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Abstracc
NEW PROCEDURES IN MODELING RISK: NIHIL NOVUM SUB SOL EST

An important issue in risk manageﬁenc is how to model pandom events. ~This
scudy'highlights two alternmatives in current literature which allows for cthe
modeling of nonnormal correlated random deviates. First, the paper presents the
transformation to normality approach focusing on its uses in pooling yield
variability. Second, the study examines the possibility of using a multivariace
inverse Gaussian distribution function. The two marginal distributions of corn
yields for Holmes county are then used to discuss the empirical implicacioms of
each approach.

keywords: nonnormality, correlation, risk, inverse hyperbolic sine, inverse

Gaussian
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NEW PROCEDURES IN MODELING RISK: NIHIL NOVUM SUB SOL EST

An important research issue in risk management involves how to model rancom
events. Traditionally, economic analysis has focused on mean-variance analysis
of random events. Undoubtedly, the use of mean-variance analysis is linked <o
two considerations. First, the normal distribution is easily quantified and
possesses a well defined multivariate form. Second, mean-variance analysis is
consistent with expected utility under certain assumption;'(Freund, Kroll, Levy
and Markowitz, and Meyers). However, certain facets of decision making under
risk may be inadequately modeled by normalicy, such as the probaﬁilicy ol

bankruptey or the value of insurance. Therefore, some effort has been expended

in agricultural economics in the area of modeling nonnormality.

The purpose of this paper is to discuss some new approaches to modeling

random events for risk analysis. However, the primary approach to be discussed
brings into focus a portion of this paper's title Nihil Novum Sub Sol Est that
translates to "nothing is new under the sun.” Specifically, this study examines
a transformation of random variables approach used by Moss et al. to model
cotrelated nonnormal yields. However, a recent literature review revealed that
neither the concept of transforming random variable# to normality nor the
multivariate context applied by Moss et al. is unique. Specifically, using
tf;ansfomations to model nonnormal bivariate distributions was proposed by
J;hnson (1949a) who built on previous work by Edgeworth, Charlier and Rietz. In
keeping with the venue of this pres‘entat:ion,‘ however, this manuscript will
discuss how the rediscovered concept of transformations can significantly aid in
modeling nonnormal, correlated random deviates. The second "new" method

presented involves the wuse of nonnormal multivariate distributions.




Specifically, the study will present a slight reformulation of che inverse

Gaussian distribution.
Transformation to Normality

The first procedure presented for modeling nonnormality involves using a
transformation function to transform nonnormal random variables to normal random
variables. The general game plan is to use the transformation to model skewness
or kurtosis while relying on the multivariate normal distribution to model
correla;:ion in the transformed random variables. The problem of u;odeling
nonnormal r#ndom variables is not new to the profession. Several authors have
fit univariate densities such as beta or gamma distributions to agricultural data
(e.g., Nelson and Preckel). However, modeling nonnormal correiated random
deviates has been more problematic.

Historically, Richardson and Condra, King, and Taylor (1990) have proposed
procedures for simulating correlated nonnormal variables. Richardson and Condra
suggest using the observed errors from the trend line regression in modeling the
ndnnormality. Specifically, a regréssion is estimated for each equatiom, 2
correlation matrix is computed from the estimated residuals of each eciuacion, and
the estimates are used to construct an empirical cumulative proﬁabilit}'
éistribution function. King proposes a similar approach in ARMS (King et al.).
ARMS allows the producer to enter yield and price distributions ;.xsing various
options. After entering the marginal distributions, the producer is asked €0
supply a correlation matrix. Nonnormal correlated random deviates are then
simulated by drawing correlated standard normal variables using the user supplied

correlation matrix, computing the cumulative probability for these correlacted
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scandard normal draws, and then transfiorming the cumulative probabilities 2ack
to the marginal disctributions.

One weakness of the King and Richardson and Condra approaches is che
separation of the nonnormalicy components from the correlation components of the
distribution. Put another way, there 1is little interaction bectween <the
parametars that control nonnormality and the paraméters that control correlacion.
To further examine this problem, consider the approach used in Taylor (1990).
Taylor proposes fitting a sequence of conditional distributions for rancom
variablés based on the nonnormal transformation he proposed in Taylor (1984).
Specifically, the distribution of the first variable estimated is identical wich
a marginal distribution. The second distribution is then fit conditional on the
first distribution, and so on. Although this approach is fairly flexible, it
be sensitive to ordering. However, the interaction becwegn random variables
their respective nonnormality is considered in the estimation.

