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MODELING TO GENERATE ALTERNATIVES: A PHILOSOPHICAL TWIST 

Cleve Willis and Lisa Petraglia 

Since the development of the simplex method some two score 

years ago, analysts have emphasized computational efficiency. 

Simplex solution involves moving about extreme points so as to 

locate the optimum basis while examining relatively few corners 

en route. Analysts have been proud to report having found the 

"best" solution, and perhaps to comment on sensitivity. They 

have most considerately spared the decision maker the distraction 

of reviewing other solutions to the model formulated and solved. 

The parallel in multiple objective decision making formulations 

is that only non-inferior solutions are presented (Willis and 

Perlack (1980]). 

In conventional applications of mathematical programming, 

our historic preoccupation with finding the "best" solution has 

meant that we have all but overlooked the possible presence of 

multiple optima and have largely failed to exploit the useful 

information contained in such solutions. We have as often 

neglected the wisdom contained in nearly optimal solutions. 

seems a clear consequence of the philosophy of computational 

efficiency embedded in the development of the simplex method. 

This 
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The view to be developed here is that the efficiency paradigm 

should be modified to admit that models are imperfect, that some 

objectives are generally left unquantified, and that we would 

often do better to provide a range of solutions that are quite 

different from one another, but which are as good or nearly so 

for the single objective linear program or nearly non-inferior 

for the multiple objective application. Provision of multiple 

and near optimum solutions will not only provide a richer set of 

information to decision makers, it may also enhance the 

predictive power of our prescriptive models. 

model to generate alternatives. 

In brief, we should 

Multiple Optima in Economic Problems 

Despite the relative silence of economists on the subject, 

multiple optima and nearly optimal solutions are not rare. Yet 

Paris' [1981) search of the empirical literature failed to find a 

single application that reported whether the solution was unique. 

Indeed, most failed to reveal even the numbers of rows and 

columns in the constraint matrix. Much is known about multiple 

and near-optima and how to find them. Until recently, however, 

there has been little show of interest among economists. 

A couple of examples from economic theory may motivate the 

discussion--they are theory of the firm and consumer theory (the 

diet problem). 

Theory of the Firm. Linear programming generally examines 

the firm from a short-run point of view in which production 
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facilities are assumed to be fixed. These limitations on 

facilities and on quantities of raw materials available, in turn 

place limitations on the various commodities that can be 

produced. 

Rather than to deal with a continuous production function, 

linear programming begins at the more basic level of considering 

various processes of production. For firms operating in purely 

competitive markets, the linear programming problem can be 

expressed as: 

(1) max z - c'x 

subject to: 

(2) Ax~ b 

(3) X ~ 0. 

Here xis then dimensional column vector of activity levels 

(Xj), c' the vector of profit per unit of good made by activity 

j, A the matrix (aj], and b the vector of resource limitations. 

We know, of course, that an optimal solution to this problem 

need not have greater than m of the Xj > 0. The firm can 

maximize profit using only m activities! For any optimal 

solution, the dual variables, Zj - cj, are non-negative for all 

j. The interpretation of Zj - cj is as the reduction in profit 

that would be associated with producing an additional unit of j 

and adjusting the levels of the other basic activities so as to 

maintain feasibility. These fundamental theorems are the 

equivalent to the classical theory of the firm admonitions to 

produce to the point at which price equals marginal cost and to 

employ resources to the point at which resource costs equal their 
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values of marginal products. 

Paris provided an interesting and useful insight: if firms 

are believed to be competitive and linear programming is 

considered to be capable of reflecting this environment, then one 

ought to expect multiple or near-optima as a frequent natural 

consequence. That is, in competitive markets long-run necessary 

conditions call for zero profitability, and generally goods are 

available in these markets in greater numbers than the number of 

constraints in a linear programming model of a single firm. In 

his words (p. 726), 

"In a competitive situation, where there are many firms 
using essentially the same technology, one observes 
that similar firms produce different product mixes. In 
the absence of uncertainty, all activities are equally 
profitable and therefore, it just happens that one firm 
chooses a particular combination of activities whi.le 
others select a different mix. In LP terminology, this 
situation is characterized by zero relative loss not 
only for the optimal basic activities but also for 
those not in the basis. It causes the multiple optimal 
solution phenomenon. Hence, an extensive dual 
degeneracy may be interpreted as a validation of an LP 
economic model, where perfect competition and certainty 
prevail." 

To be sure, the extreme case of perfectly competitive 

markets seldom, if ever, exists and linear programming models are 

not designed to reflect the long-run. However, the analyst 

should be heartened by the presence of multiple optima and, 

conversely, should view with concern the finding of a unique 

optimum. The latter could signal the existence of non-

competitive markets or the failure of the linear programming 

formulation to reflect the assumed environment. 

Diet problem. As indicated earlier, the diet problem is 

well-known in the linear programming literature as the first 
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economic problem ever solved by these procedures. Jerome 

Cornfield independently formulated and solved approximately a 

diet problem, which he reported in an unpublished memorandum in 

1941 (Dantzig [1963]). Several years later, George Stigler 

(1945] formulated a minimum cost diet model concerned with 

selecting among 77 foods subject to 9 nutrient constraints. He 

used trial and error procedures to solve approximately the 

constrained optimization, and the solution contained only 5 

foods: wheat flour, evaporated milk, cabbage, spinach, and dry 

navy beans. In 1947, Dantzig anq Laderman used linear 

programming to solve this same problem. Their solution, 

unpublished, contained 5 foods -- four as selected by Stigler 

and the fifth, beef liver, replacing evaporated milk (Dantzig 

[ 1 9 6 3 l ) . More recent works done for USDA have employed quadratic 

programming formulations, either to minimize weighted sums of 

squares of deviations of quantities of food groups from food 

consumption patterns (Peterkin et al. [1981]) or to maximize 

utility (Balintfy and Taj (1983]), both subject to minimum 

nutrient requirements and food budget. 

