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A Jump Diffusion Model for Agricultural Commodities  
with Bayesian Analysis 

 
Stochastic volatility, price jumps, seasonality, and stochastic cost of carry, have been included 
separately, but not collectively, in pricing models of agricultural commodity futures and options. 
We propose a comprehensive model that incorporates all four features. We employ a special 
Markov Chain Monte Carlo algorithm, new in the agricultural commodity derivatives pricing 
literature, to estimate the proposed stochastic volatility (SV) and stochastic volatility with jumps 
(SVJ) models. Overall model fitness tests favor the SVJ model. The in-sample and out-of-sample 
pricing and hedging results for corn, soybeans and wheat generally, with few exceptions, lend 
support for the SVJ model.  
 
Keywords: MCMC, Jump Diffusion, Bayesian Analysis, Agricultual Commodity Options 
 

 

Introduction 
 

Trading in agricultural commodities has steadily increased since the mid-1990’s. There are many 
explanations for this including the need for investors to diversify portfolios, the increase in 
demand for grains because of bio-fuels, the increase in demand for grain from abroad, and the 
broader increase in trading that many asset classes have experienced. The increased trading of 
agricultural commodities and investors' need for hedging leads to the need for a sophisticated 
model for these instruments. An inability to accurately model the prices for and hedge a position 
in agricultural commodities can lead to disastrous effects. Witness Verasun's recent bankruptcy 
which can be, at least in part, attributable to an inability to model the dramatic price fluctuations 
that occur in agricultural commodities.1 

Many previous studies modeling agricultural futures and options have included components 
such as jumps and seasonality separately. Our objective in this paper is to present a model which 
is comprehensive regarding the main characteristics of agricultural futures and options. Those 
characteristics are jumps, stochastic volatility, seasonality, and stochastic cost of carry. A 
comprehensive model that provides accurate pricing results and superior hedging performance 
can help farmers and agricultural businesses manage their risks more effectively.  Also, a 
comprehensive model can help illuminate some of the more nuanced characteristics of these 
agricultural commodities. 

The jump phenomenon found in financial markets is also present in the agricultural and 
broader commodities markets. Hilliard and Reis (1999) provide evidence for jumps in 
commodity futures prices. Koekebakker and Lien (2004) provide evidence of volatility and price 
jumps in wheat futures and options. Aravindhakshan (2010) finds jump-diffusion models fit the 
wheat futures prices well. The importance of modeling jumps becomes increasingly apparent as 
we witness the dramatic rise and fall of agricultural futures prices in recent years. For example, 
the Chicago corn spot price rose from $3 per bushel to $7.2 per bushel in July 2008 and 

                                                 
1 VeraSun was a biofuels producer located in Aurora, SD, that filed for bankruptcy in October 2008. VeraSun 
entered into grain contracts at the height of the market essentially forcing them to buy grain at prices much higher 
than the prevailing market prices. As broader fuel prices sharply declined, the cost of production of ethanol 
exceeded the income from sales forcing them to go under.  
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subsequently dropped to $3.6 per bushel in December 2008. In order to effectively model this 
type of extreme movement in the spot price, the inclusion of a jump term is necessary.  

In addition to the jumps in spot prices, stochastic volatility is an indispensable component in 
almost all derivatives asset pricing models. Agricultural commodities are no exception. In fact, 
recognizing the market's need to hedge against volatility risk, the Chicago Mercantile Exchange 
(CME) group, partnering with Chicago Board Options Exchange (CBOE), introduced the corn 
and soybean volatility indexes to the market in early 2011. In academia, there is a long history of 
modeling stochastic volatility. Heston's (1993) seminal paper provides the framework for using a 
mean-reverting, stochastic volatility model to price financial options. Schwartz (1997) proposes 
three models which increase in complexity from the general stochastic volatility model to those 
with stochastic convenience yield in order to model copper, oil, and gold. Trolle and Schwartz 
(2009) study the effects of unspanned stochastic volatility on commodity derivatives based on 
the Heath, Jarrow, and Morton (1992) risk-neutral measure framing. Geman and Nguyen (2005) 
propose a two-factor stochastic volatility model that relate the soybean stocks and scarcity to 
price volatility. We follow the literature by modeling the latent volatility through a mean 
reverting process. 

Agricultural commodity prices often exhibit seasonality, a characteristic generally not shared 
by financial assets. Because much of the volatility of the agricultural market can be attributed to 
changes in the weather, it is reasonable to conclude that prices and volatility may exhibit 
seasonal changes. The uncertainty surrounding all relevant spot price variables tends to decrease 
as the growing season matures and harvest begins leading to a seasonal trend in spot price 
movement and volatility. Richter and Sorensen (2003) find that soybeans exhibit seasonality 
patterns in the spot price level and volatility. Sorensen (2002) provides a framework for 
modeling seasonality in commodity futures. We introduce a spot price that is seasonally 
changing in order to capture the empirically observed seasonality. 

The spot price of an agricultural commodity described by a seasonal jump diffusion process 
above is not sufficient to determine the futures prices. Cost of carry information provides the 
missing link. We follow Gibson and Schwartz (1990) to model the stochastic cost of carry that 
captures the Samuelson Hypothesis (1965): the futures price volatility decreases as time to 
expiration increases. In a similar way, Hilliard and Reis (1998) provide a model for commodities 
with stochastic convenience yields, in addition to stochastic interest rates and jumps. 

Although the existing literature has attempted to model some of the features for agricultural 
commodity prices, a more comprehensive model that incorporates all of them has yet to be 
considered. The most relevant studies are Geman and Nguyen (2005), Koekebakker and Lien 
(2004), and Aravindhakshan (2010). More specifically, Geman and Nguyen's models include 
seasonality and stochastic volatility for soybean futures; Koekebakker and Lien consider jumps 
and seasonality along with deterministic volatility for wheat options; Aravindhakshan's models 
incorporate jumps for wheat futures. In this paper we study the pricing and hedging effectiveness 
of a new comprehensive model for futures and options for three major agricultural commodities: 
corn, soybeans, and wheat. The model features a stochastic jump component in the 
deseasonalized spot price, seasonality and stochastic cost of carry with term structure consistent 
with the Samuelson Hypothesis, in addition to stochastic volatility. We analyze the pricing and 
hedging errors of the stochastic volatility (SV) and stochastic volatility with jumps (SVJ) models 
in order to compare the effectiveness of the jump term at modeling the stochastic behavior of the 
agricultural commodities. 

We use a Markov Chain Monte Carlo (MCMC) method of parameter estimation as opposed 
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to the Kalman filtering scheme used by Trolle and Schwartz (2009) for commodity options 
pricing and by Bakshi, Carr and Wu (2008) for financial options pricing. The sophistication of 
our model (with sixteen different parameters and six state variables) coupled with the need to 
monitor convergence of the parameter estimates necessitates the use of MCMC.2 Karali, Power 
and Ishdorj (2011) utilize Bayesian MCMC for parameter estimation for their discrete time series 
model for the corn, soybean, and wheat futures. Our MCMC method is similar to but different 
from Eraker (2004), whose MCMC analysis is applied to stock options data. In this study, we 
need to price options and futures on the underlying commodities simultaneously. Additionally, 
the options pricing formulas based on our model involve a numerical solution of the Ricatti 
Equation that has an otherwise semi-closed-form solution for stock option prices (see Bakshi, 
Cao and Chen 1997; Duffie, Pan and Singleton 2000; Eraker 2004 among others). As a result, 
options pricing becomes more computationally intensive. We adopt a different MCMC 
estimation procedure offered by Damien, Wakefield and Walker (1999). Our MCMC estimation 
circumvents the difficulty of sampling from non-conjugate distributions that involve 
non-analytical options pricing procedures. Our approach is, to the best of our knowledge, new in 
the literature of agricultural commodity derivatives pricing. 

The remainder of the paper is organized as follows: we state the general jump diffusion 
model and the propositions relevant to pricing futures and options; we then describe the data set 
and the estimation procedure, present estimation results, and analyze the in-sample and 
out-of-sample pricing effectiveness of the models; we also study the in-sample and 
out-of-sample hedging performances of the models before we conclude. 

