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Adoption of diverse crop rotation: Drivers and implications 

Abstract 

Recent changes in agricultural technologies, commodity prices, and policies have contributed to 

the upward trend in the continuous cultivation of corn and soybeans, particularly in the 

Midwestern U.S.A.  While continuous cultivation may be economically beneficial for producers 

in the short-term, there are concerns about its long term impact on the overall ecosystem health 

and competitiveness of U.S. agriculture. Due to these concerns there is a renewed interest in 

incentivizing adoption and diffusion of diverse crop rotation (DCR), which is growing three or 

more crops in a rotation, particularly among row crop producers. Most of the previous studies on 

adoption of conservation practices focus on no-till and there is an emerging literature on cover 

crops. However, our understanding on the factors influencing or hindering adoption of DCR by 

producers is limited. This study uses survey data collected from South Dakota producers to 

identify the factors influencing producers’ adoption decisions, particularly the role of spatial 

effects in adoption. Our findings demonstrate that the likelihood of adoption of DCR increases 

with increase in the neighborhood adoption rates for the peer group defined within 30 square 

mile radius. Our results suggest that the peer groups and their influence might be at bigger 

geographical areas than we would expect, particularly in sparsely populated areas and care must 

be taken in defining the peer group and leveraging it to scale up the adoption of DCR.  
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Introduction 

Crop rotation systems are characterized by a defined sequence of crops grown on a given 

cultivated land and the associated management practices. Diverse crop rotation, or DCR, refers 

to growing three or more crops in a rotation, particularly among row crop producers. Careful 

selection of a crop rotation system offers the possibility of reducing the trade-off between farm 

profitability and environmental impact by internal nutrient recycling, maintaining the long-term 

productivity of the land, and by breaking weed and disease cycles (Gebermedhin and Schwab 

1998). Economic and environmental importance of crop rotations including pest control of 

weeds, diseases, insects, and nematodes; reducing soil erosion; maintaining soil fertility and 

enhancing productivity, promoting ecosystem services and ecosystem health, and reducing 

production and price risk have been recognized for a long period of time even prior to the 

development of modern farming (Ikerd 1991, Davis et al. 2012, Altieri 1999, Temple et al. 1994, 

Crookston et al. 1991, Lieman and Dyck 1993, Wu and Babcock 1998). Farmers may also 

choose to rotate crops in order to reduce their production risk through diversification or to 

manage scarce resources, such as labor, during planting and harvesting timing. 

There is more recent evidence from agricultural experiment station research on the economic net 

return of crop rotations in the Midwestern United States by increasing soil productivity, reducing 

external inputs, and by increasing yields. Results from stochastic dominance analysis showed 

that crop rotations containing alfalfa have the potential to provide substantial economic net 

returns to farmers while mitigating the risk of herbicide-resistant giant rag weed infestations 

(Golpen et al. 2018). Results from a five year rotation study for 2006-2011, using agricultural 

experimental station data from Iowa State University showed that total energy use in three (corn-

soybean-oats) and four year rotations (corn- soybeans-oats-alfalfa) are substantially lower (1.41 
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BTU and 1.50 BTU, respectively) than the typical two year rotation of corn and soybeans (3.53 

BTU). The study also showed that return to land, labor, and management for three year rotation 

($404.67) was higher than two year rotation ($393.70) (Johanns, Chase, and Liebman 2012). 

Although not conclusive, there is also some evidence on the yield enhancing effect of crop 

rotations (Berzsenyi, Gyorffy, and Lap 2000, Mulik 2015, 2017). To the best of our knowledge, 

there is no study that uses farm survey data to inquire into the determinants of adoption of DCR. 

Despite these economic and environmental benefits, a combination of technological innovations 

in agriculture such as the introduction of genetically modified crops, federal agricultural policies 

such as commodity support programs focusing mainly on five crops (corn, soybean, wheat, rice, 

and cotton) and crop insurance and market assistance programs focusing on limited 

commodities,  biofuel policies supporting the production of a limited number of crops, and high 

market prices for select commodities have contributed to a steep decline in the prevalence of 

diverse crop production systems particularly during the last two decades (Fausti 2015, Fausti et 

al. 2012, Benbrook 2012, Brookes and Barfoot 2013, EPA 2018, Lazarus and Swanson 1983). 

