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Abstract

Global economic models with explicit treatment of global land markets are crucial to under-
standing the consequences of different policy choices on global food and environmental security.
However, these models rely on parameters for which there is little econometric evidence. A
fundamental parameter in these models is the land supply elasticity. We provide a novel set
of land supply elasticities estimated using gridded data for the American continent, and we
use them in exploring previous work on the indirect land-use effects of US ethanol policy. Our
estimates provide a basis for better-informed simulations of global land-use transitions under
different economic and policy scenarios.
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The conversion of forests to cropping and grazing lands accounts for under a quarter of global
anthropogenic greenhouse gas emissions (Smith et al., 2014, p. 816). At the same time, forests
and other land uses offset up to 20% of those emmissions by absorbing atmospheric carbon during
photosynthesis (Tubiello et al., 2014, p. 19). The dual role of land-based activities as emitters and
sinks of GHGE has led policy makers and researchers to carefully scrutinize policies that may alter
global patterns of land use.

Quantitative models of global commodity markets are an essential part of this scrutiny. These
models permit isolating the effects of a specific policy from the myriad other factors that affect
the economy over a given period of time (Babcock, 2009). The effects of these policies on prices
and quantities can then be systematically tracked as they move throug the supply systems of many
regions connected via international trade. Once the supply effects of the policy under study are
resolved, researchers combine changes in land use with GHGE factors to calculate the net changes
in emissions (Hertel et al., 2010; Dumortier et al., 2011).

The strategy just described has been particularly prominent in the U.S. where model predictions
of indirect land use effects and associated GHGE emissions are used to regulate the ethanol in-
dustry (Babcock, 2009). Beyond biofuels, global trade models have been used to model the land
use changes and associated GHGE of natural covers (Hertel et al., 2009), technological change
(see Villoria, Byerlee, and Stevenson, 2014, for a recent review), international trade (van Meijl
et al., 2006; Verburg et al., 2009), climate change mitigation (Golub et al., 2009), and agricultural
policies (Eickhout et al., 2007).

Explicitly or implicitly, these models rely on assumptions about the ease with which non-cropland
covers—such as savannas and forests—convert to cropland in response to changes in the relative
profitability of alternative uses. Two contrasting approaches are offered by the FAPRI/CARD
and GTAP-AEZ models, arguably the most widely used models to determine the indirect land use
effects of biofuels in the U.S. (Babcock, 2009; Gohin, 2014) and described in Hayes et al. (2009)
and Hertel et al. (2009). The FAPRI/CARD model assumes that cropland expansion into forests
and grasslands occurs at historically observed rates (Searchinger et al., 2008; Dumortier et al., 2011).
In contrast, the GTAP-AEZ framework assumes a fixed land endowment that is transformed across
natural covers as dictated by a constant elasticity of transformation (Hertel et al., 2009).

Other approaches to modeling land use do exist, for example, in Gurgel, Reilly, and Paltsev (2007),
Eickhout et al. (2007), or Jones and Sands (2013); they all make assumptions about the respon-
siveness of natural lands to changes in agricultural returns. Unfortunately, and in contrast to
total area (e.g., Roberts and Schlenker, 2013) or cropland specific elasticities (see Miao, Khanna,
and Huang, 2015, for a recent review and new estimates), estimates of land transition responses
are scarce (Barr et al., 2011; Taheripour and Tyner, 2013), and to the best of our knowledge,
concentrated on the U.S. (Lubowski, 2002; Rashford, Walker, and Bastian, 2011; Scott, 2013).

The concentration of land conversion estimates in the U.S. weakens the empirical basis underpinning
available global analysis, compounding the uncertainty that arises from other crucial parameters
such as the response of yield to prices (Gohin, 2014), crop-specific area elasticities (Keeney and
Hertel, 2009), international trade responses (Villoria and Hertel, 2011), productivity of marginal
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lands (Stevenson et al., 2013), and possibilities for land intensification such as multiple cropping
of the same plot during the growing season (Babcock and Iqbal, 2014). Indeed, in a Monte Carlo
study, Lobell, Baldos, and Hertel (2013) found that the uncertainty in land supply elasticities
dominates the uncertainty from all of the aforementioned sources, except the possibility for land
intensification, which is not included in their model.

