

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

UNIVERSITY OF CALIFORNIA DAVIS

NOV 3-1981

Agricultural Economics Library

Multi-Stage Optimization Using Separable Programming

by
Corbet J. Lamkin and
W. Lanny Bateman

Paper to be submitted to SAEA session of American Agricultural Economics Association July, 1981

ABSTRACT

"Multi-Stage Optimization Using Separable Programming"
Corbet J. Lamkin and W. Lanny Bateman (Mississippi State University)

This paper presents a case study of an integrated poultry firm with a plant location problem where two distinct processing functions are necessary and each process is subject to size economies. The problem was approached using separable programming. Results showed that separable programming is effective for problems involving multi-stage processing.

Introduction

The economic problem of plant location, numbers and size has been addressed frequently in the literature. With an objective function minimizing combined transportation and processing costs, the problem has been addressed using a transportation or transshipment model in the vein of Stollsteimer or Chern and Polopolus. Later studies (King and Logan, Hurt and Tramel) considered economies of scale and the intermediate product problem.

Earlier efforts dealing with economies of scale used discrete activities for each plant size. Computational difficulties limited the number of size alternatives considered when numerous potential locations were available. Studies of dairy processing plants (Kloth and Blakely, Stennis) overcame some of the difficulties by using separable programming to approximate a nonlinear cost function. However, these studies considered only one type of plant and did not address the problem of a firm producing distinct but related products requiring unique facilities for each product.

Relatively little empirical work has been forthcoming related to firms processing two products, one of which is an input in the process for the other, but each has a separate cost function exhibiting size economies. A typical example of this characteristic is an integrated poultry firm assimilating feed ingredients which are processed into feed. The feed is distributed to broiler growers and the broilers are in turn assimilated by the processing plant and then shipped as dressed broilers.

The economic problem is the typical plant location problem for each product. The usual costs of acquiring inputs and distribution of product to final destinations are apparent. In addition, the firm faces two distinct processing cost curves, each of which may be non-linear and subject to economies and/or diseconomies of size. In some cases it should be useful to consider each of these cost curves simultaneously.

This paper presents an example of a plant location problem where two distinct processing functions are necessary and each process is subject to size economies. The problem is a case study of an integrated poultry firm and is approached by using separable programming. The separable programming routine developed by UNIVAC (Sperry Univac) and similar to the more widely used mathematical programming system of IBM was used for this purpose. Results will be presented for the feed producing, and distribution segment along with the meat processing segment.

The Model
Rodriguez used separable programming to study a feedmill location problen for an integrated poultry firm. His objective was to determine the size, number and location of feed mills that would minimize the cost of assembling feed ingredients, processing feed and distributing feed to growers. The feed processing cost function was segmented using separable programming.

This study extends Rodriguez's model to include the cost of assembling the grown out broilers, processing the birds and shipping dressed birds to demand points. The broiler processing function is also subject to economies of size and can be appropriately approximated by using the separable routine. The model can be specified as follows:
(1) $\quad \operatorname{Min} T C C=\sum_{j=1}^{0} \sum_{i=1}^{n} C_{i j} X_{i j}+\sum_{i=1}^{n} f_{i}\left(x_{i}\right)+\sum_{k=1}^{p} \sum_{i=1}^{n} \sum_{n=1}^{\theta} T_{k i}^{n} x_{k i}^{h}+$

$$
\sum_{j=1}^{0} \sum_{c=1}^{d} M_{j c} P_{j c}+\sum_{c=1}^{d} f_{c}\left(P_{c}\right)+\sum_{c=1}^{d} \sum_{y=1}^{r} P_{c y} Z_{c y}
$$