As a result, across the 12 states of the Corn Belt, corn and soybeans account for 70% of the 

planted acreage (Mulik 2015). 

The economic impacts of the reduction in DCR systems include structural changes in the 

agricultural sector where farms are getting bigger and number of farms are declining; rising costs 

of production due to increased reliance on external inputs; disease, pest, and weed resistance 

development; oversupply of select commodities; and overall decline in farm incomes (Wright 

and Wimberly 2013, Lazarus and Swanson 1983, Meehan and Gratton 2016, Benbrook 2012, 

Dill, Jacob, and Padgette 2008, Fausti 2015). The increased reliance on one or two crops raises 

concerns about the long-term sustainability of the agricultural production system where soils are 
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loaded with increasing levels of chemical inputs that create environmental risk in terms of water 

and air quality including conditions such as eutrophication/dead zone in Gulf of Mexico 

(Daturesearch 2014, Mulik 2015, Fausti 2015, Fausti et al. 2012, Meehan et al. 2011).  

It is clear that the private and public benefits of DCR are substantial and that the lack of diverse 

rotations have substantial societal and individual level costs. Due to these economic and 

environmental concerns, there is a renewed interest in incentivizing adoption and diffusion of 

DCR It is clear from a recent meta-analysis study on the adoption of conservation practices in the 

United States that most of the previous studies focus on no-till and there is an emerging literature 

on cover crops (Baumgart-Getz, Prokopy, and Floress 2012b).. Empirical evidence using survey 

data on the rate of adoption of DCR and factors influencing or hindering adoption of this practice 

by producers in the Corn Belt are limited or none. Additionally, although social interactions have 

been shown to be important in technology adoption and diffusion in a variety of contexts(Conley 

and Udry 2010b, Foster and Rosenzweig 1995b, Genius et al. 2014), empirical analysis on the 

role of peer effects in individual decision making on adoption of conservation agriculture 

practices including DCR is limited (Baumgart-Getz, Prokopy, and Floress 2012a). Policy makers 

may be able to leverage peer effects to scale up adoption of DCR where DCR is perceived to be  

more profitable and environmentally more feasible. Using survey data collected from South 

Dakota producers, this study addresses the existing gap in the literature. 

The objectives of the study are three-fold: (i) estimate the adoption rate of DCR in Eastern South 

Dakota; (ii) identify the factors hindering adoption of DCR, and (iii) examine the role of peer 

effects in producers’ adoption of DCR. 
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Data 

The data used in this study was collected from a farm level survey conducted in South Dakota 

during spring 2018. We used the survey to collect information on perception of benefits and 

challenges of farm management practices particularly conservation tillage, cover crops, DCR and 

integrated crop and livestock management systems; years of adoption of these practices; farmer 

demographics; and farm characteristics. The list of eligible survey participants in the state was 

obtained from the Farm Service Agency (FSA). Using FSA as the source for participants list is 

reasonable as most of the farm operations in South Dakota work with FSA programs. We employed 

proportionate stratified-random sampling to select a representative sample of 3,000 farm operators 

in the Eastern part of the state where most of the corn and soybean production occurs. We used 

four rounds to contact survey participants in two week intervals: (i) an invitation letter that 

describes the survey with a link to answer the survey online was sent to all operations selected 

(including a $2 bill incentive in half of the letters to test for the effects on response rates), (ii) a 

hard copy of the survey with return envelopes were sent to those who did not respond to the survey 

online; (iii) a reminder post card was sent to those who did not respond  in round 2; and (iv) a hard 

copy of the survey with return envelopes were sent to remaining non-responders. We received 708 

completed survey responses. Excluding operations that stopped farming or rented out all of their 

land, we had a 30% response rate.  However, 190 of the returned survey responses had P.O. boxes 

as the postal address making it impossible to geocode them for categorizing them into peer groups. 

