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1 Introduction

The primary objective of this paper is to discuss statistical model specification in the
context of the Probabilistic Reduction (PR) approach proposed by Spanos (1989,1995a).
To understand the problem of specification we need to consider two broad questions:
(a) ‘what is being modeled’, and
(b) ‘what is to be required for an adequate account of model specification’.

From the PR perspective the primary object of modeling is the actual Data Generat-
ing Process (DGP): the source of the data in coming to inquire about the phenomenon
of interest (see Spanos (1986)). The adequacy of any account of model specification
will be assessed by its potential in allowing the modeler to learn about the actual
DGP and the phenomenon of interest. The manner in which these issues are ad-
dressed within the framework of the PR approach sets the stage for understanding
and comparing the PR to the traditional textbook and Bayesian approaches.
In section 2 we trace the roots of the statistical model specification problem back to

the early 19th century. In section 3 we argue that the PR approach is firmly rooted in
the frequentist statistics tradition associated with Fisher and Neyman-Pearson. The
PR approach is then viewed as a formalization of Fisher’s ‘reduction of data’ view of
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statistics, in section 4. In section 5 we illustrate the strengths of the PR approach
using several Monte Carlo simulation experiments.

2 Specification: a brief historical introduction

Statistical model specification, in a primitive form, can be traced back to attempts by
Legendre in 1805 and Gauss in 1809 to apply the least-squares method to modeling
astronomical and geodesic observations; see Stigler (1986). Gauss re-formulated the
least-squares approximation method for ‘fitting curves’ of the form yt = h(xt), into
a statistical model, by interpreting the approximation error as a measurement error
assumed to be a ‘random’ variable from a Normal distribution with mean zero and a
constant variance. This gave rise to what is known in today’s literature as the Gauss
Linear model :

yt = β>xt + εt, εt v NIID(0,σ2), t ∈ T, (1)

where ‘NIID’ stands for Normal, Independent and Identically Distributed, xt denotes
a set of non-stochastic variables and εt denotes ‘autonomous’ random errors (see
Spanos (1986), ch. 18). The conceptual modeling scheme underlying (1) takes the
form of the orthogonal decomposition:

observation = truth + error (2)

where the truth often comes in the form of a ‘law’; see Stigler (1999).
For the next century or so the focus of empirical modeling shifted away from

relating different variables to studying the distributional structure of individual ob-
servable variables of interest using histograms and frequency curves. Viewing this
retrospectively, the statistical model of focus was what we nowadays call the simple
Normal model :

[i] Probability model:

Φ =
n
f(x;θ) = 1

σ
√
2π
exp

n
− (x−µ)2

2σ2

o
, θ := (µ,σ2) ∈ R×R+, x ∈ R

o
,

[ii] Sampling model: X := (X1, X2, ..., Xn) is a random sample.

(3)

It should be noted that the assumptions of Independence (I) and Identically Distrib-
uted (ID), defining the notion of a random sample, were implicitly imposed because
neither concept was clearly understood at that time; these assumptions were formally
defined in the 1930s by Kolmogorov and Khintchin. The adoption of the simple Nor-
mal model initiated a shift away from attaching the probabilistic structure to errors of
measurement (εt v NIID(0,σ2)), to viewing randomness as inherent in the observable
variables themselves:

Xk v NIID(µ,σ2), k ∈ N.
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Quetelet popularized this statistical model by applying it to all kinds of sociological
data in an attempt to establish the separate discipline of ‘social physics’ (see Stigler
(1986), ch. 5).
In the 1870s Galton, in his attempt to quantify heredity, went beyond the simple

Normal model, where observable random variables are modeled separately, to relating
two observable random variables (yt, Xt) via his notion of linear regression:

E(yt | Xt = xt) = β0 + β1xt, t ∈ T,
where β0 = E(yt) − β1E(Xt), β1 = [Cov(yt,Xt)/V ar(Xt)] . The linear regression
became a statistical model based on the conditional distribution D(yt | Xt;θ) :

yt = β>xt + ut, (yt | Xt = xt) v NI(β>xt,σ2), t ∈ T, (4)

where ut = yt − E(yt | Xt= xt). The coefficient β1 was then used to define the
(contemporaneous) correlation between two random variables:

Corr(yt,Xt) =
³q

V ar(Xt)
V ar(yt)

´
β1 =

Cov(yt,Xt)√
V ar(yt),V ar(Xt)

, t ∈ T.

providing two very important techniques for relating observable random variables in
empirical modeling (see Stigler (1986)).
In the late 19th century Karl Pearson extended the scope of the simple Normal

model by introducing numerous new distributions (Gamma, Beta, Pareto, Laplace
etc.) via the Pearson family. He implicitly retained the IID assumptions but their
inappropriateness for some cross-section biological data soon became apparent when
crab measurements data gave rise to bimodal histograms, which Pearson explained
as due to heterogeneity: two Normal distributions with different means are superim-
posed; see Stigler (1986). The IID assumptions were also called into question in the
1880s by Lexis under the guise of testing ‘the stability’ of a time series. The stability
of a time series (yt, t = 1, 2, ..., T ) was evaluated by comparing it to a baseline series
of the form:

Xk = θ + ²k, Xk v BinIID(θ), k ∈ N,
where ‘BinIID’ stands for Binomial, Independent and Identically Distributed and ²t
denotes ‘random’ errors (see Stigler (1986), ch. 6).
Yule (1897) put forward a direct link between Galton’s linear regression model (4)

and the Gauss linear model (1) by showing that one can use least-squares to estimate
the parameters of both models. Although a major breakthrough in estimation, it
unfortunately also contributed significantly to conflating the two models; a confusion
that lingers on with terms like ‘linear least-squares regression model’.
At the end of the 19th century the lack of understanding of the notion of IID

caused many difficulties for modelers of time series data; the IID assumption which
is clearly inappropriate for such data led to several well-known problems including
nonsense correlations (see Yule (1921)). There were numerous ad hoc attempts to
handle the temporal dependence and heterogeneity exhibited by such data, but it
was not until the late 1920s that Yule and Slutsky put forward more appropriate
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statistical models; the Autoregressive (AR(p)) andMoving Average (MA(q)) models,
respectively.
In order to avoid gross anachronisms, it is important to stress that the choice

of statistical models considered above belongs to what we nowadays call descriptive
statistics and not to statistical inference proper. For Karl Pearson statistical model
specification amounted to using the first four ‘data moments’ to choose a frequency
curve from the Pearson family that best described the same data.
It is also important to emphasize that before the 1920s the problem of specifica-

tion was practically non-existent because the notion of a statistical model (and its
underlying probabilistic assumptions) was not well understood. Arguably, statistical
model specification, understood as postulating a statistical model a priori and inter-
preting the observed data as a realization of the process assumed by that model, was
first introduced by Fisher (1922). As the following quotation from “The Design of
Experiments” illustrates, Fisher’s view of specification was inevitably influenced by
his extensive experience with experimental data:

“Statistical procedure and experimental design are only two aspects of the same whole,
and that whole comprises all the logical requirements of the complete process of adding to
natural knowledge by experimentation” (see Fisher (1935), p. 3)
This enabled Fisher to view the statistical model associated with the experimental

design in the context of modeling scheme (2), where xt denotes a set of controlled
(non-stochastic) variables. The modeling strategy being that the onus is on the
experimenter to ensure that when the relevant effects, denoted by xt, are controlled
adequately the ‘remaining’ errors, εt, are rendered non-systematic.
With Fisher also comes the idea that statistical procedure aims at the actual DGP

in a deliberately planned investigation. In this context the ‘actual DGP’ is inextrica-
bly bound up with the experimental design itself and the statistical model is simply a
formalization (an error-calibrated form) of the design. As argued in Spanos (1995a),
from the statistical model specification viewpoint, Fisher’s experimental design and
the Gauss linear models are very similar in so far as the actual DGP is assumed to be
‘nearly isolated’ either by human intervention or ‘divine’ design. In both situations,
scheme (2) provides the conceptual foundation upon which the empirical modeling
can be erected.
Unfortunately, the specification of statistical models has progressed very little

since the time of Fisher with only occasional discussions in the statistics literature:
“Until relatively recently, the theory has paid little attention to the question of how

such a model should be chosen.” (see Lehmann (1990), p. 160)
This attitude is aptly caricatured by Dawid (1982) (quoted by Lehmann (1990)):
“Where do probability models come from? To judge by the resounding silence over this

question on the part of most statisticians, it seems highly embarrassing. In general, the
theoretician is happy to accept that his abstract probability triple (S,=, P (.)) was found
under a gooseberry bush, while the applied statistician’s model ‘just growed’ .”
In view of this, it’s not surprising to discover that the current econometric text-
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book approach to statistical model specification constitutes an adaptation of the
one used in experimental design and least-squares curve fitting, with the stated ob-
jective of empirical modeling being ‘the quantification of theoretical relationships’.
This adaptation, however, is often inappropriate (and misleading) for the statistical
analysis of observational (non-experimental) data. This is because the modeling of
observational data very rarely ‘fits’ into the modeling scheme (2) due to the scarcity of
observed data that can be realistically viewed as the result of economic ‘laws’ and/or
controlled experiments; see Spanos (1995a).

3 The roots of the PR approach

The primary aim of the Probabilistic Reduction (PR) approach is to put forward a
flexible enough framework which (a) can accommodate empirical modeling using both
experimental and non-experimental data, (b) enhances the reliability and precision
of the inferences drawn, and (c) enables the modeler to learn about the phenomenon
of interest. The roots of the PR approach are firmly within the frequency tradition
of statistical inference founded by R. A. Fisher (1922,1925,1935) and extended by
Neyman and Pearson (1933,1936).
The PR approach reflects the Fisherian insight that ‘the process of adding to

natural knowledge’ turns on the use of data from a deliberately planned analysis in
order to learn about the underlying DGP. It adheres, as well, to the fundamental
logic by which such learning takes place. A logic in which, according to the frequency
tradition, the sampling distribution is a pivotal element in appraising data.

3.1 Fisher’s view

Fisher (1922), p. 311, defined the main task of statistics as ‘the reduction of a
large quantity of data to a few numerical values (parameters); a reduction which
adequately summarizes all the relevant information in the original data’. This is
repeated in Fisher (1925) where he continues:

“The problems which arise in the reduction of data may thus conveniently be divided
into three types:

(i) Problems of Specification, which arise in the choice of the mathematical form of
the population. This is not arbitrary, but requires an understanding of the way in which
the data are supposed to, or did in fact, originate. Its further discussion depends on such
fields as the theory of Sample Survey, or that of Experimental Design.

