=active ingredient;lb/A=poimd/acre; Applic. Type= Application Type.

G=Good;F=fair; P=Poor;N=No control which may imply insufficient information. The quantitative equivalents 

of these ratings are G=92%;F/G=80%; F=70%;F/P=50%; P=30%; and N=0%.

Herbicide efficacy ratings are culled from Durgan et al. (p. 16, 54), Most of the EIQs are from Kovach et al.

Costs which include both material and application costs are obtained from Fuller et al.
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Minnesota. Rather, they were chosen on the basis of a number of factors, which include 

cost considerations, spectrum of effectiveness and farmers' preferences.

Periodic crop budgets and custom rate bulletins for various parts of Minnesota by 

Fuller et al. served as a source of information on crop prices as well as herbicide and 

other input costs. This was supplemented by data collected during the 1994 retail 

herbicide price surveys conducted by Gunsolus (Pers. Comm.). Costs shown are material 

and application costs of the corresponding control strategies at the recommended rates. 

The environmental impact quotients (EIQs) and pesticide indexes of all possible control 

strategies included in the model are also shown in Table 3.7. EIQ values were extracted 

from Kovach et al (p.6). The indexes were estimated using the formula in equation (2.22). 

Based on the composite recommendations for both soil-applied and post-emergence 

control strategies, MODWSIM uses pesticide indexes of individual herbicide products to 

compute Total Pesticide Index (equation 2.23) which is furnished as part of model 

recommendations' package.

As noted earlier, the closer the pesticide index is to one, the more desirable the 

strategy is in terms of its favorable environmental attributes. Consequently, no control 

and mechanical weed control exert the least adverse effects on the environment. On the 

other hand, 2-4-D and Blazer for com and soybeans respectively are the most toxic in 

terms of their adverse environmental effects among the treatments included in the model. 

While the simulation model prescribes weed control options on the basis of an optimal 

path that yields the highest net returns, TPI information can aid decision-maker in 

switching to more environmentally-friendly strategies.
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IV. POTENTIAL BENEFITS OF SITE-SPECIFIC WEED MANAGEMENT

This chapter reports the results of simulation experiments conducted to assess the 

potential environmental and economic benefits of site-specific management practices. The 

first section describes the structure and the assumptions governing the experiments. The 

remaining sections evaluate SSM under varying degrees of weed pressure and dispersion.

4.1 Assumptions Underlying the Simulation Experiments

All simulations were conducted for com-soybean rotations within a deterministic 

framework. A com selling price of $2.15 per bushel and a maximum yield of 110 bushels 

per acre were assumed for all simulation experiments. For soybeans, a selling price of 

$5.65 per bushel was used, and the maximum yield was set at 40 bushels per acre. 

Except when indicated, it is assumed that the full-season hybrids of these crops are grown. 

Variable costs, other than weed control costs, of $126.15 and $62.70 per acre were 

employed for com and soybeans, respectively. These cost estimates obtained from Fuller 

et al. are close to Minnesota averages for these crops that are grown on owned lands.

One set of herbicide material and application costs was assumed under standard 

practices and SSM. Although this is rather simplistic, the technology for carrying out 

SSM for weed control is not yet in place. Therefore, its market price is not known. 

However, the economic benefits of SSM can be regarded as the willingness-to-pay (WTP) 

for the technology under the specified conditions of weed population and dispersion. The 

higher the WTP, the more likely will the added benefits of SSM exceed its extra costs.
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Potential benefits (or losses) of SSM refer to the increment (or decrement) in 

economic and environmental benefits obtained under standard practices, i.e., the 

differences between model performance under standard practices and SSM. Economic 

benefits are reported in terms of net income in dollars per acre. The environmental 

benefits can be inferred from herbicide indexes. Since the higher the indexes, the more 

friendly the control strategies are in terms of their environmental attributes, positive 

values for differences in net income and pesticide indexes indicate potential benefits of 

implementing SSM. Negative values imply costs.

The initial parameter settings for mean and K, the index of weed aggregation, were 

obtained by fitting a negative binomial distribution to the weed seed and seedling data 

from a West central Minnesota farmer's field. These parameters, coupled with the rank 

correlation matrices of weeds, were used to generate the weed density information for the 

subfields. The use of on-farm data helps ensure that simulated weed distributions 

resemble the degree of variation in weed densities and weed species mix in a field setting. 

Though there is no statistical basis to guarantee that the farmer's field is a representative 

farm, subsequent sensitivity analyses with varying levels of weed pressure and aggregation 

help guarantee that all probable field scenarios are represented.

Initially, the farmer's field was implicitly partitioned into ten subfields by generating 

ten sample vectors from the joint distribution of weeds. Each sample vector represents the 

weed density information for a subfield. Though the choice of ten subfields was arbitrary, 

simulation with higher number of subfields did not reveal any additional benefits. Also, 
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the Kriged maps shown in Appendix 4 suggest that ten subfields closely approximate the 

number of management units in reality.

The ten subfields can be managed in either of two ways. Weed populations in the 

subfields can be controlled using standard practices based on the weed densities averaged 

over all subfields. Alternatively, SSM practices which match control strategy with the 

weed density in each subfield can be used. For evaluating the potential benefits of SSM, 

both methods were employed to facilitate the comparison of model recommendations 

under SSM to standard practices.

The procedure for simulating weed population information for each subfield 

involves considerable randomization. Also, since the simulation was based on the 

information obtained from a field, there is a need to explore model sensitivities and check 

the consistency of its recommendations from one replication to another. For this reason, 

weed densities of all subfields of a field were independently and repeatedly simulated ten 

times using the same parameters for the parent field. Model recommendations were 

compared across the replications to reveal noticeable differences among them. Results in 

Appendix 3 suggest that the multivariate generator produces fairly consistent estimates, 

as model recommendations compare favorably well from one replication to another. 

Nevertheless, the average of model recommendations of all replications was employed in 

assessing SSM overall performance.

The time horizon for simulating the potential benefits of SSM was set at four 

years. This time frame, which covers two full cycles of com-soybean rotations, is long 

enough for the long run pattern of SSM benefits to be discernible. Extending this time
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perspective beyond four years requires a better insight into the biology of weed 

population and its dynamics than the current state of knowledge permits. Streams of net 

incomes within this time horizon were discounted to a present value using the real interest 

rate of 4%. This rate approximates the return on a risk-free asset in the absence of 

inflation. The present value of the cumulative net incomes was annualized to denote the 

potential average annual economic benefits of SSM over a four year period.

Two restrictions were imposed on the model runs to reflect management practices 

or recognize potential constraints of implementing SSM. One restriction deals with 

mechanical weed control. When weeds occur in patches, using a mechanical control 

strategy, such as a rotary hoe, for implementing SSM may pose a challenge. Often, weed 

patches appear in contorted, rather than regular strips. This makes it difficult to use 

mechanical controls on a site-specific basis. Therefore, mechanical weeding has been 

eliminated from potential strategies for SSM. The alternative is to use this method on the 

entire field irrespective of the pattern of weed distribution.

The second restriction limits the number of herbicide products that can be 

effectively mounted on a spray applicator in a field at a time. While this may be a trivial 

issue when weed pressure is low and weed species mix is relatively homogeneous, it can 

be a crucial factor in implementing SSM at high levels of weed pressures and patchiness as 

the tendency to increase the spectrum of herbicide products increases. For this reason, a 

maximum number of four different herbicide packages were allowed in the experiments.

Although these two restrictions have the tendency to lower the value of SSM, 

they do approximate the current practical realities of implementing SSM. When
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technology permits the relaxation of one or both restrictions, then the estimates of 

economic value of SSM in this study will represent lower bounds.

4.2. Value of Site-Specific Weed Management

Value of site-specific weed management refers to the improvement in expected 

profitability for model recommendations under SSM when compared to standard 

practices. Since MODWSIM predicts potential weed problems from seedbank density 

information, the model evaluates the potentials of SSM for both soil applied and post­

emergence weed control decisions. This is a considerable improvement upon previous 

models (Wiles et al.; Thornton et al.; Brain and Cousens) that assess the worth of SSM for 

post-emergence control decisions only.

The simulation experiments were initially conducted for simulated subfields of a 

west central Minnesota farm. These initial parameter values are shown in Table 4.1. 

Mean seedbank densities range from 173 per squared meter for foxtails to 877 per squared 

meter for redroot pigweed. These seedbank densities are averages of the seed densities 

estimated by direct seed extraction from several soil cores in sampled plots. In general, 

these densities are below the average densities of viable seeds in western Minnesota 

(Forcella et. al, 1992). For this reason, the weed pressure is considered low for these 

initial parameters.

To examine the prospects of SSM practices under increasing weed pressures, the 

initial weed seed densities in Table 4.1 were doubled. This reparameterization makes the 

seedbank densities approach the average seed densities of weed species in western
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Minnesota. Under this condition, the field is classified as being moderately weedy. 

Finally, for evaluating the potential of SSM under extreme weed pressures, the initial weed 

seed densities were multiplied by a factor of 5. The resultant weed seed densities are high 

but not unusual in Minnesota fields (Forcella et al., 1992). Model recommendations for 

these weed populations are considered as representing high weed-pressured fields.

As noted earlier, K values in Table 4.1 show the degree of weed aggregation. 

Having decided on the choice of a negative binomial as the appropriate distributional form, 

these K values were computed from seed extraction estimates per core. For weed 

seedlings, quadrat counts of weeds would have sufficed. These K values are close to the 

median values of K defined for most weed species (Wiles et al.; Brain and Cousens). 

Therefore, K values in Table 4.1 suggest that the field is moderately patchy.

To gauge the influence of varying weed dispersion on the strength of SSM 

strategies, the K values were also reparameterized. For each of the three categories of 

weed pressures considered, the value of SSM under low, medium and high degrees of 

weed patchiness was considered. This was accomplished by doubling, retaining and 

halving the K values given in Table 4.1, respectively.

Table 4.2 summarizes the economic parameters used for the simulation 

experiments. The same level of prices and costs shown in the Table was maintained for all 

simulations throughout the entire planning horizon.

For the simulation results, the economic component refers to the difference in net 

income under SSM and standard practices. This difference is given in terms of annualized
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Table 4.1 : Initial Settings of the Biological Parameters for the Simulation

Parameter Values

Weed Mean Weedseed

density per m'2 K Rank's Correlation Matrix of Weed Species

Fox. Lamb. Pig. Must. Smart.

Foxtails 173 0.03 1.00

Lambsquarters 733 0.13 0.72 1.00

Pigweed 877 0.12 0.62 0.61 1.00

Wild Mustard 218 0.04 0.92 0.69 0.60 1.00

Smartweed 775 0.04 0.83 0.67 0.55 0.85 1.00

Table 4.2: Initial Settings of the Economic Parameters for the Simulation

Com Soybeans

Selling Price($/bu) 2.15 5.65

Other variable Costs($/acre) 126.15 62.70

Maximum yield(Bu/acre) 110 40

Discount rate 4% 4%
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dollars per acre. The environmental component refers to changes in pesticide(herbicide) 

indexes of these two practices. For both economic and environmental benefits, values 

for the standard practice are deducted from its SSM counterparts. Therefore, positive 

values imply benefits, while negative values signify costs to SSM practices. Income trend 

values refer to the dollars per acre differences in the economic value of SSM practices 

between the first and the next time the crop appears in a com-soybean rotation. Values 

shown are averages over all the ten replications of the simulation experiments considered. 

Since the time horizon for simulating the benefits of SSM was set at four years, income 

trends are appropriate for examining the patterns of these gains over time. If the tendency 

for weeds to approach uniform distribution increases with SSM practices over time, then 

one expects the benefits of SSM to be short-lived. The trend values may therefore be low 

or even negative. On the other hand, if weed distribution remains patchy with SSM 

practices, the benefits of SSM may persist with time and the trend values will be 

significant and positive. These factors have important ramifications in deciding whether to 

adopt SSM practices and invest in its technology.

Finally, figures shown in the parentheses are the paired difference t-statistics that 

were used to test if model performance under SSM is different from its performance under 

standard uniform management. In other words, they test if the values shown in the 

economic and environmental components are statistically different from zero at a given 

level of confidence for the underlying distribution.
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4.2.1. Value of SSM Under Low Weed Pressures

Table 4.3 presents the simulation results under low weed pressures, i.e., for initial 

weed seed densities given in Table 4.1. The results are presented in three sections which 

are for low, medium and high patchiness in weed distributions. The results are also 

shown for two site-specific weed management options. The first option assumes that 

intra-field weed management strategies are adopted for both pre- and post-emergence 

control decisions. The second alternative considered the potential benefits of SSM for 

post-emergence control only. For post-emergence control only, three choices were 

considered for managing pre-plant weeds. These choices are: (i) routine mechanical 

weeding; (ii) use of pre-plant incorporated (PPI) or pre-emergence herbicides; and (iii) a 

choice of no control. However, results of the two most promising options are shown.

When patchiness in weed distribution is low, the results suggest that economic 

gains of SSM are minimal for both pre- and post-emergence weed control, particularly for 

com. The economic gain of implementing SSM is higher in soybean fields than com. 

Since economic benefits of SSM stem mainly from savings in weed control costs, 

soybeans impute higher value to SSM because herbicides for post-emergence weed 

control in soybeans, on average, are relatively more expensive than in com.

The results in Table 4.3 also indicate that there is virtually no economic benefit to 

using SSM practices for pre-plant weed control (PPWC) at low weed aggregation in both 

crops. The modest economic gains come mainly from post-emergence weed control, 

particularly with routine mechanical weeding for PPWC. Trend values in the Table show 

that gains of SSM decline over time for low patchy fields. Under this condition, the
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Table 4.3: Simulated Values of SSM under Low Weed Pressures

Average Annual Benefits of SSM

Paired-t difference statistics are in parentheses.

SSM Option Com Soybeans

Environmental

Component

(Herb, ind.)

Economic

Component

(S/acre)

Income

Trend

(S/acre)

Environmental

Component

(Herb, ind.)