Figure 1 demonstrates the presence of spatial pattern in the adoption pattern in our sample which 

justifies our focus on peer effects in this study. Table 1 presents the adoption rate of DCR and 

other conservation practices. It is clear from Table 1 that adoption rate of DCR is low (24%) 

compared to the other conservation practices inquired about, such as conservation tillage (77%), 
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cover crops (47%), and integrated crop and livestock management (58%). While adopters of DCR 

are more likely to adopt other conservation practices than non-adopters of DCR, the low adoption 

rate for DCR suggest that the factors influencing producers’ adoption decisions on DCR might be 

different from those of conservation tillage, cover crops, and integrated crop and livestock 

management systems. 

Summary statistics of key demographic variables associated with participants are presented in 

Table 2. It is evident from Table 2 that there are no statistically significant differences in 

demographic characteristics such as age, education, and years of farm operation decision 

making, between adopters and non-adopters. As per Table 2, adopters’ total farm land under 

operation, and acres under pasture are statistically significantly higher than those of non-

adopters. Overall the data in Tables 1 and 2, and Figure 1 suggest the importance of factors 

independent of typical demographic and farm characteristics and that focusing on spatial effects 

in DCR adoption may be important.  

Conceptual framework  

Spatial effects may potentially affect the likelihood of technology adoption independent of other 

social, economic, and institutional factors (Foster and Rosenzweig 1995a, Genius et al. 2014, 

Conley and Udry 2010a, Sampson and Perry 2019). Spatial effects can be conceptualized as two 

types of impacts that influence farmer’s adoption decision through different processes. The first 

type of spatial effects is related to geographic factors such as soil, climate, and topography. The 

observed distributional pattern of farmers’ adoption decision can be explained partially by the 

variations in these factors. We define these exogenous/contextual characteristics commonly 

shared by individuals within a group as spatial heterogeneity effects (Sampson and Perry 2019).  
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The other type of spatial effects refers to the impact of neighbors’ adoption decisions on the focal 

farmer’s adoption decision. Farmers may observe and learn from their neighbors about 

technologies and practices through social interactions that are strongly conditioned by the spatial 

distance between individuals (Festinger, Schachter, and Back 1950, Haynes 1974, Gonzalez, 

Hidalgo, and Barabasi 2008, Sampson and Perry 2019). Therefore, the diffusion of information, 

ideas, and technology may occur within a certain spatial distance. We define these interactions in 

which the behavior of an individual is impacted by the behavior of other individuals in the group 

as spatial dependence effects also known as endogenous effects.  

Neighboring farmers may not be the only individuals that affect adoption of new farming 

practices through diffusion. Friends and relatives in the farmer’s social network may also expose 

and exchange their knowledge and information with the farmer and thus increase the farmer’s 

awareness of new practices and technologies (Lionberger 1960). The current study aims to assess 

the spatial dependence effects (endogenous/peer effects) that are independent of such social 

networks. The diffusion of new practices through social networks increases the farmer’s 

awareness and interest. However, such an impact may be less comparable to the influence from a 

“locality group”, defined by spatial distance instead of social distance (Lionberger 1960). To 

control for any potential bias from contextual factors, we use crop district dummies.  

Defining a peer group is a major challenge in studies focusing on spatial effects (Sampson and 

Perry 2019). In sparsely populated rural areas, we expect that the “peer effects” may not emerge 

at the same level of geography as it would be in an urban or more populated setting.  In this 

study we use two different peer group definitions: (i) neighbors in a 15 square mile radius; and 

(ii) neighbors in a 30 square mile radius. The 15 square mile radius more or less corresponds to 

the average school district boundary in South Dakota. Given the large farm sizes in South 
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Dakota, inclusion of a larger geographic boundary (30 square miles) will enable us to test the 

sensitivity of peer effects to specification of peer group definition, particularly the effect of 

distance on peers. We have also used two separate measures to capture the peer effects: (i) 

number of peer adopters in the peer group, and (ii) peer adoption rate. Building on the conceptual 

framework described above, we test the following hypothesis that the likelihood of adopting 

DCR by a producer increases with an increase in the neighborhood adoption rates (peer effects). 

Empirical model 

Suppose there are N producers in the region and consider that farmer i  will adopt diverse crop 

rotation if the utility after adoption which includes stochastic monetary profit exceeds or at least 

equal the utility before adoption. The stochastic monetary profit depends on costs of production, 

change in yield, market prices, government subsidies, weather effects, and farm and farmer 

characteristics etc. 