Against this background, the objective of this paper is to estimate a set of land conversion elasticities
that takes into account the heterogeneity in land supply responses across countries. Our focus is on
the contiguous Americas, from Canada to Argentina. Differently from Lubowski (2002), Rashford,
Walker, and Bastian (2011), and Scott (2013), this large-scale coverage forces us to work in a data
sparse environment. We work around these data limitations by using a spatially explicit model
of land use based on Chomitz and Gray (1996), estimated using continental gridded datasets on
a limited set of biophysical, agronomic, and socioeconomic variables. Our dependent variable is a
binary choice between non-cropland and cropland. At the continental level, we do not observe land
returns. But we observe the access to markets of each parcel (Verburg, Ellis, and Letourneau, 2011).
The theoretical model maps the changes in accessibility of any parcel onto changes in parcel-level
net agricultural returns. This implication is a testable hypothesis, and, along with the property
of the logit model to produce marginal effects that are observation specific, allows us to calculate
land conversion elasticities—defined as the relative change in the probability of transitioning from
non-cropland to cropland given a relative change in agricultural net returns—for each gridcell in
the sample.

To preview the results, table 1 compares our estimates to those of Lubowski (2002). We use the
underlying potential vegetation of each grid-cell from Ramankutty and Foley (1999) to identify
whether the transition is from forests or grasslands. We weigh each grid-cell’s land conversion
elasticity by its fitted probability and sum up a region roughly comparable to Lubowski (2002)’s.
While we postpone the discussion about the details of this aggregation to the results section, note
that for forests, our estimates are very close (around 0.3), although our pasture to cropland elasticity
is considerably lower (ours: 0.23, Lubowski, 2002, : 0.34). We then use our estimates to calibrate
the own-price cropland elasticity and CET parameters for the U.S. following Ahmed, Hertel, and
Lubowski (2008), which are the analogs of the current parameters in the GTAP model: Table 1
shows that these are virtually indistinguishable from each other.

Table 1: Existing estimates for the U.S. compared to our results.
Author Crop-return elasticity From ... to cropland Value Our estimate

Lubowski

of transition US managed 0.34 0.23
probabilities pastures

US managed 0.30 0.33
forests

Schott
of non-cropland US managed 0.30 0.261

to cropland non-croplands

Ahmed et al.
of cropland & cropland 0.06 0.06

CET parameter -0.20 -0.22
1 Percentage change in land supplied to agriculture when we increase market access by 1%.
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In order to get proper land supply elasticities, we elicit a land supply schedule by using the gridcell
level conversion elasticities to update the fitted probabilities of each gridcell as net returns increase.
The updated probabilities determine whether the parcel transitions from non-cropland to cropland.
By adding all the parcels that make this transition at each level of net returns, we obtain a land
supply schedule. We use these schedules to calculate region-specific land supply arc-elasticities
for different regions in the continent. The US arc-elasticity, corresponding to a 10% increase in
agricultural returns, is displayed next to Scott (2013)’s result. As in the case of the land conversion
elasticities, our estimate is virtually indistinguishable from his, which was obtained using a much
richer dataset.

Encouraged by these results, we revisit the study of indirect land use effects of US biofuels by
Hertel et al. (2010). This study underpins the land use thresholds used by the California Air
Resources Board in order to qualify a biofuel source as sustainable, and therefore is of policy
relevance (Babcock and Iqbal, 2014). When we recalibrate their model to our new estimates,
we find that the non-US land supply response is considerably overestimated. This finding is in
line with the recent discussion by Babcock and Iqbal (2014), who found that both FAPRI and
GTAP likely overestimate land use changes by not considering land intensification possibilities (e.g.,
double cropping) which are more likely to occur due to the high costs of converting new land into
agriculture. Our findings, therefore, underscore the importance of taking into account regional
differences in global land supply responses. As our work demonstrates, this can be achieved in a
relatively data sparse environment that exploits the spatial nature of large-scale grids using the
guidance of a simple economic model. Along with these insights, the disaggregated elasticities as
well as the data to calculate them at varying levels of aggregation comprise the main contributions
of this article to the existing literature.