Economic

Component

(S/acre)

Income

Trend

(S/acre)

I. Low Weed Patchiness 
(A) For both pre & post 0.01

(0.23)
-2.10 0.02

(1.34)
1.94

(2.24)
-1.72 0.00

(BIPost-cmcreence only

(i) Rotary hoe for pre-emergence 0.03
(0.44)

-1.74 0.04
(1.01)

2.52
(3.78)

-0.76 0.02
(119)

(ii) No control option for 
p re-emergence

0.02
(0.37)

-1.31 0.03
(1.47)

1.11
(2.17)

-0.89 0.01
(0.98)

n. Moderate Weed Patchiness
(A) For both pre & post 0.30

(1.35)
-1.32 0.24 

(15.08)
3.91

(13.71)
-1.18 0.11 

(12.06)

(B)Post-emergence only

(i) Rotary hoe for pre-emergence 0.85
(3.62)

-1.52 0.29
(16.60)

4.41
(15.87)

-0.84 0.14
(18.53)

(ii) No control option for 
pre-emergence

0.49
(2.09)

-1.55 0.25
(15.21)

3.73
(13.98)

-1.36 0.12 
(14.97)

IH: High Weed Patchiness
(A) For both pre & post 3.21

(6.03)
2.52 0.31

(7.35)
5.42

(8.25)
1.71 0.09

(5.05)

tBIPost-emereence only

(i) Rotary hoe for pre-emergence 2.91 
(10.02)

0.66 0.44
(39.68)

6.37
(20.71)

0.69 0.18 
(12.08)

(ii) No control option for 
pre-emergence

4.19
(5.56)

3.16 0.45
(43.15)

7.28
(13.38)

2.41 0.17
(34.24)
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tendency for weeds to approach uniform distribution over time increases with SSM 

practices.

Economic gains of SSM for com are not statistically different from zero at the 5% 

level under low weed aggregation. For soybeans, the economic benefits are significant at 

the 5% level under all options. For environmental benefits, herbicide index differences are 

not significant at the 5% under low weed patchiness in both crops. In other words, both 

the economic and environmental benefits of SSM are negligible when weeds appear to be 

uniformly distributed.

The middle section of the Table presents simulation results for medium weed 

aggregation. This scenario corresponds to the initial parameter settings for weed seed 

densities and K values given in Table 4.1. To a large extent, the results resemble the ones 

for low weed aggregation. Though there is a modest improvement in the economic gains 

of SSM for com, the gains are not statistically significant at the 5% level, except for 

routine mechanical weeding. Trend values also indicate that the benefits of SSM wane 

over time as weeds tend to be evenly spread. However, the environmental benefits of 

SSM practices begin to show as patchiness in weed distribution increases. At medium 

weed aggregation, the herbicide indexes are all positive and significant. Also, the indexes 

are higher for com than soybeans. Therefore, for com, the greatest incentive to adopting 

SSM practice under low weed pressure stems from their environmental benefits.

The last section of the Table reports the potential benefits of SSM under high 

patchiness in weed distributions. For the simulations, the seedbank densities in Table 4.1 

were retained but the K values were halved. As noted earlier, since weed patchiness
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increases as K tends to zero, this reparameterization makes the field more patchy in weed 

distribution, although the weed pressure is still considered low. The results show that 

economic benefits of SSM become more pronounced as weeds become more patchy in 

distribution, even at low weed pressure. Under this scenario, the economic gains are 

significantly different from zero for both crops and under all control options. Increased 

weed aggregation now makes SSM strategy for both pre-and post-emergence control 

significant, although the most optimal is still post-emergence site-specific management 

with no PPWC.

Environmental benefits of SSM under increased weed patchiness are also enhanced 

with increased aggregation. The differences in herbicide indexes are all significant at the 

5% level and the values are higher than corresponding values under low or moderate 

weed aggregation. While the economic potential of SSM is brighter under soybeans, the 

environmental gains under com also surpass that of soybeans. It is also informative to 

observe that herbicide treatment is not an optimal control option for pre-plant weeds 

under low weed pressures, irrespective of the extent of weed patchiness.

Another notable feature of high weed aggregation can be inferred from the trend 

of SSM benefits over time. It is a bit surprising to see that the trend values are positive 

which indicate that benefits of SSM now increase over time. Although one may expect 

benefits of SSM to disappear over time as intra-field weed management makes weeds 

more uniformly distributed, the dynamics of weeds that escape control in perpetuating the 

species may make patchy weed distributions a recurring phenomenon.
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The results of these simulation experiments have some important ramifications. 

When weed pressure is low and weed distribution is relatively uniform or moderately 

patchy, benefits of SSM are modest and wane over time. This has implication for 

investing in SSM technology. Under these conditions, perhaps custom hiring, rather than 

capital investments in such technology, is the appropriate course of action, if the scale 

effect is ignored. On the other hand, when economic benefits from SSM increase over 

time, as it is the case for highly patchy fields, the prospects of recouping costs of 

investment in SSM technology seem rather bright. Therefore, investments in such 

technology, rather than custom hiring, can be a wise choice.

Finally, the results show that the bulk of economic gains comes from post­

emergence weed control. Therefore, farmers can decide to limit the adoption of SSM 

practices to only post-emergence control. As mentioned earlier, since economic gains 

represent WTP for SSM technology, the strategy may only be economically feasible for 

soybeans at low weed pressures. However, com fields use the largest amount of 

herbicides among U.S. crops and herbicide indexes impute substantial environmental gains 

to SSM practices when weeds are patchy in distributions. Consequently, some public 

support may be necessary to induce the use of SSM strategy in com fields with low weed 

pressures but considerable patchiness in weed distributions.
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4. 2.2 Value of SSM under Moderate Weed Pressures

Simulation results under moderate weed populations are presented in Table 4.4. 

The outcomes show that there are modest gains from carrying out SSM practices at low 

level of weed aggregation. However, as weed pressure increases, routine mechanical 

weeding and routine herbicide treatment generate higher returns than when pre-plant 

weeds are not controlled.

The economic benefit of SSM in com is not significant at the 5% level for low 

patchy fields. Also, the importance of pre-emergence control decisions is noticeable as the 

benefit now seems to be evenly split between pre- and post-emergence control, unlike 

under low weed pressures when the bulk of the economic gains is credited to only post­

emergence SSM practices. For soybeans, the economic gains are all positive and 

significant at the 5% level and a sizeable proportion of the economic gains is still 

attributable to post-emergence SSM.

Trend values indicate that benefits increase over time only if SSM strategy is 

earned out for both pre- and post-emergence weed control. This seems at variance with 

a priori expectation of a trend toward enhanced uniform distribution of weeds under full 

practices of SSM over time. Compared to benefits of SSM under low weed pressures in 

Table 4.3, the increase in the magnitude of economic gains does not suggest that an 

increase in weed pressures exerts much influence on the potential benefits of SSM in 

soybeans when the degree of weed patchiness remains the same.

Environmental gains of SSM practices are now significant even at the low level of 

weed aggregation. Except for soybeans at low level of weed aggregation, the differences
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Table 4.4 : Simulated Values of SSM under Moderate Weed Pressures

Average Annual Benefits of SSM

Paired-t difference statistics are in parentheses.

SSM Option Com Soybeans

Economic Income Environmental Economic Income Environm.

Component Trend Component Component Trend Comp.

(S/acre) ($/acre) (Herb, ind.) ($/acre) ($/acre) (Herb.ind)

L Low Weed Patchiness
(A) For both Pre & Post Emergence 

Control
0.71
(1.92)

0.31 0.13 
(4.44)

2.31
(8.42)

0.03 0.01
(1.43)

(BIPost-emereence only

(i) Rotary hoe for Pre 0.21
(0.87)

-2.11 0.19 
(10.12)

1.92
(6.43)

-2.07 0.03
(2.43)

(ii) No control option for 
Pre-emergence

0.34
(1.29)

-0.92 0.20
(11.40)

3.03
(17.38)

-0.57 0.05
(3.27)

IL Moderate Weed Patchiness
(A) For both Pre & Post 1.11

(4.47)
0.54 0.21

(15.43)
3.97

(14.33)
0.18 0.09

(8.44)

(BIPost-emereence only

(i) Rotary hoe for Pre 0.45
(1.76)

-1.42 0.26 
(15.61)

3.94
(14.59)

-1.17 0.14
(17.80)

(ii) Routine PPI/P re-emergence 
herbicide for Pre

0.52
(1.40)

-0.87 0.28
(20.44)

5.42
(26.61)

-0.72 0.13
(33.57)

III: High Weed Patchiness 
(A) For both Pre & Post 5.00

(7.37)
3.26 0.31

(6.92)
7.01
(9.79)

2.71 0.08
(4.76)

(BIPost-emereence only

(i) Rotary hoc for Pre 3.64 
(7.07)

2.03 0.45
(66.21)

6.93
(13.52)

1.70 0.17
(31.25)

(ii)Routine PPI/Pre-emergence 
herbicide for Pre

2.60
(31.77)

0.27 0.38 
(44.39)

6.14
(31.33)

0.12 0.12
(46.21)
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in herbicide indexes are all significant at the 5% level for both crops and irrespective of 

the management options chosen. On average, the value of herbicide index differences for 

com exceeds the one for soybeans. Compared to standard practices, this implies that 

higher environmental gains are derived from SSM practices in com than soybeans.

Results for moderate level of weed aggregation in the mid-section of Table 4.4 

show that the outcomes resemble the ones under low patchy fields. For com, the 

economic benefits are also not significant at the 5% level, except for the SSM of both pre­

plant and post-emergence weeds. The economic benefits are all positive and significant 

for soybeans at the 5% level. Trend values suggest that benefits of SSM may increase 

over time if the practice is used for both pre- and post-emergence control. However, it is 

doubtful if WTP for SSM practices is high enough in both crops to cover the additional 

cost of implementing SSM for both pre- and post-emergence control under low or 

medium weed aggregation.

With increased patchiness in weed distributions, environmental gains of SSM 

practices improve substantially. They are all positive and statistically different from zero 

at the 5% level. The final section of the Table presents results for high patchiness in weed 

distributions. The results indicate that both differences in net incomes and herbicide 

indexes are statistically different from zero in both crops and for all management options. 

For the first time, implementing SSM for both pre- and post-emergence weed control 

decisions clearly dominates partial use of SSM for post-emergence control alone. Income 

trend values indicate that this strategy is sustainable in the long run as benefits are 

increasing over time. Also, while a substantial proportion of economic gains can be
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credited to post-emergence SSM strategy, the gain from pre-emergence SSM is profound, 

especially for com, thus strengthening the increased importance of SSM practices as weed 

pressure and patchiness mount.

However, the economic benefits of SSM for both pre-and post-emergence control 

are obtained at the expense of environmental gains. The strategy has the least increment 

in herbicide indexes among all options while routine mechanical weeding of pre-plant 

weeds is the most environmental-friendly. This suggests that partial implementation of 

SSM for only post-emergence weed control is probably a good choice for balancing profit 

motives with desirable environmental characteristics of weed control strategies under 

moderate weed pressures irrespective of the degrees of weed aggregation.

4.2.3. Value of SSM under High Weed Pressures

Finally, the prospect of SSM practices was examined in fields with high weed 

populations. As mentioned earlier, this was accomplished by increasing the seedbank 

densities in Table 4.1 by a factor of 5. Simulation results are shown in Table 4.5.

From the Table, economic gains of SSM also increase with higher weed 

populations but the increase is not commensurate with the rise in weed pressures. In fact, 

for soybeans, economic gains of SSM are fairly consistent across weed populations under 

low levels of weed aggregation. In both crops, full SSM practices for both pre- and post­

emergence weed control are superior and economic benefits due to pre-emergence SSM 

strategies exceed benefits for post-emergence SSM control only.
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Table 4.5 : Simulated Values of SSM under High Weed Pressures

Average Annual Benefits of SSM

Paired-t difference statistics are in parentheses.

SSM Option Com Soybeans

Economic Income Environmental Economic Income Environ.

Component Trend Component Component Trend Comp.

(S/acre) (S/acre) (Herb, ind.) ($/acre) ($/acre) (Herb, ind.)
I. Low Weed Patchiness
(A) For both Pre & Post 1.49 0.09 0.14

(3.74) (9.21)
3.07 0.71 0.03

(11.42) (3.86)

(B)Post-emergence only

(i) Rotary hoc for Pre-emergence 0.23 -0.39 0.17
(2.19) (11.93)

1.87 0.14 0.07
(5.09) (13.43)

(ii) No control option for 0.38 -0.65 0.16
Prc-cmergcnce (2.44) (10.15)

II. Moderate Weed Patchiness

1.98 0.22 0.07
(10.33) (11.67)

(A) For both Pre & Post 2.09 0.06 0.19
(5.32) (12.13)

4.75 0.84 0.05
(12.32) (5.94)

(B)Post-emcrgence only

(i) Rotary hoe for Pre 0.65 -0.46 0.22
(4.15) (17.77)

2.53 0.18 0.11
(6.68) (15.26)

(ii) Routine PPI/Pre-emergence 0.67 -0.63 0.24
herbicide for Pre (3.06) (27.82)

III: High Weed Patchiness

3.45 0.25 0.10
(10.89) (18.26)

(A) For both Pre & Post 7.64 0.01 0.38
(9.45) (7.13)

11.67 0.14 0.26
(9.25) (9.29)

(B)Post-emergence only

(i) Rotary hoe for Pre 0.91 0.99 0.00
(1.72)

0.46 0.99 0.00
(1.37)

(ii)Routine PPI/Pre-emergence 
herbicide for Pre

0.01 0.02 0.01
(0.05) (2.60)

0.03 0.04 0.00
( 1.18)
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Trend values under low weed aggregation show that benefits of SSM are fairly 

consistent over time. Environmental gains as typified by values of herbicide indexes are 

still positive and significant, but the values are far less than those under low and moderate 

weed pressures, showing that environmental gains of SSM decline as weed population 

increases.

Outcomes under moderate level of weed patchiness follow a similar pattern as 

recommendations under low aggregation. Both the environmental and economic benefits 

of SSM go up with increased weed patchiness. However, the WTP for SSM practices 

does not seem to be high enough to cover added costs of SSM technology.

Results obtained for model runs under high degrees of weed aggregation are more 

informative. As can be seen in the last section of Table 4.5, economic gains of SSM 

increase substantially for full adoption of SSM practices in both crops. At high level of 

weed populations and high degree of weed patchiness, control of pre-plant weeds 

becomes quite important and a more effective control is achieved through SSM practices. 

Since the potential for subsequent weed problems is reduced, economic gains from only 

post-emergence SSM practices have virtually disappeared and the bulk of these benefits is 

attributable to SSM practices for pre-emergence weed control. Hence, partial adoption of 

SSM strategy for only post-emergence control is not worthwhile in any of the crops. 

Incidentally, WTP for SSM practices may be high enough to make SSM practices 

economically feasible after paying for SSM costs. Trend values also suggest that the 

pattern of economic gains is fairly stable over time; a factor that may be conducive for 

adopting SSM practices and investing in its technology.