Let di=1 denote the decision of producer i to adopt diverse crop rotation (DCR) and let di=0 

denote the decision to not adopt DCR. Let the perceived profit associated with adoption decision 

be denoted by πi
di. The relative net profit from adopting DCR is defined as πi =πi

1-πi
0.  

Let Ui
di denotes the utility for producer i from decision di. Adoption of DCR (di=1) occurs when 

Ui
1≥ Ui

0  that is 

 U(1, πi
1-C, X)≥ U(0, πi

0, X)         (1) 

where 1 indicates producer i’s decision to adopt DCR and 0 indicates non-adoption. C is the cost 

associated with adopting DCR and X is a vector of observable covariates including peer effects.  



10 
 

The producer’s utility function U(di, πi
di

 ; X) is unknown to us, and the deterministic part of the 

utility function is  V(di, πi
di

 ; X). So the inequality in (1) can be written as  

V(1, πi
1-C, X)+Ʋ1≥  VU(0, πi

0, X)+ Ʋ0      (2) 

Where Ʋ1 and Ʋ0 are independently and identically distributed random disturbances with zero 

means and unit variances.  

The model can be represented as the following latent equation; 

    D*
i=β`X+εi          (3) 

Where Di* is the latent variable such that we observe only the binary outcome 

 Di=β`Xi+εi  (Whether the producer i adopted DCR or not).    (4) 

Where β is the vector of parameters to be estimated, and εi is the error term. We estimate 

equation (4) using a probit model. 

Results and Discussion 

Participants in the study were asked to report whether they agree or disagree with each of the 

listed potential benefits and challenges associated with DCR where 1 indicates strong 

disagreement and 4 indicates strong agreement with the statement. Table 3 summarizes 

producers’ perceptions of the benefits of DCR. As reported previously in the literature, adopters 

and non-adopters both perceive the environmental benefits such as breaking pest and disease 

cycle, promoting ecological diversity, and increasing soil fertility and productivity as the most 

important benefits (Mulik 2015). Additionally, both adopters and non-adopters perceive the 

potential role of DCR in reducing commodity price volatility as less important benefits of 

adoption.  However, it is evident from Table 3 that adopters’ perception of direct and indirect 
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economic benefits such as reduced herbicide usage and fertilizer application and increased crop 

yields are much more positive at statistically significant levels than that of non-adopters. Results 

in Table 3 suggest that adopters of DCR are those who have higher positive perceptions on both 

economic and environmental benefits.    

It is evident from Table 4 that the non-adopters’ perceptions of challenges associated with DCR 

are more negative than that of adopters at statistically significant levels. The challenges for 

which we collected producers response include previously reported factors such as lack of 

profitable 3rd/4th crop, lack of access to specialized equipment, and crop insurance constraints. 

The finding that many producers consider crop insurance policy as an important factor 

challenging or hindering the adoption of DCR suggests that initiatives such as whole farm 

revenue protection plan introduced in the 2014 Farm Bill are not having the desired effect to date 

(Mulik 2015). Table 4 shows that adopters and non-adopters of DCR are less likely to perceive 

negative neighborhood opinions as important challenge in the adoption decision of DCR. Results 

in Table 5 show that majority of the current adopters are likely to continue their adoption of 

DCR and more than a quarter of current non-adopters, and some of the dis-adopters are likely to 

adopt DCR in future. 

 We use the variables reported in Table 3 (producers’ perceptions of benefits of DCR) to create 

two indices for producers, profit perception index  and environmental perception index to 

examine the role of these perceptions on adoption decision.. The profit perception index is 

generated by developing a weighted average of the rankings for reduces herbicide usage, reduces 

fertilizer requirement, increases crop yields, and protects against commodity price volatility. The  

environmental perception index is created by developing a weighted average of rankings for 

breaks pest and disease cycle, increases soil fertility and productivity, and promotes ecological 
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diversity. Summary statistics for the key variables (not already reported in Table 2) are presented 

in Table 6. It is evident from Table 6 that adopters’ profit and environmental indices are 

statistically significantly higher than those of non-adopters. Among the variables related to peer 