A Deeper Look at Existing Elasticities

Lubowski (2002) estimates land-use transition probabilities among a set of six possible uses: crop,
pasture, forest, range, urban, and the Conservation Reserve Program. For this, he combines
spatially-explicit, land-plot level data on land use from the US National Resource Inventory with
county-level net returns based on commodity prices, government payments, and other sources of
land-use revenues and production costs. His main contribution is estimates of the elasticities of
land-use transition probabilities with respect to changes in the relative returns of the alternative
uses. Table 1 displays two of these estimates, namely the relative changes in the probability of
transitioning from either pastures or forests to cropland as a response to changes in agricultural
net returns, keeping the returns to the alternative use constant. These two values from Lubowski
(2002) are used by Ahmed, Hertel, and Lubowski (2008) to calibrate the own-price land supply
elasticity (0.06 in table 1) that underpins the elasticity of transformation (-0.2) assumed to be con-
stant across all the regions in most of the published work that uses the GTAP-AEZ framework (e.g.,
Hertel et al., 2010).

Rashford, Walker, and Bastian (2011) use similar data, but they focus on grassland conversion in
the Prairie Pothole region. Similar to Lubowski (2002), Scott (2013) focuses on the U.S. as a whole.
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He uses a dynamic choice model that also relies on very detailed spatially explicit land uses over
time (2006-2012) from the National Agricultural Statistics Service’s Cropland Data Layer. Similar
to Lubowski (2002), Scott (2013) also constructs county-level measures of agricultural net returns
using data on prices, production costs, and subsidies. In contrast to Lubowski (2002), he lumps
together all non-cropland uses and assumes that the relevant return for them is the rental rates of
pastures. Instead of conversion elasticities, he provides a long-run, total acreage elasticity of 0.3
(also displayed in table 1).

Other recent estimates of total acreage elasticities for the U.S. are provided by Roberts and
Schlenker (2013), who report a range of 0.26-0.33, which is in line with Scott (2013)’s findings;
these authors also report total acreage elasticities for Brazil (0.22-0.38), China (0.03-0.07), India
(0.01-0.02), and Thailand (0.10-0.13). Barr et al. (2011) also calculated a total acreage elasticity
for the U.S., although their value of 0.02 is much lower than other estimates, which is probably
explained by their focus on changes during a very short time period (from 2004-2006 to 2007-2009).
Barr et al. (2011) also reports total acreage elasticities for Brazil, ranging from 0.2 (1997-99 to
2001-03) to 0.007 using the shorter time period of 2004-06, to 0.08 during 2006-2009. The main
limitation of these total acreage elasticities is that they are silent on which land cover transitions
into or out of agriculture, which is a key piece of information for the estimation of GHGE. In
the absence of this information, modelers are forced to make ad-hoc assumptions about which land
conversion is taking place; for example Searchinger et al. (2008) assumed that 36% of total cropland
expansion in the U.S. would come from forests, a hypothesis rejected by Dumortier et al. (2011),
who found that in most US states, the main source of cropland expansion is idle cropland.

Modeling Framework

We start with a version of the model by Chomitz and Gray (1996) in which there are only two
land uses: agriculture and natural state. Formally, let Yi be the agricultural output per unit of
area that can be obtained in location i by using input Ii. Each location is endowed with a bundle
of fixed natural factors Si (e.g., slope, rainfall) that influence the productivity of Ii. Assuming a
Cobb-Douglas technology, the production per unit of area, or yield, function is given by:

Yi = SiI
β
i , 0 < β < 1, (1)

where β is the elasticity of yields to input usage.

Critical in this analysis is that output and input prices, Pi and Ci, are site specific. In the presence
of these prices, standard profit maximization subject to 1 produces optimal input demands:

I∗i =

[
Ci

PiSiβ

] 1
β−1

(2)

Substituting 2 back into 1 obtains optimal yields Y ∗:

Y ∗i = S
1

1−β
i

[
Ci
Piβ

] β
β−1

(3)
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Thus, the potential rent associated with devoting site i to agricultural use is Ri = PiY
∗
i − CI∗i

which, by virtue of 2 and 3, can be expressed as:

Ri =
(
PiSiC

−β
i

) 1
1−β

(1− β)/β. (4)