 

A Jump Diffusion Model for Agricultural Commodities 
 
The model under the risk-neutral measure 
We follow Gibson and Schwartz (1990), Schwartz (1997), Trolle and Schwartz (2009), and 
Hilliard and Reis (1999) to model the price dynamics of agricultural commodities. Our model is 
based on the deseasonalized spot price, X , and the cost of carry, y , hence, endogenizing the 
determination of futures prices. A Merton-type Poisson jump is considered in the spot price. 
Stochastic variance, V , is determined by a Heston-type mean-reverting square-root process with 
the long-run mean jointly determined by V and κ . The following system of equations are 
under the risk neutral measure Q : 

),()()())((=
)(

)(
11 tdNJtdWtVdtKt

tX

tdX
J ++− σλδ  (1) 

 )()(),(),(=),( 22 tdWtVTtdtTtTtdy σµ + , (2) 

 ( ) )()()(=)( 33 tdWtVdttVVtdV σκ +− .  (3) 

The pairwise correlation between the Wiener processes, )(tdWi  for {1,2,3}∈i are captured in 

the parameters 12ρ , 13ρ , and 23ρ , with “1” representing the deseasonalized spot price 

equation, “2” the cost of carry equation, and “3” the stochastic volatility. The magnitude of the 

                                                 
2An excellent general outline of methods regarding parameter estimation of stochastic volatility models is Johannes 
and Polson (2009). Eraker, Johannes and Polson (2003) and Eraker (2004) provide details of implementation of 
MCMC method. 
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jumps is  

 1= −xJ
eJ  

with xJ  being distributed ( )xx σµ ,N . The jK  term is the jump compensator and takes the 

form of 1
2

2

1

−
+ xxe

σµ
. 

 We define ),( TtF  as the time-t  price of a futures contract maturing at the time T . Given 
the instantaneous cost of carry ( , )y t u , we can then rewrite futures price as: 

 { }duutytSTtF
T

t
),(exp)(),( ∫≡   (4) 

 with )(tS  being the seasonalized spot price given by  

 )()(=)( thetXtS   (5) 
 where  

 ( ).)(2sin=)( ϕπη +tth   (6) 
 h  introduces the spot price seasonality, a characteristic generally recognized in the commodity 
literature (Sorensen 2002; Richter and Sorensen 2003 ). 

By applying Itô's lemma to Equation (4), we have the following dynamics for ),( TtF :  

 )(),()()()()(=
),(

),(
2211 tdWduuttVtJdNtdWtV

TtF

TtdF T
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σσ ∫++  
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2

1
),( 2121
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2 dttVduutduutduut
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t
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++ ∫∫∫ σρσσµ

 (7)
 

 (See Appendix A.1 for derivation.). 
Following Trolle and Schwartz (2009), we derive the preceding item on the second line of 

Equation (7) as follows:  
Proposition 1 Under the risk-neutral measure, Q , there cannot exist any arbitrage. 

Therefore, the drift term in Equation (2) is given by  

             .),(),()(=),( 21122 












 +− ∫ duutTttVTt

T

t
σσρσµ

 
(8) 

(See Appendix A.2 for derivation). 
 
An affine model for the dynamics of the futures curve 
In order to price futures, we propose a specific form for the cost of carry. We define the 
time-dependent coefficient of volatility in Equation (2), ),(2 Ttσ , as )( tTe −−γα  such that it 
increases as futures approach the expiration date. This feature is consistent with the Samuelson 
Hypothesis (see Kalev and Duong (2008)). Based on the assumed functional form for ),(2 Ttσ , 
we derive instantaneous cost of carry as follows:  

Proposition 2 The time-t instantaneous forward cost of carry at time T, y(t,T), is given 
by:  

 )()()(0,=),( )(2)( teteTyTty tTtT φαχα γγ −−−− ++  (9) 
 with )(tχ  and )(tφ  following  

 )()()()(=)( 2112 tdWtVdttVttd +
















 +−− σρ
γ
αχγχ  (10) 



5 
 

 .)()(2=)( dttVttd 






 +−
γ
αφγφ  (11) 

Proof. See Appendix A.3.  
The instantaneous cost of carry term, )(tδ , in Equation (1), is defined as  

 )()()(0,=),( )(2)( tetetytty tttt φαχα γγ −−−− ++  
      ).()()(0,= ttty αφαχ ++  (12) 

 For tT −=τ , we have the following:  

 ( )τγ
χ γ

ατ −− eD 1=)(   (13) 

 and  

 ( ).1
2

=)( 2 τγ
φ γ

ατ −− eD   (14) 

 From Equation (4), integrating the cost of carry term will result in  

 { }.)()()()(exp
)(0,

)(0,
)(=),( tDtD

tF

TF
tSTtF φτχτ φχ +  (15) 

 By taking the logarithm of Equation (15) and letting )()(log tstS ≡ , we have:  

 .)()()()()()(0,log)(0,log=),(log tDtDtstFTFTtF φτχτ φχ +++−  (16) 

 Here, applying Itô's Lemma to )()(log=)(log)( thtXtSts +≡  yields  

 dtetVtytds xx
ttt























−+++−++

+ 2
2

1
2
1 1))((2cos2

2

1
)()(0,=)(

σµ
λϕππησφχα  

       .)(11 txt dNJtdWV ++σ  (17) 

  
Pricing options on futures contracts 
We follow the approach given in Duffie, Pan, and Singleton (2000) and Trolle and Schwartz 
(2009) to derive the pricing formula for options on futures. Other well-known methods include 
Bakshi and Madan (2000) and Collin-Dufresne and Goldstein (2003). 

First, we define 0T  to be the options expiration date, 1T  to be the futures expiration date, 

and t  to be the current time. We will transform ( )),(log 10 TTF  using the Laplace Transform 

and let  

 ( ) ( )[ ].=,,,
)1,0(log

10

TTFu

t eETTtu QΨ   (18)  

Proposition 3 Equation (18) has an exponential affine solution of  

 
))1,((log)()0()0(
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        ( ) γτγ σρ
γ
α −−− −⋅⋅⋅−+ eeuu

TT
1)( 112

)01(2 γτγ

γ
α 2)01(22 )(

2

1 −−− ⋅⋅⋅−+ eeuu
TT

 (21) 

 with the initial conditions 0=(0)A  and 0=(0)B .  
 Proof. See Appendix A.4.  

Using the solution in Proposition 3, we can calculate the price of an option with a strike price 
of K  and an expiration date of 0T  on a futures contract expiring at time 1T  with the 

following proposition:  
Proposition 4 The price of a European put is given by  
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T
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t TTFKeEKTTtP  
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TTFQ
tKTTF

Q
t eEKETtP −  

 ( )))(log())(log(),(= 1,10,10 KGKKGTtP −  (22) 

 where ),( 0TtP  is the price of a risk-free financial instrument. 

The price of a European call is given by  
 ( ).))(log())(log(),(=),,,( 10,11,010 KKGKGTtPKTTt −− −C  (23) 

 Also,  

 du
u

eTTtubaImTTta
yG

uy

ba

]),,,i([1

2

),,,(
=)(

i
10

0

10
,

−∞ +Ψ−Ψ
∫π

 (24) 

 with 1=i − .  
Proof. See Appendix A.5. 

 

Data and Methodology 
 
Data 
In this paper we employ daily corn, soybean and wheat futures and options data from the CME 
group. Since these options are of American style, we convert them into their European 
counterparts following Trolle and Schwartz (2009). We obtain T-Bill rates from the Federal 
Reserve St. Louis and use them as a proxy for risk free interest rates. We linearly interpolate 
over the instruments’ maturities to obtain a more accurate estimate of the risk free rate. For the 
purpose of estimation, we choose to focus on the years from 2006 to 2010 that cover the peak of 
2007-2008 financial crisis and the global food crisis. The financialization of both agricultural and 
non-agricultural commodities has exacerbated the interests of both the industry and the academia 
(Xiong and Tang 2012; Masters 2008 and the US Senate Permanent Subcommittee on 
Investigations 2009). 

To obtain the most informative options and futures data, we apply the following filters. First, 
we choose the most actively traded contract month for each commodity. It is important to 
construct a data set that has a traded contract on each day leaving very few if any gaps. For 
soybean contracts, the November contract is the most actively traded. For corn and wheat, 
December is the most actively traded contract month. Second, we choose only those options with 
at least five days of maturity in order to avoid possible microstructural noise in the market. 
Third, we choose only those options which have positve trading volume. Finally, we choose the 



7 
 

most near-the-money options on any given day for parameters calibration to take advantage of 
the greater liquidity of such options. 