Because of the similarity in names, a brief discussion of the difference
between Taylor (1984)'s inverse hyperbolic tangent transformation and the inverse
hyperbolic sine transformation presented in Moss et al. also the other
tfansformacions suggested by Johnson may be instrucéive. " Taylor noted that the
hyperbolic tangent resembles a cumulative probability density function with the

exception that it approaches -1 as x approaches minus infinity and one as x

approaches infinity as shown in Figure 1. Therefore, he defined a transformation
¢

(1) £(x) =.5+.5=tanh (x) .

This transformation results in a valid cumulative probability density function
in that it is monotonically increasing and bounded between zero and one. The

transformed hyperbolic tangent function is compared with the cummulative normal




density function in Figure 2. Taylor chen proposes to estimate a mapping

function (g) that maps yields into x based on an arbitrary function

(2) £(x) =.5+.5stanh™t(x)
x=g(y,2)

where y is a vector of observed yields and z is a vector of inpucts.
Taylor's approach is different than the general approach ‘used by Johnson

(1943b). Specifically, Johnson relies on the general result that

(31 £, 42L £ (g7 ()

wher.e £,(y) is the marginal distribution of y, £,(x) is the marginal distribution
of x, and g(x) is a function that transforms x into y. In other words, a random
variable can be transformed into another random variable with a well defined
distribution. Two common examples are the chi square distribution as the square
of the normal distribution and the Box-Cox transformation. However, the chi
sqixare distribution is not strictly applicable because g(x) in equation (3) must
be a monotonic mapping. |

The general approach of Johnson as descx‘:ibed by Slifker and Shapiro was ©0
é}efine alternative functions k(x;A,¢) that transform a nonnormal random variable,
¢

X, into a standard normal random variable. Specifically, the goal is to create

a variable, z, that is distributed standard normal by

(4) z=y+nk,(x; X, €)

where v is analogous to the meaﬁﬁbf the normal distribution and 'is the standard
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deviation of the transformed variable. As described by Slifker and Shapiro
Yy ! '

there are three general forms of this transformation
k,(x;A,€) =sinh‘1(i<;—e)

X-€ )

(5) X, (x:A,¢€) =ln(,u-e-x

ky(xih,e) =1n(%)

the k, distribution is typically referred to as the Sy distributiom, the k;
disctribution is referred to as the Sy distribution, and the k; distribution is
called the S; distribution. The §, distribution is genérically known as the
lognormal distribution. Thus, modeling a nonnormal raridom variable entails
choosing v, 7, A, and ¢ to maximize the likelihood function defined by e\quation
(3).

The extension of this transformation to the bivariate case is given by
Jo_hnson (1949a). Specifically, Johnson proposes a bivariate normal defined as

Zy =Y+, k(g 4,,€)

Z32Y2tN2Ky (525, )

(6)
2_ 2
£z, 7 = 1nzenns

1 -
J2r (1-p7) ( 2 1-p?

where £(.) is the joint probability density function for z; and 2z, which

determines the distribution of x; and x;. In equation (6), p is the correlaction
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coefficient between the two transformed random variables. Using this framework.
Johnson defined ten different probability surfaces.

3urbidge et al. reformulaced Johnson’s univariate inverse hyperbolic sine
cransformation in a way chat yields normality as a special case. Specifically,

Burbidge et al.’s inverse hyperbolic sine transformation is

(7) z= ln (8x+¢66’x=*1)

which is equivalent to Johnson's transformation such that

==
Y [+

(8)
1

af

applying L'Hopital’s rule to this transformation as ¢ approaches zero yields 2
straight line. Theéefore. the normal distribution is a special case of inverse
hyﬁerbolic sine (see Ramirez et al. for further details). ' Unfortunately,
Burbidge et al.’s formulation introduces a specific form of heteroséedascicity-:
Ramirez proposed c& circumvent this problem Sy transforming the deviations from
?he regression rather than the dependent variable itself. Following this
ﬁ;ocedure, Moss et al. model nonnormal co::elated.crends over time using an

inverse hyperbolic sine density function
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. l

- 4

ve=y.~(a+fc)

(9)

where §; controls the kurtosis on variable i, pu, controls the skewness in
conjunction with §,, Q is the correlation matrix for the transformed random
variables, z, is a vector of transformed (normally discributéd) random variables,
V. is the vector of deviations from the trend line, and « and B are parameters
used to specify the trend line. Moss et al. show how this formulation can be
used to represent correlated nonnormal corn, soybean, and wheat yields over time
in cthe southeastern United States.