76

Environmental benefits of SSM practices are minimal in fields of high weed 

population and aggregation. The tendency to use highly toxic but effective herbicides on 

patchy subfields has offset the advantage of non-chemical usage in the remaining portion 

of the field. Interestingly, in densely populated, highly patchy fields when there is no 

benefit to the society whether the farmer practices SSM or not, farmers may not require 

any incentive to adopt SSM as the economic gains of such strategies may be high enough 

to cover potential costs. Also, it is instructive to note that though the society is not better 

off, the use of SSM strategies does not adversely affect the environment as the differences 

in the values of herbicide indexes, on average, are non-negative.

4.3 Comparing Optimal Strategies under Varying Conditions of Weed Pressure and 

Aggregation

The gains of SSM under varying degrees of weed populations and dispersion can 

be placed in proper perspective if one compares model recommendations under some base 

parameter values with recommendations under different states of weed diversity. Model 

recommendations in Table 4.3 for low weed pressure and aggregation will constitute this 

reference point.

Tables 4.6 and 4.7 summarize the results in Table 4.3 through Table 4.5 and 

present the net changes in model recommendations per acre as weed populations and 

aggregation change relative to recommendations for these base values for com and 

soybeans, respectively. Specifically, the results show the dollar per acre change in net
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Table 4.6 : Effects of Changing Weed Populations and Dispersion on Benefits of SSM

in Com

Weed Pressure

Low Medium High

$/acre herbind S/acre herbind $/acre herbind

Low 0.00 0.00 0.70 0.11 1.48 0.12

Weed

Patchiness Medium 0.29 0.22 LIO 0.09 2.08 0.17

High 3.20 0.29 4.99 0.29 7.63 0.36

Table 4.7: Effects of Changing Weed Populations and Dispersion on Benefits of SSM 
in Soybeans

Weed Pressure

Low Medium High

$/acre herbind $/acre herbind $/acre herbind

Weed

Low 0.00 0.00 0.77 0.01 1.53 0.03

Patchiness Medium 2.37 0.11 2.43 0.09 3.21 0.05

High 3.88 0.09 5.47 0.08 10.13 0.26
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income and the change in herbicide indexes as weed populations and patchiness in weed 

distributions change. The graphical illustrations of these results are shown in Figure 4.1. 

The results given in Tables 4.6, 4.7 and Figure 4.1 were developed under the assumption 

of full SSM practices for both pre- and post-emergence weed control.

Results of the analysis suggest that the influence of rising weed populations on the 

economic potential of SSM is rather modest, but increasing patchiness in weed 

distributions improves the potential economic benefits of SSM considerably. At low level 

of weed aggregation, and as weed populations increase, there is an increase in the 

economic benefit of SSM but the change in economic returns is not high enough to induce 

SSM practices by itself, unless SSM practices are economically feasible for low patchy, 

low weed-pressured fields. For com whose WTP for SSM practices is low for the 

reference recommendations, SSM practices may not be preferred at any level of weed 

pressures if weed aggregation is low.

This picture begins to change as weeds become more patchy in distribution. 

The results suggest that weed patchiness is the main driving force behind the economic 

merit of SSM practices. Economic benefits of SSM practices increase substantially as 

weeds become more clumped. Given a particular level of weed pressure, increased weed 

patchiness can induce the use of SSM strategy even when such practice is not feasible at 

lower level of weed aggregation.

While increasing weed aggregation is very crucial to the adoption of SSM 

practices, increasing weed populations fully complement growing weed patchiness to 

produce maximum economic benefit of SSM practices. Under considerably high degrees
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Figure 4.1 : Economic Value of SSM Information at Different Levels of Weed Pressure 
and Patchiness

SSM Gains in Corn at Different Levels 
of Weed Pressure and Patchiness
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of weed pressure and aggregation, the economic benefit of SSM strategy is high enough 

such that one is approaching a situation when the practice will be economically feasible, 

contingent upon the cost of SSM application.

Changing conditions of weed pressures and aggregation also influence the 

magnitude of environmental gains of using SSM practices. When weeds are uniformly 

spread, there is no environmental benefit from adopting SSM practices, irrespective of the 

degree of weed pressures. Conversely, the environmental benefits of SSM practices 

generally increase as weed patchiness rises, although there are few instances when these 

environmental gains disappear, especially in fields with considerable weed pressure. As 

noted earlier, in these instances, the choice of highly toxic herbicides to control weeds in 

densely populated subfields has overshadowed the benefits of low input use in other 

sections of the field.

On the strength of the simulation results, it seems as if both environmental and 

economic benefits of SSM practices are considerable under increasing weed patchiness, 

but economic gains under increasing weed pressures are modest, particularly if the 

increase in weed pressure is not accompanied by corresponding increase in weed 

aggregation. Therefore, on the strength of economic returns alone, it is questionable 

whether farmers will be willing to adopt SSM practices under the prevailing conditions, 

especially when the attendant risk and cost considerations are factored in.

However, given the potential of SSM practices for lowering environmental hazards 

of pesticide usage, modest financial incentives may be appropriate for inducing the
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adoption of this weed control strategy. These incentives can take various forms, such as 

direct financial subsidies, adequate funding of research for low-cost SSM technology and 

tax premiums that make herbicide users bear responsibility for the cost of herbicide usage.
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V . DELAYED PLANTING STRATEGIES

Simulation experiments to assess the benefits and costs of delayed planting as a 

weed control instrument were conducted within a deterministic framework. In addition 

to weed control, information on delayed planting strategies can aid in sequencing field 

operations. Therefore, model runs were undertaken under varying degrees of weed 

populations, weed species mixes and varietal choice of com hybrids. In this chapter, the 

assumptions governing the simulation experiments are first presented. Later, the 

simulation experiments are described. Finally, model results and their implications for 

delayed planting strategies as a weed control instrument are discussed.

5.1 Modeling Assumptions and Management Considerations

Modeling assumptions regarding crop yields, prices and input costs are similar to 

those presented in Chapter 4. However, the inclusion of varietal choice introduces two 

additional com hybrids whose yield potentials are less than that of full season com which 

is usually the standard hybrid. Potential yields of mid-season and short-season com were 

set at 96 and 84 bushels per acre, respectively. These weed free yields represent the long 

run average maximum yields of these hybrids obtained from experimental fields in west 

central Minnesota.

Unlike SSM practices, no substantial cost outlay for acquiring new technology is 

envisaged for delayed planting strategies. However, there are institutional bottlenecks that 

could set a limit to the feasibility of such a strategy and the extent to which a farmer can
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delay planting. In addition to possible labor constraints, farmers willing to participate in 

crop insurance programs are expected to plant their crops within some specified periods of 

time. For com and soybeans in Minnesota, planting of these crops should not extend 

beyond June 10 for the crops to be insurable. Zilberman et al. (p.28) draw attention to 

other agents whose functions impact on farmers production decisions. Among such 

agents are the bankers who now rely on ability of farmers to repay loans as a major 

criterion in loan decision making. To reduce instances of loan defaults and loans that 

result in bankruptcies, bankers often recommend the use of conservative production plans 

which may include restrictions on delayed planting. Also, production inputs such as 

fertilizers and pesticides often have a time window of application for such inputs to be 

effective. This window of application is relevant in deciding the extent of late planting. 

Considering all these factors, farmers were not allowed to delay planting beyond the early 

weeks of June in the simulation experiments. This period coincides with the time limit sets 

by crop insurance programs.

Simulation experiments were conducted for a number of conventionally tilled fields 

of either crop in com-soybean rotation, continuous com and mid- and short-season com 

in rotation with soybeans. The choice of conventional tillage practices was made to reflect 

the dominant tillage system in Minnesota. Despite the attractiveness of conservation 

tillage practices, progress in switching from conventional to conservation tillage has been 

rather slow in Minnesota. For instance, Mirotchie (p. 12) reported that about 82% and 

74% of total com and soybean acreage respectively, were under a conventional tillage 

system in Minnesota in 1982. Estimates from 1994 National Tillage Information Surveys 
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of USDA Soil Conservation Service2 put the total acreage under conventional tillage at 

5.24 million, out of a total 6.8 million acres for com in 1994. This is about 77%, or a 

difference of 5% over a 12-year period. For soybeans, 3.8 million acres or about 67% of 

total acreage were under a conventional tillage system in 1994. While the model can be 

modified to accommodate conservation tillage system as this practice becomes dominant, 

the impact of such switch in tillage systems on the potential of delayed planting strategy is 

not obvious.

In the simulated experiments, the base planting dates for com and soybeans were 

set at April 28 and May 1, respectively. These represent early planting dates for these 

crops in Minnesota. Planting dates were successively increased for varying degrees of 

weed seed populations and weed mixes in order to determine planting date(s) that 

maximize net returns under the specified conditions. As mentioned earlier, model runs 

were undertaken for three com hybrids and under varying conditions of weed pressures 

and species mixes. Results for full season com, mid- and short season com can identify 

hybrid varieties with the best potential for late planting.

A number of factors influence the choice of control strategies and the resultant net 

returns and environmental indexes. In addition to weed rivalry indicated by their 

competitive indices, timing of weed emergence also plays a role in deciding whether a 

weed species should be controlled and what control strategy to use. Furthermore, since 

the benefits of late planting stem mainly from the proportion of emerging weeds destroyed

^Figures provided by David Breitbach of USDA Soil 
Conservation Service
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during pre-plant tillage, timing of weed emergence is crucial to the realization of its gains. 

Weed emergence models described in Chapter 3 have shown that timing of seedling 

emergence partly depends on the weed species under consideration. Therefore, the weed 

species in the model were categorized into two broad groups, the early and late emerging 

weeds. Based on the timing of observed and simulated weed emergence levels, wild 

mustard, Pennsylvania smartweed and common lambsquarters are classified as early 

emergers, while foxtails and redroot pigweed are grouped as late emergers. Simulations 

under this broad grouping can identify weed species whose preponderance influences the 

optimality of late planting strategies. This information can aid farmers in sequencing field 

operations.

Finally, simulated model recommendations under the delayed planting option were 

compared with those obtained when planting is done in accordance with 

recommendations of the Extension Service. In Minnesota, suggested planting dates for 

these crops range from late April to early May. For the purpose of this comparison, 

recommended planting dates were fixed at May 1 and May 5 for com and soybeans 

respectively; the limit of possible planting dates before any noticeable yield loss due to 

late planting sets in. Therefore, if optimal planting dates fall beyond first week of May for 

either crop, then delayed planting strategy has become a part of preferred weed 

management strategies. The differences in model performance when planting is delayed as 

compared to expected model performance for earlier planting dates impute value to 

delayed planting strategies.
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5.2: Potential for Late Planting under Varying Weed Populations and Mixes

On the basis of expected benefits of delayed planting, the optimal planting date 

should increase with rising weed populations . Also, given the competitive indices of 

weeds, fields in which the early emerging weeds predominate are expected to exhibit a 

different potential for late planting when compared to fields in which late emerging weeds 

are prevalent. Simulation experiments in this section were specifically designed to reveal 

the prospects for late planting under these conditions. The weed seed densities used for 

the simulations are similar to those presented in Table 4.1, except for the foxtail seed 

densities which were set at 2000 per square meter. This balances the mix of grass and 

broadleaf weeds in the populations.

In addition to these initial weed populations, two other variations were used. 

These are in multiples of 0.25 and 4 of the weed seed densities. For this exposition, the 

three sets of weed populations in ratio 0.25:1:4 are categorized as having low, medium 

and high weed populations, respectively. Also, on the basis of the earlier categorization of 

weed species into early and late emerging types, a grouping of these weed seed densities 

into a 3-by-3 matrix combinations provides weed population information required for nine 

model runs. These model runs reflect virtually all possible effects of changing weed 

populations and weed species mixes on model recommendations and choice of delayed 

planting strategies. Results obtained from these simulations are presented in Tables 5.1 

and 5.2.
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Table 5.1: Values of Delayed Planting Strategies at Different Levels of Weed

Populations and Mixes in Com (Compared to May 1 Planting Date)

Early Emergers (Relative Weed Populations)

Low Medium High
Planting Date 1-May 10-May 22-May
Income($/acre) 82.48 74.11 62.37

Low A income 0.00 14.30 64.27
Herbicide Index 0.83 0.83 0.80

A herb. Index 0.00 0.00 0.13

Planting Date 7-May 13-May 23-May
Income($/acre) 79.01 71.43 61.74

Late Medium A income 6.50 21.98 70.31
Emergers Herbicide Index 0.83 0.83 0.80

A herb. Index 0.03 0.03 0.13

Planting Date 13-May 18-May 23-May
Income($/acre) 66.81 64.37 59.05

High A income 37.88 46.25 85.97
Herbicide Index 0.80 0.80 0.80
A herb. Index 0.13 0.13 0.13

Low, Medium and High refer to multiples of 0.25, 1 and 4 of the base weed populations, respectively. The 

base weed populations are : foxtails 2000; lambsquarters 733; pigweed 877; wild mustard 218; and smartweed 

775, all in weed seed densities per square meter. Early emergers are lambsquarters, mustard and smartweed. 

Late emergers are foxtails and pigweed. As an example, the mix of weed-seed densities for high populations of 

early-emerging but low populations of late-emerging weeds are:Foxtails 500; lambsquarters 2932;Pigweed 

219;wild mustard 872; and smartweed 3100.
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Table 5.2: Values of Delayed Planting Strategies at Different Levels of Weed

Populations and Mixes in Soybeans (Compared to May 5 Planting Date) 

Early Emergers (Relative Weed Populations)

Low Medium High

Planting Date 5-May 10-May 21-May

Income($/acre) 147.51 136.01 127.12

Low A income 0.00 1.84 18.01

Herbicide Index 0.78 0.78 0.73

A herb. Index 0.00 0.05 0.16

Planting Date 11-May 13-May 20-May

Income($/acre) 135.49 130.25 126.59
Late Medium A income 3.45 7.20 29.43
Emergers Herbicide Index 0.78 0.73 0.73

A herb. Index 0.05 0.16 0.16

Planting Date 18-May 21-May 22-May

Income($/acre) 125.56 131.52 126.28

High A income 29.58 23.52 51.01

Herbicide Index 0.73 0.73 0.73

A herb. Index 0.16 0.16 0.16

Low, Medium and High refer to multiples of 0.25, 1 and 4 of the base weed populations, respectively. The 

base weed populations are : foxtails 2000; lambsquarters 733; pigweed 877; wild mustard 218; and smartweed 

775, all in weed seed densities per square meter. Early emergers are lambsquarters, mustard and smartweed. 