effects, percentage of adopters in 15 square miles, number of adopters in 30 square mile radius, 

and percentage of adopters in 30 square mile radius are statistically different between adopters 

and non-adopters. To compute the two measurements of spatial effects, we first create a radius of 

a given distance (15 and 30 miles respectively) for each farmer. Within the radius for each 

farmer, we then count the total number of adopters. If the focal farmer is not an adopter, then the 

number of adopters is the number of neighboring adopters. If the focal farmer is an adopter, the 

number of neighboring adopters is calculated by subtracting 1 from the number of adopters. To 

calculate the neighborhood adoption rate for each farmer, we first count the total number of 

neighboring farmers within the radius by subtracting 1 from the number of farmers to remove the 

focal farmer. The rate is then calculated by dividing the number of neighboring adopters by the 

number of neighboring farmers.     

Table 7 presents the regression results from three different probit models varying based on the 

type of peer group variable included, for the 15 square mile radius peer group.  As per models in 

Table 7, producers with larger farm areas under operation, more acres under pasture, and higher 

environmental index are more likely to adopt DCR. The positive effects of larger farms on the 

likelihood of DCR adoption may be because DCR can support spatial diversity, larger farm 

operations are more conducive for it. It has been reported previously in the literature that DCR 

are specifically beneficial for farms that integrate crop and livestock operations and the findings 

from our study that shows positive effect of pasture acre support it (Mulik 2015). Our results also 

show that producers with higher acceptance of the environmental benefits of DCR are more 
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likely to adopt DCR. However, none of the peer effects variables, distance to the nearest adopter, 

number of adopters of DCR in q 15 square mile radius, or percentage of adopters of DCR in a 15 

square mile radius are significant predictors of adoption. This may be because our definition of 

peer group as peers in the 15 square mile radius may not be relevant in the context of South 

Dakota as it may not be enough to generate the threshold level of peer adopters to motivate 

adoption.   

Table 8 presents the regression results from two different probit models, varying based on the 

type of peer group variable included, for the 30 square mile radius peer group. All the variables 

significant for DCR adoption in Table 7 for peer group defined within the 15 square mile radius 

are also significant for peer group defined within the 30 square mile radius. Unlike in the case of  

the 15 square mile radius peer group, both peer group related variables; the number of adopters 

of DCR and percentage of adopters of DCR, are significant for the 30 square mile radius peer 

group and support our hypothesis that the likelihood of adopting diverse crop rotation by a 

producer increases with the neighborhood adoption rates (spatial dependence/peer effects). 

Figure 2 shows the marginal peer effects evaluated at different number of peer adopters and 

percentage of peer adopters for the 30 square mile radius peer group in our study. Figure 2 

further supports our hypothesis that the likelihood of adoption increases with an increase in the 

extent of peer effects captured by the number or percentage of adopters in the peer group.  

The non-significance of the peer effect variables in the 15 square mile radius peer group 

regression and the significance of the peer effect variables in the 30 square mile radius peer 

group regression may suggest that due to the low population density and large operation size in 

agriculture dominated states like South Dakota, defining peer group using the typical school 

district boundary (15 square miles) may not provide the threshold level for peer adopters to 
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emerge in rural areas. The results re-emphasize the importance and challenges of defining a peer 

group, especially if policy makers want to leverage peer effects/social interactions to scale up the 

adoption of technologies or practices (Sampson and Perry 2019).  

Conclusion 

In this study we analyzed the role of peer effects in adoption decisions. We also estimated the 

adoption status of DCR in eastern South Dakota, the future likelihood of adopting diversified 

crop rotation by current adopters and non-adopters, and producers’ perceptions about the benefits 

and challenges of adoption of DCR.  

We found that adoption rate of DCR is low relative to the adoption of other conservation 

practices such as conservation tillage, cover crops, and integrated crop and livestock systems. 

Findings from the study demonstrated that while adopters and non-adopters value the 

environmental benefits of adoption of DCR, adopters’ perceptions of economic benefits are 

higher relative to non-adopters. This suggest that perceptions of economic benefits are important 

in producers’ adoption decisions.  