But let us return to the problem formul~ted by Stigler. Its 

structure is that of (1)-(3) above, where the direction of the 

inequality in (2) is reversed and (1) is minimized. The 77 

elements of cj all take values of one and the Xj are defined as 

daily dollar expenditures on food item j, A is the 9 by 77 matrix 

of aij defined as quantities of nutrient i contained per portion 

of food item j, and bis the vector of minimum requirements of 

the 9 nutrients (calories, riboflavin, etc.). 

s 



Since a basic solution to a linear programming problem will 

contain at most m positive variables, nine food items would be 

the maximum variety consistent with a basic solution. However, 

another set of 9 or fewer food items might satisfy the 

nutritional requirements at the same cost, and if so, an infinite 

number of solutions would solve the problem equally well. If 

there are two or more extreme point solutions with the same 

(optimal) value of z, then any convex combination of these 

extreme point solutions is also optimal. And these convex 

combinations are not limited to at most m foods. Hence, far from 

being a "problem", the presence of multiple optima would give 

rise to the possibility of a more diversified, interesting and, 

in this case, palatable set of optimal solutions. 

Certainly, multiple optima could occur if a non-basic food 

item had the same nutritional components (aj) and cost (cj) as a 

basic variable, or similar to a factor of proportionality. With 

a large number of food items n, relative to nutritional 

requirements m, it seems likely that near-optima, if not multiple 

optima, would be the rule rather than the exception. Many of the 

77 food items examined by Stigler are similar in aj and Cj. 

Normative and Positive Models 

Simon (1965) distinguished between positive and normative 

theories by the analogy to the distinction between declarative 

and imperative sentences. Positive theories describe, explain 

(addressing the question of "why?"), or predict behavior. 
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Normative theories in economic modeling generally prescribe-­

they are operational in the sense of providing goals or criteria 

as well as procedures for achieving them. The distinction is 

commonly referred to as one of answering questions of "is" or of 

"ought". Kadane and Larkey [1983, p.1365] have recently 

suggested that, 

"The development and application of theories of 
decision making in economics ... have long been bedeviled 
by confusion between the 'is' and the 'ought' in 
theoretical statements. It is often not clear from 
either an author's claims for a theory (model) or from 
the context of its use whether a model is intended to 
describe how decisions have been made, to explain why 
they have been made, ... or to prescribe how they should 
be made. 

Their final point is that both normative and positive theories 

are important and that we should recognize that these theories 

(models) are likely to differ from each other. Unless the way 

decisions are currently being made cannot be improved, positive 

and normative statements are apt to differ. 

What has this to do with the subject at hand? Simply this. 

Linear programming provides normative solutions to the problem of 

optimizing (1) subject to the conditions (2) and (3). The 

extreme point solution prescribed may or may not predict actual 

behavior well. In practice, one often sees the accuracy of 

prediction used to validate the model, and if the predictions are 

poor the model is revised. This is certainly sensible procedure 

for predictive models, but it is less so for purely prescriptive 

models. 

Models of the firm are frequently used in agricultural 

economics to develop regional models with strong positive as well 
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as normative motives. Predictions have generally been poor with 

these models -- usually suggesting substantially greater 

specialization of agricultural production by region than is 

observed in practice. The differences between predictions/ 

prescriptions and observed behavior led Day [1961] to impose 

upper and lower bounds on production, Meister, Chen and Heady 

[1978] to suggest the use of rotational constraints to curtail 

the overspecialization (and to "model the agronomic nature of 

crop production"), McCarl [1982] to advocate a decomposition 

methodology to reconcile sectoral equilibria and farm level 

plans, and Howitt and Mean (1983] to advance a positive quadratic 

programming specification based on the discrepancy between the 

linear cost function and the cost function implied by the actions 

of farmers. 

While the latter two approaches seem rather promising, most, 

such as imposition of upper and lower constraints on production 

and the use of rotational restraints are ad hoc contrivances 

which force solutions to resemble actual behavior more closely. 

Commenting on the former procedure, Howitt and Mean (p. 1) 

suggest, 

"This problem severely limits the value of linear 
models for policy purposes since models that are poorly 
calibrated and unbelievable will not be used. But 
models that are tightly constrained can only produce 
that subset of normative results that the calibration 
constraints dictate. The policy conclusions are thus 
bounded by a set of constraints that are expedient for 
the base year but often inappropriate under policy 
changes." 

Another way of saying that the linear programming models 

predict over-specialization relative to actual behavior is to say 

8 



that there are too few positive variables in the solution. 

Again, extreme point solutions limit tom the number of such 

activities, but in the presence of multiple optima there is no 

such limit to the number of positive variables contained in a 

convex combination of several optimal solutions. Indeed, Paris 

[1981] provides a procedure for selecting a convex combination of 

a set of k < n primal optimal solutions whose least squares 

objective function is to make the optimal solution close to the 

levels of the activities observed in practice. 

Similar considerations apply to the diet problem example. 

Imagine even cost-conscious individuals choosing to subsist on a 

(Stigler) diet of wheat flour, evaporated milk, cabbage, spinach 

and dry navy beans for an extended period of time! And even if 

cost is replaced by utility measures, a unique optimum solution 

limits variety to at most m (9 in the original formulation) food 

items. Once again convex combinations of multiple optima remove 

this barrier to making the model more nearly predictive of actual 

behavior. 

The argument for heeding the predictive power of the 

normative model is potent for the diet problem. A major use is 

in devising diets for major institutions: school lunches, penal 

institutions, military, and the like. If the menu lacks 

sufficient diversity or in other ways fails to conform with what 

individuals will eat, major portions of the meal will be 

discarded and as a consequence some or all of the nutritional 

constraints will be violated. 
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Modeling to Generate Alternatives 

Modeling to generate alternatives is a developing branch of 

multiobjective programming which deliberately leaves some 

objectives (and perhaps constraints) unquantified. It accepts 

that the model is not reality and presumes to be a tool rather 

than a replacement for the decision maker. It provides a set of 

optimal and nearly optimal-- or non-inferior and nearly non­

inferior-- solutions from which the decision maker can select. 

The intent is to offer the decision maker a manageably small set 

of decision vectors which are nearly optimal or nearly non­

inferior and which are as different from one another as is 

possible. The unquantified or unquantifiable objectives can then 

lead the decision maker toward a final choice. 