Subject to the following constraints:
(2) $\sum_{i}^{\sum X_{i j}}=R_{j}$
(3) $\sum_{i}^{\Sigma x_{k i}^{h} \leq S_{k}^{h}}$
(4) $\sum_{h} \sum_{k} S_{k}^{h} \geq{ }_{j} R_{j}$
(5) $\sum_{k}^{\infty} \sum_{h=1}^{\alpha} x_{k}^{h}=.6 \sum_{x h=1}^{\theta} \sum_{k}^{h}$
(6) $\sum_{k}^{\sum} \sum_{h=\alpha+1}^{\beta} x_{k}^{h}=.2 \sum_{k}^{i} x_{h=1}^{\theta}{ }_{k}^{h}$
(7) $x_{i j}, x_{k i}^{h}, P_{j c}$, and $P_{c y} \geq 0$
where:
TC $=$ total combined cost for assembly, processing and distribution of poultry feed; and for assembly, processing and transporting of broilers;
$c_{i j}=$ per unit transportation cost of delivering feed from the feed mill $i(i=1, \ldots, n)$ to the grower $j(j=1, \ldots, 0)$; $x_{i j}=$ quantity of processed feed delivered from feed mill ito grower j;
$f_{i}\left(x_{i}\right)=$ non-linear function expressing the total costs of
processing quantity X_{i} in feed mill i;
$T_{k i}^{n}=$ per unit assembly cost of shipping raw feed material $h(h=1, \ldots, \alpha$ for raw material one, $h=+1, \ldots, \beta$ for raw

The constraints required the total feed and allocated proportions among the three ingredients. The $\sum_{j=1}^{0} \sum_{c=1}^{d} M_{j c} P_{j c}$ term calculates the cost of shipping the birds to the broiler processing plants. The cost of processing broilers per unit of processed meat is represented by d $\sum_{c=1} f_{c}\left(P_{c}\right)$. This cost curve was also segmented by the separable $c=1 \quad c \quad c$. d d r routine. The final term $\sum_{c=1} \sum_{y=1} P_{c y} Z_{c y}$, represents the cost of shipping processed broilers to final destinations. A sample matrix with two feed ingredients from four supplying regions, two feed mills, four growers, two broiler processing plants and two demand points is shown in Table 1. The other ingredient was not included in the sample matrix but was incorporated in the complete model to insure proper proportion of feed ingredients.

Data and Procedures

The initial problem addressed by Rodriguez considered optimal location, size and number of feed mills. Rodgriguez's analysis examined the location problem under different assumptions as to grower location and concentration. His study considered a ten year planning horizon. The situation would be representative of a firm replacing old milling facilities and at the same time expanding broiler production into new areas. Thus, grower feed demands were fixed and growth was proportionately increased in each period. The model was not allowed to select expansion region, only to select feed mill location.

The broiler processing and distribution sections were incorporated in the Rodriguez model in order to obtain a least-cost solution for the entire problem. Results are presented only for the base period and the final period of the ten year planning horizon of the original Rodriguez problem. This paper compares the results for the two periods where

Table 1. Sample matrix for two feed ingredtents, four feed ingredient supplying regions, two feed mills, four growers, two broller processing plants and two dressed froller demand points.

non-linear cost curves were incorporated simultaneously for feed mills and broiler processing plants.

Data related to assembly costs for feed ingredients, feed requirements, grower numbers, feed manufacturing and shipping costs were those estimated by Rodriguez. Potential feedmill and broiler processing plant locations relative to initial grower concentration and anticipated expansion areas are shown in Figure 1.

Feed ingredients considered were soybean meal, corn and remaining ingredients combined as other. Each ingredient was available in any quantity needed from each source. There were five soybean meal sources, three sources for corn and one source for other ingredients. The feed was distributed to 179 growers (152 broiler, 27 breeder). The quantity of feed shipped to each grower was determined outside the model and the cost of transporting feed was estimated as a function of distance. The fomulas used to calculate the assembly cost for raw materials at the feed processing plants as well as transporting the feed from the feed mills to the growers were developed by Rodriguez.

The 152 broiler growers supplied birds for the two potential broiler processing plant sites. Trucking costs were estimated for assembling live birds based on distance and weight. A non-linear processing cost function based on the number of live birds processed per hour was estimated. Processed broilers were allocated to four markets by fixed amounts, 35 percent of the total processed meat was allocated to each of the Chicago and Los Angeles markets, 20 percent to New Orleans and the remaining 10 percent was allocated to the Jackson, Mississippi market area.