Late emergers are foxtails and pigweed. As an example, the mix of weed-seed densities for high populations of 

early-emerging but low populations of late-emerging weeds are:Foxtails 500; lambsquarters 2932;Pigweed 

219; wild mustard 872; and smartweed 3100.
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The diagonal elements in these Tables show model performance under direct 

proportional changes in populations of early and late emerging weeds. The off-diagonal 

values are model performances when weed populations of late emerging weeds are 

inversely related to population of early emerging ones. The planting dates shown in the 

Tables are the optimal planting dates that maximize net returns under the stated 

conditions. The corresponding net incomes in dollars per acre at these optimal planting 

dates are also given. A income refers to the increment in net incomes over net incomes 

associated with fixed planting dates, i.e., May 1 for com and May 5 for soybeans.

In evaluating the potential economic benefits of delayed planting strategies under 

increasing weed pressure, changes in net income, rather than the magnitude of net income, 

will be appropriate. With increasing weed populations, net incomes generally decline due 

to increasing crop yield losses from weeds that escape control. Therefore, A income 

denotes the economic value of late planting strategies. The herbicide index is the measure 

of environmental impact of choice control strategies. The change in herbicide index, A 

herb, index, which is the difference between the herbicide index under late planting 

strategies and fixed planting dates, imputes environmental values to delayed planting 

strategies.

The results show that imputed values of late planting are virtually nil at low 

pressures of both early and late emerging weeds in both crops. Therefore, farmers whose 

extent of weed pressure resembles the weed densities at low weed pressure would 

maximize returns from early plantings. However, delayed planting appears to be a feasible 

strategy as weed pressure intensifies. At moderate weed populations which are close to
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actual field conditions, delaying planting for a few days beyond the fixed planting dates is 

optimal in both crops. In fact, at high weed populations of either early or late emerging 

weeds In com, simulation results suggest losses may be reported for early plantings. As a 

result, late planting may actually be the best strategy for optimizing net income. 

Fortunately, such extreme weed populations are rarely encountered in actual fields.

The off-diagonal values in Tables 5.1 and 5.2 suggest that the use of delayed 

planting as a weed control instrument is more attractive when there is a preponderance of 

early emerging weeds. For example, for com in Table 5.1, the optimal planting date is 

May 22 at high populations of early emerging but low population of late-emerging weeds. 

On the other hand, the optimal planting date is May 13 for high populations of late 

emerging but low populations of early emerging weeds. Therefore, the preponderance of 

early emerging weeds may yield an extra window of about nine planting days for which 

planting can be delayed. Optimal planting dates for soybeans in Table 5.2 follow the same 

pattern, permitting up to an additional window of about three days for planting if 

population of early emerging weeds exceeds that of late emerging weeds.

The results suggest that the economic potential for delayed planting is higher in 

com than in soybeans. This supports the earlier observation in Chapter 3 that soybeans 

are generally more sensitive to late planting than com. This information has important 

implications in managing fields of heterogenous weed populations and weed species 

mixes.

Herbicide indexes are the measures of environmental impact of choice strategies 

under late planting. In general, environmental benefits of delayed planting strategies, as
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represented by their A herb, index, increase as weed populations rise. Since all the 

herbicide indexes are less than unity, optimal weed control at all levels of weed pressure 

involves some herbicide treatment. This is better illustrated in Appendix 6. Results in 

this Appendix show detailed simulated net incomes and herbicide indexes for all probable 

planting dates of com which underlie some of the summary recommendations presented in 

Tables 5.1.

The results in Appendix 6 show that the optimal planting date is May 13 for com 

under medium level of early and late emerging weeds. Although the need for herbicide 

use declines with increasing delay in planting, the control strategy at this optimal planting 

date involves herbicide use. For herbicide-free control of weeds in com, planting has to be 

delayed till at least May 25. However, the corresponding loss in potential income of more 

than $8 per acre makes such strategies unattractive to farmers whose primary objective is 

profit maximization. Delayed planting strategy is therefore not an alternative to herbicide 

use at the optimal level of control.

Despite the fact that delayed planting strategy does not eliminate the need for 

herbicides, it is remarkable to observe that it eliminates use of pre-plant chemical 

treatments at all weed populations and weed species mixes. Rather, the use of either 

mechanical weeding or no control strategies is optimal depending on the extent of weed 

pressures. Mechanical and no control strategies have the most environmentally- friendly 

attributes among the treatments included in the model. Although results in Tables 5.1, 

5.2 and Appendix 6 suggest that optimal control strategies under fixed planting dates 

sometimes coincide with the preferred control treatment under delayed planting strategies,
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model recommendations assuming a fixed planting date may sometimes involve the use of 

PPI/pre-emergence herbicides at high weed pressures. Delayed planting strategy may 

therefore be a promising tool for reducing the use of pre-emergence herbicides.

5.3: Delayed Planting and Varietal Selection

Full season com, which requires between 110 and 115 days to mature, has the 

maximum yield potential for early planting. However, compared to its mid-season and 

short-season hybrids, it suffers the most when planting is delayed. To further investigate 

the impact of hybrid selections on the economic and environmental benefits of delayed 

planting strategies, simulation experiments were carried out for mid-season and short 

season com, in addition to model runs for full season com under a wide range of weed 

densities. Table 5.3 presents model recommendations as a function of planting dates at 

three discrete levels of weed pressure. These three levels are in 0.25:1:4 proportions of 

the base weed populations respectively.

In terms of planting dates that maximize net returns for each of the three com 

hybrids, the results show that short-season com is the variety whose planting can be most 

delayed, irrespective of the degree of weed pressures. This is followed by mid-season 

com. As weed populations increase, further delay in planting offers an optimal path for 

farmers to maximize net returns, irrespective of com hybrids grown.
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Table 5.3: Value of Delayed Planting Strategies for Three Com Hybrids

Low Weed Populations

Variety

Short 

season

Full

season

Mid­

season

Planting Date 1-May 8-May 27-May

Net Income($/acre) 82.48 57.22 41.08

Herbicide Index 0.83 0.87 1.00

Medium Weed Populations

Planting Date 13-May 19-May 31-May

Net Income($/acre) 71.43 50.11 38.34

Herbicide Index 0.83 0.87 1.00

High Weed Populations

Planting Date 23-May 27-May 6-Jun

Net Income($/acre) 59.05 40.11 33.73

Herbicide Index 0.80 0.83 0.87

Low, Medium and High refer to multiples of 0.25, 1 and 4 of the base weed populations, respectively. The 

base weed populations are : foxtails 2000; lambsquarters 733; pigweed 877; wild mustard 218; and smartweed 

775, all in weed seed densities per square meter.



94

The environmental gains of planting mid-season and short-season varieties under 

delayed planting strategies are quite substantial when compared to full season com. For 

mid-season com, environmental indexes are generally higher than that of full season, 

which implies the use of less toxic herbicides. However, since each of these indexes is still 

less than unity, recourse to a mid-season hybrid under optimal planting strategies may not 

eliminate the need for post-emergence herbicides completely.

If environmental gains are the sole criterion for choosing delayed planting strategy, 

then short-season com is definitely the best variety. Its planting can be delayed far enough 

to allow most weed seeds to have germinated. Since these weeds are destroyed by pre­

plant tillage, the potential for subsequent weed problems is greatly reduced.

For this reason, environmental gains for short season com are greatest for mild weed 

infestations under optimal path of delayed planting strategies. The use of post-emergence 

herbicides is only required when weed pressure is high, but the herbicides that are selected 

are still less toxic when compared to herbicide choices either under early planting of short­

season or both early and late planting of mid- and full season com.

Despite the environmental merit of short- and mid-season hybrids under delayed 

planting strategies, it is doubtful if any farmer will prefer these hybrids to full season com 

under similar modeling conditions. A cursory glance at the magnitude of net incomes in 

Tables 5.3 shows that net incomes from full season com consistently exceed 

corresponding incomes for short and mid-season varieties at all levels of weed 

populations. This implies the maximum yield potential of full season com duly 

compensates for the corresponding loss in crop yields as planting is delayed, although full
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season com is most sensitive to late planting. Without financial incentives to explicitly 

account for the differences in income, a switch to shorter season varieties is not envisaged. 

Financial incentives can even achieve better results if used to promote adoption of 

environmentally friendly strategies in full season com, rather than encouraging late 

planting of mid- or short-season hybrids. However, breeding programs that increase 

yields of short-season varieties may be a step in the right direction.

5.4: Delayed Planting and Crop Rotation Practices

Crop rotation is an important component of a weed management program (Durgan 

et. al, p. 5). Rotation practices affect the choice of feasible control strategies, and by 

extension, the potential of delayed planting strategies for weed control. An example is the 

use of atrazine, a restricted herbicide product. Atrazine is among the feasible control 

treatments in continuous com, but its use is not permitted in a com-soybean rotation 

because of its potential carryover effects on atrazine-sensitive crops such as soybeans. 

Table 5.4 shows the model performance for continuous com and com in com-soybean 

rotations for two discrete levels of weed pressures. These two discrete levels of weed 

pressure are in multiples of 1 and 4 of the base weed seed populations shown in Table 5.1.

Results in Table 5.4 show that optimal planting dates for both rotational practices 

are virtually the same irrespective of the extent of weed pressures. Therefore, the choice 

of optimal planting dates is generally invariant to crop rotation practices at all weed 

pressures. The minor differences in net incomes and environmental indexes are
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Table 5.4: Influence of Rotational Practices on Optimal Planting Dates
Medium Weed Populations High Weed Populations
Rotation Continuous Rotation Continuous

Planting

Date
Income Herb. Income Herb. Income Herb. Income Herb.

($/acre) index ($/acre) Index ($/acre) Index (S/acre) Index
28-Apr 31.67 0.80 32.30 0.67 -46.00 0.80 -46.92 0.56

1-May 49.45 0.80 50.76 0.67 -26.92 0.67 -27.46 0.56

4-May 52.47 0.80 52.21 0.67 -12.47 0.67 -12.41 0.56

7-May 61.30 0.80 60.99 0.67 13.57 0.67 13.50 0.56

1 O-May 63.97 0.80 65.89 0.67 26.90 0.67 27.71 0.56

13-May 71.43 0.83 70.64 0.67 39.83 0.67 39.39 0.67

16-May 66.10 0.83 65.37 0.83 46.00 0.67 45.49 0.67

19-May 65.52 0.83 67.49 0.83 51.64 0.80 53.19 0.67

22-May 63.81 0.83 65.72 0.83 55.34 0.80 57.00 0.67

25-May 63.15 1.00 . 62.83 1.00 56.37 0.80 56.09 0.67

27-May 63.49 1.00 63.17 1.00 55.91 0.80 55.63 0.67

Medium Weed Populations correspond to weed seed densities in the footnote of Table 5.1. High Weed 

Populations are these weed populations multiplied by 4.

due to differences in costs, toxicity and effectiveness of choice control strategies. 

However, the above results may be valid only within a static, deterministic framework.

In a dynamic setting, crop rotation promotes use of different types of herbicides on 

the same field over the years which prevents the buildup of difficult to control or herbicide 

resistant weeds (Durgan et al., p. 5). Also, the patterns of competition between crops and 



97

weeds obviously affect the choice of herbicide products. The need for highly effective 

herbicides is minimal for crops that vigorously compete with weeds. Yenish et al. have 

found evidence of changing weed species mixes as rotation and tillage practices vary due 

to competitive patterns between weeds and crops and the different control strategies that 

such practices entail. For these reasons, it is reasonable to expect different potential for 

delayed planting strategies in a static setting when compared with outcomes of dynamic 

simulation experiments. Whether this divergence will be significant is yet to be 

determined.
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VL SUMMARY AND CONCLUSION

Growing concerns about possible health and environmental hazards of pesticides 

are responsible for the implementation of various measures, ranging from herbicide 

restrictions to use quotas, to regulate pesticide usage worldwide. However, the adverse 

effects of uncontrolled pest populations are well documented. In the United States alone, 

the annual value of crop yield losses from uncontrolled weed populations runs into several 

billions of dollars. These considerations are kindling interest in identifying control 

strategies that are both profitable and environmentally friendly.

The next wave of economic growth is expected from knowledge-based businesses 

(Davis and Botkin). This assertion is particularly relevant in pest management where 

bioeconomic models for optimal control strategies have proved useful in maximizing 

returns and curtailing herbicide usage. These models employ concepts of economic 

thresholds to recommend control strategies that are responsive to field conditions under 

the implicit assumption that weeds are evenly spread throughout the field. This contrasts 

with routine weed control which is the standard practice of most farmers. Although these 

models acknowledge that misapplication of herbicides can be counter-productive in terms 

of yield loss or high control costs, little consideration is given to environmental 

implications of herbicide use.

Recent emerging tools for pest management can provide the means of balancing 

the profit motive of pest control with environmental needs. One such instrument is site­

specific weed management (SSM). SSM prescribes herbicide treatment for only the 
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portion of a field infested by weeds, rather than the entire field. This intra-field weed 

management recognizes that the assumption of uniform weed distribution throughout the 

entire field may not be valid. The second tool that is increasingly becoming relevant is 

delayed planting strategy coupled with mechanical control weeds. By allowing weeds to 

emerge prior to planting, delayed planting reduces the need for herbicides as the bulk of 

potential weeds would have been eradicated during pre-plant tillage. Taken together, 

these weed control practices have the potential to reduce herbicide use and possibly 

enhance profit.

However, these emerging weed control tools also have their costs. SSM requires 

additional costs for obtaining the information and technology for implementation. Delayed 

planting generally reduces crop yields and can interfere with other field operations. 

Therefore, the broad objective of the study was to explore the costs and benefits of these 

tools for reduced input weed management. The specific objectives of the study were:

(i) To modify the dynamic bioeconomic model for the control of multiple 

weed species (Swinton; Swinton and King) for the effects of weed 

distribution, delayed planting and mechanical weed control on its decision 

rules;

(ii) to use simulation experiments to assess the potential economic and 

environmental benefits of managing for intra-field weed variability under 

varying weed populations, weed species mixes and dispersion;

(iii) to determine planting thresholds that balance the benefits of delayed 

planting strategy against its costs and describe the set of environmental
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and resource conditions under which delayed planting and mechanical 

weed control can become a part of preferred weed management strategies.

In the sections that follow, the conceptual basis for the study, model specification 

and validation are first presented. Next, the major findings of the simulation experiments 

to evaluate the net benefits of SSM and delayed planting strategies are indicated. Finally, 

directions for future research are suggested.