(ii) When the specification has been obtained, problems of Estimation arise. These
involve the choice among the methods of calculating, from our sample, statistics fit to
estimate the unknown parameters of the population.

(iii) Problems of Distribution include the mathematical deduction of the exact nature
of the distributions in random samples of our estimates of the parameters, and of the other
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statistics designed to test the validity of our specification (tests of Goodness of Fit).”
(see ibid. p. 8)

3.2 Specification

Fisher’s view of specification as being confined primarily to data from ‘sample surveys’
and ‘experimental design’ is exemplified by his earlier statement:

“As regards problems of specification, these are entirely a matter for the practical statis-
tician, for those cases where the qualitative nature of the hypothetical population is known
do not involve any problems of this type. In other cases we may know by experience what
forms are likely to be suitable, and the adequacy of our choice may be tested posteriori.”
(see Fisher (1922), p. 16)
His remark that the specification of a statistical model ‘requires an understanding

of the way the data are supposed to, or in fact, originate’ makes an allusion to the
‘actual DGP’. The importance of this arises from the fact that the ultimate value
of empirical modeling is assessed by whether it contributes to learning about the
phenomenon of interest. Indeed, the justification of statistical methods and models
is found in their ability to provide systematic strategies for learning from observed
data; see Mayo (1996).
There is no denying that bridging the gap between the actual DGP on one side

and the theory and statistical models on the other is often a very difficult task.
This is because both of these models are idealized descriptions of the actual DGP,
qualified by ceteris paribus clauses. Fisher’s view of specification as being confined
primarily to data from ‘experimental design’ simplifies the task of bridging this gap
by utilizing experimental design techniques and controls (randomization, blocking,
replication) to operationalize the ceteris paribus clauses and ensure the adequacy of
the postulated probabilistic assumptions. The traditional econometric approach to
specification amounts to attaching white-noise error terms to theoretical relationships
to transform a theory to a statistical model. Not withstanding the appeal of its
simplicity, this approach is often inappropriate when modeling observational data.
Often the ceteris paribus clauses qualifying the theory model are infeasible, and the
gap between the theory concepts and what the data measure cannot be bridged
adequately in this simplistic way; see Haavelmo (1944), Spanos (1995a).
To introduce more flexibility into the modeling process, the PR approach (see dia-

gram 1) distinguishes between (a) the (stochastic) phenomenon of interest (the actual
DGP), (b) the theory model, and (c) the estimable model. The distinction between
(a) and (b) is made to avoid the confusion between the phenomenon itself and our
attempts to come to grips with it. The distinction between (b) and (c) is designed to
allow for the possibility that certain important aspects of the phenomenon in ques-
tion might not be observable and thus (b) might not be estimable with the available
data. It is important to note that ‘data’ in this context refers to actual or potential
data. It is also interesting to point out that in the case of experimental data, the
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estimable model coincides with the experimental model and the hierarchy of models
(primary, experimental and data models) introduced by Mayo (1996) correspond, to
a great extent, to the theory, estimable and statistical models above.

DataTheory model

Estimable model Statistical model

Identification

Empirical model

STATISTICAL ANALYSIS
Specification
Estimation
Misspecification testing
Respecification
Statistically adequate model

Theory
- actual DGP

Diagram 1: The Probabilistic Reduction approach

Stochastic phenomenon of interest (Actual DGP): the source of the data
in coming to inquire about the phenomenon of interest.
Theory: a conceptual construct purporting to provide an idealized description of

the phenomena within its intended scope.
Theoretical model: a mathematical formulation of a theory.
Estimable model: a particular form of the theoretical model which is potentially

estimable given the particular observed data chosen.
Statistical model: an internally consistent set of probabilistic assumptions pur-

porting to provide an adequate (probabilistic) ‘idealized’ description of the stochastic
mechanism that gave rise to the observed data with a view to learning about the
observable phenomenon of interest.
Empirical model: a reparameterized/restricted form of a statistically adequate

statistical model which is interpretable in view of the theory and can be utilized for
description, explanation and prediction purposes.
In the context of the PR approach, specification refers to the choice of a statistical

model in the context of which the theoretical question of interest will be assessed. The
problem facing the modeler is to embed the theory (or substantive question of interest)
into a statistical model that adequately accounts for the probabilistic structure of
the observed data. This is because the reliability of inference reached on the basis
of the estimated statistical model depends crucially on its statistical adequacy; a
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misspecified model is likely to give rise to misleading inferences. The embedding the
theory within an appropriate statistical model constitutes a most challenging task in
empirical modeling because ‘appropriateness’ is multi-dimensional:
(a) is the statistical model relevant in probing the theory?
(b) are its assumptions satisfied by the data?
(c) are its assumptions internally consistent? and
(d) does it facilitate learning from the data about the phenomenon of interest?
A statistical model is defined in terms of its probabilistic assumptions. For in-

stance, in the case of a simple Normal model the probabilistic assumptions are:

[i] Xk v N(µ,σ2), (µ,σ2) ∈ Θ := R× R+, k ∈ N,
[ii] (X1,X2, ...,Xn) are independent,
[iii] (X1,X2, ..., Xn) are Identically Distributed

(5)

The assumptions collectively define what we call a statistical Generating Mechanism
(GM), which in the case of (5) takes the form:

Xk = µ+ uk, k ∈ N, (6)

where µ = E(Xk | D0), D0 = {S,∅}, S being the set of all possible outcomes and ∅
the empty set. The modeling scheme that can accommodate (6) comes in the form
of the orthogonal decomposition:

Xk = E(Xk | Dk) + uk, k ∈ N. (7)

The onus being now on the modeler to choose Dk (the conditioning information
set), where Dk ⊂ F, to ensure that the ‘remaining’ error uk = Xk − E(Xk | Dk)
is non-systematic; the choice of Dk is influenced by both theory and statistical con-
siderations. This is an extension of (2) to phenomena where there are no ‘laws’ or
controlled experiments; see Spanos (1986, 1995a).
The statistical model is data acceptable when a thorough probing of the proba-

bilistic assumptions reveals no misspecification vis-à-vis the information contained in
the data. The assumptions of the model are internally consistent when they are not
antithetical. The ultimate success of a statistical model, however, can only be assessed
on the basis of whether it facilitates learning from the data about the phenomenon
of interest.

3.3 Estimation/Testing within the PR approach

Fisher’s second type of problems termed Estimation, should be qualified to “problems
of arriving at a suitable statistical procedure” (see Lehmann (1990)), i.e. estimation
or testing. Fisher was an avid frequentist and the approach to statistical inference
he founded sought estimators and test statistics, which minimize the ‘long-run’ error
probabilities. Taking the Normal model given in (5) with data xn := (x1, x2, ..., xn)

8



as an example, Fisher was the first to draw a clear distinction between the unknown
parameters θ :=(µ,σ2) and their estimators:bµ(Xn) =

1
n

Pn
k=1Xk, bσ2(Xn) =

1
n

Pn
k=1(Xk − bµ)2,

The optimality of estimators is assessed on the basis of their inherent reliability to
zero in on the true parameter values θ0 := (µ0,σ

2
0), when the statistical model is

true. This reliability is called inherent because it is an attribute that emanates from
the structure of the statistical model itself and it is assessed in terms of the sampling
distribution of the estimator. The derivation of sampling distributions is classified
by Fisher as problems of Distribution. In the case of the simple Normal model,
the deductive argument is that ‘if assumptions [i]-[iii] (see (5)) are true’ then the
estimators have the following sampling distributions:bµ(Xn) v N(µ, σ

2

n
), bσ2(Xn) v 1

n
χ2(n− 1).

The same deductive argument is involved in deriving a test for the significance of
µ based on the test statistic τ(Xn) =

√
nbµ(Xn)√bσ2(Xn)

v St(n − 1); Student’s t with n − 1
degress of freedom. Its inherent reliability is assessed by its ability to detect a false
hypothesis; the power of the test. The ‘error probabilities’ (bias, efficiency, type I
and II) involved are usually explained intuitively in terms of the relative frequency
of particular errors using the metaphor of a sequence of repetitions of the statistical
GM, such as (6), envisaged by the statistical model in question, giving rise to the
‘hypothetical’ data xn(k), k = 1, 2, ..., N . For the frequency approach to statistical
inference, as perceived in the context of the PR framework, the relevant information
function is:

g(.; .) : X ×Θ→ R,

which varies over the whole of the sample and parameter spaces. This function gives
rise to the distribution of the sample f(xn;θ0) when Θ is confined to θ0 (the true
values) and to the likelihood function L(x0n;θ) when X is confined to the data x0n :

f(xn;θ0) = g(xn;θ0), ∀xn ∈ X ⊂ Rn, L(x0n;θ) = g(x
0
n;θ), ∀θ∈ Θ ⊂ Rm.

Hence, gauging the inherent reliability of the tools we call estimators and tests requires
one to consider the probabilities associated with all possible values of the sample, i.e.
the whole of the sample space X , as well as the whole of the parameter space. This
appeal to the sampling distribution is an essential ingredient of what Fisher, and
frequentists in general, regard as necessary for learning about the actual DGP.
By interpreting the observed data as a realization of a pre-specified statistical

model, Fisher went on to use the latter as a conceptual device in his significance test
reasoning: the data can be used as evidence against a null hypothesis (specified in
terms of the model) insofar as the data are improbably far from what would have
been expected if the null were true. Fisher used the same reasoning to test the
validity of the assumptions of the statistical model and classified testing ‘the validity
of our specification’ under the same heading of problems of Distribution. In modern
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terminology Fisher was referring to misspecification testing: the formal assessment
of the validity of the probabilistic assumptions specifying the statistical model in
question. It should be noted that during the 1920s the ‘goodness of fit’ test put
forward by Karl Pearson was the primary tool for testing distributional assumptions;
see Fisher (1925), ch. III. Fisher is explicit about the role of misspecification testing
when he argued that: “the adequacy of our choice may be tested posteriori.” (see
Fisher (1922), p. 16)
In their attempt to improve upon Fisher’s significance testing, Neyman and Pear-

son (N-P) modified his significance testing reasoning (by replacing it with the be-
havioral decision argument) and narrowed down its intended scope. As argued in
Spanos (1999), the N-P testing procedure improved upon Fisher’s testing by intro-
ducing clear optimality criteria of the same nature as the ones introduced by Fisher
in estimation. This, however, was achieved at the price of (inadvertently) limiting
testing to within the boundaries of a pre-specified statistical model. Misspecification
testing is concerned with establishing the adequacy of the postulated model itself and
thus it differs from N-P testing in so far as it probes beyond the boundaries of the
pre-specified model:

H0 : f(x) ∈ Φ against H0 : f(x) ∈ P − Φ,

where P denotes the set of all possible statistical models that can be specified in terms
of the joint distribution D(X1,X2, ..., Xn;φ). Hence, the latter constitutes testing
without the boundaries of the model; see Spanos (1999, 2000) for further discussion
concerning the nature of misspecification testing.
In addition to narrowing the scope of Fisher’s testing, the N-P procedure re-

placed his significance testing reasoning with a behavioral decision rule. This proved
too coarse for empirical modeling purposes and the practice of statistics returned to
Fisher’s p-value in search for an inferential interpretation of testing; often misinter-
preting and abusing the concept. Mayo (1996) put forward a coherent ‘inferential’
construal of N-P tests by going beyond the inherent reliability of a test and assessing
how the observed data xn bear upon the particular inference. Her concept of severity
provides a post-data evaluation of the inference reached (accept or reject H0) using
counterfactual scenarios.
Interpreting H as denoting either H0 or H1, a hypothesis H passes a severe test

τα with data xn if,
(i) xn agrees with H, and
(ii) with very high probability, test τα would have produced a result that ‘fits H
less well then xn does’, if H were false or incorrect.
This reinterpretation of N-P tests deals with the main weakness of the behavioral

decision model of N-P tests by extending the pre-data error probabilities, such as
size and power, to a ‘customized’, post-data assessment of the severity with which
specific inferences pass the test in question; see Mayo (1996). This sheds additional
light on the nature and role of pre-data error probabilities. In scientific contexts the
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real value of being able to control error probabilities at small values stems from the
fact that it allows the modeler to severely probe, and thereby understand better, the
process that gave rise to the observed data xn; see Mayo and Spanos (2000).