From an operational perspective the inverse hyperbolic sine formulation
presented in equation (9) can be estimated by maiimizing the natural log of the
likelihood function. Moss et al. suggest using ordinary least squares estimates
#s initial values in an iterative maximum likelihood procedure. The formulation
allows for examination of other stylized facts about risk. Specifically, we
typically hypothesize that yields become more normal as they are aggregated over
reg:’:ons. Another way to pose this question is by looking at the pooling

properties of yields within the inverse hyperbolic sine framework.
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Corn yield data for Holmes, Okaloosa, and Walton counties were colleccad
for 1961 cto 1989 (1986 data were missing, these data are presented in cthe
appenﬁix. Following Moss et al., corn yields where detrended using ordinary
least squares and a linear trend. The residuals where then tested for normality
using the parametric procedures described in Spanos. These results (Table 1)
indicate that corn yields in Holmes and Okaloosa counties may be nonnormal while
corn-yields in Walton county cannot be distinguished from normalicy. Next, che
multivariate distribuction depicted in equation (9) was estimated allowing corm
yields in Holmes and Okaloosa counties to be nonnormal while restricting yields
in Walton county to be normal. These results are shown in Table 2.

The results in Table 2 indicate that the estimate of 4 and g in the Holmes
equation have fairly large standard deviations. Given this, one apﬁroach is to
see whether the ¢ and y parameters in the Holmes and Okaloosa equations can be
pooled. Pooling would allow for additional information to be focused on the
nonnormalicy_pérameters. As a first step, the two nonnormality parameters where
restricted to be the same. This estimation resulted in a log likelihood of

'216.04 compared with a log likelihood of 215.49 in the unrestricted case. This
implies a likelihood ratio statistic of 1.10 which is distributed yx(;%. At this
stage, we noticed that the intercept on the cime.crend and the own variance were
also close. These results where not obvious from Table 2 since both the mean and
Jariance are functions of 4.2 Therefore, a second set éf restrictions where
imposed to restrict the intercept and varianéq to be equal across equations.
These results are reported in Table 3. In general, the log likelihood function
for estimation after imposing all four restrictions was 216.33 yielding &
likelihood ratio test of 1.68 which is distributed x(,)2. Thus, the pooling of

the four parameters cannot be rejected at any conventional Ievel of significance.
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In addition to comparing the likelihood of the unrescricted parameters <o
the restricted parameters, another interesting comparison is to examine how the
pooled parameters compare with average state yields. Specifically, the test for
skewness and kurtosis indicaée that the hypothesis that the deviations of state
average corn yields from the trend are normal cannot be rejected with any degree
of confidence. In addition, a region average was crzated by weighting the per
acre yields in.Holmes, Okaloosa, and Walton county by number of acres in each

county and the residuals were tested for normality. Again the hypothesis could

not be rejected. Hence, there is some preliminary evidence to suggest that

aggregation eliminates nonnormality from the sample.

In addition to changes in the nonnormality parameters, the pooling of
county level data also iets us examine changes in the variance of corn yields.
The results indicate that the state level yields are normally distributed with
a variance of 62.35 bushels squared. The data aggregating county yields by ghe
number of acres indicates a slight increase in variance to 66.90 bushels squared.
Table 2 indicates that the Walton county’s variance on corn yields was 65.55
bushels squareq before pooling. The variance declines to 64.95 bushels squared
after poolingAés depicted in Table 5. The variance for Holmes and Okaloosa
counties decline from 136.31 and 168.48 respectively before pooling to 155.96
after pooling. These variances are computed using the variance derivatién under
tﬁe inverse hyperbolic sine transformation from Ramirez.

.

In general Johnson’s formulations are'usgful and well behaved. However,
they are not exhaustive. Specifically, the requirements for an inverse mapping
as presented in equation (1) are a one to one mapping so that the inverse

function is well defined. As an area for future research, we suggest a flexible

third order Taylor series expansion. For example, in the simplest form a third




order polynomial could be fit as a transformation function wich the restricction
that the first derivative is always positive. Another alternative would be <0
escimate a cubic root. The implications of these cransfprmatiéns could be
defined in terms of skewness and kurtosis and may yield more flexible resulcs

-han the three transformations suggested by Johnson.

Other Multivariate Distributioms

Another approach for modeling agricultural risk is to wuse other
discributions that have well defined multivariate forms. This study presents one
such altermative called the inverse Gaussian distribution as described by
Chhikara and Folks. Like the Burbidge et al. formulation of cthe inverse
hyperbolic sine the inverse Gaussian distr%bution must be reformulated to avoid
very specific heteroscedasticity implications. Similar reformulations will be
required of many multivariate distributions.