As indicated in the survey by Gidley and Bari [1986], MGA 

techniques involve two functions: generation of alternatives and 

selection of several for presentation. 

Generation. To be general let us consider a mathematical 

programming model with several objectives expressed as: 

(4) Minimize Zk = gk(x), k-1,2, ... ,r 

(5) subject to xEX, 

where gk(x) denote the r objectives and as usual Xis the 

feasible solution set. One finds an initial solution by the 

usual means, and then typically seeks alternative solutions by 

solving (5) augmented by: 

( 6) k-1,2, ... ,r, 
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where zk* is the value of the kth objective function in the 

solution of (4) and (5), and Pk is the allowed tolerance from 

optimality of the k th objective. Two groups of techniques have 

been used to generate and select solution vectors--one- and two­

phase approaches. 

Single phase approaches. This class of techniques is 

designed to produce a relatively small number of solutions which 

are as different from one another as possible. Variants include 

the Hop, Skip, and Jump (HSJ) method of Brill et al. [1982), the 

fuzzy HSJ method of Chang et al. [1983), Gibbs inner product 

minimization method proposed by Kshirsagar and Brill [1984), and 

the orthogonal search method developed also by Kshirsagar and 

Brill. The most widely used remains the HSJ approach, which 

seeks to minimize the sum of the activities which were nonzero in 

the solutions generated previously, subject to the constaints (5) 

and (6). Previously nonbasic activities tend to be forced into 

the basis and hence successive solutions tend to be quite 

different, although naturally this difference declines as the 

generations continue. Generation stops when either the maximum 

number of solutions desired has been found or the basic variables 

remain unchanged from the previous solution. 

Two phase approaches. These techniques generate large 

numbers of solutions and a second stage must be used to select a 

subset for presentation. Again, four classes can be identified 

for first phase generation: neighboring extreme point generation 

(Paris [1981], Padmanabhan and Rogness [1985]), exhaustive 

extreme point generation (Paris [1981, 1983]), search with random 
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objective functions (Harrington and Gidley [1985]), and the 

branch and bound /screening method (Chang and Liaw [1984]). 

For simplicity, the search with random objective functions 

has much to offer, and we shall return to it below. The approach 

has developed in several ways. One of these has been to generate 

random objective functions by selecting a uniform random deviate 

on an interval such as [-1,1] as an objective function 

coefficient for each decision and slack variable, drawing 

repeated samples, and collecting alternative solutions to the 

problem within the specified tolerance of optimality. 

Selection of a set for presentation. Pitted against the 

benefits of this richer set of information is the added cost. 

One component is the cost of obtaining the alternative solutions. 

This is likely to be trivial in comparison with the costs of 

model development and initial solution. The other component 

relates to limitations associated with the information processing 

ability of the human mind-- it is possible to overload decision 

makers with solutions. The works in the human choice theoretical 

literature of Thurstone [1927], Luce [1964], Coombs [1964], 

Tversky [1972], and Keeney and Raiffa [1976] are relevant here, 

as are empirical pieces by Gehrlein and Fishburn [1976], Scott 

and Wright [1976], Troutman and Shanteau [1976], Wilkie and 

Weinrich [1973], and Wright (1974). Miller [1956] provided an 

early and entertaining paper on this point. He begins, 

"My problem is that I have been persecuted by an 
integer. For seven years this number has followed me 
around, has intruded in my most private data, and has 
assaulted me from the pages of our most public 
journals. This number assumes a variety of disguises, 
being sometimes a little larger and sometimes a little 
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smaller than usual, but never changing so much as to be 
unrecognizable. The persistence with which this number 
plagues me is far mqre than a random accident." 

Of course, this magical number is seven. He cites: 7 point 

rating scale; 7 categories for absolute judgement; 7 objects in 

the span of attention; 7 digits in the span of immediate memory; 

7 days of the week; 7 notes of the musical scale; 7 primary 

colors; 7 deadly sins; 7 digits of telephone numbers among other 

"coincidences." He concludes that people are less accurate if 

they must judge more than one attribute simultaneously-- as they 

add attributes, they decrease th~ accuracy of the evaluation of 

any one. It is the reason for the importance of selecting for 

presentation a modest set of alternative solutions. 

One way of selecting alternative solutions for presentation 

is by inspection based on the analyst's judgement. As Gidley and 

Bari caution, the danger here is that the presentation set 

becomes biased by the modeler's preferences. Formal selection 

procedures are generally based on some form of cluster analysis. 

The technique involves partitioning a group of vectors into 

relatively similar subsets using some measure of distance --e.g., 

the Euclidean metric-- between vectors. As Chang and Liaw [1984] 

indicate, the choice of metric is important and the measure 

should be applied only to the most important decision variables. 

Clustering techniques can be divided into hierarchical and 

disjoint classes, and both have been used in selecting 

presentation sets. Hierarchical clustering involves starting 

with each solution vector representing a cluster, merging the two 

most similar clusters, and repeating the process until all 

13 
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vectors are contained in a single cluster. The output is in the 

form of a tree diagram (a dendogram). 

approach to prune their solution set. 

Chiang and Liaw used this 

In contrast, the number of 

desired clusters is prespecified in disjoint clustering 

approaches, and the algorithm is left to group alternatives into 

this given number of clusters. One practical advantage of 

disjoint clustering for present purposes is that it is easier to 

select a set for presentation from a given number of clusters 

than from a dendogram. Perlack and Willis [1985] used this 

approach to prune a larger set of non-inferior solutions obtained 

by generating techniques applied to a nonlinear programming 

formulation of Boston's sludge disposal problem. 

An Illustration: The Diet Problem Revisited 

The formulation of the Stigler diet problem as a linear 

program is provided in the Appendix. The 77 Xj are in the same 

order as Stigler's presentation. Table 1 below shows in the 

first column Stigler's approximate solution, and next to it the 

optimum solution to this minimum cost of subsistence problem. 