3.4 The Bayesian alternative

The frequentist attitude regarding specification, distribution, and misspecification
should be contrasted with the Bayesian approach. For any Bayesian inference con-
cerning θ, invoking the Likelihood principle (see Berger and Wolpert (1984)) implies
that the observed data xn (via the likelihood function) constitute the only relevant
point in the sample space. In fact, Bayesians criticize the use of tail probabilities
(p-value, significance level) as their evaluation takes into account other points in the
sample space X beyond the data xn. Jeffreys (1961) poking fun at the use of p-values
stated:

“What the use of p implies, therefore, is that a hypothesis which may be true may be
rejected because it has not predicted observable results which have not occurred. This seems
a remarkable procedure.” (see ibid. p.385)
The fact of the matter is that the only way one can assess the reliability of estima-

tors and tests is, indeed, to consider ‘observable results which have not occurred’; a
modeler should consider their reliability under different circumstances, as described by
the distribution of the sample. The Bayesians by confining attention to the likelihood
function have no way to assess this inherent reliability. This approach to statistical
inference forsakes such assessment in favor of assigning probabilities to the hypothe-
ses (null and alternative) themselves via one’s prior distribution π(θ), θ ∈ Θ. This is
then revised in view of the data using the likelihood function via Bayes’ theorem to
determine the posterior distribution:

π(θ | x0n) ∝ π(θ) · L(x0n;θ), θ ∈ Θ.
The statistical model assumptions enter this revision of subjective beliefs via the
likelihood function, and thus, any misspecification is likely to lead to misleading in-
ferences based on π(θ | x0n). Can a Bayesian test the statistical adequacy of the model
in order to ensure the appropriateness of the likelihood function? The short answer
is no, because misspecification testing requires Fisher type significance test reasoning
which involves entertaining counterfactual scenarios beyond the observed data x0n and
the pre-specified model. Assessing the Bayesian approach on the basis of how it deals
with misspecification or/and respecification, we can see that the Bayesian approach
leaves no room for revising the statistical model itself; any revisions are within the
original model. Hence, unless the Bayesian modeler has the correct specification at
the outset, modeling yields no learning about the actual DGP and has no way to
get rid of or correct a misspecified model. This raises the important issue of what is
being learned from Bayesian modeling: is it mere subjective opinion?
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4 PR: formalizing the ‘reduction of data’

An important element of the PR approach is the formalization of Fisher’s notion of
‘the reduction of data to a few numerical values; a reduction which adequately sum-
marizes all the relevant information in the original data’. The starting point for this
formalization is the joint distribution of all the observable random variables involved
(the Haavelmo distribution); the set of observables has been chosen by some theory
in conjunction with what aspects of the phenomenon of interest are measurable. Let
all the observables involved be denoted by Zt (an m× 1 vector). Kolmogorov’s exis-
tence theorem (see Billingsley (1986)) ensures that, under certain mild conditions, the
probabilistic structure of an observable (vector) stochastic process {Zt, t ∈ T} is fully
described by the joint distribution D(Z1,Z2, ...,ZT ;φ), for T > 1. This distribution
demarcates the relevant statistical information because it provides the most general
‘description’ of the potential information contained in the data. Kolmogorov’s theo-
rem warrants the existence of, not only the process itself, but also the ‘few numerical
values’—the parameters φ. How few these parameters can be depends crucially on the
invariance structure of the process. If the actual DGP gives rise to an ever-changing
observable processes, its reduction potential is very limited. For the reduction to
give rise to applicable models the observable process should enjoy a certain degree of
invariance over t ∈ T. The primary aim of the specification is to capture the invariant
features of the phenomenon of interest in the form of the unknown but unchanging
parameters φ of the statistical model. This should be interpreted as requiring that
certain measurable aspects of the phenomenon of interest remain invariant or we
know how they are changing with t. These regularities are captured by the specified
statistical model when its statistical adequacy is established; no departures (misspeci-
fications) from the probabilistic assumptions are detected. The objective in specifying
the statistical model is to impose as restrictive (informative) a structure as possible,
while ensuring it is in accord with the observed data. The more restrictive the prob-
abilistic structure (when imposed reliably) the higher the precision of the associated
inference; see Spanos (2001).

4.1 Reduction assumptions

As shown in Spanos (1999), the probabilistic assumptions that aim at capturing the
relevant regularities can be conveniently classified into the three broad categories:
(D) Distribution, (M) Dependence, (H) Heterogeneity.
A statistical model can then be viewed as a reduction from D(Z1,Z2, ...,ZT ;φ) based
on a set of probabilistic assumptions from these three categories.
To make the discussion more concrete, let us consider this reduction in the case

of the Normal/Linear Regression (NLR) model as specified in table 1. The vector of
observables in this case is: Zt := (yt,Xt)>, and the reduction assumptions imposed
on the process {Zt, t ∈ T} are: (D) Normal, (M) Independent, (H) Identically
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Distributed. The reduction takes the form:

D(Z1,Z2, ...,ZT ;φ)
I
=
QT
t=1Dt(Zt;φt)

IID
=
QT
t=1D(Zt;φ)

IID
=

=
QT
t=1D(yt | Xt;ϕ1(φ)) ·D(Xt;ϕ2(φ)), ∀(xt, yt) ∈ RkX ×RY .

(8)
The details of this reduction are of interest because they bring out the role of each of
the reduction assumptions and the reparameterization/restriction from primary para-
meters φ to the model parameters (ϕ1(φ)),ϕ2(φ)). The imposition of each reduction
assumption eliminates successively large subsets of P (the set of all possible statistical
models that can be specified in terms of the joint distribution D(Z1,Z2, ...,ZT ;φ),
eventually reducing it to just one statistical model. In the case of (8), independence
reduces the joint to a product of marginal distributions and the ID assumption re-
stricts that to a single distribution with the same parameters. In order to be able
to disregard the marginal distribution D(Xt;ϕ2(φ)) and concentrate exclusively onQT

t=1D(yt | xt;ϕ1) , we need the reduction assumption of Normality for {Zt, t ∈ T}.

4.2 Model assumptions

Although the Normal/Linear regression model is specified in terms of assumptions
[1]-[8] (see Spanos (1986), it is important to draw the distinction between the model
assumptions [1]-[8] and the reduction assumptions: NIID. As far as statistical in-
ference based on this model is concerned, the relevant assumptions are the model
assumptions.

Table 1 − The Normal/Linear Regression model
I. Statistical GM: yt = β0 + β1xt + ut, t ∈ T.

[1] Dt = {Xt = xt} is the relevant conditioning information set with
µt = E(yt | Dt) = β0 + β1xt : the systematic component, and
ut = yt −E(yt | Dt) : the non-systematic component.

[2] θ := (β0,β1,σ
2), are the statistical parameters of interest, where

β0 = E(yt)− β1E(Xt), β1 =
Cov(xt,yt)
V ar(xt)

, σ2 = V ar(yt)− [Cov(xt,yt)]2

V ar(xt)
,

θ := (β0,β1,σ
2) ∈ Θ := R2 ×R+,

[3] Xt is weakly exogenous with respect to θ.
[4] No a priori restrictions on θ := (β0, β1,σ

2).

[5]
PT

t=1(xt − x̄)2 6= 0; xt is not constant over t = 1, 2, ..., T.
II. Probability model: Φ = {D(yt | xt;θ), θ ∈ Θ, yt ∈ R} .

[6]

 (i) D(yt | xt; θ) is Normal,
(ii) E(yt | Xt = xt) = β0 + β1xt is linear in xt,
(iii) V ar(yt | Xt = xt) = σ2 is homoskedastic (free of xt),

[7] The parameters θ := (β0,β1,σ
2) are t-invariant.

III. Sampling model:
[8] (y1, y2, ..., yT ) is an independent sample drawn from D(yt | xt;θ), t = 1, ..., T.
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For purposes of specification, misspecification testing and respecification, how-
ever, it is of paramount importance to utilize the relationship between the two sets
of assumptions as shown in table 2. At the specification stage the relationship be-
tween the reduction and model assumptions can be used to assess the adequacy of the
statistical model. The model assumptions are more difficult to assess a priori using
graphical techniques because they relate to conditional distributions, but the reduc-
tion assumptions are very easy to assess because they relate to marginal and joint
distributions; see Spanos (1999), ch. 5). Tracing the effects of any departures from
the reduction assumptions to the model assumptions will be valuable in choosing the
type of misspecification tests to be applied. Respecification can be viewed as tracing
the detected departures from the model assumptions to the reduction assumptions
and changing the latter accordingly (see Spanos (1986,1999)).