The study showed that lack of profitable third or fourth crop, lack of specialized equipment, and 

crop insurance constraints are the top three challenges of adopting DCR. This suggests that more 

outreach efforts are required to increase producers’ awareness about new crop insurance policy 

initiatives such as whole farm revenue protection plan which is intended to promote adoption of 

practices such as DCR. Our results also showed that the majority of the current adopters are  

likely to continue their adoption of DCR and more than a quarter of current non-adopters, and 

some of the dis-adopters are likely to adopt DCR in future.  
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Findings from the regression analyses demonstrate that the likelihood of adoption of DCR 

increases with increase in the neighborhood adoption rates (spatial dependence/peer effects) for 

the peer group defined within 30 square mile radius while no such effect is present for the peer 

group defined within 15 square mile radius. Our results demonstrated that peer groups and their 

influence in sparsely populated rural areas might be at bigger geographical areas than we would 

normally expect. This suggest that using the geographic distance or unit at which the spatial 

effects start to emerge in urban areas/more populated areas  may not be an optimal choice for 

studying spatial effects in rural areas. Since population and business density are often much 

lower in rural areas, the diffusion via people and key business locations over the space is more 

difficult and subtler to capture in rural areas. 

Our results suggest that peer effects play an important role in adoption of DCR and care must be 

taken in defining the peer group. Fruitfulness of efforts to leverage peer effects to scale up the 

adoption of DCR will depend heavily on accurately identifying peer groups.   
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Table 1: Percent of producers using diverse crop rotation and other conservation practices 

        N Diverse crop 
rotation 

Conservation 
tillage 

Cover 
crops  

Integrated crop and 
livestock management 

Adopters 141 2% 84% 63% 69% 
Non-
adopters 

404 69% 74% 42% 53% 

Discontinued 45 8% 77% 20% 39% 
Total 590 100 77% 47% 58% 
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Table 2: Key characteristics of survey participants 

Variable N Non-adopters Adopters Whole sample 
  Mean 

(SD) 
Mean 
(SD) 

Mean 
(SD) 

Age 536 56.42 
(14.11) 

56.50 
(13.29) 

56.44 
(13.90) 

Education 551 3.09 
(0.93) 

3.19 
(0.98) 

3.12 
(0.94) 

Gender 552 1.03 
(0.17) 

1.01 
(0.12) 

1.03 
(0.16) 

Years primary 
decision maker 

541 27.07 
(16.12) 

25.93 
(15.22) 

26.78 
(15.89) 

Total land in 
operation 

532 1007.55 
(1129.10) 

1734.06** 
(3439.08) 

1182.35 
(1973.05) 

% of owned 
acres 

496 0.75 
(1.49) 

0.76 
(1.15) 

0.75 
(1.42) 

Acres under 
pasture 

590 144.31 
(344.90) 

410.09** 
(1202.13) 

207.83 
(668.46) 

     

Note: We have used Student t-test to compare the mean values of adopters and non-adopters. ** 
indicates mean values of adopters are statistically significant from non-adopters at 5% level. 
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Table 3: Producers’ perceptions of benefits of DCR 

Benefits Non-adopters Adopters Total 
Breaks pest and disease cycle 3.15 

(0.60) 
3.35*** 
(0.66) 

3.20 
(0.62) 

Reduces herbicide usage 2.87 
(0.64) 

3.01** 
(0.74) 

2.91 
(0.67) 

Reduces fertilizer requirement 2.72 
(0.67) 

2.86** 
(0.69) 

2.76 
(0.67) 

Increases soil fertility and productivity 3.02 
(0.57) 

3.20*** 
(0.59) 

3.07 
(0.58) 

Increases crop yields 2.94 
(0.60) 

3.14*** 
(0.65) 

2.99 
(0.62) 

Promotes ecological diversity 3.00 
(0.57) 

3.25*** 
(0.60) 

3.07 
(0.59) 

Protects against commodity price 
volatility 

2.46 
(0.76) 

2.64** 
(0.79) 

2.50 
(0.77) 

Figure in parentheses indicate standard deviation. **, and *** indicate mean values of adopters 
and non-adopters are statistically different at 5% and 1% levels, respectively. 
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Table 4: Producers’ perception of challenges of DCR 