Stigler's approximation calls for a daily ration consisting of 16 

ounces of wheat flour, a couple of ounces of evaporated milk, 

five ounces of cabbage, another of spinach and twelve ounces of 

dried navy beans. The total cost in 1939 dollars is 10.93 cents 

per day ($1.17 in 1986 values). The optimal solution substitutes 

a small portion of beef liver for the evaporated milk and reduces 

cost to 10.86 cents per day. This optimum solution is unique--
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Table 1 
Solutions* Within Various Tolerances of the Stigler ~imurn 

Near~ 
Focxl Stigler Cptimurn 
Item Approximation Solution p= .02 I p = .05 I p = .10 I p= .20 p= .40 

1 Wheat 16.18 Wheat 13.28 Wheat 16.44 Wheat 18.22 Wheat 19.55 Wheat 15.11 Corn 15.00 
Flour (3.64) Flour (3.00) Flour (3.70) Flour (4.10) Flour (4.40) Flour (3.40) Meal (4.00; 

2 Evap. 2.31 Beef 0.12 Evap. 3.25 Evap. 5.84 Corn 4.87 Corn 5.56 Evap. 7.60 

Mille (1.07) Liver (0.20) Mille (1.50) Mille (2.70) Meal (1.40) Meal (1. 60) Mille (3.50) 

3 cabbage 4.80 Cabbage 4.84 lard 0.36 lard 0.98 Evap. 9.10 Evap. 8.66 Peanut 0.90 
(1.11) (1.12) (.22) (.60) Mille (4.20) Mille (4.00) Butter (1.00) 

4 Spinach 1.01 Spinach 1.00 Cabbage 4.84 cabbage 4.89 Ia.rd 0.33 Potatoes 14.11 Potatoes 15.52 
(0.51) (0.50) (1.12) (1.13) (. 20) (2.00) 

5 Dried 12.47 Dried 16.48 Spinach 1.00 Spinach 0.88 Cabbage 4.76 Sweet 3.45 Sweet 
Navy (4.60) Navy (6.10) (.50) (.45) (1.10) Potatoes (1.10) Potatoes 

Beans Beans 

6 - -- Dried 10.48 Dried 5.97 Spinach 0.71 Dried 1.26 Dried 
Navy (4.00) Navy (2.20) (.36) Lima (. 70) Lima 
Beans Beans Beans Beans 

Total 
Cost 10.93 10.86 11.07 11.40 11.90 13.00 15.20 

( ¢) 

*Quantities are in ounces i;:,er day and figures in parentheses are costs in cents (1939 values) rounded to the nearest 
hundredth. 

(2.20) 

2.50 
(. 80) 

5.70 
(3.20) 



all Zj-cj for non-basic variables are positive. However, it is 

barely so; alternative feasible bases can be found within 0.1 

percent of the optimum solution. If we wished to find a diet 

with none of the least cost ration food items in it, we could do 

so with a 40 percent increase in cost. 

If we are to perform MGA, we must select a value for the 

tolerance from optimality, p. A value of 0.001 seems needlessly 

stringent; we will not find much variety within that narrow 

tolerance of the optimum solution. A value for p of 0.40 would 

provide substantial variety, but 40 percent may not be an 

acceptable increase in cost. The remaining columns of Table 1 

show the alternative solutions which minimize the cost of the 

food items in the original optimum solution subject to a maximum 

of 2, 5, 10, 20 and 40 percent increase in cost of rations above 

the minimum cost diet. For a 2 percent increase, lard is added 

to the diet; for a 10 percent increase corn meal is included; 

potatoes, sweet potatoes and dried lima beans are added at the 20 

percent level; and at the 40 percent level peanut butter is 

consumed and all items are different from the optimum solution. 

Single Step Procedure. To illustrate the HSJ procedure, two 

values of p will be used (one at .02 and the other a more 

generous .10). For each case we generate six solutions as 

different as we can make them from the standpoint of minimizing 

the cost of all previous basic variables in seeking another 

solution within the given tolerance of the least cost solution. 

Table 2 provides these solutions for the 2 percent tolerance 

case. The first two columns repeat the optimum solution and the 
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Table 2 
Cpti:mal and Nearly ~timal Solutions* Within a 2 Percent Tolerance of Least Cost (p = 0.02) 

H&J Alternatives 
Fbod ~ I I 1 I I Item Solution 1 2 3 4 5 6 

1 Wheat 13.30 Wheat 16.40 Wheat 15.00 Wheat 14.80 Wheat 14.44 Wheat 12.22 Wheat 
Flour (3.00) Flour (3.70) Flour (3.40) Flour (3.33) Flour (3.25) Flour (2.75) Flour 

2 Beef 0.12 Evap. 3.20 Cheddar 0.44 Wheat 0.80 Milk 0.93 Beef 0.15 Beef 
Liver (0.20) Milk (1.50) Cheese (0.67) Cereal (0.69) (0.64) Ll.ver (0.25) Ll.ver 

3 Calx)age 4.80 lard 0.36 Cabbage 4.80 Beef 0.17 Beef 0.06 Cabbage 3.63 Cabbage 
(1.10) (0.22) (1.10) Ll.ver (0.28) Ll.ver (0.10) (0.84) 

4 Spinach 1.00 Cabbage 4.80 . Spinach 1.00 Cabbage 4.80 Cabbage 4.80 :Fotatoes 4.30 Spinach 
(0.50) (1.10) (0.50) (1.10) (1.10) (0.61) 

5 Dried 16.50 Spinach 1.00 Dried 0.80 Spinach 0.95 Spinach 1.00 Spinach 0.97 SWeet 
Navy (6.10) (0.50) Lima (0.44) (0.48) (0.50) (0.49) Potatoes 
Beans Beans 

6 -- Dried 10.80 Dried 13.30 Dried 14.00 Dried 14.83 Dried 16.65 Dried 
Navy (4.00) Navy (4.90) Navy (5.16) Navy (5.47) Navy (6.14) Navy 

Beans Beans Beans Beans Beans Beans 

Min. 9.30 9.95 10.38 10.43 10.46 10.48 
z ( ¢) 

'Ibtal 
Cbst 10.86 11.07 11.07 11.07 11.07 11.07 11.07 
( ¢) 

*Quantities are in ounces per day and figures in parentheses are costs in cents (1939 values) rounded to the nearest 
htmredth. 