The univariate inverse Gaussian probability density function can be

expressed as

-3
(10) £ix;p, A) =,/_xx 25(;{- A(x-p) 2).:00
2n ; 2;&2}‘

yhere x is a random variable, and A and p are parameters of the distribucion.

y .
Unlike the inverse hyperbolic sine as reformulated by Burbidge et al., the

inverse Gaussian distribution has no parameterization for the normal

distribution. The p parameter is the expected value of the discribucion. In

addition, the second, third, and fourth central moments of the distribucion are

given by Chhikara and Folks as
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Even though the distribution function does not have the normal distribucion
function as a special case, 1if A/p becomes large the inverse Gaussian
distribution approaches a normal distribution function.

The next step was to model corn yields in north Florida as a function of
time. This required reformulation of the inverse Gaussian function distribution
function. Specifically, Chhikara and Folks present an unbiased estimator for a
and B, which in this study are the constant and slope of the linear ctrend
respectively, in which p varies over time. Relying on the representation of che
central moments presented in equation (1l), this would imply that the higher
maﬁenCS are also a function of time. As an alternative, this study proposes a

transformation such that the "residuals" from the regression are distributed

inverse Gaussian. Specifically, the probability density function becomes

3
' N ol -3 (A -<a+nc)1-gﬁ),
(12) £(yim, A, a,B, &) =/ 5=iy=(a+rpt)] 5"1{ 2pZ [y—(a+BE) ]

Initial values are computed estimated by assuming that a and g are both zero.
Table 4 presents the maximum likelihood estimates of a, B, A, and p for Holmes

and Okaloosa counties. We attempted to estimate corn yields in Walton county




using the modified inverse Gaussian, but the distribucion was close enough <0

normality to cause difficulcies.

Figure 3 depicts the estimated distribuction given the inverse hyperbolic
sine distribution and the inverse gaussian distribution for Holmes county. Both
distributions are positively skewed. However, the inverse hyperbolic sine
distribution has a positive probability for yields below 23 bushels per acre.
The inverse Gaussian distribution, on the other hand, has a zero probabilicy for
yields less than 23 bushels per acre. This difference along with inability of
the in&erse Gaussian to model negative skewness will probably limit ics
apélicability to agriculcure. However, comparing the difference in probability
between the inverse Gaussian and the inverse hyperbolic sine in Figure 3 shows
cﬁac the actual probability mass between 23 bushels per acre and OIbushels per

acre is quite small. Thus, this problem is the least damning.

Finally, the multivariate form of the inverse Gaussian distribution first

presented by Wasan is

-2 A "‘l _1_.
’ f(yxryz'---}’,) = (2%) 2 = 1'1: 3 2
. (13) Vi (¥a=y1) 3= (¥p=ypy)?
. A (y1-8q) 3_ A (¥a=yyi=p,) % i Ay (7 Tos =tip) 2
2“3’1 ) ngyﬁ. zp;yp

Our suggestion is to transform this distribution function such that y is the
"residual® from the time trend as.presented in equation (12) in the univariate

case.

Summary, Conclusions and New Directions
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This paper presented two approaches to modeling random events that are new
to the agricultural economics Licerature, alchough they are not new to the
scatiscics literature. First, we presented an overview of the transformation of
random variables approach presented by Moss et al. This approach allows the
researcher to jointly model trends, nonnormality and correlation. Historically,
Johnson proposed three transformations to normality one of which, the lognormal,
is quite familiar. to agricultural economists. The two other distributions, cthe
inverse hyperbolic sine distribution and the Sy distribution have not been widely
utilized by agricultural economist. Moss et al. show that the inverse hyperbolic
sine‘has the desirable property that the normal is a special case. A similar
special case may exist for the Sy distribution, but is not likely for the
lognormal distribution. However, legitimate transformations are not limiced to
the three proposed by Johnson. Any one-to-one mapping could be used to transform
random variables to normality.

To provide evidence of the potential usefulness of this transformation

function approach, the study demonstrated how the inverse hyperbolic sine could

be used to pool data across counties. Specifically, by restricting the

’

nénnormalicy parameters for different counties to be the same it is possible to
focus more information on those characteristics controlled by those paramecters.
Hence, it is possible to increase the precision of the estimaﬁe. In addition,
our results indicate that aggregation may eliminate nonnormality from the sample.