Table 2: Probabilistic assumptions

Reduction: {Zt, t ∈ T} Model: {(yt | Xt= xt), t ∈ T}
N −→ [3], [6](i)-(iii)
I −→ [1], [8]
ID −→ [2], [7]

5 Specification in empirical modeling

In an attempt to illustrate the PR approach and its potential advantages vis-a-vis
the traditional approach, we consider a number of Monte Carlo experiments. These
experiments relate to the linear regression model and illustrate the differences between
the two approaches at the level of an empirical modeler. All experimental results
reported are based on 10,000 replications of sample sizes T = 50 and T = 100.
For simplicity, let us assume that economic theory suggests that there is a rela-

tionship between two variables (X,Y ) and the theory model takes the initial form:

Y = α0 + α1X. (9)

In order to draw any inferences regarding this theory, the next step is to embed (9) into
a statistical model utilizing data of the form: {Zt := (xt, yt), t = 1, 2, ..., T}. From
the statistical viewpoint, these data are viewed as as realization of a vector stochastic
process {Zt := (xt, yt), t ∈ T}, whose probabilistic structure is fully determined by
its joint distribution; see Billingsley (1986).

5.1 Experiment 1 - Normal/Linear Regression (NLR)

Consider the case where the observed data {(xt, yt), t = 1, 2, ..., T} are generated via
a bivariate IID, Normal processes, with primary parameters:

E(Yt) = 2, E(Xt) = 1, V ar(Yt) = 1, V ar(Xt) = 1, Cov(Yt,Xt) = 0.5 (10)
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In view of the theory model (9), one could consider the regression model associated
with (10) as the embedding statistical model. The information in (10) enables us to
deduce that the true regression model is:

yt = 1.5 + 0.5xt + ut, σ2 = .75, and <2 = 1− σ2

V ar(Yt)
= 0.25, t ∈ T. (11)

Further, model assumptions [1]-[8] hold by definition and the weak exogeneity of Xt
with respect to the model parameters θ := (β0,β1,σ

2), allows us to focus exclusively
on the conditional distribution D(yt|Xt;θ).
We begin by illustrating how PR modelers would proceed on the basis of a partic-

ular realization {Zt := (xt, yt), t = 1, 2, ..., T}. Their first step would be to examine
plots of the data in an attempt to specify the appropriate statistical model; see Spanos
(1999), ch. 5-7. As argued above, one can assess the model assumptions [1]-[8] via
the reduction assumptions of NIID for {Zt, t ∈ T}.

Fig. 1: t-plot of yt Fig. 2: t-plot of xt

Fig. 3: Scatter-plot of (xt, yt) Fig. 4: Scatter-plot of (xt, yt)
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From the t-plots of yt and xt (Figs 1-2) one observes that (a) both the mean and
variance of yt and xt appear to be constant over t, (b) both processes exhibit indepen-
dence over t, and (c) the marginal distributions appear to be bell-shape symmetric
around a constant mean; a graph of the smoothed histogram of both these variables
verifies the bell-shape symmetry; see Spanos (1999), ch. 5. From the scatter-plot of
(xt, yt) (see fig. 3) one can see the elliptically shaped scatter with a positive principal
axis. Thus, a first educated guess would be that the variables are NIID and thus a
linear regression model is likely to be appropriate. The estimated regression model
using the simulation data is given in Table 3.
The t-statistics reported (τβi) are those obtained when testing that the β

0
is differ

from their true values in (11), and they are used as indicators of the reliability of
inference. As one can see, the mean estimates are close to their theoretical counter-
parts and the percentage of rejections (% reject) of the t-test is close to the nominal
significance level (α) for β1. In practice, the PR modeler would not proceed to draw
inferences before testing the model assumptions. While there are many possible vari-
ants to the misspecification tests that can be applied, the battery of tests implemented
by the PR modeler would (a) include tests of all testable assumptions and (b) in-
clude individual as well as joint tests of the assumptions. Further, it is important to
emphasize that, although misspecification testing is applied in a piece-meal fashion,
the null hypothesis being tested is:

H0 : [1]-[8] are valid, vs. H1 : any of [1]-[8] are invalid. (12)

Hence, the PR modeler would never interpret the specific test results in isolation, but
rather, they are viewed in the context of (12).
Finally, the foundation of misspecification testing within the PR approach is pro-

vided by the following lemma.
Conditional expectation orthogonality lemma. Consider the random vari-

able yt and the random vector Xt (a m× 1 vector) defined on the same probability
space (S,F ,P(.)) such that E (|yt|) < ∞, E (|Xt|) < ∞. Then the only function
g(Xt) for which the following relationship holds for every well behaved (Borel) func-
tion h(Xt) :

E ([yt − g(Xt)]h(Xt)) = 0, (13)

is the conditional expectation, i.e. (13) holds iff: g(Xt) = E(yt | σ(Xt)).
note that σ(Xt) denotes the σ−field generated by Xt. This lemma follows from the
orthogonal decomposition (7) and can be easily extended to the higher moments of
the conditional distribution D(yt | Xt;θ) :

E ([urt −E(urt | σ(Xt))]h(Xt)) = 0, r = 2, 3, ...

These orthogonality conditions can be used to devise misspecification tests for the
model assumptions. By choosing h(Xt) judiciously the modeler can probe for mis-
specifications by testing for non-orthogonality leading to auxiliary regressions for
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misspecification testing. Details of the specific ‘auxiliary regression’ tests applied in
this paper can be found in the Appendix.

Table 3 - True: NLR // Estimated: NLR
T=50 T=100
Mean Std Mean Std

β̂0 1.5015 0.1218 1.5004 0.0869
β̂1 0.4985 0.1218 0.4996 0.0869
σ̂2 0.7505 0.0207 0.7500 0.0104
R2 0.2528 0.0898 0.2516 0.0647
t-statistics Mean % reject (.05) Mean % reject (.05)

τβ0 =
β̂0−β0
σ̂β0

0.0092 0.0068 0.0036 0.0050

τβ1 =
β̂1−β1
σ̂β1

-0.0131 0.0471 -0.0051 0.0485

Table 4 - True: NLR // Estimated: NLR
T=50 T=100

Misspecification Test Mean % reject (.05) Mean % reject (.05)
D’AP-Normality 1.9980 0.0559 2.0555 0.0601
D’AP-Skewness -0.0041 0.0965 -0.0040 0.1010
D’AP-Kurtosis -0.0095 0.1005 -0.0091 0.1058
Durbin-Watson 2.0006 0.1061 2.0007 0.1116
AC Test: ût−1, xt 1.0298 0.0468 0.9994 0.0488
AC Test: yt−1, xt−1, xt 1.0853 0.0534 1.0385 0.0542
White’s Homosked. 0.9603 0.0366 0.9618 0.0400
RESET(2) Linearity 1.0803 0.0522 1.0529 0.0533
Joint Mean (A) 1.0718 0.0526 1.0347 0.0521
trend in mean 1.0934 0.0527 1.0467 0.0529
RESET(2) Linearity 1.0900 0.0560 1.0549 0.0570
ût−1 in mean(1) 1.0719 0.0548 1.0275 0.0518

Joint Mean (B) 1.0670 0.0528 1.0354 0.0509
trend in mean 1.0929 0.0532 1.0457 0.0524
RESET(2) Linearity 1.0912 0.0556 1.0574 0.0559
yt−1, xt−1in mean 1.0611 0.0518 1.0321 0.0514

Joint Variance 0.9449 0.0304 0.9731 0.0425
trend in variance 1.0368 0.0477 1.0265 0.0483
RESET(2) Homosk. 0.9633 0.0404 0.9806 0.0459
ARCH(1) 0.8816 0.0258 0.9340 0.0345

The results from the complete battery of misspecification tests obtained for the
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NLR (see table 4), indicate that there are no significant departures from model as-
sumptions [6]-[8] for the data at hand, and thus we can proceed to draw reliable
inferences.
In contrast to the PR modeler, a traditional modeler would typically only report

the estimated regression results and perhaps a few misspecification tests—usually a
DurbinWatson (D-W) test of autocorrelation, and perhaps a test of Normality and/or
a test for homoskedasticity (such as White’s test). To see how this approach might
give rise to unreliable inferences, let us consider generating data which exhibit some
departures from the assumptions of experiment 1.

5.2 Experiment 2 - Heterogeneous NLR

Consider the case where the observed data {(xt, yt), t = 1, 2, ..., T} are generated via
a bivariate Independent, Normal processes, with heterogeneous means (trending):

E(Yt) = 2 + 0.8t, E(Xt) = 1 + 0.4t, V ar(Yt) = 1, V ar(Xt) = 1, Cov(Yt,Xt) = 0.5
(14)

In this case, the true regression model takes the form:

yt = 1.5 + 0.6t+ 0.5xt + ut, σ2 = .75, and R2 = 1− σ2

V ar(Yt)
= 0.25, t ∈ T.

(15)
A traditional modeler, in view of (9) is likely to begin by estimating a linear regression
model. The results in Table 5 are typical of results one would obtain.

Table 5 - True: NLR with trend // Estimated: NLR, no trend
T=50 T=100
Mean Std Mean Std

β̂0 0.4619 0.4501 0.2281 0.3147
β̂1 1.9587 0.0401 1.9892 0.0148
σ̂2 2.9445 0.3840 2.9853 0.2664
R2 0.9789 0.0028 0.9945 0.0005
t-statistics Mean % reject (.05) Mean % reject (.05)

τ ∗β0 =
β̂0
σ̂β0

0.9151 0.1164 0.6454 0.0678

τ ∗β1 =
β̂1
σ̂β1

47.554 1.0000 133.82 1.0000

τβ0 =
β̂0−β0
σ̂β0

-1.9679 0.4757 -3.531 0.9683

τβ1 =
β̂1−β1
σ̂β1

35.4064 1.0000 100.18 1.0000

Misspecification Test Statistic % reject (.05) Statistic % reject (.05)
Normality 2.0238 0.0559 2.0402 0.0568
D-W 1.9984 0.0939 2.0089 0.0260
White’s Homosked. 0.9571 0.0396 0.9685 0.0420
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Taken at face value, the estimated model looks very reasonable. The R2 is very
high and a simple t-test, τ ∗β1 , for β1 indicates that the effect of xt on yt is, indeed,
significantly different from zero. Further ‘confirmation’ of how good the results appear
satisfactory is given by the scatter plot of the two data series (fig. 4), which seems
considerably ‘better’ than fig. 3 - a clear illusion stemming from misspecification.