Using 2, 3, and 4, an econometrician possessing data on site-specific yields Yi, input usage Ii,
biophysical factors Si, output prices Pi, and input prices Ci could estimate the parameters of the
production system to determine how prices, technology, and natural factors determine agricultural
profitability; under the assumption that land is devoted to agriculture only if this is more profitable
to do so than to devote it to any other alternative use, the econometrician could then predict land
use responses to changes in prices given natural factors and technology. From a global perspective,
such predictive ability would greatly improve our understanding of cross-country cropland reactions
to demand and supply shocks that affect the relative returns to farming. In particular, if there is an
increase in prices that could incentivize conversion of natural lands into agriculture, the framework
above would allow identifying the potential rents that would accrue to a given plot, and after
comparing those rents to the rents for alternative use, the analyst could decide whether the land
endowment of a given country could be augmented to capture expansion into lands that are not
currently in agriculture.

Unfortunately, although there are globally consistent gridded data on production, harvested area,
yields, input usage, and biophysical factors (table A-1), site specific price and land rent data
are unobserved. In a context similar to this, Chomitz and Gray (1996) demonstrate how these
data limitations can be circumvented by exploiting data on the determinants of prices as well as
on agricultural productivity using a reduced form of 4. Critical to their strategy is Von Thünen’s
assumption that spatial differentials in farm-gate prices are related solely to differences in transport
costs to major markets, which in turn are determined by physical distance.

Following a similar strategy, we posit that output and input prices are functions of market acces-
sibility. We use a market remoteness index from Verburg, Ellis, and Letourneau (2011) that takes
into account such frictions and is based on traveling time. This measure, discussed in detail below,
ranges from 0 to 100, and ranks locations according to traveling time to major cities (figure 1).
An index of 100 implies that the location is very close to a major market, while 0 implies that the
location is practically inaccessible. Formally, the price functions are given by:

Pi = exp (p+ γAi) , γ > 0,
Ci = exp (c+ δAi) , δ < 0.

(5)

where Ai measures the traveling time from plot i to a relevant market, or market access; p and c
are intercepts; and γ and δ indicate the percentage change in the respective prices, given a unitary
change in market access; i.e, these are the semi-elasticity of prices to changes in distance. We
expect output prices to be increasing in market access. Meanwhile, input prices become costlier as
locations become more remote.

Using 5 to eliminate the price terms in 4, taking logs, grouping similar terms, and appending an
error term yields:

log(Ri) = α0 + α1Ai + α2 log(Si) + εi. (6)
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Figure 1: Market access index decreases with travel time from the location of a large market. At
150 and 250 min from the large city are two regional markets. This is figure 1 in Verburg, Ellis,
and Letourneau (2011).
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where α1 = (γ − βδ) (1− β)−1 is the semi-elasticity of land rents to changes in market access and
α2 = (1 − β)−1. In principle, we would expect α1 > 0, a hypothesis that we test below. The last
term, εi, is an error term whose properties are discussed in the next section.

With Ri unobservable, the following step in this strategy uses the assumption that land will be
employed in the activity yielding the highest rent, a main implication of Von Thünen’s model. In
our case, we assume that land can either be used in agriculture or be let idle in its natural state,
which produces no rent. Then, land at grid cell i will be devoted to productive use A if and only if
Ri > 0, which is revealed in the data through the mere fact that i is used in agriculture; this allows
mapping from the latent variable Ri to a binary outcome, Zi = 1[Ri > 0], which takes the value
of one when production is observed, and zero otherwise. This variable can be readily constructed
from global grids of agricultural production and allows estimating the parameters in model 6 using
a discrete choice model:

P (Zi = 1|Ai, Si) = Λ(α0 + α1Ai + α2 log(Si) + εi), (7)

where Λ(.) is the logistic distribution and P (Zi = 1|Ai, Si) is the probability of observing i under
agricultural production given its remoteness to markets (Ai) and natural attributes (Si).