12.84 
(2.89) 

0.17 
(0.28) 

4.32 
(1.00) 

0.60 
(0.30) 

1.82 
(0.58) 

16.30 
(6.01) 



: 

solution which minimizes the items from the optimum solution at a 

2 percent increase in cost. Notice that this 11.07 cent diet 

contains 9.3 cents worth of food items from the optimum solution. 

The second alternative adds cheddar cheese and dried lima beans 

and contains 9.95 cents worth of food basic in either the Stigler 

optimum solution or the first alternative solution. Wheat cereal 

enters in the third alternative at a level of 0.69 cents and 

represents the only new food item not previously appearing. Milk 

appears in solution 4, potatoes in solution 5, and sweet potatoes 

in solution 6. 

As shown in Table 3, a more generous tolerance of 10 percent 

of cost produces a greater variety. In this case the first 

alternative uses less than 6 cents worth of optimum solution food 

items. In fact, three new food items enter this alternative: 

corn meal, evaporated milk and lard. The second alternative 

added an additional two: cheddar cheese and potatoes. It used 

only 7 cents worth of items from the previous two solutions. The 

third alternative added a new item, the fourth an additional two 

items, and one more entered in each of the final two 

alternatives. With this generous tolerance, even the sixth 

alternative only used 9.7 cents worth of food items that appeared 

in any of the previous six bases, or 82 percent of the total cost 

of the ration. This contrasts with the similar situation for the 

2 percent tolerance case in which 10.48 cents worth of food items 

from the previous six bases were involved, representing 95 

percent of the 11.07 cent total cost of the ration. 

In light of the range of choices contained in Tables 2 and 
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Table 3 
~1 and Nearly ~1 Solutions* Within a 10 Percent 'lblerance of Least Cost (p = 0.10) 

HSJ Alternatives 
Food q,tinun 

I I I I I Item Soluticn 1 2 3 4 5 6 

1 Wheat 13.30 Wheat 19.82 Wheat 24.97 Wheat 21.64 Wheat 17.42 Wheat 10.18 Wheat 
Flour (3.00) Flour (4.46) Flour (5.62) Flour (4.87) Flour (3.92) Flour (2.29) Flour 

2 Beef 0.12 Com 5.04 (hejdar 2.45 Wheat 4.05 Milk 3.30 Beef 0.05 Rolled 
Liver (0.20) !-ml (1.45) Oleese (3.71) Cereal (3.50) (2.27) Liver (0.08) oats 

3 cati:>age 4.80 Evap. 9.01 cabbage 4.67 Beef 0.39 cabbage 3.89 cabbage 4.84 Beef 
(1.10) Milk (4.20) (1.08) Liver (0.65) (0.90) (1.12) Liver 

4 Spinach 1.00 Iard 0.36 Potatoes 1.55 cabbage 4.80 Spinach 4.27 Spinach 1.00 cabba.ge 
(0.50) (0.22) (0.22) (1.11) (2.16) (0.51) 

5 Dried 16.50 cabbage 4.75 Spinach 0.83 Spinach 0.81 SWeet 2.76 Dried 5.37 Spinach 
Navy (6.10) (1.10) (0.42) (0.41) Potatoes(0.88) Peas (2.65) 
Beans 

6 - Spinach 0.71 Dried 1.53 Dried 3.63 Dried 10.09 Dried 14.21 Dried 
(0.36) Lima (0.85) Navy (1.34) Navy (3.72) Navy (5.24) Navy 

Beans Beans Beans Beans Beans 

Min. 5.92 7.12 8.40 8.74 9.24 9.70 
z ( ¢) 

Total 
Cost 10.86 11.90 11.90 11.90 11.90 11.90 11.90 
( ¢) 

~titles are in 0tmces per day and figures in parentheses are costs in cents (1939 values) rounded to the nearest 
hundredth. 

9.77 
(2.20) 

4.93 
(2.19) 

0.44 
(0.74) 

4.80 
(1.11) 

0.80 
(0.40) 

14.21 
(5.24) 



3, it might seem desireable to the decision maker and consumer to 

have access to this information. Surely, for example, a 2 

percent (0.21 cents per day) increase in costs would generally be 

considered negligible, and in exchange the variety of diets seems 

substantial--at least relative to the small difference in cost. 

The quantity of information supplied in these two tables is not 

liable to overload most normal minds, and yet the provision of 

this additional set of near- optimum solutions could well result 

in their selection rather than the minimum cost of subsistence 

solution. And if we wished even greater variety, a convex 

combination of these diets could offer a menu consisting of 17 

items at the same cost. 

Two Phase Approach. As indicated earlier, as an alternative 

to selecting a small number of very different solutions in a 

single step by a procedure such as HSJ, we might generate a large 

number of solutions within a given tolerance of the optimum in 

one stage, and then apply a selection criterion to choose a 

manageable number to present to the decision maker. The random 

coefficients procedure has been selected to illustrate use of a 

two phase approach. In this, we select repeated series of random 

c' vectors each consisting of 77 random variates drawn from a 

Uniform [0,1] Distribution. Eighteen such vectors were drawn and 

used to optimize that objective function subject to (5) and (6), 

with p set at 0.10. The number of solutions, 18, was selected 

arbitrarily for the illustration, and means that because we chose 

to form six clusters of solutions to compare alongside the 

optimum solution, the average number of solutions in a cluster 
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will be three. 

Table 4 shows the eighteen alternative solutions. For these 

solutions, 18 different food items ar~ included in one or more of 

the diets. This compares with the 17 items appearing in the 

single phase approach in Table 3. The presentation of even this 

abbreviated example took three pages. A more exhaustive 

enumeration of near optima would surely make choice even more 

difficult. 

final step. 