Fig. 5: t-plot of yt Fig. 6: t-plot of xt

To understand the extent to which this researcher can be misled, we test whether
β0 and β1differ from their true underlying values (τβi , i = 0, 1). From Table 5, one
can see that, for the case of β1, the true hypothesis is rejected 100% of the time! For
the sake of argument, let’s suppose that the traditional modeler applies a DW test,
a White test of homoskedasticity, and perhaps even a test of normality. The results
in Table 5, taken again at face value, do not indicate significant departures from the
underlying assumptions; in view of table 5, a traditional modeler would be convinced
that the results are reliable despite our knowledge to the contrary. The lesson to
be learned is that thorough misspecification testing is imperative if one values the
reliability of statistical inference.
In contrast, a PR modeler would first look at t-plots of xt and yt (Figs 5-6)

where the plots suggests that both data series are trending. Detrending the data and
examining the resulting data plots gives results nearly identical to those in Figs. 1-3.
Thus, the PR modeler is likely to conclude that a NLR with a trend might be the
appropriate model. The results in Table 7 and Table 8 indicate clearly that this model
is indeed statistically adequate and any inferences based on it will be reliable. The one
exception is the estimate of R2 which is still misleading as computer programs always
take deviations from a constant mean for yt when estimating V ar(yt) (see McGuirk,
et al (1993)). A more appropriate estimator which accounts for the trending mean,
R̃2, is also reported in Table 7 for comparison purposes.
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Table 7 - True: NLR with trend // Estimated: NLR with trend
T=50 T=100
Mean Std Mean Std

β̂0 1.5019 0.2516 1.4997 0.1755
β̂1 0.4988 0.1232 0.4996 0.0874
γ̂ (trend) 0.6005 0.0500 0.6052 0.0351
σ̂2 0.7505 0.0302 0.7500 0.0150
R2 0.9947 0.0002 0.9186 0.0000
R̃2 0.2055 0.0970 0.2285 0.0672
t-statistics Mean % reject (.05) Mean % reject (.05)

τβ0 =
β̂0−β0
σ̂β0

0.0078 0.0326 -0.0018 0.0283

τβ1 =
β̂1−β1
σ̂β1

-0.0102 0.0462 -0.0051 0.0484

τγ =
γ̂−γ
σ̂γ̂

0.0097 0.0476 0.0056 0.0489

Table 8 - True: NLR with trend // Estimated: NLR with trend
T=50 T=100

Misspecification Test Statistic % reject (.05) Statistic % reject (.05)
D’AP-Normality 2.0046 0.0554 2.0533 0.0582
D’AP-Skewness 0.0025 0.0966 -0.0059 0.1001
D’AP-Kurtosis -0.0142 0.1021 -0.0119 0.1055
Durbin-Watson 2.0421 0.1181 2.0213 0.1230
AC Test: ût−1, xt 1.0709 0.0528 1.0259 0.0521
White’s Homosked. 0.9509 0.0368 0.9768 0.0444
RESET(2) Linearity 1.0407 0.0498 1.0478 0.0534
Joint Mean (A) 1.0754 0.0525 1.0410 0.0515
trend2 in mean 1.0248 0.0485 0.9996 0.0487
RESET(2) Linearity 1.0198 0.0493 1.0015 0.0488
ût−1 in mean(1) 1.1479 0.0601 1.0667 0.0560

Joint Variance 0.9618 0.0355 0.9795 0.0407
trend in variance 1.0418 0.0447 1.0096 0.0466
RESET(2) Homosk. 1.0441 0.0464 1.0149 0.0467
ARCH(1) 0.9417 0.0301 0.9665 0.0362

What if the PR modeler failed to look at the relevant t-plots and estimated an
NLR without taking into account the apparent heterogeneity? The misspecification
testing results reported in table 9 would have indicated the problem. These results
indicate very clearly (in 100% of the draws!) that heterogeneity in the mean is present.
By re-specifying the model to include a trend, and assessing the adequacy of the new
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model, the modeler would obtain the results of Tables 7-8 on which valid inferences
can be drawn. It is important to emphasize that respecification in the context of the
PR approach does not amount to adopting the alternative model in a misspecification
test!

Table 9 - True: NLR with trend // Estimated: NLR
T=50 T=100

Misspecification Test Statistic % reject (.05) Statistic % reject (.05)
D’AP-Normality 2.0238 0.0559 2.0402 0.0568
D’AP-Skewness -0.0021 0.0986 -0.0005 0.1035
D’AP-Kurtosis -0.0087 0.1024 -0.0096 0.1042
Durbin-Watson 1.9984 0.0939 2.0089 0.0260
AC Test: ût−1, xt 0.9681 0.0413 1.0091 0.0480
AC Test: yt−1, xt−1, xt 36.1196 1.000 74.0822 1.000
White’s Homosked. 0.9571 0.0396 0.9685 0.0420
RESET(2) Linearity 1.0374 0.0475 1.0186 0.0513
Joint Mean (A) 47.0486 1.0000 97.5641 1.000
trend in mean 133.431 1.0000 284.64 1.000
RESET(2) Linearity 1.0453 0.0503 1.0685 0.0560
ût−1 in mean(1) 1.0529 0.0480 1.0315 0.0535

Joint Mean (B) 35.6778 1.0000 73.4899 1.000
trend in mean 30.4338 1.0000 60.4789 1.000
RESET(2) Linearity 1.0980 0.0547 1.0969 0.0585
yt−1, xt−1in mean 1.0932 0.0536 1.0486 0.0553

Joint Variance 1.1031 0.0571 1.0089 0.0461
trend in variance 1.4582 0.0930 1.1611 0.0646
RESET(2) Homosk. 1.4271 0.0893 1.1472 0.0638
ARCH(1) 0.9101 0.0279 0.9260 0.0342

5.3 Experiment 3 - Non-linear/heteroskedastic Regression

Consider the case where the observed data {(xt, yt), t = 1, 2, ..., T} are generated
via a bivariate Gumbel Exponential (GE) with one unknown parameter θ = .5; see
Spanos (1999). As indicated above, the PR modeler (with only one eye on the theory
model) would use graphical techniques to decide on a reasonable statistical model.
The relevant t-plots and scatter plots (Figs 7-9) indicate quite clearly that the data
series yt and xt are not normally distributed. Both marginal distributions are similar;
the distributions are skewed to the right and the t-plots do not exhibit any dependence
over t. The apparent asymmetry of the scatter plot suggests that a linear regression
function might not be a good model to entertain. A PR modeler is likely to realize
that the scatter plot seems to suggest data from a highly skewed distribution, such as
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the Log-Normal or Exponential distributions (see Spanos, 1999 for several plots from
various distributions). In view of this information, a PR modeler would proceed to
estimate the relevant regression and skedastic functions associated with one of these
distributions using Maximum Likelihood.
For illustration purposes let us consider the case where the PR modeler, in view

of the data plots (fig. 7-9) considers three skewed distributions: the Log-Normal,
the Farlie-Gumbel-Morgenstern (F-G-M) Exponential, and the Gumbel-Exponential
(GE).

Fig. 7: t-plot of yt Fig. 8: t-plot of xt

Fig. 9: Scatter-plot of (xt, yt)

The Log-Normal regression model. The regression and skedastic functions
based on a bivariate Log-Normal distribution take the form (see Spanos (1999)):

E(yt|Xt = xt) =
³
xt
µ2

´β
eµ1+

1
2
σ2 , V ar(yt|Xt = xt) =

³
xt
µ2

´2β
e2µ1+σ

2(exp(σ2)−1).

(16)
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Maximum Likelihood Estimation (using simulation data from the GE distribution)
of the regression and skedastic functions in (16) yielded the estimates:

µ̂1 = .1379
(.0268)

, µ̂2 = .1374
(.0266)

, β̂ = −.2963
(.1280)

, σ̂2 = .8972
(.3620)

, T = 50;

µ̂1 = .0986
(.0135)

, µ̂2 = .0985
(.0138)

, β̂ = −0.2867
(.0847)

, σ̂2 = 0.9081
(.2526)

, T = 100.

Utilizing the conditional expectation lemma, several new auxiliary regression-based
misspecification tests, designed to assess the adequacy of this log-Normal regression
model, are proposed; see Appendix. The results of these tests (table 10A) indicate
that both the regression and skedastic functions are misspecified.

Table 10A - True: GE regression // Estimated: Log-Normal regression
T=50 T=100

Misspecification Test∗ Mean % reject (.05) Mean % reject (.05)
Add. non-linearity in mean -1.2012 0.2662 -1.7363 0.4562
Trend in conditional mean -0.0046 0.0529 0.0108 0.0467
Mean well-specified: α1 = 1 -6.220 0.5613 -7.268 0.7404
Mean well-specified: β1 = 1 -29.202 0.9805 -30.195 0.9991
Add. non-linearity in variance 0.6151 0.0131 0.8772 0.0377
Trend in conditional variance 0.0063 0.0549 -.0128 0.0492
Variance well-specified: γ0 = 1 -8.138 0.6814 -9.870 0.8264
Variance well-specified: δ0 = 1 -4.795 0.6856 -5.832 0.7582
∗See Appendix for a more detailed discussion of these tests

The Exponential (Farlie-Gumbel-Morgenstern) (F-G-M) regression model.
The regression and skedastic functions based on a bivariate Exponential (F-G-M) dis-
tribution take the form (see Kotz, Balakrishnan and Johnson (2000), p. 354):

E(yt|Xt = xt) = 1 + α
2
− αe−xt, V ar(yt|Xt = xt) = 1 + α

2
− α2

4
− α(1− α)e−xt − α2e−2xt.

(17)
Maximum Likelihood Estimation (using simulation data from the GE distribution)
of the regression and skedastic functions in (17) yielded:

α̂ = −0.8020
(.2628)

, T = 50; α̂ = −0.83880
(.1903)

, T = 100.

This estimated statistical model is also misspecified as the results of table 10B attest;
there are clear indications of misspecification for the skedastic function. There are
no indications of misspecification for the regression function because for α = −.99
(mode of bα) the regression function in (17) approximates that of the GE (18) very
well (see fig. 10). In contrast the skedastic function in (17) does not approximate
that in (18); see fig. 11. This brings out the problems of modeling the regression
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and skedastic functions separately and thus ignoring the fact that they constitute
the first two conditional moments of the same distribution. The connection between
the conditional moments is traditionally ignored when modeling heteroskedasticity;
the result is an insufficient utilization of the probabilistic information. It is well
known that the first two conditional moments are almost always interrelated when
the conditional distribution is derived formally from a proper joint distribution; see
Spanos (1999).