6.1 : Conceptual Basis for the Study, Model Specification and Estimation

The study reviews the conceptual issues involved in weed management modeling. 

It demonstrates the impact of weed distribution patterns on estimated yield losses and 

expected income from weed control. Two methods of incorporating weed management 

models are discussed. These are the geostatistical techniques and simulation method.

Geostatistical interpolation technique known as Kriging is a suitable method for 

establishing how weeds are distributed in space. The resultant weed population maps 

offer an easy, practical step of using SSM. However, for evaluating the potential 

economic and environmental benefits of SSM in this study, the alternative simulation 

approach is employed. For the simulation method, intra-field weed management is 

accomplished through sub-division of a field into a discrete number of subfields such that 

weeds are evenly spread within each subfield but weed density may vary from one subfield 

to another. To obtain weed density information for these subfields, parameters of a 

negative binomial distribution which characterize weed species included in the model were
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used in generating variates of the distribution. To account for the nature of 

interdependency occurring among weed species, King's multivariate process generator was 

employed to recast variates into their random multivariable forms. Each set of 

interdependent random variables constitutes the seed density information for each subfield.

The thesis develops a model of delayed planting strategies in weed control. Late 

planting lowers yield, but the cost of achieving comparable effective level of weed control 

may be less for late planting than early planting. The model identifies planting dates for 

which economic benefits of cheaper weed control practices under late planting exceed or 

equal the negative benefits of yield loss. Under these conditions, model performance 

under delayed planting strategies will be superior to performance under standard practices 

of early planting.

Although the choice of optimal control strategies in this study is based on the 

magnitude of net incomes, due consideration is given to the environmental effects of the 

preferred weed management options. The study builds on the earlier work by Kovach et 

al. in developing herbicide indexes for evaluating the environmental impact of herbicide 

usage. This method recognizes the toxicological strength and application dosage of 

individual herbicide products in computing herbicide indexes. The method improves upon 

previous practices (Wiles; Swinton) of using only numerical loads to assess environmental 

impact of alternative control strategies.

The starting decision model for estimating the potential benefits of SSM and 

delayed planting strategies is WEEDSIM. This is a computer-based, dynamic 

bioeconomic weed management model which accommodates multiple weeds and control 
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treatments. WEEDSIM identifies the optimal path of weed control treatments that 

maximizes net returns over a two-year time horizon. MODWSIM is an extension of 

WEEDSIM that incorporates SSM and delayed planting sub-models in its decision rules. 

MODWSIM employs information provided by the user on weed density information, crop 

prices and input costs to identify optimal strategies ranked on the basis of net returns for 

any specified finite number of years. Environmental indexes are provided to facilitate 

comparisons of alternative control strategies. MODWSIM identifies optimal strategies 

and compares model performance under standard practices to performance under SSM 

and delayed planting strategies. The differences, if any, in model performance impute 

value to these weed control instruments.

Considerable efforts are devoted towards estimating the biological parameters 

required for running the model. The input parameters that WEEDSIM share in common 

with MODWSIM were re-estimated due to availability of richer data set. Input parameters 

that are unique to MODWSIM were developed and validated. Although the parameter 

estimates are generally satisfactory, the quality of parameter estimates can be enhanced as 

better information on weeds and their population dynamics becomes available.

6.2 Potential Benefits of SSM

The potential benefits of SSM are examined under low, medium and high degrees 

of weed populations and aggregation. Weed populations are considered low if they fall 

below the average populations of the weed species in west central Minnesota. Weed 

populations that fall within or above this range are considered medium or high, 
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respectively. Similarly, the degree of weed patchiness is classified as low, medium or high 

based on the magnitude of its estimated K. Previous values of K estimated for a wide 

range of weed species serve as a guide for the classification. The simulation experiments 

for evaluating the benefits were conducted within a dynamic but deterministic framework.

In general, weed patchiness, which is the compelling reason for implementing 

SSM, turns out to be the most important factor influencing the benefits of SSM practices. 

Simulation results show that economic and environmental benefits of SSM practices are 

almost nil at low weed pressures, particularly if weeds are uniformly distributed. As 

weeds become more clumped, there are minimal economic gains from SSM practices. At 

high level of weed aggregation, economic benefits of SSM are more visible. However, the 

main incentive to adopting SSM practices stems from its environmental benefits which are 

quite significant at low weed pressure for high patchy fields. In this situation, weeds are 

concentrated on some portions of the field such that herbicide application may not be 

necessary (or economically optimal) on the remaining segment of the field.

Simulations at moderate weed pressures which closely approximate Minnesota 

fields do not reveal substantial changes in SSM performance when compared to its 

benefits at low weed pressures. Economic and environmental benefits of SSM are still 

modest at low level of weed aggregation. However, as weeds become more patchy, the 

economic benefits appear significant and considerably higher than similar benefits under 

low weed pressures. On the other hand, the environmental benefits are also significant but 

less than benefits under low weed pressures. Since economic benefits of SSM denote 

WTP for SSM technology, it is doubtful if the strategy will be economically feasible at low 
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and moderate levels of weed populations, irrespective of the degrees of weed patchiness. 

Under these conditions, the main advantage of SSM practices is the considerable 

environmental benefit but which, by itself, cannot induce farmers to accept the practices 

without some support.

The best economic returns to SSM practices are obtained under high degrees of 

weed pressure and aggregation. Implementing SSM practices under this condition may 

be economically attractive as the WTP for SSM technology appears high enough to pay 

for the potential costs of SSM practices. However, environmental benefits of SSM 

practices are not so clear-cut. Environmental gains of SSM practices may disappear in 

fields with high degree of weed pressure and patchiness if the effects of using toxic 

herbicides to control weeds in densely populated subfields offset the benefits of low input 

use in the remainder of the fields.

Finally, economic gains of SSM practices stem from savings in herbicide costs. 

Therefore crops whose herbicides are relatively more expensive will benefit more from 

SSM practices.

6.3 Delayed Planting Strategies

The difference between model performance when planting is delayed as compared 

to when timely planting is carried out in accordance with Extension Service 

recommendations imputes value to delayed planting strategies. Simulation analyses within 

a static, deterministic framework show that delayed planting can indeed be a primary tool 

for optimizing weed control and net income, rather than eliminating herbicide use.
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When weed pressure is low, there is neither economic nor environmental benefit 

from late planting. However, as weed populations increase, these benefits are realized. 

Though the simulation results do not suggest that delayed planting strategy can substitute 

for herbicide use under optimal strategy for weed control, the environmental strength of 

late planting lies in its potential to reduce or eliminate the need for pre-emergence 

herbicides. Due to the fact that more pre-plant weeds emerge with delayed planting, the 

use of mechanical weeding for pre-plant weeds is a clearly superior strategy over herbicide 

treatment irrespective of the degree of weed pressures for all simulations under delayed 

planting strategies.

The influence of varietal hybrid selection on the strength of delayed planting 

strategies was also examined. Hybrid varieties requiring fewer days to mature are less 

sensitive to late planting than full season varieties. The environmental gains of using these 

varieties are significant, since the bulk of potential weeds are eliminated during pre-plant 

tillage. However, the greater tolerance of short-season varieties for late planting does not 

adequately compensate for their lower yield potentials when compared to full season 

varieties. Therefore, full season hybrids still remain the economically optimal varieties 

under delayed planting strategies.

Finally, simulation results suggest that the choice of optimal planting dates are 

invariant to crop rotation practices within a static framework. However, it is very likely 

that rotational practices will influence delayed planting practices in a dynamic setting.
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6.4 Conclusion

The study showed that under suitable conditions, SSM and delayed planting 

strategies have the potential to enhance profit and reduce herbicide use. The practices are 

environmentally friendly, so the society is never worse off when compared to standard 

practices. However, the impact on profit is generally modest and it may not induce the 

adoption of these practices by farmers when cost and risk issues are considered. If the 

environmental gains of these tools are adjudged significant, then some public incentives 

may be needed to promote the use of these weed control strategies.

6.5 Suggestions for Future Research

Findings in this study have imputed some value to SSM and delayed planting 

strategies as weed control instruments. Under suitable conditions, SSM practices can be 

economically feasible such that the errors in weed control decisions based on the 

assumption of uniform weed distribution can be significant. This departs from simulation 

results reported by Wiles. Since these findings have important research and policy 

ramifications, field trials to validate these results will be an appropriate research effort. 

The design of such field trials can be similar to the on-going validation field trials of 

WEEDSIM recommendations in Morris and Rosemount, MN (Forcella, 1992).

Adoption of SSM practices depends in part on the availability of affordable SSM 

technology. The economic benefits of SSM practices denote the WTP for SSM 

technology since uniform cost is assumed for standard practices and SSM. At present, the 
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cost of acquiring variable rate equipment and computer software for managing soil fertility 

is about $275,000, according to Cargill, a leading provider of such services (Walsh). For 

this reason, it is doubtful if SSM will be economically feasible if similar cost outlay is 

involved given the magnitude of its WTP under most conditions. As a result, future 

research into production of low-cost VRT deserves consideration. Since the use of SSM 

for weed control generally has less adverse effect on the environment as compared to 

standard practices, some public support for such research endeavors is in order.

Simulation experiments in this study are conducted within deterministic 

framework. In addition, the potential of delayed planting strategies is evaluated under a 

static environment. These assumptions represent an oversimplification of reality. An 

extension of this research is to examine the impact of farmers' risk attitudes on the benefits 

of these weed control instruments. The use of stochastic simulation within a whole-farm 

context will further approximate the real prospects of SSM and delayed planting strategies 

under field conditions.

The quality of model recommendations depends on the precision of the input 

parameters, especially the biological information. Often, the biological data employed for 

estimating these parameters are obtained from agronomic studies whose research 

objectives are sometimes at variance with the goals of bioeconomic modeling for weed 

management. As a result, the data may not be suitable for rigorous statistical estimation 

of input parameters or they can produce generally unsatisfactory estimates. Further 

research is needed to improve our understanding of the biology of these weed species and 

their dynamics. Relevant research should come up with data that permit more precise



108

estimation of the parameters of crop-weed interference, weed seed production, 

germination, viability and mortality.

The delayed planting sub-model used a piecewise linear function of yield as a 

function of planting date which ignores other pertinent factors. In addition to planting 

date, an appropriate model needs to consider the influence of factors such as planting 

locations, varietal selection, frost and weather conditions. Research efforts in this area 

will definitely enhance the quality of model recommendations under delayed planting. 

Fortunately, interest is growing in this area of research. Swinton (p. 172) alludes to some 

work of Eradat Oskoui and Voorhees in this direction. Also, Toichoa Buaha and Apland 

are currently developing models of crop yield as a quadratic function of planting dates, 

planting location and varietal selection. Such research efforts deserve support.

This study has considered only conventional tillage which is the dominant practice 

in Minnesota. In some states, e g., Iowa, the use of conservation tillage is quite 

prominent. While one is not certain how a switch to conservation tillage practices will 

affect the prospects of SSM and delayed planting strategies as weed control instruments, it 

may be worthwhile to investigate how conservation tillage system impact the findings of 

this study.

Finally, public policy studies that investigate how the use of alternative policy 

options will influence the adoption of these weed control strategies are needed. These 

options which can include a ban on some herbicide products, tax on the use of herbicides, 

recourse to use quotas and permits will make pesticide users bear full social responsibility 

for pesticide use. In this era of anti-subsidy sentiments, these options provide a
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convenient way of inducing the use of more environmentally-friendly control strategies 

which otherwise would have remained on shelves due to their low economic returns.
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APPENDICES



Ill

A.l. Listing of the MODWSLM Program Code3

3Being an extension of WEEDSIM, programming credit also goes 
to Drs Swinton and King.

। *********************** 
' * Show Opening Screen * 
।***********************
CLS
SCREEN 0
COLOR 14, 1, 8
LOCATE 4, 1 
ii ************** »
" * MODWSIM *"
ii **************n

" by Caleb A. Oriade"
" Department of Agricultural and Applied Economics"
" University of Minnesota, St. Paul, MN 55108"

" December, 1994

" MODWSIM is a modified version of WEEDSIM (Swinton and King, 1994)."
" WEEDSIM is a dynamic model that recommends optimal weed control"
" strategies for continuous com and com-soybeans rotations. The"
" recommendations are based on current year weed-seed and seedling"
" counts, and forecasts of weed problems in the succeeding years."
" This modified model incorporates routines that:"
" (1) permit site-specific weed management"
" (2) assess delayed planting effects on weed control strategies and"
" (3) give the indexes of herbicide impacts on the environment."

i***********************************************************

DETINT I-N

। *****************

1 * Declare Types *
।*****************

TYPE cfile
cid AS INTEGER 
cname AS STRING * 8 
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cprice AS SINGLE 
ccost AS SINGLE 
grate AS SINGLE 
yrmax AS SINGLE 
pl AS SINGLE 
p2 AS SINGLE 
p3 AS SINGLE 
p4 AS SINGLE 
p5 AS SINGLE 
p6 AS SINGLE 
yll AS SINGLE 
yl2 AS SINGLE 
yl3 AS SINGLE 
yl4 AS SINGLE 
yl5 AS SINGLE

END TYPE

TYPE wfile
wid AS INTEGER 
wname AS STRING * 8 
grate AS SINGLE 
sprod AS SINGLE 
erate AS SINGLE 
smrate AS SINGLE

END TYPE

TYPE tfile 
tid AS INTEGER 
tname AS STRING * 16 
tcost AS SINGLE 
hload AS SINGLE 
hindex AS SINGLE

END TYPE

TYPE ffile 
fid AS INTEGER 
year AS INTEGER 
cropl AS INTEGER 
pldate 1 AS INTEGER 
postdatel AS INTEGER 
cultdate 1 AS INTEGER 
wfyl AS SINGLE 
crop2 AS INTEGER
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pldate2 AS INTEGER
postdatez AS INTEGER 
cultdateZ AS INTEGER 
wfy2 AS SINGLE 
cultcontrol AS SINGLE 
END TYPE

TYPE sfile
preid AS INTEGER
postid AS INTEGER 
netrev AS SINGLE 
revfy AS SINGLE 
eyield AS SINGLE 
hload AS SINGLE 
hindex AS SINGLE