4 Feedmill location
\$ Rail access
¢ Broiler processing plant location

Figure 1. Relative locations of feedmills and growers.

Results
Simultaneous consideration of feed manufacturing and broiler processing costs resulted in the feed mill locations shown in Table 2. In the initial period only one feedmill entered the solution (Figure 1 and Table 2) at site 3. In the final period two feedmill sites entered the solution for this model.

Table 2. Least-cost feedmill location and size for two periods (grower locations).

	Number of feed mills	Optimum location	Feedmill size	Total volume
One	1	3	471.12	471.12
Ten	2	2	438.19	

Both broiler processing plants entered the solution for all periods, thus only periods one and ten are shown for comparison.

Limitations and Implications
Since this analysis is a case study, conclusions about many economic questions were not answered. As used the model merely determined the least cost location and number of feed mills given different grower locations. It simultaneously considered the minimum cost size and location of broiler processing plants due to different grower locations. Grower location and volume of feed needed (therefore number of birds produced) were specified. Therefore, feed mill and broiler processing plant location were independent of each other. The problen could have
been run as two separate problems. For this case, the only advantage of combining objective functions was in building the matrix.

The problem did indicate several important points. First, it did demonstrate that the separable routine can handle more than one separable function at one time. The usual convergence problems were encountered; however, the final solutions were stable and appeared consistent.

The problem could be made adaptable to a more general case quite readily. Allowing the model to select grower location, i.e. optimal grower location or expansion region would link milling and processing costs. Comparison of results for the two periods in this study indicates potential fruitful research.

Size economies in feed milling seem important compared to broiler processing as indicated by only one mill in period one. To what extent this would encourage concentration of growers and at what point one large processing plant might be feasible poses an interesting question. Conversely, transportation and utility needs of the processing sector could well influence feed mill and grower location.

Separable programming is effective for problems involving multistage processing. This study clearly demonstrates that this program can be used to evaluate the least cost organization for a firm where two distinct processing functions are employed and each process is subject to size econamies.

In the future, with proper modification, this model could be used to determine the number of growers and their pattern of growth as well as the most economical feed and meat processing plants.

References

[1] Chern, W., and L. Polopolus. Discontinuous Plant Cost Function and a Modification of the Stollsteimer Location Model." Am. J. Agr. Econ. 52:581-586, November 1970.
[2] Hurt, V. G., and T. E. Tramel. "Alternative Formulations of the Transshipment Problem." J. Farm Econ. 47:763-773, August 1965.
[3] Holland, D. W., and J. L. Baritelle. "School Consolidation in Sparsely Populated Rural Areas: A Separable Programming Approach." Am. J. Agr. Econ. 57:567-575, November 1975.
[4] International Business Machine Corporation. Mathematical Programming System 360, Version 2, Linear and Separable ProgrammingUser Manual. White Plains, N.Y., 1968, Ch. 5.
[5] King, G. A., and S. H. Logan. "Optimum Location, Number and Size Processing Plants with Raw Product and Final Product Shipments." J. Farm Econ. 46:94-108, February 1964.
[6] Kloth, D. W., and L. V. Blakely. "Optimum Dairy Plant Location with Economies of Size and Market Share Restrictions." Am. J. Agr. Econ. 53:461-466, August 1971.
[7] Rodriguez, J. E. M. "Spatial Costs of an Integrated Broiler Firm as a Function of Plant Size, Location and Grower Density: A Case Study," unpublished Ph.D. Dissertation, Mississippi State University, Mississippi State, May 1980.
[8] Sperry-Univac Corporation, Functional Mathematical Programming System (FMPS), "User Manual."
[9] Stennis, E. A. "Production, Processing and Consumption of Fluid Milk in the South, 1965-1975," unpublished Ph.D. Dissertation, Mississippi State University, Mississippi State, June 1970.
[10] Stollsteimer, J. F. "A Working Model for Plant Numbers and Locations." J. Farm Econ. 45:631-635, August 1963.
[11] Thomas, W., et al. "Separable Programming for Considering Risk in Farm Planning." Am. J. Agr. Econ. 54:260-266, May 1972.