Fig. 10: Regression functions Fig. 11: Skedastic functions

Table 10B - True: GE regression // Estimated: F-G-M regression
T=50 T=100

Misspecification Test∗ Mean % reject (.05) Mean % reject (.05)
Add. non-linearity in mean -.1871 0.0550 -.2447 0.0532
Trend in conditional mean -0.0009 0.0531 0.0115 0.0466
Mean well-specified: α1 = 1 -.2381 0.0465 -.3086 0.0487
Mean well-specified: β1 = 1 -.4586 0.0288 -.5853 0.0330
Add. non-linearity in variance 0.8886 0.1365 1.2033 0.2138
Trend in conditional variance 0.0032 0.0411 .0086 0.0410
Variance well-specified: γ0 = 1 -1.3181 0.2494 -1.535 0.3096
Variance well-specified: δ0 = 1 -.6430 0.1507 -.5441 0.1212
∗See Appendix for a more detailed discussion of these tests

The Gumbel Exponential (GE) regression model. Estimation (using sim-
ulation data from the same distribution with θ = .5) of the regression and skedastic
functions yield:

Ê(yt|Xt = xt) = 1+bθ+bθxt
(1+bθxt)2 , V̂ ar(yt|Xt = xt) = (1+bθ+bθxt)2−2bθ2

(1+bθxt)4 ,bθ = .535
(.225)

, T = 50, bθ = .515
(.158)

, T = 100.
(18)
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When this model is subjected to the new misspecification tests, the results (table
10C) clearly confirm its statistical adequacy. As argued below, the form of non-
linearity and heteroskedasticity in this particular case cannot be ‘discovered’ by ad
hoc respecifications. The way the modeler can ‘zero in’ on such forms of non-linearity
and heteroskedasticity is via information relating to the joint distribution underlying
{(xt, yt), t = 1, 2, ..., T}.

Table 10C - True: GE regression // Estimated: GE regression
T=50 T=100

Misspecification Test∗ Mean % reject (.05) Mean % reject (.05)
Add. non-linearity in mean -0.1066 0.0371 -0.0633 0.0327
Trend in conditional mean -0.0005 0.0530 0.0121 0.0468
Mean well-specified: α1 = 1 0.0877 0.0242 0.0500 0.0222
Mean well-specified: β1 = 1 -0.1026 0.0165 -0.0765 0.0109
Add. non-linearity in variance 0.0694 0.0261 0.0000 0.0176
Trend in conditional variance 0.0013 0.0395 0.0088 0.0417
Variance well-specified: γ0 = 1 -0.3549 0.0593 -0.2498 0.0390
Variance well-specified: δ0 = 1 -0.3235 0.0892 -0.2343 0.0706
∗See Appendix for a more detailed discussion of these tests

Table 11 - True: GE regression // Estimated: NLR
T=50 T=100
Mean Std Mean Std

β̂0 1.2945 0.2229 1.2845 0.1530
β̂1 -0.2962 0.1280 -0.2867 0.0847
σ̂2 0.9346 0.3770 0.9266 0.2577
R2 0.0890 0.0500 0.0826 0.0335
t-Statistics Statistic % reject (.05) Statistic % reject (.05)

τβ0 =
β̂0
σ̂β0

6.7548 1.000 9.4787 1.000

τβ1 =
β̂1
σ̂β1

-2.0830 0.5668 -2.9153 0.9166

Misspecification Tests Statistic % reject (.05) Statistic % reject (.05)
Normality 22.3199 0.9149 42.6088 0.9993
D-W 1.9982 0.1060 2.0007 0.1060
White’s Homosked. 1.6306 0.1086 2.4309 0.2708

A traditional modeler commencing with a LRM (in view of the theory model (9))
is likely to have a very hard time diagnosing the particular form of non-linearity and
heteroskedasticity associated with the observed data in figures 7-9.
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Table 12A - True: GE regression // Estimated: NLR
T=50 T=100

Misspecification Test Mean % reject (.05) Mean % reject (.05)
D’AP-Normality 22.3199 0.9149 42.6088 0.9993
D’AP-Skewness 3.7087 0.9825 5.2689 1.000
D’AP-Kurtosis 2.3437 0.7012 3.4504 0.9104
Durbin-Watson 1.9982 0.1060 2.0007 0.1060
AC Test: ût−1, xt 1.0538 0.0520 1.0203 0.04910
AC Test: yt−1, xt−1, xt 0.9362 0.0363 0.9617 0.0421
White’s Homosked. 1.6306 0.1086 2.4302 0.2708
Linearity: RESET(2) 1.2475 0.0626 1.8822 0.1277
Joint Mean (A) 1.0855 0.0537 1.2850 0.0815
trend in mean 1.0886 0.0513 1.0276 0.0515
RESET(2) Linearity 1.2316 0.0641 1.8456 0.1242
ût−1 in mean(1) 0.9777 0.0489 0.9851 0.0479

Joint Mean (B) 1.0824 0.0552 1.2233 0.0776
trend in mean 1.0878 0.0521 1.0281 0.0517
RESET(2) Linearity 1.2268 0.0619 1.8374 0.1239
yt−1, xt−1in mean 1.0235 0.0489 1.0112 0.0479

Joint Variance 1.4276 0.0921 1.9827 0.2146
trend in variance 1.0246 0.0376 1.0038 0.0409
RESET(2) Homosk. 2.6111 0.2028 4.2315 0.4645
ARCH(1) 0.6409 0.0221 0.6854 0.0271

Table 12B - True: GE regression // Estimated: NLR
T=50 T=100

Misspecification Test∗ Mean % reject (.05) Mean % reject (.05)
Non-linearity in mean 0.7706 0.0662 1.1412 0.1279
Trend in conditional mean -0.0001 0.0531 0.0117 0.0490
Mean well-specified: α1 = 1 -0.7238 0.0432 -1.0697 0.0892
Mean well-specified: β1 = 1 0.0013 0.0000 -0.0020 0.0000
Non-linearity in variance 1.5140 0.2467 1.9825 0.4963
Trend in conditional variance 0.0075 0.0396 0.0024 0.0393
Variance well-specified: γ0 = 1 -1.4433 0.1953 -1.8647 0.4211
Variance well-specified: δ0 = 1 -0.0798 0.0156 -0.0475 0.0143
∗See Appendix for a more detailed discussion of these tests

The results obtained when a LRM is estimated, as shown in table 11, indicate
that the Durbin-Watson and homoskedasticity tests are not likely to detect any mis-
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specifications, particularly for T = 50. The only form of misspecification that will
surely show up is that of normality. This is confirmed by the misspecification tests in
table 12A, where a more thorough probing indicates clear departures from normality
as well some departures from linearity and homoskedasticity; the results of table 12B
give a clearer picture of the later departures.
In view of the results in table 11, a traditional modeler who did not do a thorough

probing for misspecification, would likely claim that, since normality is the only
assumption violated, the inference results are asymptotically valid. Of course, we
know in this case, this is not a valid conclusion; not only is normality violated, but
so are the assumptions of linearity and homoskedasticity.
Consider now the case where a traditional modeler does do a better job with

misspecification testing and notices that the tests in table 12 indicate departures from
homoskedasticity. A popular way to ‘side-step’ the effects of such misspecification is
to use heteroskedastically consistent standard errors (HCSE); see White (1980). How
would this adjustment affect the reliability of the testing results?

HCSE T=50 T=100
t-Statistics Statistic % reject (.05) Statistic % reject (.05)

τβ0 =
β̂0
σ̂β0

6.1496 .9952 8.5633 1.000

τβ1 =
β̂1
σ̂β1

-2.6005 .7929 -3.5838 0.9166

Table 13A - True: GE regression // Estimated: NLR using GLS
T=50 T=100
Mean Std Mean Std

β̂0 1.2136 0.2224 1.2058 0.1618
β̂1 -0.2665 0.1449 -0.2544 0.1119
σ̂2 1.0315 0.7772 1.0535 0.5916
R2 0.0661 0.1799 0.0692 0.1730
t-Statistic Statistic % reject (.05) Statistic % reject (.05)

τβ0 =
β̂0
σ̂β0

6.1541 0.9970 8.5224 0.9989

τβ1 =
β̂1
σ̂β1

-2.5514 0.6677 -3.6985 0.8941

Misspecification Test Statistic % reject (.05) Statistic % reject (.05)
Normality 22.7172 0.9235 43.2381 0.9994
White’s Homosk. 1.5496 0.0904 2.3917 0.2471
Linearity-RESET(2) 2.3523 0.1692 3.6775 0.2875

A more ‘drastic’ way to deal with heteroskedasticity might be to take it into
account by using Generalized Least Squares (GLS) where σ2t is estimated using the
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fitted values from the auxiliary regression bu2t = δ0+δ1xt+δ2x
2
t +vt. The results of the

GLS estimation (table 13A) suggest that this is clearly not a statistically adequate
model. Now, there are not only clear indications of departures from Normality but
there are also (increased) indications of non-linearity problems and signs that the
heteroskedasticity problem has not been adequately “dealt with”!
In view of the non-linearity, it is interesting to consider a form of respecification

often encountered in the context of the traditional approach; the inclusion of x2t in
the model. The results from estimating this 2nd degree polynomial model (using
GLS) are reported in Table 13B. Interestingly enough, this ‘linearity-homoskedasticy
corrected’ regression model is no more reliable than the original LRM. Moreoever,
adding x2t to the original model did not adequately account for the non-linearity; the
results indicate lingering non-linearity. This, of course, is not surprising in view of
the true regression given in (18). Is this strategy of ‘ah hoc correcting’ for apparent
misspecifications leading the modeler towards the true model? It’s very doubtful.

Table 13B - True: GE regression // Estimated: Polyn. regres. (xt, x2t )
T=50 T=100
Mean Std Mean Std

β̂0 1.3909 0.3302 1.3767 0.2278
β̂1 -0.5303 0.5150 -0.5071 0.3276
β̂2 0.0697 0.1563 0.0650 0.0830
σ̂2 1.1081 0.4583 1.1241 0.3970
R2 0.1115 0.1722 0.1027 0.1699
t-Statistic Statistic % reject (.05) Statistic % reject (.05)

τβ0 =
β̂0
σ̂β0

4.8733 0.9887 7.0159 0.9972

τβ1 =
β̂1
σ̂β1

-1.5048 0.3316 -2.3535 0.5710

τβ2 =
β̂2
σ̂β2

0.8624 0.1871 1.3014 0.2767

Misspecification Test Statistic % reject (.05) Statistic % reject (.05)
Normality 21.1094 0.8925 41.1559 0.9980
Linearity-RESET(2) 2.4566 0.1306 2.3708 0.1493

The estimated regression functions for the GE (highest intercept), OLS-NLR (sec-
ond highest intercept) and GLS-NLR models are shown in fig. 12, and as we can see,
the ‘heteroskedasticity-corrected’ estimated regression does not improve the approx-
imation! In fig. 13 we can see the estimated regression functions for the the GE
(highest intercept) is reasonably well approximated by the GLS-Polynomial (second
highest intercept) and F-G-M models, but any inference concerning the regression
function remains unreliable.
Consider now the scenario of a PR modeler who failed to examine the relevant
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data plots. If the NLR model was estimated in view of (9), thorough misspecifica-
tion testing (see tables 12A-B) would have revealed departures from normality (both
skewness and kurtosis) and some evidence against linearity and homoskedasticity,
particularly by the joint tests. In view of this evidence, a PR modeler would return
to the data plots for more guidance as to the form of an appropriate regression model.