END TYPE

।*************************************

' * Declare Functions and Subprograms *
।*************************************

DECLARE SUB GetCropInfo (ncrop, c() AS cfile)
DECLARE SUB GetWeedlnfo (nweed, w() AS wfile)
DECLARE SUB GetSeedCts (id, nweed, scountQ AS SINGLE)
DECLARE SUB GetWeedCts (id, nweed, wcount() AS SINGLE)
DECLARE SUB PrePostEval (i, j, ncrop, nweed, ntpre, ntpost, nepoint, nstrat, c() AS 
cfile, w() AS wfile, f AS ffile, sct() AS SINGLE, tpre() AS tfile, tpost() AS tfile, preffQ 
AS SINGLE, poeff() AS SINGLE, prfeas() AS INTEGER, pofeasQ AS INTEGER,  
compiQ AS SINGLE, epoint() AS INTEGER, ecum() AS SINGLE, topstrat() AS sfile, 
endsctQ AS SINGLE)
DECLARE SUB GetPreTInfo (ntpre, tpre() AS tfile)
DECLARE SUB GetPostTInfo (ntpost, tpost() AS tfile)
DECLARE SUB GetTrFeasInfo (ncrop, ntpre, ntpost, prfeas() AS INTEGER, pofeas() 
AS INTEGER)
DECLARE SUB GetEfflnfo (ncrop, ntpre, ntpost, nweed, preffQ AS SINGLE, poeff() 
AS SINGLE)
DECLARE SUB GetCompInfo (ncrop, nweed, compiQ AS SINGLE)
DECLARE SUB GetEmergelnfo (nweed, nepoint, epointQ AS INTEGER, ecumQ AS 
SINGLE)
DECLARE SUB NextYearEval (ncrop, nweed, ntpre, ntpost, nepoint, c() AS cfile, w() 
AS wfile, f AS ffile, sct() AS SINGLE, tpre() AS tfile, tpostQ AS tfile, preffQ AS 
SINGLE, poeffQ AS SINGLE, prfeasQ AS INTEGER, pofeasQ AS INTEGER, compiQ 
AS SINGLE, epointQ AS INTEGER, ecumQ AS SINGLE, topstrat AS sfile) 
DECLARE SUB TStratUpdate (nstrat, topstratQ AS sfile, revty AS sfile)
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DECLARE SUB PrintPostRecs (ncrop, nweed, ntpost, nstrat, c() AS cfile, w() AS wfile, f 
AS ffile, wcountQ, tpost() AS tfile, topstrat() AS sfile)
DECLARE FUNCTION Tabli (np, xval() AS INTEGER, yval() AS SINGLE, iarg)
DECLARE FUNCTION Ydpen (pl, p2, p3, p4, p5, p6, yll, yl2, yl3, yl4, yl5, x AS 
SINGLE)

* * Get Model Size and Type Information *
' * NCROP number of crops *
1 * NWEED number of weeds *
1 * NEPOINT number of dates in the emergence Table 
' * NTPRE number of PRE treatments *
' * NTPOST number of POST treatments *
' * NSTRAT number of strategies to save for reports *
' * NSFLD number of subfields for each field *
।***********************************************************

OPEN "inputfhame" FOR INPUT AS #1
INPUT #1, mtype, ncrop, nweed, nepoint, ntpre, ntpost, nstrat, nsfld, nyear
CLOSE #1
mtype= 1

LOCATE 24, 1
PRINT " Please wait while data files are being loaded.";

।*****************
1 * Define Arrays * 
t *****************

DIM crop(ncrop) AS cfile
DIM weed(nweed) AS wfile
DIM year(nyear) AS ffile
DIM tpre(ntpre) AS tfile
DIM tpost(ntpost) AS tfile
DIM prfeas(ncrop, ntpre) AS INTEGER
DIM pofeas(ncrop, ntpost) AS INTEGER
DIM preff(ncrop, ntpre, nweed) AS SINGLE
DIM poeffincrop, ntpost, nweed) AS SINGLE
DIM compi(ncrop, nweed) AS SINGLE
DIM ascount(nsfld, nweed) AS SINGLE
DIM awcount(nsfld, nweed) AS SINGLE
DIM scount(nweed) AS SINGLE
DIM wcount(nweed) AS SINGLE
DIM topstrat(nstrat) AS sfile
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DIM af(nsfld, nyear) AS ffile
DIM f AS ffile
DIM epoint(nepoint) AS INTEGER
DIM ecum(nweed, nepoint) AS SINGLE
DIM escount(nstrat, nweed) AS SINGLE

■ *************************
' * Read Model Parameters *
>*************************

CALL GetCropInfo(ncrop, cropQ)
CALL GetWeedInfo(nweed, weedQ)
CALL GetPreTInfo(ntpre, tpre())
CALL GetEmergeInfo(nweed, nepoint, epoint(), ecumQ)
CALL GetPostTInfo(ntpost, tpostQ)
CALL GetTrFeasInfo(ncrop, ntpre, ntpost, prfeasQ, pofeasQ)
CALL GetEfHnfo(ncrop, ntpre, ntpost, nweed, preffQ, poeffQ)
CALL GetCompInfo(ncrop, nweed, compiQ)

।**********************
' * Read Subfield Data *
• **********************
OPEN "Inpfhame2" FOR INPUT AS #1
FOR i = 1 TO nsfld
FOR y = 1 TO nyear
INPUT #1, af(i, y).fid, af(i, y).year, af(i, y).cropl, af(i, y).pldatel, af(i, y).postdatel, af(i, 

y).cultdate 1, af(i, y).wfyl, af(i, y).crop2, af(i, y).pldate2, af(i, y).postdate2, af(i, 
y).cultdate2, af(i, y).wfy2, af(i, y).cultcontrol
NEXT y

NEXT i
CLOSE #1

OPEN "Inpfhme3" FOR INPUT AS #2
FOR i = 1 TO nsfld
FORj = 1 TO nweed

INPUT #2, nid, wid, ascount(i, j)
NEXT j

NEXT i
CLOSE #2

< *********************
' * Execution Section *
।*********************
**************************************
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' Loop Statement for Recommending
1 Strategies from 1 to n subfields
। **************************************

FOR ISFLD = 1 TO nsfld

FOR j = 1 TO nweed 
scount(j) = ascount(ISFLD, j)

NEXT j

FOR iy = 1 TO nyear 
f = af(ISFLD, iy)

CLS

i*****************************************
'* Screen Statement While Evaluating *
'* Strategies *
i*****************************************

LOCATE 7, 16
PRINT "Bioeconomic Weed Management Program in Progress"
LOCATE 8, 15

PRINT "Please wait while strategies are being evaluated.";
LOCATE 9, 20
PRINT " (c) MODWSIM3: Caleb A. Oriade, 1994"

• ********************************************
' * Evaluate Strategies for Current Subfield *
■ ********************************************

FOR i = 1 TO nstrat
topstrat(i).preid = 0
topstrat(i).postid = 0
topstrat(i).netrev = -999999
topstrat(i).revfy = -999999
topstrat(i).eyield = -999
topstrat(i).hload = 9999
topstrat(i).hindex = 9999

NEXT i
FOR i = 1 TO nstrat

FOR K = 1 TO nweed
endsct(k) = escount(i, k)

NEXT K
NEXT i
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IF (mtype = 1) THEN
FOR i = 1 TO ntpre

FOR j = 1 TO ntpost
IF ((prfeas(f.cropl, i) o 0) AND (pofeas(f.cropl J) o 0)) THEN

CALL PrePostEval(i, j, ncrop, nweed, ntpre, ntpost, nepoint, nstrat, crop(), weed(), 
f, scountQ, tpre(), tpost(), preff(), poeffQ, prfeas(), pofeasQ, compiQ, epoint(), ecum(), 
topstratQ, endsctQ)

END IF
NEXT j

NEXT i
END IF
*♦♦♦♦♦************♦♦♦♦♦*****
1 * Direct output to a file *
• ***************************

OPEN "outfilel" FOR APPEND AS #1
PRINT #1, "Recommendations for subfield:";
PRINT #1, USING "####"; f.fid
PRINT #1, "pldate:";
PRINT #1, USING f.pldatel
PRINT
PRINT #1, "Current crop: ";
PRINT #1, USING "\ \"; crop(f crop 1 ).cname;
PRINT #1, " Next year crop: ";
PRINT #1, USING "\ \"; crop(f.crop2).cname
PRINT
PRINT #1, " Weed Seed Count"
FOR i = 1 TO nweed
PRINT #1, USING "\ \"; weed(i).wname;
PRINT #1, " ";
PRINT #1, USING "###//////////////"; scount(i) 

NEXT i
PRINT
PRINT #1, "Soil Applied Expected POST Net Revenue Herbindex Exp. 

Yield"
FOR i = 1 TO nstrat
PRINT #1, USING "\ \"; tpre(topstrat(i).preid).tname;
PRINT #1, “ ";
PRINT #1, USING "\ \"; tpost(topstrat(i).postid).tname;
PRINT #1, " ";
PRINT #1, USING "#######.##"; topstrat(i).revfy;
PRINT #1, " ";
PRINT #1, USING "#######.##"; topstrat(i).hindex;
PRINT #1, " ";
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PRINT #1, USING «#######*.#"; topstrat(i).eyield
NEXT i
PRINT
PRINT

CLOSE #1

OPEN "outfile2" FOR APPEND AS #2
FOR i = 1 TO nstrat

PRINT #2, USING "####"; f.fid;
PRINT #2, USING "####"; f.pldatel;
PRINT #2, USING ”######.##"; topstrat(i).revfy;
PRINT #2, USING "####.##"; topstrat(i).hindex;
PRINT #2, USING ’’######.#*’; topstrat(i).eyield

NEXT i
CLOSE #2

FOR K = 1 TO nweed 
scount(k) = endsct(k) 
NEXT K

NEXT iy

NEXT ISFLD

• ***************

' * End Program *
।***************

CLS

END

SUB GetCompInfo (ncrop, nweed, compi() AS SINGLE)
OPEN "compi.dat" FOR INPUT AS #1
FOR i = 1 TO ncrop
FOR j = 1 TO nweed

INPUT #1, cid, wid, compi(i, j)
NEXT j

NEXT i
CLOSE #1

END SUB

SUB GetCropInfo (ncrop, c() AS cfile)
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OPEN "crops.dat" FOR INPUT AS #1
FOR i = 1 TO ncrop

INPUT #1, c(i).cid, c(i).cname, c(i).cprice, c(i).ccost, c(i).grate, c(i).yrmax, c(i).pl, 
c(i) p2, c(i).p3, c(i).p4, c(i).p5, c(i).p6, c(i).yll, c(i).y!2, c(i).yl3, c(i).y!4, c(i).y!5
NEXT i
CLOSE #1

END SUB

SUB GetEfflnfo (ncrop, ntpre, ntpost, nweed, preff() AS SINGLE, poeffQ AS SINGLE)
OPEN "preffl.dat" FOR INPUT AS #1
FOR i = 1 TO ncrop
FOR j = 1 TO ntpre

FOR K = 1 TO nweed
INPUT #1, icrop, jtreat, kweed, preff(i, j, k)

NEXT K
NEXT j

NEXT i
CLOSE #1
OPEN "poeff.dat" FOR INPUT AS #1
FOR i = 1 TO ncrop

FOR j = 1 TO ntpost
FOR K = 1 TO nweed

INPUT #1, icrop, jtreat, kweed, poeff(i, j, k)
NEXT K

NEXT j
NEXT i
CLOSE #1

END SUB

SUB GetEmergelnfo (nweed, nepoint, epoint() AS INTEGER, ecum() AS SINGLE)
OPEN "epoint.dat" FOR INPUT AS #1
FOR i = 1 TO nepoint

INPUT #1, epoint(i)
NEXT i
CLOSE #1
OPEN "ecum.dat" FOR INPUT AS #1
FOR i = 1 TO nweed

FOR j = 1 TO nepoint
INPUT #1, wid, ecum(i,j)

NEXT j
NEXT i
CLOSE #1

END SUB
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SUB GetPostTInfo (ntpost, tpost() AS tfile)
OPEN "tpost.dat" FOR INPUT AS #1
FOR i = 1 TO ntpost

INPUT #1, tpost(i).tid, tpost(i).tname, tpost(i).tcost, tpost(i).hload, tpost(i).hindex 
NEXT i
CLOSE #1

END SUB

SUB GetPreTInfo (ntpre, tpreQ AS tfile)
OPEN "tpre.dat" FOR INPUT AS #1
FOR i = 1 TO ntpre
INPUT #1, tpre(i).tid, tpre(i).tname, tpre(i).tcost, tpre(i).hload, tpre(i).hindex 

NEXT i
CLOSE #1

END SUB

SUB GetSeedCts (id, nweed, scountQ AS SINGLE)
FOR i = 1 TO nweed

INPUT #2, nid, wid, scount(i)
IF (nid o id) THEN

PRINT ("The subfield ID's do not match for seed counts. SFID: ");
PRINT USING "####"; id;
PRINT USING " NID: ####"; nid

END IF
NEXT i

END SUB

SUB GetTrFeasInfo (ncrop, ntpre, ntpost, prfeasQ AS INTEGER, pofeasQ AS 
INTEGER)

OPEN "prfeas.dat" FOR INPUT AS #1
FOR i = 1 TO ncrop

FOR j = 1 TO ntpre
INPUT #1, icrop, itreat, prfeas(i, j)

NEXT j
NEXT i
CLOSE #1
OPEN "pofeas.dat" FOR INPUT AS #1
FOR i = 1 TO ncrop
FORj = 1 TO ntpost

INPUT #1, icrop, itreat, pofeas(i, j)
NEXT j

NEXT i
CLOSE #1

END SUB
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SUB GetWeedCts (id, nweed, wcountQ AS SINGLE)
FOR i = 1 TO nweed

INPUT #3, nid, wid, wcount(i)
IF (nid o id) THEN
PRINT ("The subfield ID's do not match for weed counts. SFID: ");
PRINT USING "####"; id;
PRINT USING " NID: ####"; nid

END IF
NEXT i

END SUB

SUB GetWeedlnfo (nweed, w() AS wfile)
OPEN "weeds.dat" FOR INPUT AS #1
FOR i = 1 TO nweed

INPUT #1, w(i).wid, w(i).wname, w(i).grate, w(i).sprod, w(i).erate, w(i).smrate 
NEXT i
CLOSE #1

END SUB

SUB NextYearEval (ncrop, nweed, ntpre, ntpost, nepoint, c() AS cfile, w() AS wfile, f AS 
ffile, sct() AS SINGLE, tpre() AS tfile, tpost() AS tfile, preffQ AS SINGLE, poeff() AS 
SINGLE, prfeasQ AS INTEGER, pofeas() AS INTEGER, compi() AS SINGLE,  
epoint() AS INTEGER, ecumQ AS SINGLE, topstrat AS sfile)
DIM harweed(nweed)
DIM cume(nepoint)
topstrat. netrev = -9999999.99#
FOR i = 1 TO ntpre