Table I presents the descriptive statistics for the current month futures contract and options 
for the years from 2006 to 2010 for the three commodities. The futures prices vary significantly 
across the three commodities, whereas their price volatilities are more comparable. All three 
futures prices show various degrees of non-normality, which motivates our consideration of 
jumps and stochastic volatility in the underlying commodities. We also report implied volatilities 
inferred from the Black (1976) model for the three comodities in Table II. It is seen that implied 
volatilties are comparable across the commodities, with volatilities of wheat futures being 
slightly higher during the sample period. Table III provides a view of options trading activities 
over the sample period. We find that the average daily trading volumes of the out-of-the-money 
(OTM) options are prodominantly greater than those of in-the-money (ITM) options. In 
particular, the ratios of OTM volume to ITM volume are 4.3 (call) and 3.6 (put) for corn, 5.8 
(call) and 9.1 (put) for soybeans, 4.3 (call) and 5.4 (put) for wheat, respectively. Given the 
domininant activities of OTM options, we shall focus on them in our pricing analysis. 
 
Markov Chain Monte Carlo 
Estimation of parameters and state variables is determined by applying the Markov Chain Monte 
Carlo (MCMC) method to the aforementioned options and futures data. We Euler-discretize the 
relevant stochastic differential equations, including Equations (3), (10), (11) and (17). As in 
Eraker (2004), we assume that futures and options are priced with autocorrelated errors, 
according to the pricing formulas in Equations (16), (22) and (23). Specifically, the 
autocorrelations for options and futures pricing errors that are defined as the difference between 
theoretical and empirical prices, are denoted as Cρ  and Fρ .3 To avoid spreading futures 

pricing errors into options pricing errors, we follow Trolle and Schwartz (2009) to price options 
based on the actual, not fitted futures prices. Another benefit of this approach is that we can 
obtain a cleaner estimate of the volatility process. 

Based on the modeling framework described above, we categorize all the parameters into 
three groups: parameters that capture autocorrelation of options and futures pricing errors, 
parameters associated with options pricing and those associated with futures pricing. Cσ , Cρ , 

Fρ  and Fσ  are the first group. V , κ , 3σ , 13ρ , xµ , xσ , λ , and 12ρ  fall into the second 

group. α , γ , η  and ϕ  belong to the third group. In addition to the parameters listed above, 
we estimate the values of the state-variables J , N , V , x , s , and φ . We shall now discuss 
our simulation procedures for each group. 

We adopt different approaches to sample the three groups of parameters. For the first group 
of parameters, we use the conventional Gibbs sampling method. The positerior distributions of 
the second and the third groups of parameters are a product of the likelihood of options and 
futures pricing errors and the likelihood of each individual paramter iΘ , taking the following 

                                                 
3Denote tTheoP ,  and tEmpP ,  as theoretical model and empirically observed options (or futures) prices at time t 

respectively. We define pricing errors at time t as tEmptTheot PP ,,= −ε , which follow ( )2
1,σρεε −tt N: . ρ , 

being either Cρ  or Fρ  where C  and F  indicate options and futures respectively, is autocorrelation between 

price errors of time t and t-1. σ , being either Cσ  or Fσ , is standard deviation for the errors. 
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form:  

,
1

( | , , , , , , )* ( | )
N

i i i Emp t
t

p J N V s x p Pϕ−
=

Θ Θ Θ∏                              (25) 

where i−Θ  is the vector of all parameters Θ  except iΘ  and the likelihood of the 

autocorrelated pricing errors reads: 
2

, 1 , 1 , ,

2

[( ( )) ( ( ))]
( | )

2
Emp t Theo t i c Emp t Theo t i

i Emp
c

P P P P
p P exp

ρ
σ

+ + − Θ − − Θ Θ = − 
  

        (26) 

where “Emp” and “Theo” denote empirically observed market price and theoretical model price, 
respectively. The same function for futures data can be obtained by changing cρ  and cσ  to 

Fρ  and Fσ  respectively. Due to the complexity of the posterior distributions in Equation (25) 

and the computational intensity of options prices in Equation (26), the standard Gibbs sampling 
is not applicable to the last two groups of parameters. We implement a two-step procedure as 
described by Damien, Wakefield, and Walker (1999) (henceforth referred to as the “DWW” 
method) to circumvent such a difficulty. 

In the first step, we draw a Gibbs sample for each parameter iΘ  iteratively from their 

conditional posteriors ),,,,,,|( φxsVNJp ii −ΘΘ . Detailed explanations of this sampling method 

are found in the finance literature (Eraker, Johannes and Polson, 2003, Eraker, 2004 and 
Johannes and Polson, 2009). Specifically, we follow closely Eraker’s (2004) method for V , κ , 

3σ , xµ , xσ , and λ .4 We implement a slightly different sampling schemes on the two 

parameters 12ρ  and 13ρ  in order to achieve a better convergence rate. First, we compute the 

sample correlation. We then draw a sample from a normal distribution with a 

Fisher-transformation of sample correlation as the mean and 3−N  as the standard deviation 
(Fisher, 1915, 1921), where N  is the number of observations. Lastly, we make an inverse 
Fisher-transformation to obtain the sample for ρ's. 

In the second step, we compare the likelihood based on the new draw from the first step to 
the likelihood of the sample from the previous draw. A random uniform value is generated 
between 0 and the likelihood of options or futures data from the previous draw. The DWW 
procedure recommends that the new draw is accepted if the new likelihood value is greater than 
the previous likelihood value based on Equation (25) and rejected otherwise (see Section 2 of 
Damien, Wakefield, and Walker (1999) for detailed explanations). The DWW procedure 
essentially decouples from the full conditional posterior the complexity of the likelihood of 
options and futures prices related parameters. Also, it speeds up the MCMC sampling and 
convergence. 

Lastly, we estimate the values of the state variables using the Metropolis-Hastings random 
walk sampling procedure. A sample of each state variable iS  is drawn from their conditional 

posteriors ),,|( Empii Pp −Θ SS , where i−S  is the vector of all parameters S  except iS  and 

EmpP  is the empirically observed price of options or futures. 

 
Model Diagnostics 

                                                 
4 Interested readers can refer to Section C of Part II of his paper. 
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The effectiveness of the SVJ model over the SV model will be tested using the Bayes factor, the 
deviance information criteria (DIC), and the modified Diebold-Mariano (MDM) test. 

The Bayes factor is an odds ratio between the SV and SVJ models. It is calculated as  

0 0
0 0 =0 =0

=10 0
0 0

=1 =1

( , 2 )
( , ) 1

( : ) =
( , ) ( , )

T T
g g
t tG

t t
T T

g gg
t t

t t

B J T J
B

odds sv svj
B T G

B J T J

α β
α β

α β α β

+ + −

+ + + −

∑ ∑
∑

∑ ∑
               

(27) 

with G  being the total number of iterations, ),( βαB  being the beta function, g
tJ  the size of 

the tht  jump on the thg  iteration, and T  the total number of data points. 0α  and 0β  are the 

priors used in the MCMC iterations for estimating the value of λ .  
DIC is calculated as the difference in twice the mean of the deviance and the deviance of the 

mean. That is, for N  iterations, letting Ni

N

i
/=

1=

* θθ ∑ , we have  

 

*=1

( )
= 2 ( )

N

i
i

D
DIC D

N

θ
θ−

∑

                                              (28) 
Another way to compare the SV and SVJ models is through the MDM test proposed by 

Harvey, Leybourne, and Newbold (1997). The test statistic is calculated by:  

 
2

=1

( 1)
=

1
( / 1)

T

t
t

T
MDM

d d
T

−

−∑

                                            (29) 

where td  is the tht  difference in the errors for the SV and SVJ models and d  is the average 

of the td 's. The advantage of the MDM test over the traditional Diebold-Mariano (DM) test is 

that the former result is robust to autocorrelation and non-normality in the errors. We will 
employ both the absolute dollar errors and the absolute percentage errors to calculate td  for 

both the SV and SVJ models. 
 