Fig. 12: Estimated Regression functions Fig. 13: Estimated Regression functions

5.4 Experiment 4 - Linear Regression with temporal depen-
dence

In this set of experiments we retain the joint normality and stationarity assumptions,
but we introduce first-order Markov dependence. For Experiment 4A we generate
the data with primary parameters:

E(Yt) = 2, V ar(Yt) = 1.250, Cov(Yt, Yt−1) = 0.921, Cov(Yt,Xt−1) = 0.754,
E(Xt) = 1, V ar(Xt) = 1, Cov(Xt, Xt−1) = 0.6, Cov(Yt,Xt) = 0.846,

giving rise to the Dynamic Linear regression (DLR(1)) model with:

E(yt|Dt) = 0.7 + 0.3yt−1 + 0.5xt + 0.2xt−1, V ar(yt|Dt) = 0.4;
Dt := {σ(yt−1),Xt−1 = xt−1, Xt = xt},
xt = 0.4 + 0.6xt−1 + vt;V ar(vt) = 0.64, y0 v N(2, 1.250), <2 = 0.68.

(19)

A realization of the data {(xt, yt), t = 1, 2, ..., T} generated by (19) for T = 100
is shown in figures 14-15.
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Fig. 14: t-plot of yt Fig. 15: t-plot of xt
For Experiment 4B we generate the data with primary parameters:

E(Yt) = 2, V ar(Yt) = 1.115, Cov(Yt, Yt−1) = 0.669, Cov(Yt, Xt−1) = 0.42,
E(Xt) = 1, V ar(Xt) = 1, Cov(Xt, Xt−1) = 0.6, Cov(Yt, Xt) = 0.7,

giving rise to the ‘restricted’ DLR(1) model:

E(yt|Dt) = .52 + 0.6yt−1 + 0.7xt − 0.42xt−1, V ar(yt|Dt) = 0.4;
xt = 0.4 + 0.6xt−1 + vt;V ar(vt) = 0.64, y0 v N(2, 1.115), <2 = 0.64. (20)

Note, that the true regression model in 4B is considered ‘restricted’ because it can
also be written as:

yt = 1.3 + 0.7xt + ut, ut = 0.6ut−1 + vt, t ∈ T.
That is, for experiment 4B, the common factor restrictions implicitly imposed by an
error AR(1) process hold.

Fig. 16: t-plot of yt Fig. 17: t-plot of xt
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A realization of the data {(xt, yt), t = 1, 2, ..., T} generated by (20) for T = 100
is shown in figures 16-17.
In view of the theory model (9), the traditional modeler would likely begin by

estimating theNLR model and perhaps testing the normality, homoskedasticity, and
no-autocorrelation assumptions underlying this model; the simulation results for Ex-
periments 4A and 4B are reported in Tables 14A-14B.

Table 14A - True: DLR(1) // Estimated: NLR
T=50 T=100
Mean Std Mean Std

β̂0 1.2816 0.1332 1.2617 0.0920
β̂2 0.7185 0.1299 0.7385 0.0910
σ̂2 0.5523 0.0848 0.5600 0.0597
R2 0.4649 0.1161 0.4841 0.0817
t-statistics Mean % reject (.05) Mean % reject (.05)

τβ0 =
β̂0−β0
σ̂β0

3.8300 0.9889 5.2535 1.000

τβ2 =
β̂2−β2
σ̂β2

2.0367 0.5039 3.1534 0.8202

Misspecification Test Mean % reject (.05) Mean % reject (.05)
Normality 2.0693 0.0593 2.0805 0.0606
Durbin-Watson 1.4518 0.5917 1.4264 0.8731
White’s Homosked. 0.9685 0.0370 1.0228 0.0467

Table 14B: True: restricted DLR(1) // Estimated: NLR
T=50 T=100
Mean Std Mean Std

β̂0 1.3104 0.1671 1.3044 0.1169
β̂2 0.6896 0.1610 0.6956 0.1149
σ̂2 0.5855 0.1255 0.6049 0.0913
R2 0.4307 0.1297 0.4357 0.0941
t-statistics Mean % reject (.05) Mean % reject (.05)

τβ0 =
β̂0−β0
σ̂β0

5.1127 0.9972 7.0978 1.000

τβ2 =
β̂2−β2
σ̂β2

-0.0950 0.1683 -0.0568 0.1713

Misspecification Test Mean % reject (.05) Mean % reject (.05)
Normality 2.2376 0.0664 2.4941 0.0861
Durbin-Watson 0.9370 0.9796 0.8674 1.000
White’s Homosked. 1.2161 0.0566 1.3099 0.0710

The results in tables 14A-B suggest that temporal dependence would be detected
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often enough in both cases. Not surprisingly, despite the similar fit of the two models
(based on R2), the D-W test is more likely to detect temporal dependence departures
in the restricted DLR(1) than in the unrestricted DLR(1).
Note also that, β̂0 in experiment 4B is a reasonably good estimator of the inter-

cept in the AR(1) model (with the common factor restrictions imposed) and not the
intercept in the (unrestricted) DLR(1) (β0 = 0.52), even though the errors have not
been modeled as an AR(1) process.
Suppose that, on the basis of the D-W test the traditional modeler (in 4A and

4B) decides to ‘correct’ the problem by adopting the alternative of an NLR with
an AR(1) error model. Tables 15A-15B give simulation results for the models re-
estimated using a (2-step) Cochrane-Orcutt correction. As expected, for experiment
4B, where the common factor restrictions hold, inferences regarding β2 are reliable.

Table 15A - True: DLR(1) // Estimated: restricted DLR(1)
T=50 T=100
Mean Std Mean % reject (.05)

β̂0 1.3671 0.1399 1.3601 0.0974
β̂2 0.6327 0.1357 0.6399 0.0962
ρ̂ 0.2589 0.1304 0.2794 0.0898
σ̂2 0.4958 0.0624 0.5020 0.0434
R2 0.3763 0.1228 0.3762 0.0874
t-statistics Mean % reject (.05) Mean % reject (.05)

τβ0 =
β̂0−β0
σ̂β0

3.6961 0.9950 5.0930 1.000

τβ2 =
β̂2−β2
σ̂β2

1.1909 0.2493 1.7246 0.3971

Table 15B - True: restricted DLR(1) // Estimated: restricted DLR(1)
T=50 T=100
Mean Std Mean Std

β̂0 1.30419 0.1176 1.3005 0.0807
β̂2 0.6977 0.1156 0.6993 0.0803
ρ̂ 0.5170 0.1258 0.5592 0.0847
σ̂2 0.3925 0.0170 0.3961 0.0081
R2 0.4483 0.0840 0.4441 0.0575
t-statistics Mean % reject (.05) Mean % reject (.05)

τβ0 =
β̂0−β0
σ̂β0

3.5978 0.9822 4.7468 1.000

τβ2 =
β̂2−β2
σ̂β2

-0.0219 0.0646 -0.0088 0.0563

Further, while a test of whether β0 = 0.52 (the true value in the unrestricted
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model) gives very misleading results, the test of β0 = 1.3 (the true value in the AR(1)
formulation) is reliable. However, for experiment 4A — the (unrestricted) DLR(1)
model — inferences based on the t-tests of the autocorrelation-corrected model are no
more reliable than the ones based on the NLR!
An important question, then is, whether or not the restricted DLR is more likely to

be appropriate than the general model, for actual data. If not, the traditional modeler
is simply making matters worse by estimating an AR(1) corrected model after a low
D-W value. A glance at the implied variance-covariance matrix of (Zt,Zt−1), where
Zt := (yt,Xt), when the common factor restrictions hold (see Spanos, 1987):

Cov(Zt,Zt−1) = ρCov(Zt), t ∈ T,

reveals that it implicitly imposes a constant proportionality between contemporaneous
(Cov(Zt)) and temporal (Cov(Zt,Zt−1)) dependencies for all the variables involved;
highly unrealistic for the overwhelming majority of economic time series data.
It goes without saying that a PR modeler would commence by examining the

relevant t-plots (see Fig. 14-15). The positive temporal dependence (in the form of
irregular cycles - see Spanos (1999)) is apparent in both plots, but no heterogeneity
seems to be present. After ‘subtracting’ the temporal dependence by estimating AR
models for each data series, the t-plots would look very similar to Figs 1-2. Hence,
the dynamic linear regression model seems appropriate for these data.

Table 16A - True: DLR(1) // Estimated: DLR(1)
T=50 T=100
Mean Std Mean Std

β̂0 0.7523 0.2006 0.7257 0.1326
β̂1 0.2604 0.1232 0.2795 0.0850
β̂2 0.4983 0.1140 0.4996 0.0802
β̂3 0.2284 0.1432 0.2156 0.1013
σ̂2 0.3999 0.0203 0.3999 0.0100
R2 0.6213 0.0985 0.6356 0.0672
t-statistics Mean % reject (.05) Mean % reject (.05)

τβ0 =
β̂0−β0
σ̂β0

0.2005 0.0422 0.1440 0.0320

τβ1 =
β̂1−β1
σ̂β1

-0.2884 0.0579 -0.2147 0.0555

τβ2 =
β̂2−β2
σ̂β2

-0.0143 0.0506 -0.0050 0.0488

τβ3 =
β̂3−β3
σ̂β3

0.2062 0.0557 0.1596 0.0527

Tables 16A-16B summarize the simulation results obtained by estimating the
DLR(1) model. The estimation results seem very accurate and the usual t-tests
are likely to be reliable. What is most interesting, however, is that even in cases
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where the actual process is 4B, estimating the DLR(1) model yields very reliable
inferences. A comparison of the restricted DLR(1) and (unrestricted) DLR(1) results
suggests no advantage to estimating the restricted DLR(1) model, even when the
restrictions hold! Given the unrealistic nature of the common factor restrictions, and
the potential for unreliable inferences when the restrictions do not hold, estimation
of error AR(1) type models is not recommended; see also Mizon (1995).