Thus selection of a presentation set is needed as a 

A form of disjofnt clustering called Quick Cluster, 

available in the statistical package SPSSX, was used to group the 

18 solutions into 6 clusters. The Euclidean distance metric is 

used to measure the distance between each solution and the center 

of each cluster (means of the variables for the solutions 

contained in the cluster). The solutions were considered as one 

cluster initially, and then split successively at each step until 

the desired six clusters had been formed. At this point, 

solutions are reallocated iteratively into the cluster whose 

center is closest. The 18 food items appearing in one or more of 

the 18 alternative solutions seems a needlessly large number of 

attributes to use in forming clusters, and would require finding 

a larger number of nearly optimal solutions to cluster in any 

case. Therefore, for purposes of clustering we aggregated these 

18 food items into 7 food groups: vegetables(cabbage, spinach, 

asparagus), cereals and grains(wheat flour, corn meal, oats, 

wheat cereal), legumes(lima beans, navy beans, peas), 

starches(potatoes, sweet potatoes), sweeteners(sugar, molasses), 



Food 
Item 1 

1 Wheat 
Flour 

2 Iard 

3 cal:bage 

4 Spinach 

5 Dried 
Lima 
Beans 

6 Dried 
Navy 
Beans 

Table 4 
Raman Coefficients Generatim of Nearly ~1 Solutims* Within a 

10 Percent 'lblerance of I.east Cost (p = 0.10) 

Alternative Solutims 

2 3 4 5 

1.15 Wheat 2.20 Wheat 5.34 Wheat 5.53 Wheat 4.18 
Flour Flour Flour Flour 

1.32 cabbage 0.20 Wheat 3.09 Evap. 4.05 cabbage 1.12 
Cereal Milk 

1.13 Spinach 2.33 Evap. 1.18 cabbage 1.14 Spinach 0.54 
Milk 

0.52 Dried 6.55 cabbage 1.13 Spinach 0.42 Dried 4.27 
Navy Navy 
Beans Beans 

2.01 SUgar 0.54 Spinach 0.50 Dried 0.76 ~lasses 1.80 
Peas 

5.77 - Dried 0.66 - --
Lima 
Beans 

"'Values are oosts of the food itans in 1939 cents, rounded to the nearest hundredth. 

6 

Wheat 6.48 
Flour 

Evap. 0.29 
Milk 

Cheddar 3.54 
Cheese 

cabbage 1.18 

Spinach 0.42 

--



Food 
Item 7 

1 Wheat 
Flour 

2 Com 
Meal 

3 Evap. 
Milk 

4 ram 

5 Cabbage 

6 Spinach 

Table 4 (Continued) 
Rand.an Coefficients Generation of Nearly Cptima.1 Solutiais* Within a 

10 Percent 'lbleranoe of Ieast Cost (p = 0.10) 

Alternative Solutions 

8 9 10 11 

4.46 Wheat 4.53 Wheat 5.64 Wheat 1.95 ltbeat 5.62 
Flour Flour Flour Flour 

1.45 Evap. 4.36 Cheddar 3.68 Com 0.67 Oleddar 3.71 
Milk <lleese Meal Clleese 

4.24 Lard 1.32 Cabbage 1.14 cabbage 0.83 cabbage 1.08 

0.22 cabbage 1.14 Spinach 0.35 Sweet 1.60 ~toes 0.22 
~toes 

1.16 Spinach 0.41 Sweet 0.23 Dried 1.39 Spinach 0.42 
~toes Lima 

Beans 

0.37 Dried 0.14 Dried 0.87 Dried 5.45 Dried 0.85 
Lima Lima Navy Lima 
Beans Beans Beans Beans 

fl'Values are oosts of the food items in 1939 cents, rounded to the nearest hundredth. 

-~----·.;·· ·---·--····------····' . 

12 

Wheat 4.59 
Flour 

Evap. 4.33 
Milk 

lard 1.22 

cabbage 1.14 

Spinach 0.41 

Asparagus 0.22 



Food 
Item 13 

1 Wheat 
Flour 

2 Mille 

3 cabbage 

4 Spinach 

5 Dried 
Navy 
Beans 

6 -

Table 4 (Continued) 
Randan Coefficients Generation of Nearly ~1 Solutions* Within a 

10 Percent 'lbleranoe of least Cost (p = 0.10) 

Alternative Solutions 

14 15 16 17 

4.24 Wheat 2.46 Wheat 5.09 Wheat 5.53 Wheat 5.51 
Flour Flour Flour Flour 

2.76 Rolled 0.96 Evap. 4.32 Evap. 4.27 Evap. 2.02 
cats Mille Milk Milk 

1.06 Cabbage 0.30 cabbage 1.14 Cabbage 0.65 Cheddar 2.07 
Cheese 

0.49 Spinach 2.13 Spinach 0.41 Potatoes 1.04 cabbage 0.52 

3.37 Dried 6.05 sugar 0.94 Spinach 0.41 Potatoes 1. 37 
Navy 
Beans 

-- -- -- Spinach 0.41 

'i'Values are costs of the food items in 1939 cents, rounded to the nearest hundredth. 

1--,--------- ---------- -----
~ 
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Wheat 5.64 
Flour 

Cheddar 3.68 
Oleese 

Cabbage 1.18 

Spinach 0.42 

Dried 0.98 
Lima 
Beans 

-



dairy(cheese, milk, evaporated milk), and fats(lard). For each 

nearly optimal solution, the cost of each of these seven groups 

was calculated and used as the basis for clustering the 18 

alternative solutions. 

Table 5 shows how the 18 solutions found in Table 4 

clustered into 6 groups. Four solutions formed a first cluster, 

clusters 2,3 and 4 contained a single solution each, cluster five 

was comprised of solutions 14 and 15, and the final cluster 

grouped the remaining nine solutions. The Euclidean distance for 

each solution is also provided. For solution 1, for example, the 

distance 0.801 represents the sum of the squares of the 

differences of the costs of the seven food groups in that 

solution from the means of those seven items in cluster 6. 

Naturally, the clusters containing a single solution have a zero 

distance. It was interesting that the solutions in the large 

cluster were each nearer that cluster centroid than several of 

the solutions in the smaller clusters. 

Table 6 displays the presentation set based on this 

clustering. In it, the solution in each cluster which is closest 

to the centroid by the minimum distance criterion is selected as 

representative of its cluster. The argument here is that, while 

less information is contained in this set of solutions compared 

with the larger set enumerated in Table 4, it may be a more 

usable set because it is simpler for the human mind to 

comprehend. Had we opted to generate several hundred nearly 

optimal solutions, the point would be more dramatically made. 