Results 
 
We first present the parameter estimates from the MCMC iterative process. We then turn to some 
model diagnostics in order to differentiate between the SV and SVJ models. We employ three 
different testing schemes for the two models and compare the outcomes. We then analyze both 
the in-sample and out-of-sample errors for the two models using the parameter estimates over the 
three products for both puts and calls. We end with an analysis of the hedging performance.  
 
Parameter Estimates and Analysis 
Tables IV, V and VI report the parameter estimates for the three products for both option types 
and models over the sample period from the beginning of 2006 to the end of 2010. We generate 
10,000 samples, the first 5000 of which are discarded as the “burn-in” samples. For each set of 
values the first number is the posterior mean of the parameter estimate for the last 5,000 runs of 
the algorithm. The posterior standard deviation in parentheses follows the mean and finally the 
95% confidence interval. In the following, we present the parameter estimates based on the five 
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model characteristics: auto-correlated pricing errors, stochastic volatility, stochastic cost of carry, 
seasonality, and jump. We generally interpret the parameter estimates based on the SVJ model 
for each product given the better performance of the SVJ model as made clear in the subsequent 
sections.  

Both options and futures exhibit varying degrees of statistically significant and positive 
autocorrelations in pricing errors. A general observation is that the autocorrelation is higher for 
futures than options. One interesting note is that there is asymmetry in pricing errors across 
commodities and option types. Namely, the corn and wheat have higher errors for the puts than 
the calls, while the opposite holds true for soybeans.  

The three parameters for stochastic volatility are the speed of mean reversion,κ , the (scaled 
by κ ) long run mean, V and the volatility of volatility, 3σ . All three parameters are 

statistically significant at the 0.05 level for the three products, indicating the presence of mean 
reversion in the latent volatility process. As for κ , we convert it into the half time to gain 
insight into how fast the volatility reverts to its long-run mean. The average half-times of calls 
and puts are 292, 90, 134 days for corn, soybeans and wheat, respectively. In particular, soybean 
volatility shows a half time ranging from 36 to 127 days, which exceeds the value (33 days) 
found in Geman and Nguyen (2005). Two reasons contribute to this difference: soybean futures 
prices are more volatile (a standard deviation of 2.27) in our sample than in Geman and 
Nguyen’s sample (a standard deviation of 0.94 for the most volatile contract during the 
1993-1999 period) ; it takes longer time to settle back to the long run mean during a more 
volatile period than otherwise. The long run means of volatility (square root of κ/V ) for corn, 
soybeans and wheat are 42.44%, 30.03%, and 38.25%, respectively. The levels are relatively 
high, yet consistent with the volatile nature of the sample period. Last, the volatility of volatility 
( 3σ ) estimates are significant for all products, lending evidence for stochastic, instead of 

deterministic volatility. 
We find an insignificant correlation between the spot price and the cost of carry (12ρ ) for all 

three products. However, the correlation between the spot price and the volatility process is 
mostly positive and statistically significant. In particular, our results for soybeans are consistent 
with the findings in Geman and Nguyen (2005) and Richter and Sorensen (2003). The intuition 
behind such results is that the price increase exacerbates the uncertainty in the agricultural 
markets. 

We examine the term structure of the cost of carry through the parameters α  and γ , for 
which we find statistically significant and positive values for all products. As the variance of cost 
of carry, 2σ , is a decreasing function of time to maturity, positive α  and γ  provide direct 

evidence for the Samuelson hypothesis: the variability of futures prices increases as the futures 
contract moves toward its expiration date. The result is in alignment with Kalev and Duong 
(2008). 

The seasonal nature of the spot price is modeled using a periodic function composed of η  
and ϕ . The former quantifies the magnitude of the seasonality while the latter measures the 
periodicity. All of the estimates for η  are significant. This result is consistent with Sorensen 
(2002) and Richter and Sorensen (2003) which both provide strong evidence of spot price 
seasonality in corn, soybean, and wheat markets. In a related note, Pereira, Ribeiro, and Securato 
(2012) provide evidence of seasonality in the spot price return for the Brazilian sugar market. 

The values of the jump intensity,λ , vary across the products. There are around 13 (based on 
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call options) and 5 (based on put options) jumps a year on average in corn futures during the 
sample period. The negative value of xµ  shows that the size of downward jumps is larger than 

that of upward jumps on average. More frequent jumps are seen in the soybean futures: 16 for 
puts and 100 for calls. The latter is positive jumps dominating the former. This finding is largely 
consistent with Hilliard and Reis (1999) who find 40 positive jumps annually in the soybean 
market. Like for soybean futures, we find relatively more frequent jumps: 11 for calls and 116 
for puts. Koekkebakker and Lien (2004) report statistically significant, but rarer (less than 10), 
jumps for wheat futures and options based on the relatively tranquil period of 1989 through 
1994.   

To sum up, we find it necessary to include autocorrelation in pricing errors for both futures 
and options. Our MCMC-based parameter estimates are generally consistent among all three 
commodities. A varying degree of mean reversion is seen in all models and products. The 
long-run means of the latent volatility estimated from options data is high and consistent with the 
high standard deviations of futures prices during the sample period. Clear evidence is found for 
the Samuelson effect and seasonality. Jumps are observed across all three commodities during 
the sample period. 

 
Parameter Comparison between Ag and Non-Ag Models 
We now relate our findings to other non-ag markets, including both commodities and financial 
assets, to illuminate some of the similarities and differences among them. In the interest of space, 
we focus our comparison on two most methodologically related papers, namely Trolle and 
Schwartz (2009) and Eraker (2004).  

Regarding non-ag commodities, we find more similarities than differences relative to Trolle 
and Schwartz’s (2009) findings for the NYMEX crude oil futures and options. They provide 
strong evidence for the presence of stochastic mean-reverting volatility and stochastic 
time-dependent cost of carry in energy commodities, as we do for agricultural commodities. The 
difference lies in the speed of mean reversion in stochastic volatility: NYMEX crude oil 
volatility exhibits (around 4 times) faster mean reversion than do volatilities of corn, soybeans 

and wheat. Our parameter estimate for 12ρ  is consistent with Trolle and Schwartz (2009) which 
report a negative correlation for the spot price and cost of carry. They also report positive 
significant values for α  and γ . This result also lends support for the Samuelson hypothesis in 
the crude oil market. For the correlation parameters, they found consistently negative correlation 
among all processes. They find moderately persistent to very highly mean reverting behavior in 
the volatility process. We general find persistent volatility in our runs with most half-times 
taking more than 90 days. 

For a comparison with the financial securities markets, Eraker (2004) documents significant 
mean reverting behavior of stochastic volatility in the S&P 500 index, which has been shown in 
the previous section for the three grain commodities. Another well-known feature for stock 
returns is the leverage effect, negative correlation between returns and latent volatility. It 
contrasts the positive correlation in agricultural commodities. For the jump component, Eraker 
reports much fewer jumps in a year in that his estimates indicate less than one jump per year. His 
results also consistently point to negative jumps in the security price. The differences in the 
parameter values can be partially attributed to the time horizons over which the data was taken. 
Eraker uses S&P 500 data from January 1st, 1987 to December 31st, 1990. This sample includes 
the notorious “Black Monday” of October 19th, 1987. It is unclear how the estimates would 
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change if this one observation were taken out. Our data covers a time period of drastic change in 
price, although not as dramatic as for the Black Monday. Another factor that contributes to the 
difference in jumps between financial and agricultural commodity markets is that the uncertainty 
in grain products often corresponds to an upward jump in the grain prices, whereas the opposite 
is true for financial assets. However, the exact reason for the difference between financial and 
agricultural markets warrants further study.    

 
Model Diagnostic Results 
We present three diagnostics to evaluate the fit of the SV and SVJ models to the observed futures 
and options data, namely the Bayes factor, the DIC and the MDM test statistic as detailed in the 
methodology section. We discuss the three diagnostics in the following.  

Table VII reports the Bayes factor for all six products.  Using the scale originally 
formulated in Jeffreys (1961), we see that there is substantial evidence that the SVJ model is 
superior to the SV model for corn calls. The soybean calls factor number provides strong 
evidence in support of the SVJ model. The values for all other products provide decisive 
evidence that the SVJ model is superior to the SV model. 