Finally, this study examined the use of other multivariate distribucion
functions in mo&eling nonnormal correlated random deviates. Specifically, we
presented a reformulation of the inverse Gaussian distribution similar to
~Ramirez. Tﬂé reformulation transforms the distribution to a homoscedastic form

as opposed to a very specific form of heteroscedasticity imposed by the original




formulation. Lastly, the multivariate formulation of the inverse Gaussian is

presented in an untransformed formulation.
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En&notes
Originally, Burbidge et al. proposed to transform the dependent variable
of the regression so that y, was discributed inverse hyperbolic sire che
mean of the transformed deviation being x.3. Ramirez points out that this

transformation implies a variance of

Viy,) =(Exp(2620?) -Zxp (8%0?))
(Exp (28x.B) +Exp (-26x.8))+2(Exp (82a?) -1)/(467]

Notice that the variance of the distribution depends on x.8 which is by
definition heteroscedastic. Under Ramirez’ reformulation, only the error
from the regression is distributed inverse hyperbolic sine. A constant 4
becomes the mean of the transformed residuals so that homosc‘et.iascicity is
imposed.

Given that the residuals from the trend are distributed inverse hyperbolic
sine, the expected residual given § and u is

_1 -Exo (-
Ek:l:[aq:( 29%2)(&;;;9;;) Exp(-81)] .
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Table 1: for Normality in Corn Yields in Selected Counties in
Florida.

Parametric Tests for Normality?

County Skewness Kurtosis Joint Test for Likelihood Ractio
Skewness and Test of IHS
Kurtosis Transformation

Holmes 3.91 . 9.70 5.81
(.94)"b . (.01) (.05)

Okaloosa 5.78 2.93 - 8.50 5.21
(.99) (.72) (.01) (.07)

Walton -3.78 0.0? 2.45 0.08
4 (.06) (.51) (.29) (.96)

*The parametric tests given by Spanos are derived by Bera and Jaque. These
tests compare the observed distribution against a general Pearson
distribution. The skewness and kurtosis statistics are normal, or two
tailed tests, while the joint test for skewness and kurtosis is a one
tailed test.

"Numbers in parenthesis indicate confidence levels

Table 2: Multivariate Representation of Corn Yields in North Florida
: Using the Inverse Hyperbolic Sine Transformation.

Nonnormality . Time Trend Transformed Covariance
Parameters Paramecers Parameters

County 8 p a B WHolmes  “Ckaloosa  “Walten
Holmes 3.2 1.44 23.95)  -0.02 0.03 0.87 0.53 .
(2.81)* (0.97) (1.13)  (0.10)  (0.06)  (0.86)  (0.53)

Okaloosa  -0.09  11.18  27.42 0.67 43.71  35.97
(0.02) (0.97)  (1.00)  (0.12) (1.07)  (1.05)

~Walton : - - 37.56 0.67 65.35
[ (0.98)  (0.10) (1.07)

*Numbers in parenthesis denote asymptotic standard errors.




-__—————'_———_—-—_ e e —— —
Table 3: Restricted Multivariate Representation of Corn Yields in Norta l

i

Florida Using the Inverse Hyperbolic Sine Transformation.

Nonnormality Time Trend Transformed Covariance
Parameters Paramecers Parameters

County g B a B Wiglnes Wegaloosa  “WWalzan
Holmes -0.10 11.05 26.89 0.04 34.68 14.97 30.05
(0.04)*  (5.42) (8.09) (0.15) (22.45)  (11.09) (13.49)

Okaloosa -0.10 11.05 26.89 0.67 34.68 31.24
(0.04)  (5.42) (8.09) (0.16) (22.45) (13.23)

Walton - - 37.40 0.67 64.95

(2.82) (0.16) (18.19) |

ayumbers in parenthesis denote asymptotic standard errors.

Table &4: Estimated Distribution of Corm Yields Using the Modified
Inverse Gaussian Distribution Function.

Distribuction Parameters Time Trend Parameters

County ‘ A B a B8
Holmes 51.58 19.28 23.46 0.01
(51.06)* (6.97) (5.07) (0.1L)
Okaloosa 456.54 39.88: 1.15 | 0.81
(621.53) (16.47) (17.29) (0.22)

Numbers in parenthesis denote asymptotic standard errors. '
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Appendix: Corn Yields for North Florida

YEARS HOLMES

OKALOOSA

WALTON STATE

WEIGHTED
YIELD

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
86
87
88
89

34
36
39
29
45
44
46
36
32
33
42
50
45
40
36
50
32
41
50

35

55
55
55
44
30
50
30
85

34
35
38
35
49
48
54
45
37
33
75
S0
50
57
55
90
34
56
60
59
80
S5
50

60

70
65
50
55

35
36
-38
33
41
40
52
41 -
37
27
54
56
48
51
40
S5
36
40
46
35
60
60
60
50
65
65
40
65

35
37
40
29
44
43
50
57
39
25

49 |
46

43
48
45
60

35
52
53

47
55
66
67
65
62
69
58
74

W“

34.27