25 



"' . 

1 
1 
1 
1 
2 
3 
4 
5 
5 
6 
6 
6 

· .. ··6 
6 
6 
6 
6 
6 

Table 5 

Clust:er Membership_ 

s olutJ()ll No •. 

4· 
8 

13 
18 
16 

7 
17 
14 
15 

l 
2 

·3 
5 
6. 
9 

10 
11 
12 

·. Euclidean Distance 

1. 782 
1. 830 
1. 525 
1.141 

·. O .000 
0.000 
0.0()6'. 
1-.iOl. 
1).551 
o,~so1 
L. 251, 
0 .924 -
o .. 877 

_ 1.225 .· 
1.058 
1.049 
1,340 
l.OlP 

I 
- i 

I. 



.. 

Table 6 
Presentation Set for 'Iwo Phase Solutions* Using Cluster Analysis 

Representative Solution Fran Clusters 
Food 
Item 1 2 3 4 5 6 

1 Wheat 10.13 Wheat 18.58 Wheat 18.84 Wheat 28.80 Wheat 24.58 Wheat 19.82 
Flour (2.28) Flour (4.18) Flour (4.24) Flour (6.48) Flour (5.53) Flour (4.46) 

2 cabbage 0.86 Cabbage 4.84 Cabbage 4.58 cabbage 5.10 cabbage 4.93 Iard 0.36 
(0.20) (1.12) (1.06) (1.18) (1.14) (0.22) 

3 Spinach 4.60 Spinach 1.07 Spinach 0.97 Spinach 0.83 Spinach 0.83 cabbage 5.02 
(2.33) (0.54) (0.49) (0.42) (0.42) (1.16) 

4 Dried 17.76 Dried 11.58 Dried 6.06 Evap. 0.63 Wheat 4.68 Spinach 0.73 
Navy (6.55) Navy (4.27) Navy (3.37) Milk (0.29) Cereal (4.05) (0.37) 
Beans Beans Beans 

5 SUgar 1.67 M:>lasses 2.38 Milk 4.01 Cheddar 2.34 Dried 1.54 Evap. 9.18 
(0.54) (1.80) (2.76) Cheese (3.54) Peas (0.76) Milk (4.24) 

6 - -- - -- -- Corn 5.04 
Maal (1.45) 

Solutioo 18 16 7 17 15 1 

•~tities are in ounces per day and figures in parentheses are costs in cents (1939 values) rourrled to 
the nearest hundredth. 



Concluding Thoughts 

As appealing as efficiency is to economists, a limit to its 

usefulness exists. Generation of multiple optima when they exist 

and exploration of noninferior solution space should be augmented 

by the generation of nearly optimal and nearly noninferior 

solutions. This provides a far richer set of information to 

decision makers in normative models and can facilitate prediction 

in positive ones, provided the information does not itself become 

too burdensome to process in making final selections. The 

philosophy and accompanying procedures termed "modeling to 

generate alternatives" has been developing rapidly in the 

engineering and management science literature in the early to mid 

decade of the 80s, and it is important for applied economists to 

embrace the paradigm before the decade is out. 
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Appendix 
Stigler Diet Formulation 

MINIMIZE 
Xl+X2+X3+X4+XS+X6+X7+X8+X9+XlO+Xll+X12+X13+X14+XlS+ 
X16+X17+X18+X19+X20+X2l+X22+X23+X24+X25+X26+X27+X28+ 
X29+X30+X31+X32+X33+X34+X3S+X36+X37+X38+X39+X40+X41+ 
X42+X43+X44+X4S+X46+X47+X48+X49+XSO+X51+XS2+XS3+X54+ 
XSS+XS6+XS7+X58+XS9+X60+X6l+X62+X63+X64+X6S+X66+X67+ 
X68+X69+X70+X71+X72+X73+X74+X7S+X76+X77 

Constraints 
SUBJECT TO: 

1. 44.7Xl+ll.6X2+11.8X3+11.4X4+36X5+28.6X6+21.2X7+ Calories 
25. 3X8+15X9+12. 2X10+12. 4Xl1+8X12+12. 5X13+6. 1X14+ (thousands) 
8.4X15+10.8X16+20.6X17+2.9X18+7.4X19+3.SX20+ 
15.7X21+8.6X22+20.1X23+41.7X24+2.9X25+2.2X26+3.4X27+ 
3.6X28+8.5X29+ 2.2X30+3.1X31+3.3X32+3.5X33+4.4X34+ 
10.4X35+6.7X36+18.8X37+1.8X38+1.7X39+5.8X40+5.8X41+ 
4.9X42+1X43+2.2X44+2.4X45+2.6X46+2.7X47+.9X48+ 
.4X49+5.8XSO+ 14.3X51+1.1X52+9.6XS3+3.7X54+3XSS+ 
2.4XS6+.4XS7+1X58+7.SXS9+5.2X60+2.3X61+ 1.3X62+ 
1.6X63+8.SX64+12.8X65+1.SX66+20X67+17.4X68+26.9X69+ 
8.7X72+8X73+34.9X74+14.7X75+9X76+6.4X77.GE.3 

2. 1411X1+418X2+377X3+252X4+897X5+680X6+460X7+907X8+ Protein 
488X9+484X10+439X11+130X12+288X13+310X14+422Xl5+ 
9X16+17X17+238X18+448X19+49X20+661X21+18X22+166X25+ 
214X26+213X27+309X28+404X29+333X30+245X31+140X32+ 
196X33+249X34+152X35+212X36+164X37+184X38+156X39+ 
705X40+27X41+60X42+21X43+40X44+138X45+125X46+73X47+ 
51X48+27X49+166X50+336X51+106X52+138X53+20X54+ 
8X55+16XS6+33X57+54XS8+364X59+136X60+136X61+63X62+ 
71X63+87X64+99X65+104X66+1367X67+1055X68+1691X69+ 
237X72+77X73+11X77.GE.70 