Table VIII shows the values of the DIC for both the SV and SVJ for the 2006-2010 options 
data for the three commodities. The deviance information criterion (DIC) measures the 
hierarchical structure of models. Models with more parameters get penalized ensuring that, all 
else being equal, the model with the fewest parameters returns a lower DIC number. The lower 
the DIC the better fit the model. The relatively lower DIC values for both soybean and wheat 
options (calls and puts) provide evidence in support of the SVJ model. The result for the corn 
call is ambiguous with mild support for the SV model.   

 Table IX presents the results of the MDM test for the three commodities. Under the 
“Dollar” column, MDM is calculated as the difference in the dollar errors between the SVJ and 

SV model. Under the “Percentage” column, MDM is calculated as the difference in the 
percentage errors between the SVJ and SV models. We subtract the value of the SV model from 

the SVJ model. A negative value shows smaller errors for the SVJ model relative to the SV 
model. Clearly, the MDM test provides strong evidence in favor of the SVJ model over the SV. 

    
Pricing Error Analysis 
Pricing performance is analyzed by calculating the mean and standard deviation of the difference 
between empirical and model prices using the absolute dollar error and the absolute percentage 
error. The absolute dollar error is calculated as  

|| ,, tEmptTheo PP −  

with tTheoP ,  being the theoretical model price at time t  and tEmpP ,  the empirically observed 

price at time t . The absolute percentage error is calculated as  

.
||

,

,,

tEmp

tEmptTheo

P

PP −
 

The theoretical price for the options requires the inputs of model parameters and a vector of 
variances tV . In the model analysis that follows, the “in-sample" data set is the most 

near-the-money options and their underlying futures that are used to run the MCMC parameter 
estimation. The “out-of-sample" data set is all the out-of-the-money options due to their 
dominant trading volumes as mentioned in the data section. We perform pricing error analysis 
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for the at-the-money options that are used for the MCMC estimation (in-sample analysis) and for 
out-of-the-money options (out-of-sample analysis). We use parameter estimates reported in 
Tables IV - V and the average of volatility estimates tV  in the last 5000 iterations to compute 

the theoretical prices of in-sample and out-of-sample options. 
Table X presents the average in-sample errors for the SV and SVJ models for corn, soybeans 

and wheat options. We emphasize the pricing errors in absolute terms in all the subsequent 
analysis because the signed errors may be a biased indicator if positive errors are offset by 
negative errors. The SVJ model produces low percentage pricing errors between 3.62% and 
17.54% for calls, and between 19.88% and 23.31% for puts. The corresponding dollar amounts 
are all less than 17 cents. The SV model, on the other hand, generates percentage errors that are 
all greater than 7% and reach the level as high as 25%. The SVJ model has a lower mean for 
both the dollar and percentage errors than the SV model with the only exception being the 
soybean calls which have a slightly lower error (with statistically indistinguishable difference) in 
the SV than the SVJ.  

Figure 1 presents the graphs of the in-sample call errors over the years 2006 to 2010 while 
Figure 2 presents the put in-sample errors. In the graphs of the errors, the solid line is the SVJ's 
errors while the dotted line is of the SV model. The graphs of the in-sample error show that most 
of the time the SVJ's errors are below those errors of the SV model. There are times, however, 
that the SVJ's errors, especially are indistinguishable from or greater than the SV’s errors. On the 
whole, the SVJ in-sample errors are smaller than the SV errors as evident from Table VIII. 

As for the out-of-sample analysis, we price the OTM options using the NTM-based MCMC 
estimates and calculate the absolute dollar errors. We then separate the errors according to time 
to maturity and moneyness. Table XI presents the results of the out-of-sample call and put errors. 
For the out-of-sample put errors, we find that the SVJ dollar errors are consistently smaller than 
the SV dollar errors with 3 exceptions out of 30 cominations of maturity and moneyness. The 
same conclusion largely holds true for the out-of-sample call errors with slightly more 
exceptions. A further look into the overall results at the bottom panel of Table XI reveals that the 
average pricing errors for the SVJ model are smaller than for the SV model. Options with shorter 
maturities (less than 3 months) are generally priced with smaller errors by the SVJ model than by 
the SV model as found in stock index options (Bakshi, Cao and Chen 1997).  

  
Hedging Performance 
We implement a simple delta hedge strategy to compare the performance of SV and SVJ models. 
Hedging performance for calls will be analyzed using  

 tCtt FC ⋅∆−Π =  
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For puts, hedging performance will be analyzed using  
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Table XII presents the value of the in-sample hedging analysis for the three commodities.5 In 
five out of the six cases, the SVJ model generates lower hedging errors than the SV model 
indicating that the former provides a more stable hedging performance. The only exception is 
with wheat calls, in which the average error for the SVJ model is 7 cents larger than that for the 
SV model. The SVJ model provides better hedging stability than does the SV model. Both 
pricing and hedging errors largely support the notion that the SVJ model is a better fit to the 
three agricultural commodities futures and options data than the SV model. 
 

Conclusion 
 
Stochastic volatility, jumps, price seasonality and stochastic cost of carry have been accepted as 
essential features of agricultural commodities futures markets. Although the four characteristics 
have been separately considered in agricultural commodity derivatives pricing literature, there 
has yet to be an attempt to model all of them collectively. We try to fill this gap by proposing a 
comprehensive model for pricing and hedging agricultural commodities with a focus on the 
major grains in the US, namely corn, soybeans and wheat.  

Following Eraker (2004), we choose the Markov Chain Monte Carlo (MCMC) approach to 
estimate our model that includes sixteen parameters and six unobserved state variables. The 
Gibbs sampling method enables us to monitor the speed of convergence of each parameter. With 
the DWW algorithm, we further improve the sampling efficiency and speed. An alternative 
method commonly seen in the financial options pricing literature is maximum likelihood 
estimation (MLE) with Kalman filtering (Carr and Wu, 2007; Bakshi, Carr and Wu, 2008). The 
number of parameters and state variables therein is significantly smaller than that in our model. 
Fast Fourier Transform (FFT) can be applied to speed up the computation of financial options 
prices. We would face both challenges in the estimation of the proposed agricultural commodity 
model if MLE were implemented. 

To evaluate the overall fitness of the SV and SVJ models, we conduct such diagnostic tests 
as BIC, DIC, and MDM. On the whole, these tests indicate that the SVJ model outperforms the 
SV model meaning that the addition of a stochastic jump term in the spot price equation is 
significant.  

We also perform detailed pricing error analyses along with in-sample hedging error analysis 
for the SV and SVJ models. For pricing error analysis, we compute both the in-sample and 
out-of-sample errors. We find that both the in-sample and out-of-sample errors for the SVJ 
model are generally smaller than those for the SV model. The in-sample hedging errors for the 
SVJ model are of smaller magnitude than those for the SV model. This implies that the SVJ 
model also provides more stability than the SV model in terms of delta hedge. Both pricing and 
hedging errors largely support the notion that the SVJ model is a better fit to the three 
agricultural commodities futures and options data than the SV model. 

Our findings imply that agricultural commodities prices exhibit the jump phenomenon 
previously found in other commodities markets and in equites. All of our diagsnotic tools 
indicate the inclusion of a jump term in the stochastic pricing process produces much better fits 

                                                 
5 We also performed the out-of-sample delta-hedging analysis. The dollar pricing errors for both the SV and SVJ 
models are indistinguishable and large, which indicates the simple delta hedge is not suited for the models with 
stochastic volatility and/or jumps. One may consider testing more sophisticated hedging schemes, such as 
delta-gamma-vega hedge. To make a perfect hedging mechanism is not the purpose of the paper. We leave it for 
future research. 



15 
 

to the empircal pricing data than without the jump term. For example, when we apply our model 
to the pricing of in-sample corn options, the SVJ model generates about 50% the errror of the SV 
model. The SVJ percentage errors are lower than the SV percentage errors for soybeans and 
wheat as well indicating that the SVJ model is a better fit to the data across agricultural products. 
Therefore, when pricing agricultural commodity options, having a jump term to model the spot 
price process is essential. 

Accuracy of options and futures pricing is relevant to agricultural businesses (buyers) and 
market makers/dealers (sellers). Our comprehensive SVJ model prices options better than the SV 
model. For instance, the at-the-money corn calls had a pricing error of 2.53 cents for the SV 
model and an error of 1.16 cents for the SVJ model. This is a difference of 1.37 cents. For 
soybean puts the SV model has a pricing error of 21.52 cents and the SVJ model has an error of 
14.65 cents. This is a difference of 6.87 cents. This difference has an effect on a grain elevator's 
bottom line because this small difference has a magnified affect when millions of bushels are 
bought and sold. 