FOR j = 1 TO ntpost
IF ((prfeas(f.crop2, i) o 0) AND (pofeas(f.crop2, j) o 0)) THEN
y = 0
FOR K = 1 TO nweed
FOR 1 = 1 TO nepoint

cume(l) = ecum(k, 1)
NEXT 1
harweed(k) = sct(k) * w(k). erate
wkill = harweed(k) * (Tabli(nepoint, epoint(), cume(), f.pldate2))
emerge = harweed(k) * (Tabli(nepoint, epointQ, cume(), f.postdate2)) - wkill
wkill = wkill + emerge * preff(f.crop2, i, k)
emerge = emerge * (1 - preff(f.crop2, i, k))
wkill = wkill + emerge * poeff(f.crop2, j, k)

।**********************************************
' * The following statements model cultivation *
।**********************************************
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emerge = harweed(k) * (Tabli(nepoint, epointQ, cume(), f.cultdate2)) - wkill 
wkill = wkill + emerge * f. cultcontrol 
harweed(k) = harweed(k) - wkill

1 *** Note that weeds have been reduced to reflect cultivation. ***
harweed(k) = harweed(k) * . 1
y = y + compi(f.crop2, k) * harweed(k) 

NEXT K
pd2 = f.pldate2
dploss = Ydpen(c(f.crop2).p 1, c(f.crop2).p2, c(f.crop2).p3, c(f.crop2).p4, c(f.crop2).p5, 

c(f.crop2).p6, c(f.crop2).yll, c(f.crop2).y!2, c(f.crop2).y!3, c(f.crop2).y!4, c(f.crop2).yl5, 
pd2) * .01
y = (y * c(f.crop2).yrmax) / (c(f.crop2).yrmax + y)
awfy2 = f.wfy2 * (1 - dploss)
y = (1 - y) * awfy2

rev = y * c(f.crop2).cprice - c(f.crop2).ccost - tpre(i).tcost - tpost(j).tcost
IF (rev > topstrat.netrev) THEN 
topstrat. preid = i 
topstrat. postid = j 
topstrat.netrev = rev 
topstrat. eyield = y 
topstrat.revfy = revfy 
topstrat.hload = tpre(i).hload + tpost(j).hload 
topstrat.hindex = tpre(i).hindex + tpost(j).hindex

END IF
END IF

NEXT j
NEXT i 

END SUB

SUB PrePostEval (i, j, ncrop, nweed, ntpre, ntpost, nepoint, nstrat, c() AS cfile, w() AS 
wfile, f AS (file, sct() AS SINGLE, tpreQ AS tfile, tpost() AS tfile, preffQ AS SINGLE, 
poeffQ AS SINGLE, prfeas() AS INTEGER, pofeasQ AS INTEGER, compiQ  
AS SINGLE, epointQ AS INTEGER, ecumQ AS SINGLE, topstratQ AS sfile, endsctQ 
AS SINGLE) 

। 
************************************************************************ 
***
' * This procedure evaluates preemergence strategies. Its parameters are: * 
' * J : number of the current strategy *
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1 * NCROP : number of crops in the model *1 * NWEED : number of weeds in the model ** NTPRE : number of preemergence treatments ** NTPOST : number of postemergence treatments ** NEPOINT : number of points on the emergence curve ** CQ : array of crop information records ** WQ : array of weed information records ** F : record of field information ** SCT() : array of seed counts for the current field ** WCTO : array of weed counts for the current field ** TPREQ : array of preemergence treatment records ** TPOSTQ : array of postemergence treatment records ** PREFFQ : array of preemergence efficacy levels ** POEFFQ . array of postemergence efficacy levels ** PRFEASQ : array of preemergence feasibility indicators ** POFEASO : array of postemergence feasibility indicators ** COMPIQ : array of competitive indices ** EPOINTQ : array of dates in emergence tables ** ECUMQ : array of cumulative emergence levels *
' * TOPSTRATO : array of top strategy records *
।

************************************************************************
***

DIM hweed(nweed)
DIM hseed(nweed)
DIM cume(nepoint)
DIM revtp AS sfile
DIM revny AS sfile
DIM pd AS SINGLE

rev = -c(f.cropl).ccost - tpre(i).tcost - tpost(j).tcost
hload = tpre(i).hload + tpost(j).hload
hindex = tpre(i).hindex * tpost(j).hindex
y = 0
FOR K = 1 TO nweed

FOR 1 = 1 TO nepoint
cume(l) = ecum(k, 1)

NEXT 1
hweed(k) = sct(k) * w(k). erate
wkill = hweed(k) * (Tabli(nepoint, epointQ, cume(), f. pldate 1))
emerge = hweed(k) * (Tabli(nepoint, epointQ, cumeQ, f. postdate 1)) - wkill
wkill = wkill + emerge * preffff.cropl, i, k)
emerge = emerge * (1 - preff(f.cropl, i, k))
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wkill = wkill + emerge * poefi^f.cropl, j, k)

। **********************************************

' * The following statements model cultivation *
1 **********************************************

emerge = hweed(k) * (Tabli(nepoint, epointQ, cumeQ, f.cultdatel)) - wkill
wkill = wkill + emerge * f cultcontrol
hweed(k) = hweed(k) - wkill
y = y + compi(f.cropl, k) * hweed(k)

NEXT K
pd = f. pldate 1
dploss = Ydpen(c(f.cropl).pl, c(f.cropl).p2, c(f.cropl).p3, c(f.cropl).p4, c(f.cropl).p5, 

c(f.cropl).p6, c(f.cropl).yll, c(f.cropl).yl2, c(f.cropl).yl3, c(f.cropl).yl4, c(f.cropl).yl5, 
pd) * .01
y = (y * c(f.cropl).yrmax) / (c(fcropl).yrmax + y)
awfyl = f.wfyl * (1 - dploss)

y = (1 - y) * awfyl

FOR K = 1 TO nweed
hseed(k) = (1 - w(k).erate - w(k).smrate) * sct(k) + hweed(k) * w(k).sprod 

NEXT K

'**********************
' * Update net revenue *
***********************

rev = rev + y * c(f.cropl).cprice
revfy = rev
'************************************************************
1 * Calculate net revenue and herbicide load for second year *
'************************************************************

CALL Next YearEval(ncrop, nweed, ntpre, ntpost, nepoint, c(), w(), f, hseedQ, tpreQ, 
tp°st(), preffQ, poeffQ, prfeasQ, pofeasQ, compiQ, epointQ, ecumQ, revny)

1*****************************************************************
' * Calculate two-year net revenue and update TOPSTRAT, if needed *
t *****************************************************************

rev = rev + (revny. netrev / 1.04)
IF (rev > topstrat(nstrat). netrev) THEN

revtp.preid = i
revtp.postid = j
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revtp. netrev = rev
revtp.revfy = revfy
revtp. eyield = y
revtp. hload = hload
revtp.hindex = hindex
FOR K = 1 TO nweed
IF hseed(k) > 0 THEN
endsct(k) = hseed(k)
ELSE
endsct(k) = 0
END IF
NEXT K
CALL TStratUpdate(nstrat, topstrat(), revtp) 

END IF

END SUB

SUB PrintPostRecs (ncrop, nweed, ntpost, nstrat, c() AS cfile, w() AS wfile, f AS ffile, 
wcount(), tpost() AS tfile, topstratQ AS sfile)

LOCATE 12, 1
OPEN "RECOMEND.OUT” FOR APPEND AS #1
PRINT #1, "Postemergence recommendations for subfield:
PRINT #1, USING "###"; f.fid
PRINT
PRINT #1, "Current crop:
PRINT #1, USING "\ \"; c(f.cropl).cname;
PRINT #1, " Next year crop:
PRINT #1, USING "\ \"; c(f.crop2).cname
PRINT
PRINT #1, " Weed
FOR i = 1 TO nweed

PRINT #1, USING "\
PRINT #1, "

Seedling Count" 

\"; w(i).wname;

PRINT #1, USING "##########«; wcount(i)
NEXT i
PRINT
PRINT #1, "POST Application Net Revenue Herb Index Exp. Yield" 
FOR i = 1 TO nstrat

IF (topstrat(i).postid > 0) THEN
PRINT #1, USING "\ \"; tpost(topstrat(i).postid).tname;
PRINT #1," ";
PRINT #1, USING "#######.##"; topstrat(i).netrev;
PRINT #1, "
PRINT #1, USING '*#######.##»; topstrat(i) hindex;
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PRINT #1, "
PRINT #1, USING "########.#"; topstrat(i).eyield

END IF
NEXT i
PRINT
PRINT
CLOSE #1

END SUB

FUNCTION Tabli (np, xvalQ AS INTEGER, yval() AS SINGLE, iarg)
IF (iarg <= xval(l)) THEN

Tabli = yval(l)
ELSEIF (iarg >= xval(np)) THEN

Tabli = yval(np)
ELSE

i - 2
WHILE (iarg > xval(i))

i = i + 1
WEND
Tabli = yval(i - 1) + (iarg - xval(i - 1)) * ((yval(i) - yval(i - 1)) / (xval(i) - xval(i - 1))) 

END IF
END FUNCTION

SUB TStratUpdate (nstrat, topstratQ AS sfile, revty AS sfile) 
i = 1
WHILE (topstrat(i).netrev > revty.netrev)

i = i + 1
WEND
IF (i = nstrat) THEN
topstrat(i) = revty

ELSE
FORj = 1 TO (nstrat - i)
topstrat(nstrat -j + 1) = topstrat(nstrat - j)

NEXT]
topstrat(i) = revty

END IF
END SUB
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FUNCTION Ydpen (pl, p2, p3, p4, p5, p6, yll, y!2, yl3, y!4, yl5, x)
। **************************************************
1 * Ydpen Function *
' * This function penalizes yield for delay in *
1 * planting. The estimates of % yield loss were *
' * provided by Professor Dale Hicks of Agronomy *
' * Department, University of Minnesota *
t * ************************************************

IF x - pl <= 0 THEN 
Ydpen = 0
ELSEIF x - pl > O AND x - p2 <= 0 THEN 
Ydpen = yll * (x- pl) / (p2 - pl)
ELSEIF x - p2 > O AND x - p3 <= 0 THEN 
Ydpen = yll + ((yl2 - yll) * (x - p2) / (p3 - p2)) 
ELSEIF x - p3 > O AND x - p4 <= 0 THEN 
Ydpen = yl2 + ((yl3 - yl2) * (x - p3) / (p4 - p3)) 
ELSEIF x - p4 > O AND x - p5 <= 0 THEN 
Ydpen = y!3 + ((yl4 - y!3) * (x- p4) / (p5 - p4)) 
ELSEIF x - p5 > O AND x - p6 <= 0 THEN 
Ydpen = yl4 + ((yl5 - y!4) * (x - p5) / (p6 - p5)) 
ELSE
Ydpen=100 
END IF
END FUNCTION
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t*************************************************

' PROGRAM FOR AGGREGATING OVER ALL SUBFIELDS
1 This program aggregates net returns, herbicide 
' and expected yields over a specified number of 
' subfields and years
t************************************************

CLS
SCREEN 0
COLOR 14, 1, 8
LOCATE 3, 4

PRINT " *****************************************************n
PRINT " PROGRAM FOR AGGREGATING OVER ALL SUBFIELDS"
PRINT " This program is suitable for aggregating net returns, "
PRINT " herbicide indexes and expected yields over a "
PRINT " specified number of subfields and years"
PRINT " (c) Caleb A. Oriade, 1994 "
PRINT " ****************************** ************************it

Iflag = 1
DO WHILE (Iflag = 1)
PRINT
INPUT "What is the name of the input data file? ", AddfileS
INPUT "What do you want to call the output data file? ", OutfileS
INPUT "How many subfields do you want to aggregate? ", nsfld%

REDIM netrev(nsfld%, nyear%) AS SINGLE
REDIM hindex(nsfld%, nyear%) AS SINGLE
REDIM yield(nsfld%, nyear%) AS SINGLE
REDIM NR(nyear%) AS SINGLE
REDIM hi(nyeai%) AS SINGLE
REDIM yld(nyear%) AS SINGLE

OPEN AddfileS FOR INPUT AS #1
FOR i = 1 TO nsfld%

FORj = 1 TO nyear%
INPUT #1, iid, j, netrev(i, j), hindex(i, j), yield(i, j) 

NEXT
NEXT
CLOSE #1

FORj = 1 TO nyear%
NR(j) = 0
hi(j) = O
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yld(j) = 0
FOR i = 1 TO nsfld%
NR(j) = NR(j) + netrev(i, j) 
hi(j) = hi(j) + hindex(i, j) 
yld(j) = yld(j) + yield(i,j) 
NEXT

NEXT

OPEN OutfileS FOR OUTPUT AS #1
IMAGE 1$ = "YEAR NETREV HERB IND EXPYLD"
IMAGE2S = " ### ####.## #.## ###.##"
PRINT #1, IMAGE 1$
FORj = 1 TO nyear%

NR(j) = NR(j) / nsfld% 
hi(j) = hi(j)/nsfld% 
yldfl) = yld(j) / nsfld%
PRINT #1, USING IMAGE2S; j; NR(j); hiQ); yld(j) 
NEXT
CLOSE #1

LOCATE 24, 1
PRINT " Do you want to aggregate over another set of subfields? (Y/N) 
INPUT ; flagS
IF ((flagS = "y") OR (flagS = "Y")) THEN

Iflag = 1
ELSE

Iflag = 0 
END IF

LOOP

END
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CLS 
SCREEN 0
COLOR 14, 1, 8
LOCATE 3, 4

PRINT " **************************♦****♦************♦********„ 
PRINT " PROGRAM FOR MODIFYING SEED POPULATIONS"
PRINT " This program is suitable for reparameterinzing weed seed "
PRINT " populations. In this version, the output is written to a "
PRINT " file "
PRINT " (c) Caleb A. Oriade, 1994 "
PRINT " *******************************************************

Iflag = 1
DO WHILE (Iflag = 1)
PRINT
INPUT "What is the name of the input data file? ", AddfileS
INPUT "What do you want to call the output data file? ", OutfileS 
INPUT "By what factor do you want to multiply seed count? ", num!
INPUT "How many subfields are in the model? ", nsfld
INPUT "How many weed species are in the modelt? ", nweed