Challenges Non-
adopters 

Adopters Total 

Lack of profitable 3rd/4th crop 2.95*** 
(1.00) 

2.60 
(1.04) 

2.86 
(1.02) 

Lack access to the specified planting equipment 2.63*** 
(1.04) 

2.03 
(1.00) 

2.48 
(1.06) 

Crop insurance constraints 2.55*** 
(1.02) 

2.04 
(1.05) 

2.42 
(1.05) 

Lack of marketing information 2.45*** 
(0.96) 

1.90 
(0.95) 

2.31 
(0.99) 

Negative neighborhood opinions 1.45 
(0.77) 

1.37 
(0.71) 

1.43 
(0.75) 

Figure in parentheses indicate standard deviation. *** indicate mean values of adopters and 
non-adopters are statistically different at 1% level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



23 
 

Table 5: Likelihood of future adoption of DCR 

Future Usage Non-adopters 
(%) 

Adopters 
(%) 

Dis-adopters 
(%) 

Not at all likely 29.4 10.0 31.1 
Somewhat likely 29.1 5.7 44.4 
Moderately likely 15.7 9.3 13.3 
Very likely 17.0 34.3 4.4 
Extremely likely 8.8 40.7 6.8 

Number of observations    388  140   45 
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Table 6: Summary statistics of variables used in the regression 

Variable N Non-adopters Adopters Whole sample 
  Mean 

(SD) 
Mean 
(SD) 

Mean 
(SD) 

Profit index 532 0.69 
(0.13) 

0.73*** 
(0.15) 

0.70 
(0.14) 

Environmental 
index 

540 0.76 
(0.12) 

0.82*** 
(0.14) 

0.78 
(0.13) 

Distance to 
nearest adopter 

504 0.14 
(0.09) 

0.13 
(0.09) 

0.13 
(0.09) 

Number of 
adopters in 15 
sq.miles 

504 3.20 
(2.04) 

3.13 
(2.10) 

3.18 
(2.05) 

% of adopters 
in 15 sq.miles 

504 22.79 
(16.60) 

26.63** 
(16.05) 

23.77 
(16.53) 

Number of 
adopters in 30 
sq.miles 

504 11.32 
(5.17) 

13.22*** 
(5.83) 

11.80 
(5.40) 

% of adopters 
in 30 sq.miles 

504 22.84 
(12.66) 

29.76*** 
(10.48) 

24.60 
(12.50) 

Figures in parentheses are standard deviations. **, and *** indicate mean values of adopters 
and non-adopters are statistically different at 5% and 1% levels, respectively. 

Note: Some of the variables used in regression are already listed in Table 2. 
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Table 7: Regression results for peer group defined as 15 square mile radius  

Variable Model 1 Model 2 Model 3 
 Coefficient 

(SE) 
Coefficient 

(SE) 
Coefficient 

(SE) 
Age 0.00 

(0.01) 
0.00 

(0.01) 
0.00 

(0.01) 
Education    
HS diploma/GED 0.45 

(0.60) 
0.43 

(0.60) 
0.46 

(0.59) 
Some college/tech. 0.62 

(0.60) 
0.60 

(0.60) 
0.63 

(0.59) 
College grad 0.41 

(0.61) 
0.38 

(0.61) 
0.42 

(0.60) 
Post-grad degree 1.00 

(0.64) 
0.97 

(0.64) 
1.02 

(0.63) 

Total farmland 
operated 

0.00** 
(0.00) 

0.00** 
(0.00) 

0.00** 
(0.00) 

Proportion of owned 
acres 

0.07 
(0.11) 

0.07 
(0.11) 

0.07 
(0.11) 

Yrs in decision making 0.00 
(0.01) 

0.00 
(0.01) 

0.00 
(0.01) 

Pasture acres 0.00* 
(0.00) 

0.00* 
(0.00) 

0.00* 
(0.00) 

Gross sales    

$50k-99,999 -0.63** 
(0.32) 

-0.63** 
(0.32) 

-0.65** 
(0.32) 

$100k-249,999 -0.27 
(0.29) 

-0.26 
(0.29) 

-0.28 
(0.29) 