Further study in the pricing of agricultural futures and options could include yet a second 
jump term in the volatility equation. This jump term could be correlated to the jump term in the 
spot price model analogous to the models proposed by Duffie, Pan and Singleton (2000) and 
Eraker (2004). In addition to this second jump term, one could study the correlation between 
options with the same expiry but different strikes. What we have found in this paper is that the 
inclusion of a jump term in the spot price, in addition to modeling the seasonality, stochastic 
volatility, and term structure of the cost of carry, is necessary in order to realistically model the 
futures price. Also, a further study could add in a seasonality component for the latent volatility 
process. 
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A.2  Proof of Proposition 1. 
 
Proposition 1 Under the risk-neutral measure, Q , there cannot exist any arbitrage. 

Therefore, the drift term in Equation (2) is given by  

 .),(),()(=),( 21122 












 +− ∫ duutTttVTt

T

t
σσρσµ  

The drift term in Itô's Lemma is all terms with an associated dt . Therefore,  

 dttVduutduutduut
T

t

T

t

T

t 
















 +




+ ∫∫∫ )(),(),(

2

1
),( 2112

2

2 σσρσµ  

is the drift term. Under the assumption of no arbitrage, we assume the drift term is 0. Then, we 
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 Now we take the derivative with respect to T  (via F.T.C.) to get the following:  
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A.3  Proof of Proposition 2. 
 We have,  
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 Finally, after finding out how to get )()( 2 tdWtV  we have the following:  
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A.4  Proof of Proposition 3. 
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A.5  Proof of Proposition 4. 
 To evaluate )(, yG ba , note that its Fourier transform is given by  
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Table I: Descriptive Statistics 
This table reports the first four moments, minimum, and maximum for the futures price and 

at-the-money options price for corn, soybeans and wheat for the years from 2006 to 2010. 
 

 Mean Std. Dev Skewness Kurtosis Min. Max. 
Corn 

Futures 4.0905  1.1031  0.8271  3.6464  2.3550  7.8800  
Calls 0.3713 0.2045 0.7122 2.8937 0.0399 1.3294 
Puts 0.4086 0.2112 0.5658 2.5154 0.0426 1.0079 

Soybeans 
Futures 9.3809 2.2717 0.3857 2.9851 5.3850 16.3100 
Calls 0.7460  0.4416  1.1454  8.2739  0.0626  4.9169  
Puts 0.8439 0.4482 0.4822 2.2665 0.0676 2.1216 

Wheat 
Futures 6.1723 1.6887 0.7672 3.0542 3.6600 12.5750 
Calls 0.5388 0.3497 1.8796 9.7021 0.0507 3.3243 
Puts 0.6657  0.4382  1.9916  9.4397  0.0593  4.0337  

 
 

Table II: Parameter Estimates for the Black Model 
This table reports the parameter estimates for the Black model for corn, soybeans  and wheat for the 
years from 2006 to 2010. The standard deviation is in parenetheses and follows the mean. 
 

Calls  Corn  0.3177     (0.0959) 
    Soybean 0.2714  (0.1072) 
    Wheat  0.3268       (0.1043) 
 

Puts  Corn   0.2934     (0.1779) 
    Soybean  0.3257      (0.0776) 
    Wheat   0.3721     (0.0640) 
 
 

Table III: Total Option Volume 
This table reports the total option volume in 1000s for the in-the-money (ITM), near-the-money (NTM), 
and out-of-the-money (OTM) options for the years from 2006 to 2010. 
   CALLS PUTS 

ITM NTM OTM ITM NTM OTM 
Corn 3252 1213 13879 2740 978 9998 
Soybeans 958 487 5515 435 443 3938 
Wheat 523 222 2224 297 228 1606 
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Table IV: Parameter Estimates for Corn 
This table reports means, standard deviations (in parenthesis) and 95% confidence intervals (in square 
brackets) of parameter estimates in the stochastic volatility (SV) and stochastic volatility with jumps (SVJ) 
models. Parameters are estimated by applying the MCMC method to the years from 2006 to 2010 
at-the-money corn data. 

SV SVJ 
Parameter Calls Puts Calls Puts 

V  
 

0.0310  0.6313  0.0388  0.8549  

 (0.0190) (0.2110) (0.0250) (0.2270) 

 [0.0305,0.0315] [0.6255,0.6372] [0.0381,0.0395] [0.8486,0.8611] 

κ  
 

0.2980  2.1270  0.3917  3.2170  

 (0.2390) (1.2720) (0.2250) (1.1800) 

 [0.2914,0.3046] [2.0918,2.1623] [0.3855,0.3979] [3.1843,3.2498] 

12ρ  
 

0.0577  0.0010  -0.0047 0.0097  

 (0.5530) (0.5860) (0.2500) (0.5760) 

 [0.0424,0.0730] [-0.0152,0.0173] [-0.0117,0.0022] [-0.0062,0.0257] 

13ρ  
 

-0.0002 0.0035  -0.0007 0.0108  

 (0.0300) (0.0630) (0.0310) (0.1170) 

 [0.0011,0.0006] [0.0017,0.0052] [-0.0016,0.0002] [0.0075,0.0140] 

3σ  
 

0.0301  1.0645  0.0311  1.3615  

 (0.0010) (0.1660) (0.0010) (0.2510) 

 [0.0301,0.0301] [1.0598,1.0691] [0.0311,0.0312] [1.3545,1.3684] 
       α  0.4863  0.5231  0.4946  0.5050  

 (0.2870) (0.2840) (0.2890) (0.2890) 

 [0.4784,0.4943] [0.5152,0.5310] [0.4866,0.5026] [0.4970,0.5131] 
γ  

 

7.1537  7.5510  6.9250  7.5115  

 (4.3490) (4.3480) (4.4340) (4.3820) 

 [7.0332,7.2743] [7.4304,7.6715] [6.8020,7.0479] [7.3900,7.6329] 
η  

 

0.0105  0.2120  0.0081  0.3041  

 (0.0140) (0.2110) (0.0070) (0.2750) 

 [0.0101,0.0109] [0.2061,0.2179] [0.0079,0.0083] [0.2965,0.3117] 
ϕ  

 

0.0771  0.0040  -0.0254 -0.0144 

 (0.2930) (0.2940) (0.2980) (0.2880) 

 [0.0690,0.0852] [-0.0042,0.0121] [-0.0337,-0.0172] [-0.0224,-0.0064] 

Cσ  
 

0.0431  0.0596  0.0412  0.0591  

 (0.0010) (0.0020) (0.0010) (0.0270) 

 [0.0431,0.0432] [0.0595,0.0596] [0.0412,0.0412] [0.0584,0.0599] 

Cρ  
 

0.8838  0.8155  0.7967  0.7656  

 (0.0210) (0.0530) (0.0140) (0.0430) 
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 [0.8832,0.8843] [0.8140,0.8170] [0.7963,0.7971] [0.7644,0.7668] 

Fσ  
 

0.0607  0.1100  0.2007  0.0953  

 (0.0040) (0.0190) (0.0130) (0.0300) 

 [0.0606,0.0608] [0.1095,0.1105] [0.2004,0.2011] [0.0945,0.0961] 

Fρ  
 

0.9946  0.9741  0.9642  0.9916  

 (0.0030) (0.0090) (0.0080) (0.0060) 

 [0.9945,0.9946] [0.9739,0.9744] [0.9640,0.9645] [0.9914,0.9917] 

xµ  
 

-0.1579 -0.0364 

 (0.0760) (0.1310) 

 [-0.1600,-0.1558] [-0.0401,-0.0328] 

xσ  
 

0.6925  0.5059  

 (0.0540) (0.2030) 

 [0.6910,0.6940] [0.5003,0.5115] 
λ  

 

0.0519  0.0207  

 (0.0070) (0.0280) 

 [0.0517,0.0521] [0.0199,0.0214] 
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 Table V: Parameter Estimates for Soybeans 
This table reports means, standard deviations (in parenthesis) and 95% confidence intervals (in square 
brackets) of parameter estimates in the stochastic volatility (SV) and stochastic volatility with jumps 
(SVJ) models. Parameters are estimated by applying the MCMC method to the 2006 to 2010 
at-the-money soybean data. 