REDIM sfld(nsfld, nweed) AS INTEGER
REDIM weed(nweed) AS INTEGER 
REDIM ascount(nsfld, nweed) AS SINGLE 
REDIM scount(nsfld, nweed) AS SINGLE

OPEN AddfileS FOR INPUT AS #1
FOR i = 1 TO nsfld

FOR j = 1 TO nweed
INPUT #1, sfld(i, j), j, ascount(i, j)

NEXT]
NEXT i
CLOSE #1

FOR i = 1 TO nsfld
FOR j = 1 TO nweed

scount(i, j) = ascount(i, j) * num!
NEXT j

NEXT i

OPEN OutfileS FOR OUTPUT AS #1
FOR i = 1 TO nsfld
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FOR j = 1 TO nweed
PRINT #l,sfld(i,j);j; scount(ij)
NEXT]

NEXT i
CLOSE #1

LOCATE 24, 1
PRINT " Do you want to run the program for another data set? (Y/N)
INPUT ; flag$
IF ((flag$ = "y") OR (flagS = "Y")) THEN

Iflag = 1
ELSE

Iflag = 0
END IF

LOOP

CLS

END
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A.2: Listing of Program Code for NEGBIN, a Program for simulating Negative 
Binomial Variates

***

' This Version August 30, 1994
' NEGBIN
1 Program NEGBIN generates negative binomial variables distributed
' NB(mk), where m is the mean and Kis an index of patchiness. I

' NB variates are generated from gamma and Poisson random variates,
' following the 2nd procedure on p. 106 in R.Y. Rubinstein, "Simulation
' and the Monte Carlo Method", NY: Wiley, 1981.
1 Gamma r.v.’s are generated using the GS acceptance-rejection algorithm
1 on p. 256 of A M. Law & W.D. Kelton, "Simulation Modeling and Analysis," 
' NY: McGraw-Hill, 1982 (1st ed), which is suited to G(a,b) r.v.'s where 
'a< 1.

i**********************

'Show Opening Screen
i***********************

CLS
SCREEN 0
COLOR 14, I, 8
LOCATE 3, 1
PRINT 
PRINT" 
PRINT
PRINT " 
PRINT" 
PRINT" 
PRINT" 
PRINT" 
PRINT" 
PRINT

NEGBIN"

by"
Scott M. Swinton"

Michigan State University" 
and"

Caleb A. Oriade"
University of Minnesota"

PRINT " Program NEGBIN generates negative binomial variables distributed"
PRINT " NB(k,m), where m is the mean and K is an index of patchiness. Up to"
PRINT " 8000 NB random variates may be generated at a time. The algorithm may fail to 
PRINT"work properly for very small values of K and large values of m.
PRINT" The variates are sortedin ascending order out of which a specified number of 
PRINT"variates canbe drawn using a systematic procedure. This Process permits the 
PRINT'interdependent random variables to be drawn using the process developed by King 
PRINT"(1979)"
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PRINT " This batch version uses an input file provided by the user. The input file 
"PRINT " contains the parameters of negative binomial distribution, weed identifiers," 
PRINT " initial seed and number of random variates desired."
PRINT"

i****************

'Declare type 
f****************
TYPE parfile 
wid AS INTEGER 
wname AS STRING * 8 
mean AS SINGLE 
K AS SINGLE 
n AS INTEGER 
seed AS INTEGER 
END TYPE

************************
'Read Model Parameters 
'****♦**♦**♦***♦**♦♦♦***
INPUT "How many weed species do you want to simulate their variates?", nweed%

DIM w(nweed%) AS parfile

OPEN "Inputfile" FOR INPUT AS #1
FOR i = 1 TO nweed%
INPUT #1, w(i).wid, w(i).wname, w(i).mean, w(i).K, w(i).n, w(i).seed 
NEXT i
CLOSE #1

FOR i = 1 TO nweed% 
n = w(i).n 
K = w(i).K 
seed = w(i).seed 
m = w(i).mean 
NEXT i

i*************************

'Execution Section
*************************



134

i***************************

'Loop Statement for n weeds
'♦*****♦********************

FOR iweed = 1 TO nweed% 
Temp$ = w(i weed). wname 
TempS = TempS + ".out"

RANDOMIZE (seed)
SDYNAMIC
REDIM x#(n), nb%(n), nebi%(101)
'Generate gamma(a,l) random variates, denoted x#(i). (x#() is double-precision). 
I
alpha = K
beta = 1
b = (EXP(l) + alpha) / EXP(l) 
i% = 1
DO

x#(i%) = -1 
ul = RND 
u2 = RND 
p = b * ul 
IF p > 1 THEN
y = -LOG((b - p) / alpha)
IF u2 <= y A (alpha - 1) THEN x#(i%) = y 

ELSE
y = p A (1 / alpha)
IF u2 <= EXP(-y) THEN x#(i%) = y 

END IF
IF x#(i%) o -1 THEN i% = i% + 1

LOOP WHILE i% < n + 1

' Generate NB(k,m) r.v.'s using Poisson procedure, p. 103 of Rubinstein 
' NB: k/m = p/(l-p) must be inverted.
I

OPEN TempS FOR OUTPUT AS #1 
q = m/K
FOR i% = 1 TO n 
x#(i%) = x#(i%) * q 
a#= 1 
j% = 0

step3: 
a# = RND * a# 
IF a# < EXP(-x#(i%)) THEN
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nb%(i%) =j% 
ELSE 
j% =j% + 1 
GOTO step3:

END IF
WRITE #1, nb%(i%) 

NEXT i%
CLOSE #1

i**********************************

'Procedure to sort Variates in
'ascending order using the bubble 
' sort method
i**********************************

OPEN Temp$ FOR INPUT AS #1
CONST FALSE = 0, TRUE = NOT FALSE 
limit% = n
DO
Swaps% = FALSE
FOR i% = 1 TO (limit% - 1)
IF nb%(i%) > nb%(i% + 1 ) THEN
SWAP nb%(i%), nb%(i% + I)
Swaps% = i% 
END IF 
NEXT i% 
limit% = Swaps% 
LOOP WHILE Swaps% 
CLOSE #1

i***********************************

'Write the sorted variates to a file
i***********************************

OPEN TempS FOR OUTPUT AS #1
FOR i% = 1 TO n
WRITE #1, nb%(i%) 
NEXT i%
CLOSE #1

i***************************************

'Use Table look-up approach for choosing



136

'variates of CDFs. Selected variates
'are then written to a text file.
i***************************************

OPEN Temp$ FOR INPUT AS #1
nebi%(l) = 0
FOR v% = 2 TO 101
nebi%(v%) = nb%((v% - 1) * 10)
NEXTv%
CLOSE #1

OPEN TempS FOR OUTPUT AS #1
FOR v% = 1 TO 101
WRITE #1, nebi%(v%)
NEXT v%
CLOSE #1

NEXT iweed

i***********************

' End of Program
I***********************

CLS

END
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A3. Sample Model Recommendations for Ten Replicated Field from the Same 
Weed Population Parameters

A: CORN/SOYBEANS
YEAR NET RETURNS($/ACRE) HERBICIDE INDEXES EXP. YIELD(BU/ACRE)

B: SOYBEAN/CORN

SSM STD DIFF SSM STD DIFF SSM STD DIFF
1 71.1 69.69 1.41 0.7 0.44 0.26 94.05 93.31 0.74
2 136.37 131.07 5.3 0.87 0.78 0.09 36.24 35.91 0.33
3 74.71 71.19 3.52 0.7 0.44 0.26 95.72 94.01 1.71
4 138.2 131.29 6.91 0.84 0.78 0.06 36.83 35.95 0.88

1 65.03 64.22 0.81 0.58 0.44 0.14 91.59 91.2 0.39
2 133.22 129.96 3.26 0.83 0.78 0.05 35.98 35.72 0.26
3 67.62 65.81 1.81 0.58 0.44 0.14 92.8 91.92 0.88
4 135.1 131 4.1 0.8 0.78 0.02 36.45 35.91 0.54

1 90.93 89.25 1.68 0.72 0.44 0.28 103.27 103.39 -0.12
2 149.61 145.5 4.11 0.91 0.78 0.13 38.69 38.84 -0.15
3 90.62 91.15 -0.53 0.66 0.44 0.22 103.28 104.26 -0.98
4 149.14 146.48 2.66 0.89 0.78 0.11 38.76 39.01 -0.25

I 74.32 73.25 1.07 0.65 0.44 0.21 95.26 94.83 0.43
2 135.56 131.28 4.28 0.87 0.78 0.09 36.03 35.9 0.13
3 73.48 73.62 -0.14 0.64 0.44 0.2 95 95.15 -0.15
4 135.03 131.44 3.59 0.8 0.78 0.02 36.44 35.93 0.51

1 93.06 91.08 1.98 0.77 0.44 0.33 103.15 102.98 0.17
2 150.77 144.7 6.07 0.96 0.78 0.18 38.08 38.22 -0.14
3 92.59 92.51 0.08 0.71 0.44 0.27 103.11 103.65 -0.54
4 149.6 145.99 3.61 0.89 0.78 0.11 38.3 38.45 -0.15

1 135.25 131.51 3.74 0.87 0.78 0.09 36.05 36 0.05
2 74.24 72.47 1.77 0.7 0.44 0.26 95.51 94.61 0.9
3 138.7 133.11 5.59 0.87 0.78 0.09 36.65 36.28 0.37
4 76.4 72.35 4.05 0.7 0.44 0.26 96.52 94.55 1.97

1 133.85 131.4 2.45 0.85 0.78 0.07 35.88 35.99 -0.11
2 67.13 67.47 -0.34 0.58 0.44 0.14 92.57 92.7 -0.13
3 134.93 132.84 2.09 0.8 0.78 0.02 36.42 36.22 0.2
4 69.68 68.31 1.37 0.58 0.44 0.14 93.75 93.1 0.65

1 135.66 132.5 3.16 0.87 0.78 0.09 36.05 36.11 -0.06
2 75.07 75.33 -0.26 0.59 0.44 0.15 95.79 95.79 0
3 136.59 133.38 3.21 0.83 0.78 0.05 36.58 36.28 0.3
4 76.24 74.69 1.55 0.58 0.44 0.14 96.45 95.63 0.82

1 151.78 147.86 3.92 0.89 0.78 0.11 38.69 38.73 -0.04
2 92.52 91.79 0.73 0.61 0.44 0.17 102.97 103.18 -0.21
3 150.88 147.64 3.24 0.89 0.78 0.11 38.53 38.69 -0.16
4 90.48 91.12 -0.64 0.61 0.44 0.17 102.03 102.88 -0.85
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APPENDIX 44

4The weed population maps in this appendix were generated by 
Dr. James Barbour of USDA-ARS Soil Conservation Service, Morris, 
MN with the aid of a computer software, the geostastical software 
for environmental sciences (GS+2).
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Appendix 4.1: A Weed-Seed Population Map for Foxtails in a west central Minnesota
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Appendix 4.2: A Weed Population Map for Common Lambsquarters in a west central

Minnesota Farm
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__ Appendix 4.3: A Weed Population Map for Redroot Pigweed in a west central Minnesota
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Appendix 5: Estimating the Emergence Model

To estimate the emergence model given in (3.4), i.e.:

x = y?- -
interv 2-, 1-1 CGDD±_ x 1-1 J-1 (A5.1)

then let's denote 

GDPj-l
Sj-1 P.f-1 (A5.2)by Pj.i

for a specified average scouting interval (interv.) of say, 4 days, the number of weed 

seedlings that are counted on the scouting day is the sum of daily seedling emergence in all 

the days since the day the previous scouting was done, i.e.:

x4 = É x (AS. 3 )

1*1

and:

x< = Po + M3 +M2 + Mi (AS. 4)

Similarly, if the scouting interval has been 3 days, then:

*3 = Po + M2 +M1 (AS. 5)

Therefore, the estimable form of the model for average interv. of four days is:

X4 = p0 + PX(P3 +P2 + PJ +P2(P2 + PJ+ P3P, (AS.6)
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Appendix 6: Expected Net Incomes and Herbicide Indexes at all Probable planting Dates 

of Com (Full-season

Early* 1, late* 1 refers to the base weed seed densities in Table 5.1.

Medium Low High

Planting Net Herbicide Net Herbicide Net Herbicide

Date Income Index Income Index Income Index

($/acre) ($/acre) ($/acre)

Early* 1, late* 1 Early*0.25, late*0.25 Early*4, late*4

28-Apr 31.67 0.80 82.09 0.83 -46.00 0.80
29-Apr 35.80 0.80 82.23 0.83 -40.95 0.80
30-Apr 40.14 0.80 82.37 0.83 -35.32 0.80
I-May 49.45 0.80 82.48 0.83 -26.92 0.67
2-May 49.78 0.80 82.03 0.83 -25.24 0.67
3-May 50.54 0.80 81.96 0.83 -19.21 0.67
4-May 52.47 0.80 81.79 0.83 -12.47 0.67
5-May 55.29 0.80 81.62 0.83 -4.88 0.67
6-May 58.22 0.80 81.23 0.83 3.72 0.67
7-May 61.30 0.80 80.53 0.83 13.57 0.67
8-May 62.17 0.80 79.82 0.83 17.72 0.67
9-May 63.06 0.80 79.11 0.83 22.16 0.67
1 O-May 63.97 0.80 78.39 0.83 26.90 0.67
11 -May 65.05 0.80 77.67 0.83 32.13 0.67
12-May 66.16 0.80 76.95 1.00 37.74 0.67
13-May 71.43 0.83 76.22 1.00 39.83 0.67
14-May 66.17 0.83 75.52 1.00 41.81 0.67
15-May 66.14 0.83 74.81 1.00 43.87 0.67
16-May 66.10 0.83 74.11 1.00 46.00 0.67
17-May 66.07 0.83 73.39 1.00 48.21 0.67
18-May 66.04 0.83 72.66 1.00 50.50 0.67
19-May 65.52 0.83 71.93 1.00 51.64 0.80
20-May 65.01 0.83 71.04 1.00 53.47 0.80
21-May 64.41 0.83 70.01 1.00 54.39 0.80
22-May 63.81 0.83 69.79 1.00 55.34 0.80
23-May 63.21 0.83 69.76 1.00 59.05 0.80
24-May 62.35 0.83 69.61 1.00 56.34 0.80
25-May 63.15 1.00 69.46 1.00 56.37 0.80
26-May 63.63 1.00 69.26 1.00 56.03 0.80
27-May 63.49 1.00 69.06 1.00 55.91 0.80
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