Table 16B - True: restricted DLR(1) // Estimated: DLR(1)
T=50 T=100
Mean Std Mean Std

β̂0 0.6116 0.2048 0.56468 0.1346
β̂1 0.5316 0.1248 0.5659 0.0840
β̂2 0.6985 0.1143 0.6995 0.0801
β̂3 -0.3734 0.1440 -0.3960 0.0994
σ̂2 0.3989 0.0207 0.3996 0.0101
R2 0.6196 0.0920 0.6303 0.0648
t-statistics Mean % reject (.05) Mean % reject (.05)

τβ0 =
β̂0−β0
σ̂β0

0.3706 0.0488 0.2609 0.0487

τβ1 =
β̂1−β1
σ̂β1

-0.4800 0.0718 -0.3451 0.0625

τβ2 =
β̂2−β2
σ̂β2

-0.0129 0.0500 -0.0055 0.0490

τβ3 =
β̂3−β3
σ̂β3

0.3130 0.0677 0.02310 0.0569

For argument’s sake, let us suppose that the PR modeler failed to notice the tem-
poral dependence exhibited by the t-plots of {(xt, yt), t = 1, 2, ..., T} and commenced
the modeling by estimating a NLR. Testing the model assumptions would reveal the
inappropriateness of the NLR model, and the results of misspecification testing would
have directed the modeler towards the DLR model; see Tables 17A-17B. It is also
interesting to note that these tables suggest that the D-W test, despite its wide use,
is not the most probative test to apply, unless the common factor restrictions hold.
In summary, modeling temporal dependence via the error constitutes an inferior

way to empirical modeling. Error autocorrelation models (implicitly) reduce temporal
dependence among the observable variables to a highly unrealistic form which is rarely
true in practice. Even is such rare cases where the common factor restrictions are
valid, modeling the temporal dependence directly in terms of the observable random
variables constitutes a better strategy as the simulation results in tables 14-17 affirm.
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Table 17A - True: DLR(1) // Estimated: NLR
T=50 T=100

Misspecification Test Mean % reject (.05) Mean % reject (.05)
D’AP-Normality 2.0693 0.0593 2.0805 0.0606
D’AP-Skewness -0.0035 0.1021 -0.0015 0.1078
D’AP-Kurtosis -0.0403 0.1075 -0.0239 0.0999
Durbin-Watson 1.4518 0.5917 1.4264 0.8731
AC Test: ût−1, xt 4.6189 0.4434 9.4611 0.8209
AC Test: yt−1, xt−1, xt 10.456 0.9527 20.8686 0.9999
AC Test: ût−1 1.8923 0.4570 2.9074 0.8215
White’s Homosked. 0.9685 0.0370 1.0228 0.0467
RESET(2) Linearity 1.1498 0.0609 1.1689 0.0666
Joint Mean (A) 2.2990 0.2981 3.8719 0.6637
trend in mean 1.2205 0.0701 1.1381 0.0636
RESET(2) Linearity 1.0394 0.0483 1.0124 0.0490
ût−1 in mean(1) 3.6181 0.3398 8.2911 0.7591

Joint Mean (B) 5.5967 0.8926 10.7654 0.9991
trend in mean 1.1649 0.0599 1.0939 0.0591
RESET(2) Linearity 1.0977 0.0568 1.0387 0.0524
yt−1, xt−1in mean 9.1091 0.9210 19.3985 0.9997

Joint Variance 1.0294 0.0498 1.1965 0.0893
trend in variance 1.0596 0.0482 1.0245 0.0497
RESET(2) Homosk. 0.9761 0.0434 0.9876 0.0471
ARCH(1) 0.9990 0.0428 1.4073 0.0940

35



Table 17B - True: restricted DLR(1) // Estimated: NLR
T=50 T=100

Misspecification Test Mean % reject (.05) Mean % reject (.05)
D’AP-Normality 2.2376 0.0664 2.4941 0.0861
D’AP-Skewness 0.0046 0.1206 0.0001 0.1489
D’AP-Kurtosis -0.1405 0.1128 -0.1294 0.1294
Durbin-Watson 0.9370 0.9796 0.8674 1.000
AC Test: ût−1, xt 12.1123 0.9582 48.850 0.9999
AC Test: yt−1, xt−1 21.1752 0.9405 26.0239 1.0000
AC Test: ût−1 4.3602 0.9607 6.8236 0.9999
White’s Homosked. 1.2161 0.0566 1.3099 0.0710
RESET(2) Linearity 1.3763 0.0888 1.4321 0.0961
Joint Mean (A) 8.0123 0.9003 17.0959 0.9996
trend in mean 1.4588 0.0894 1.2406 0.0766
RESET(2) Linearity 1.1198 0.0558 1.0542 0.0550
ût−1 in mean(1) 16.540 0.9134 43.3482 0.9997

Joint Mean (B) 6.4969 0.8834 13.3428 0.9986
trend in mean 1.3952 0.0833 1.2134 0.0731
RESET(2) Linearity 1.1195 0.0592 1.0518 0.0545
yt−1, xt−1in mean 9.1932 0.8751 22.6862 0.9992

Joint Variance 2.1566 0.2484 4.4256 0.5977
trend in variance 1.0748 0.0528 1.0399 0.0488
RESET(2) Homosk. 1.0482 0.0481 1.0022 0.0460
ARCH(1) 3.3993 0.2664 9.7799 0.6584

6 Conclusion

Focusing primarily on how the questions, ‘what is being modeled’ and ‘what is re-
quired for an adequate account of model specification’ are addressed, we contrasted
the different approaches to empirical modeling. For the Bayesian approach it is not
apparent whether the object of modeling is the revision of subjective probabilities
or learning about the actual DGP. For the traditional approach the stated object of
modeling is ‘the quantification of theoretical relationships’, mimicking the quantifi-
cation of ‘natural laws’. In terms of learning about the actual DGP via modeling,
the Bayesian approach involves no learning unless the true model is known at the
outset, because it leaves no room for assessing the adequacy of the statistical model.
The traditional approach offers no systematic way to learn about the actual DGP
because ‘economic laws’ are assumed to be known a priori and the modeling focuses
primarily on ‘confirmation’. In contrast, the PR approach acknowledges the potential
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gap between theory models and observed data and provides a systematic framework
for learning about the phenomenon of interest by (i) modeling the actual DGP and
(i) viewing the statistical model as one of many possible models that can be specified
as reductions from the joint distribution of all the observables. The proposed mod-
eling scheme for observational data extends that for experimental data by requiring
the modeler to choose the conditioning information set so as to render the remaining
errors non-systematic. The Monte Carlo simulation results demonstrate some of the
advantages of the PR approach at the level of the practitioner. It is shown that
viewing the prespecified statistical model in relation to all possible statistical models,
provides a helpful overarching framework that enables the modeler to take informed
decisions as to the nature and probabilistic structure of the observed data. Moreover,
thorough misspecification testing can detect departures from the assumptions of the
specified model as well guide the modeler towards more adequate statistical models.
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7 Appendix: Misspecification Tests

7.1 NLR Misspecification Tests

For the simulations reported in this paper, we apply several misspecification tests.
Normality: The D’Agostino third sample moment test, the fourth sample mo-

ment test proposed by Anscombe and Glynn, and the D’Agostino-Pearson K2 om-
nibus test combining these two sample moment tests have been shown to have good
power over a wide range of alternative distributions (D’Agostino, et al.).
Independence: The four autocorrelation test used include the usual Durbin-

Watson, and tests of independence using the following auxiliary regression:
ût = β∗0 + β∗1xt + λ1yt−1 + λ2xt−1 + vt.
ût = β∗0 + β∗1xt + λ1ût−1 + vt.
ût = β∗0 + λ1ût−1 + vt.
Linearity: The functional form test here is a RESET(2) test. We simply use a

t-test to assess λ1 = 0 in the auxiliary regression: ût = β∗0 + β∗1xt + λ1ŷ
2
t + vt.

Homskedasticity: White’s test of homoskedasticity is used. In the cases, ex-
amined here White’s test boils down to a basic t-test of the significance of δ in the
regression: û2t = β0 + δx2t + vt.
Parameter Stability: Parameter stability is only assessed in the joint condi-

tional mean and variance tests (see below).
Joint Misspecification Tests
Conditional Mean (A): The joint mean test simultaneously assesses stability of

β (γ = 0), linearity (δ = 0), and independence (λ = 0) using the following auxiliary
regression: ût = β∗0 + β∗1xt + γt+ δŷ2t + λût−1 + vt.
Parameter stability, linearity and independence are then assessed separately by

testing the individual components of this joint test one by one. Note that the re-
stricted model in each of these separate tests includes the original xt as well as the
two other test components not being tested.
Conditional Mean (B): The joint mean test simultaneously assesses stability

of β (γ = 0), linearity(δ = 0), and independence (λ1 = λ2 = 0). It is based on the
auxiliary regression: ût = β∗0 + β∗1xt + γt+ δŷ2t + λ1yt−1 + λ2xt−1 + vt.
Parameter stability, linearity and independence are then assessed separately by

testing the individual components of this joint test one by one. Note that the re-
stricted model in each of these separate tests includes the original xt as well as the
two other test components not being tested.
Conditional MeanVariance Test: The joint variance test simultaneously as-

sesses stability of σ2 (γ = 0), static homoskedasticity (δ = 0), and dynamic ho-
moskedasticity (λ = 0; ARCH test) using the following auxiliary regression:

û2t = β∗0 + γt+ δŷ2t + λû2t−1 + vt.
Parameter stability, and static and dynamic homoskedasticity are then assessed

separately by testing the individual components of this joint test one by one. Note
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that the restricted model in each of these separate tests includes the two test com-
ponents not being tested.

7.2 Exponential Regression Misspecification Tests

Before describing the misspecification tests used to assess the adequacy of the as-
sumptions underlying the Bivariate Exponential model we need to introduce some
notation. Define: byt ≡ Ê(yt|Xt = xt), bσt ≡ V̂ ar(yt|Xt = xt), ût = yt − byt.
Conditional Mean Tests:
1.) Additional Non-linearities:

The possibility of additional non-linearities in the conditional mean can be
assessed by testing α2 = 0 in the following regression: yt = α0+α1byt+α2by2t + ut.
2.) Trend in the Conditional mean:

The possibility of a trend in the conditional mean can be assessed by testing
β2 = 0 in the following regression: yt = β0 + β1byt + β2t+ ut.
3.) Note that not only should we expect α2 = 0 and β2 = 0 if the prespecified

is the correct model, but we can also expect α1 = 1 and β1 = 1. t-tests of these two
hypotheses are also reported.
Conditional Variance Tests:
1.) Additional Non-linearities

The possibility of additional non-linearities in the conditional variance can
be assessed by testing γ1 = 0 in the following regression:

û2tbσt = γ0 + γ1by2t + ut.
2.) Trend in the conditional variance:

The possibility of a trend in the conditional variance can be assessed by
testing δ1 = 0 in the following regression:

û2tbσt = δ0 + δ1t+ ut.
3.) Note that not only should we expect γ1 = 0 and δ1 = 0 if the Bivariate

Exponential model is correct, but we can also expect that δ0 = 1 and γ0 = 1. T-tests
of these 2 hypotheses are also reported.
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