SV SVJ 
Parameter Calls Puts Calls Puts 

V  
 

0.2688 0.1869 0.2398 0.0358 
(0.0080) (0.0480) (0.0150) (0.0468) 

 [0.2685,0.2690] [0.1856,0.1882] [0.2394,0.2403] [0.0345,0.0371] 
κ  1.9959 1.3744 1.8021 3.5420 

(0.0570) (0.3370) (0.1010) (0.5938) 

 [1.9943,1.9974] [1.3651,1.3838] [1.7993,1.8049] [3.5255,3.5585] 

12ρ  -0.0128 -0.0092 -0.0111 0.0139 

 (0.5770) (0.5600) (0.5460) (0.5961) 

 [-0.0287,0.0032] [-0.0247,0.0063] [-0.0262,0.0041] [-0.0026,0.0305] 

13ρ  -0.0006 0.0001 -0.0012 -0.9983 

 (0.0290) (0.0300) (0.0310) (0.0017) 

 [-0.0014,0.0002] [-0.0008,0.0009] [-0.0021,-0.0003] [-0.9983,-0.9982] 

3σ  0.0295 0.0300 0.0293 0.1000 

 (0.0010) (0.0010) (0.0010) 0.0000  

 [0.0295,0.0295] [0.0299,0.0300] [0.0293,0.0294] [0.1000,0.1000] 
α  0.5064 0.4927 0.5160 0.4988 

 (0.3000) (0.2890) (0.2890) (0.2935) 

 [0.4981,0.5147] [0.4847,0.5007] [0.5080,0.5240] [0.4906,0.5069] 
γ  7.3937 7.5040 7.7428 7.6367 

 (4.3290) (4.2970) (4.3380) (4.3452) 

 [7.2737,7.5137] [7.3848,7.6231] [7.6225,7.8630] [7.5163,7.7572] 
η  0.0638 0.0093 0.0100 0.3717 

 (0.1140) (0.0110) (0.0090) (0.2467) 

 [0.0607,0.0670] [0.0091,0.0096] [0.0097,0.0103] [0.3649,0.3785] 
ϕ  0.0252 0.0030 -0.0180 -0.0143 

 (0.2980) (0.2840) (0.2920) (0.2848) 

 [0.0170,0.0335] [-0.0049,0.0109] [-0.0261,-0.0099] [-0.0222,-0.0064] 

Cσ  0.0617 0.1687 0.0629 0.1352 

 (0.0030) (0.0040) (0.0030) (0.3335) 

 [0.0616,0.0617] [0.1686,0.1689] [0.0628,0.0630] [0.1259,0.1444] 

Cρ  0.9659 0.7042 0.9679 0.8206 

 (0.0080) (0.0350) (0.0080) (0.0589) 

 [0.9657,0.9661] [0.7033,0.7052] [0.9677,0.9681] [0.8190,0.8222] 

Fσ  0.1085 0.1102 0.2206 0.1113 

 (0.0100) (0.0060) (0.0240) (0.0133) 
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 [0.1082,0.1087] [0.1101,0.1104] [0.2199,0.2212] [0.1110,0.1117] 

Fρ  0.9960 0.9960 0.9872 0.9955 

 (0.0020) (0.0020) (0.0050) (0.0027) 

 [0.9960,0.9961] [0.9959,0.9960] [0.9870,0.9873] [0.9955,0.9956] 

xµ  -0.2863 0.2961 

 (0.0690) (0.0726) 

 [-0.2882,-0.2844] [0.2941,0.2981] 

xσ  0.5731 1.2733 

 (0.0640) (0.0585) 

 [0.5713,0.5749] [1.2717,1.2749] 
λ  0.0639 0.3891 

 (0.0070) (0.0409) 

 [0.0637,0.0641] [0.3879,0.3902] 
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Table VI: Parameter Estimates for Wheat 
 

This table reports means, standard deviations (in parenthesis) and 95% confidence intervals (in square 
brackets) of parameter estimates in the stochastic volatility (SV) and stochastic volatility with jumps 

(SVJ) models. Parameters are estimated by applying the MCMC method to the 2006 to 2010  
at-the-money wheat data. 

 SV SVJ 
Parameter Calls Puts Calls Puts 

        V  
 

0.3800  0.1322  0.1894  2.0988  

 (0.1440) (0.0820) (0.0530) (0.5990) 

 [0.3760,0.3840] [0.1299,0.1345] [0.1879,0.1908] [2.0822,2.1154] 
κ  

 

1.7260  0.6986  0.9524  64.8063  

 (0.9620) (0.4390) (0.4230) (19.1630) 

 [1.6993,1.7527] [0.6864,0.7108] [0.9407,0.9641] [64.2751,65.3376] 

12ρ  
 

0.0222  -0.0227 -0.0043 (0.0139) 

 (0.5760) (0.5660) (0.5680) (0.5760) 

 [0.0062,0.0382] [-0.0384,-0.0070] [-0.0200,0.0115] [-0.0299,0.0021] 

13ρ  
 

-0.0039 -0.0003 0.0077  -0.9970 

 (0.0460) (0.0300) (0.0460) (0.0090) 

 [-0.0051,-0.0026] [-0.0011,0.0005] [0.0064,0.0090] [-0.9973,-0.9968] 

3σ  
 

0.9961  0.0299  1.3582  0.1000  

 (0.0920) (0.0010) (0.0980) 0.0000  

 [0.9935,0.9987] [0.0299,0.0299] [1.3554,1.3609] [0.1000,0.1000] 
      α  0.5011  0.5129  0.4965  0.4978  

 (0.2920) (0.2880) (0.2850) (0.2910) 

 [0.4930,0.5092] [0.5049,0.5209] [0.4886,0.5044] [0.4897,0.5058] 
γ  

 

7.5949  7.4854  7.4277  7.9799  

 (4.2430) (4.3670) (4.3020) (4.1650) 

 [7.4773,7.7126] [7.3643,7.6065] [7.3084,7.5469] [7.8644,8.0953] 
η  

 

0.1277  0.0101  0.2365  0.4979  

 (0.1860) (0.0240) (0.2450) (0.3030) 

 [0.1225,0.1328] [0.0094,0.0108] [0.2297,0.2433] [0.4895,0.5063] 
ϕ  

 

0.0124  0.0120  0.0165  0.0801  

 (0.2880) (0.2850) (0.2970) (0.2930) 

 [0.0044,0.0204] [0.0041,0.0199] [0.0083,0.0248] [0.0719,0.0882] 

Cσ  
 

0.0934  0.3388  0.0836  0.3111  

 (0.0060) (0.0070) (0.0850) (0.0070) 

 [0.0932,0.0936] [0.3386,0.3390] [0.0812,0.0860] [0.3109,0.3113] 

Cρ  
 

0.4542  0.2964  0.2430  0.3161  

 (0.1300) (0.0480) (0.1200) (0.0450) 

 [0.4506,0.4578] [0.2951,0.2978] [0.2397,0.2463] [0.3149,0.3174] 
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Fσ  
 

0.1128  0.1494  0.3336  0.3249  

 (0.0770) (0.0170) (0.0180) (0.0540) 

 [0.1107,0.1150] [0.1489,0.1499] [0.3331,0.3340] [0.3234,0.3264] 

Fρ  
 

0.9815  0.9895  0.9140  0.9113  

 (0.0380) (0.0050) (0.0190) (0.0530) 

 [0.9804,0.9825] [0.9893,0.9896] [0.9134,0.9145] [0.9098,0.9127] 
      xµ  -0.2768 -0.1218 
            (0.0890) (0.0410) 

 [-0.2793,-0.2743] [-0.1230,-0.1207] 

xσ  
 

0.9609  1.7434  

 (0.0760) (0.0060) 

 [0.9588,0.9630] [1.7432,1.7436] 
λ  

 

0.0643  0.4597  

 (0.0080) (0.0190) 

 [0.0641,0.0645] [0.4592,0.4602] 
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Table VII: Bayes Factors 
This table reports the calculated Bayes factors for corn, soybeans and wheat for the years 2006 to 2010. 
The Bayes factors are the odds ratios of the SVJ vs. SV models. A higher Bayes factor favors the SVJ 
model. 