$250k-499,999 -0.50* 
(0.29) 

-0.50* 
(0.29) 

-0.51* 
(0.30) 

$500k-999,999 -0.47 
(0.32) 

-0.46 
(0.33) 

-0.48 
(0.33) 

$1million or more -0.60 
(0.38) 

-0.59 
(0.38) 

-0.60 
(0.38) 

Profitindex 0.19 
(0.77) 

0.20 
(0.77) 

0.17 
(0.77) 

Envionindex 1.79** 
(0.88) 

1.80** 
(0.89) 

1.81** 
(0.88) 

District    
30 0.27 

(0.25) 
0.31 

(0.27) 
0.26 

(0.26) 
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50 0.15 
(0.32) 

0.15 
(0.32) 

0.14 
(0.31) 

60 -0.37 
(0.25) 

-0.35 
(0.26) 

-0.35 
(0.26) 

90 -0.29 
(0.25) 

-0.28 
(0.25) 

-0.27 
(0.26) 

Near_dist)adopter -0.57 
(0.84) 

-0.79 
(0.95) 

-0.41 
(0.88) 

n_adopter_15miles  -0.02 
(0.04) 

 

pct_adopter_15miles   0.00 
(0.01) 

_const -2.39** 
(1.00) 

-2.30** 
(0.10) 

-2.48** 
(0.10) 

Number of 
observations 

383 383 383 

Prob>Chi2 0.0001 0.0001 0.0001 
Log pseudolikelihood -193.70 -193.60 -193.60 

Pseudo R2 0.1313 0.1318 0.1317 
Note:(***), (**), (*) denote significance at the 1%, 5% and 10% levels, respectively. 
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Table 8: Regression results for peer group defined as 30- square mile  

Variable Model 1 Model 2 
 Coefficient 

(SE) 
Coefficient 

(SE) 
Age 0.00 

(0.01) 
0.00 

(0.01) 
Education   
HS diploma/GED 0.41 

(0.58) 
0.42 

(0.59) 
Some college/tech. 0.63 

(0.58) 
0.60 

(0.58) 
College grad 0.42 

(0.58) 
0.43 

(0.59) 
Post-grad degree 1.07* 

(0.62) 
1.01 

(0.62) 

Total farmland operated 0.00** 
(0.00) 

0.00* 
(0.00) 

Proportion of owned acres 0.07 
(0.11) 

0.07 
(0.11) 

Yrs in decision making 0.00 
(0.01) 

0.00 
(0.01) 

Pasture acres 0.00** 
(0.00) 

0.00 
(0.00) 

Gross sales   
$50k-99,999 -0.67** 

(0.31) 
-0.73** 
(0.31) 

$100k-249,999 -0.26 
(0.29) 

-0.30 
(0.29) 

$250k-499,999 -0.48 
(0.30) 

-0.53* 
(0.30) 

$500k-999,999 -0.44 
(0.32) 

-0.50 
(0.32) 

$1million or more -0.55 
(0.37) 

-0.54 
(0.38) 

Profitindex 0.38 
(0.78) 

0.29 
(0.77) 

Envionindex 1.50* 
(0.89) 

1.69* 
(0.88) 

Crop District   
30 0.04 

(0.28) 
0.13 

(0.26) 
50 0.14 

(0.32) 
0.07 

(0.32) 
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60 -0.47* 
(0.25) 

-0.12 
(0.28) 

90 -0.30 
(0.25) 

-0.06 
(0.27) 

Near_dist_adopter 0.34 
(0.95) 

0.28 
(0.90) 

n_adopter_30miles 0.04** 
(0.02) 

 

pct_adopter_30miles  0.02*** 
(0.01) 

_const -2.83*** 
(1.00) 

-3.12*** 
(1.02) 

Number of observations 383 383 
Prob>Chi2 0.0000 0.0000 
Log pseudolikelihood -191.65 -190.67 
Pseudo R2 0.1405 0.1449 

Note:(***), (**), (*) denote significance at the 1%, 5% and 10% levels, respectively. 
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Figure 1: County-wise percentage of respondents using DCR 
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Figure 2: Marginal peer effects on adoption of DCR in 30 square mile radius peer group 

 

 