3. 2Xl+.7X2+14.4X3+.1X4+1.7XS+.8X6+.6X7+5.1X8+2.SX9+ Calcium 
2.7X10+1.1Xll+.4X12+.SX13+10.SX14+15.1Xl5+.2X16+ 
.6X17+1Xl8+16.4X19+1.7X20+1X21+.2X22+.1X25+.1X26+ 
.1X27+.2X28+.2X29+.2X30+.1X31+.1X32+.2X33+.3X34+.2X35+ 
.2X36+.1X37+.1X38+.1X39+6.8X40+.5X41+.4X42+.SX43+ 
1.1X44+3.7X45+4X46+2.8X47+3X48+1.1X49+3.8XSO+l.8X51+ 
2.7X53+.4X54+.3X55+.4X56+.3X57+2X58+4X59+.2X60+.6X61+ 
.7X62+.6X63+1.7X64+2.SX65+2.5X66+4.2X67+3.7X68+ 
11.4X69+3X72+1.3X73+.SX75+10.3X76+.4X77.GE.0.8 

4. 36SX1+54X2+175X3+56X4+99X5+80X6+41X7+341X8+115X9+ 
125X10+82Xll+31X12+50X13+18X14+9X15+3Xl6+6Xl7+52Xl8+ 
19Xl9+3X20+48X21+8X22+34X25+32X26+33X27+46X28+62X29+ 
139X30+20X31+15X32+30X33+37X34+23X35+31X36+26X37+ 
30X38+24X39+45X40+36X41+30X42+14X43+18X44+80X45+ 
36X46+43X47+23X48+22X49+59X50+118XS1+138X52+54X53+ 
10X54+8X55+8X56+12X57+65X58+134X59+16X60+45X61+38X62+ 
43X63+173X64+154X65+136X66+345X67+459X68+792X69+72X72+ 
39X73+74X75+244X76+7X77.GE.12 

32 
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Appendix (Cont.) 

Constraints 

5. 30.9X5+18.9X12+16.8X14+26X15+44.2X16+55.8X17+ Vitamin A 
18.6X18+28.1X19+16.9X20+2.7X22+.2X24+.2X25+ 
.4X26+.4X28+169.2X30+.IX38+3.5X40+7.3X41+17.4X42+ 
11.1X44+69X45+7.2X46+188.5X47+.9X48+112.4X49+16.6X50+ 
6.7XS1+918.4XS2+290.7XS3+21.5X54+.8X55+2XS6+16.3X57+ 
53.9X58+3.SX59+12X60+34.9X61+53.2X62+57.9X63+86.8X64+ 
85.7X65+4.5X66+2.9X67+5.1X68+.2X77.GE.5 

6. SS.4X1+3.2X2+14.4X3+13.SX4+17.4X5+10.6X6+2X7+37.1X8+ Thiamine 
13.8X9+13.9X10+9.9Xl1+2.8X12+4X14+3Xl5+.2Xl7+2.8Xl8+ 
.8X19+.6X20+9.6X21+.4X22+2.1X25+2.SX26+1X28+.9X29+ 
6.4X30+2.8X31+1.7X32+17.4X33+18.2X34+1.8X35+9.9X36+ 
l.4X37+.9X38+1.4X39+1X40+3.6X41+2.SX42+.SX43+3.6X44+ 
4.3X45+9X46+6.1X47+1.4X48+1.8X49+4.7X50+29.4X51+ 
S.7X52+8.4XS3+.SXS4+.8X55+2.8X56+1.4X57+1.6X58+ 
8.3X59+1.6X60+4.9X61+3.4X62+3.SX63+1.2X64+3.9X65+ 
6.3X66+28.7X67+26.9X68+38.4X69+4X70+2X72+.9X73+ 
l.9X76+.2X77.GE.l.8 

7. 33.3Xl+l.9X2+8.8X3+2.3X4+7.9X5+1.6X6+4.8X7+8.9X8+ Riboflavin 
8.SX9+6.4Xl0+3Xll+3Xl2+16Xl4+23.5Xl5+.2Xl6+6.SX18+ 
10.3Xl9+2.5X20+8.1X21+.SX22+.SX24+2.9X25+2.4X26+ 
2X27+4X28+S0.8X30+3.9X31+2.7X32+2.7X33+3.6X34+1.8X35+ 
3.3X36+1.8X37+1.8X38+2.4X39+4.9X40+2.7X41+3.SX42+ 
l.3X44+5.8X45+4.SX46+4.3X47+1.4X48+3.4X49+3.9XSO+ 
7.1X51+13.8X52+5.4X53+XS4+.8XSS+.8X56+2.1XS7+4.3X58+ 
7.7X59+2.7X60+2.SX61+2.SX62+2.4X63+4.3X64+4.3X65+ 
l.4X66+18.4X67+38.2X68+24.6X69+5.1X70+2.3X71+11.9X72+ 
3.4X73+7.SX76+.4X77.GE.2.7 

8. 441X1+68X2+114X3+68X4+106X5+110X6+60X7+64X8+126X9+ Niacin 
160Xl0+66Xll+17X12+7X14+11Xl5+2Xl6+Xl8+4Xl9+471X21+ 
SX24+69X25+87X26+120X28+316X30+86X31+54X32+60X33+ 
79X34+71X35+50X36+68X38+57I39+209X40+5X41+28I42+4X43+ 
10X44+37X45+26I46+89X47+9X48+11X49+21X50+198X51+33X52+ 
83X53+31X54+SX55+7X56+17X57+32XS8+56X59+42X60+37X61+ ~ 
36X62+67X63+55X64+65X65+24X66+162X67+93X68+217X69+ 
SOX70+42X71+40X72+14X73+5X75+146X76+3X77.GE.18 

9. 177X14+60X15+17X20+525X30+46X38+544X41+498X42+ Ascorbic 
952X43+1998X44+862X45+5369X46+608X47+313X48+449X49+ Acid 
1184X50+2522X51+2755XS2+1912X53+196X54+81X55+399X56+ 
272X57+431I58+218X60+370X61+1253X62+862X63+57X64+ 
257X65+136X66.GE.75 
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