  Corn Soybeans Wheat 
Calls 4.3588  10.9091 ∞ 
Puts ∞ ∞ ∞ 

 
 

Table VIII: Deviance Information Criterion (DIC) 
This table presents the DIC for corn, soybeans and wheat for the years from 2006 to 2010. The DIC 
values are reported for the SV and SVJ models. 

Corn  Soybeans  Wheat 
SV SVJ SV SVJ SV SVJ 

Calls 1839 1842 2738 2431 232 288 

Puts 2172 1464 2548 2090 2147 999 
 
 

Table IX:  Modified Diebold-Mariano (MDM) Test 
This table presents the results of the MDM test. The test is the difference in pricing errors between the SV 
and SVJ models. The negative values indicate that the SVJ model produces smaller errors than does the 
SV model. 

  Corn  Soybeans  Wheat 
    Dollar    Percentage   Dollar    Percentage   Dollar    Percentage 

Calls -25.8579   -21.1318  -0.3460  -10.7981  -21.1420  -18.0441 
Puts -13.7040  -8.2437  -10.8351  -6.6331  -1.8293  -4.2181 
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Table X: In-Sample Dollar and Percentage Option Pricing Errors 
This table presents the in-sample pricing errors for corn, soybeans and wheat options. At-the-money 
options from 2006 to 2010 are used for estimation. “Dollar errors” are defined as the absolute 
difference between the theoretical model and empirically observed option prices. The “percentage” 
errors are defined as the Dollar errors divided by the observed options price. The first row for each 
product is in absolute terms whereas the second row is with (positive/negative) signs.  
  SV  SVJ 
  Dollar Percentage Dollar Percentage 

Corn 
Calls  0.0253 0.07 0.0116 0.0362 

-0.0185 -0.0402 -0.0105 -0.0383 
Puts 0.0812 0.2253 0.0626 0.1988 
  -0.0671 -0.2236 -0.0472 -0.2417 

Soybeans 
Calls 0.1029 0.1702 0.1031 0.1754 

-0.08 -0.1484 -0.0864 -0.1574 
Puts 0.2152 0.257 0.1465 0.2092 
  -0.2029 -0.1996 -0.1424 -0.2124 

Wheat 
Calls 0.0544 0.1363 0.0307 0.0769 

-0.088 -0.2014 -0.0738 -0.1509 
Puts 0.1713 0.2504 0.1677 0.2331 

-0.3097 -0.2307 -0.2817 -0.2181 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



34 
 

Table XI: Out-of-Sample Dollar Errors  
This table presents out-of-sample dollar errors for corn, soybeans and wheat put options 
based on time to maturity and moneyness. “Out-of-sample” observations are those options 
contracts which are not at-the-money during the sample period of 2006-2010. “#” denotes the 
number of options. “Dollar errors”, abbreviated as “Dol”, are defined as the absolute 
difference between the theoretical model and empirically observed option prices. 

                               Moneyness     
                    
Product PUT CALL 
Maturity                    <0.90 0.90-1.0 1.0-1.1 >1.1 

< 1 m       Corn # 748 590 550 789 
SV Dol 1.02 2.51E-01 3.13E-02 1.10E-02 

SVJ Dol 1.02 2.41E-01 3.12E-02 8.92E-03 
Soybean # 551 672 610 840 

SV Dol 1.78 4.97E-01 6.34E-02 1.71E-02 
SVJ Do 1.73 4.15E-01 6.38E-02 1.54E-02 
Wheat # 403 498 512 764 
SV Dol 1.06 3.68E-01 3.45E-01 1.37E-01 

SVJ Dol 1.04 3.67E-01 3.49E-01 1.39E-01 
1-2 m         Corn # 1203 677 662 1764 

SV Dol 1.08 2.36E-01 5.47E-02 2.09E-02 
SVJ Dol 1.08 2.27E-01 5.48E-02 1.70E-02 

Soybean # 734 713 650 1348 
SV Dol 2.01 4.70E-01 5.93E-02 2.49E-02 

SVJ Dol 1.91 4.00E-01 6.16E-02 2.08E-02 
Wheat # 825 574 585 1259 
SV Dol 1.17 5.85E-01 3.31E-01 1.64E-01 

SVJ Dol 1.19 5.86E-01 3.35E-01 1.69E-01 
2-3 m        Corn # 982 412 431 1841 

SV Dol 1.08 2.44E-01 3.58E-02 2.13E-02 
SVJ Dol 1.07 2.25E-01 3.59E-02 1.38E-02 

Soybean # 791 464 464 1416 
SV Dol 2.23 5.02E-01 8.22E-02 4.27E-02 

SVJ Dol 2.08 4.01E-01 8.39E-02 3.56E-02 
Wheat # 825 488 482 1212 
SV Dol 1.23 6.42E-01 3.42E-01 1.52E-01 

SVJ Dol 1.23 6.28E-01 3.29E-01 1.45E-01 
3-6 m        Corn # 3023 1321 1350 6196 

SV Dol 1.24 2.80E-01 5.13E-02 3.36E-02 
SVJ Dol 1.21 2.49E-01 5.06E-02 2.34E-02 

Soybean # 2979 1207 1235 3768 
SV Dol 2.73 6.21E-01 9.79E-02 6.81E-02 

SVJ Dol 2.48 3.95E-01 9.82E-02 5.81E-02 
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Wheat # 2035 1052 1203 3406 
SV Dol 1.12 3.39E-01 3.04E-01 1.52E-02 

SVJ Dol 1.1 3.47E-01 2.94E-01 1.44E-02 
>6 m        Corm # 6037 2340 2397 9565 

SV Dol 1.02 2.07E-01 4.60E-02 4.98E-02 
SVJ Dol 9.90E-01 1.71E-01 3.94E-02 3.46E-02 

Soybean # 4243 1751 1614 5509 
SV Dol 2.24 5.49E-01 1.60E-01 8.84E-02 

SVJ Dol 1.96 3.65E-01 1.69E-01 8.73E-02 
Wheat # 1210 521 585 2335 
SV Dol 1.58 2.32E-01 2.60E-01 1.82E-01 

SVJ Dol 1.47 2.18E-01 2.46E-01 1.95E-01 
All            Corn# 11993 5342 5390 20155 

SV Dol 1.09 2.44E-01 4.38E-02 2.73E-02 
SVJ Dol 1.07 2.23E-01 4.24E-02 1.95E-02 

Soybean # 9298 4807 4573 12881 
SV Dol 2.2 5.28E-01 9.26E-02 4.82E-02 

SVJ Dol 2.03 3.95E-01 9.54E-02 4.34E-02 
Wheat # 5298 3133 3367 8976 
SV Dol 1.23 4.33E-01 3.16E-01 1.57E-01 

SVJ Dol 1.21 4.29E-01 3.11E-01 1.58E-01 
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Table XII: In-Sample Hedging Performance 
This table presents the in-sample hedging performance of the SV and SVJ models for corn, soybeans and 
wheat options. The at-the-money options and futures data for the years from 2006 to 2010 are employed 
for parameter estimation and in-sample analysis. Values in parantheses are standard deviations. 
                                             Corn                                 
Soybeans                                Wheat 

SV SVJ SV SVJ SV SVJ 
Calls  2.233 2.221 5.012 5.001 3.426 3.4934 

(0.63) (0.63) (1.35) (1.35) (1.06) (1.08) 
Puts -1.4417 -1.4242 -3.3816 -2.865 -1.9487 -1.7466 

(0.43) (0.43) (0.93) (0.91) (0.80) (0.93) 
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Figure 1: In-Sample SV and SVJ Calls Errors 
   

These graphs show the values of the in-sample pricing errors for both the SV and SVJ models for 
corn, soybeans and wheat call options during the sample period of 2006-2010. “Dollar errors” 
are the absolute difference between the theoretical and empirically observed options prices. 
“Percent errors” are the dollar errors divided by the observed options prices.   
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Figure 2: In-Sample SV and SVJ Puts Errors 
   

These graphs show the in-sample pricing errors for the SV and SVJ models for corn, soybeans 
and wheat put options during the sample period of 2006-2010. “Dollar errors” are the absolute 
difference between the theoretical and empirically observed options prices. “Percent errors” are 
the dollar errors divided by the observed options prices.  