The partial effect of Ai on P (Zi = 1),

∂P (Zi = 1)

∂Ai
= λ [α0 + α1Ai + α2 log(Si)]α1, (8)

is the change in the probability of turning a parcel into agriculture, given a change in market
remoteness. A unique aspect of this formulation is that the argument of λ, the probability distri-
bution function of the logistic distribution, varies by plot, and thus, the partial effect of market
remoteness on the probability of land use can be determined for different geographic aggregates,
such as all the parcels covered by forests. The elasticity of the probability of agricultural land use
to changes in market remoteness is given by:

εi =
∂P (Zi = 1)

∂Ai
× Ai
P (Zi = 1)

. (9)

To relate this measure back to the elasticity of land supply to change,s in input and output prices we
need to map the probabilities back to a physical measure of area, say hectares, and relate changes
in market remoteness to changes in input and output prices. This last linkage could be achieved
by taking the ratio of input to output prices in expression 5, solving it for Ai and differencing:

dAi =
d log(Pi)− d log(Ci)

γ − δ
= dRi. (10)

The denominator of 10 is always positive, so the sign of dAi depends on the signs as well as
relative magnitudes of the percentage changes in output and input prices. In particular, whenever
output prices grow faster than input prices, d log(Pi) > d log(Ci), it is as if market access would
increase. Likewise, if input prices grow faster than output prices it is as if market access decreases.
Expression 10 highlights the fact that even though plot i and the actual market to which initial
remoteness is measured against stay in the same place, market accessibility varies with price.
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Moreover, equation 10 allows linking the changes in prices and costs determined in models such
as GTAP to the elasticities in expression 9. A difficulty is that it is not possible to identify the
semi-elasticities of input and output prices with respect to changes in market remoteness (γ and
δ) from the estimates of and α1. In the empirical application below, we set it equal to unity,
although departures from this value would amplify (if less than one) or reduce (if greater than one)
the effects of changes in agricultural returns on accessibility. Of more concern is the possibility of
γ < δ, which would imply that accessibility decreases as net agricultural returns increase. This
could be the case, for example, if the major input is labor, and if wages in the land frontiers where
conversion takes place are lower than in places closer to markets. We leave it to future research,
using spatially disaggregated input and output prices, to disentangle the values of these elasticities.

By virtue of expression 10, in what follows, we refer to changes in market access as changes in land
rents. We also assume that the only fixed factor of production is land; therefore, in the discussions
below, we use changes in agricultural net returns and changes in land rents as synonyms.

To translate the land conversion probabilities to a proper land supply elasticity, defined as the
change in the number of hectares supplied to agriculture given a change in land returns, we first
consider the changes in the probability P (Zi = 1) as land rents change from an initial status s− 1
to a subsequent status s. Formally:

P (Zi = 1)s = P (Zi = 1)s−1 ×
[
1 + εi ×

∂Ri
Ri,s−1

]
(11)

is the updated probability of land use given a marginal change in agricultural land rents.

Following the standard practice in discrete choice modeling of using some relevant proportion in
the data to determine the threshold after which a predicted or fitted probability switches from
zero to one in order to predict the values of the binary dependent variable (Greene, 2008), we can
further assume that parcel i shifts from non-cropland to cropland once the conversion probability
surpasses a given threshold τ , which can be formalized as:

Zi,s =

{
1 if P (Zi = 1)s > τ

0 otherwise.
(12)

Each grid cell has a known physical area which we denote by Li. Therefore, for region c (comprised
by many grid cells i), the additional area brought into production as a consequence of a change in
changes in returns is Lcs =

∑
i∈c Zis × Li. With this information, it is straightforward to construct

the land supply schedule of region c by plotting Lcs against Rs = 1 + ∂R/Rs−1 for t = 1, ... , T.
The slope of the line tangent to a given point in this schedule gives us a measure of the local land
supply elasticity for region r. We use these schedules to estimate the total regional area elasticity
with respect to changes in land rents:

ηc =
δLc

δR

R

Lc
. (13)

Notice that by using grid cell level changes in the non-cropland-to-cropland conversion probabilities,
we gain a great deal of flexibility defining regions as well as the nature of the elasticities. For
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example, if the region is defined as all the grid cells covered by forests, ηforest,agr is the cross-price
elasticity of forested land supply to agriculture given a change in agricultural land returns. The
usefulness of the flexibility of our estimates is demonstrated in the last section of the article where
we revisit Hertel et al. (2010)’s estimates of the indirect land use effects and associate greenhouse
gas emissions of US ethanol policies.

Econometric Implementation

There are three main econometric concerns for the estimation of the parameters of equation 7.
First, most of the variables that we use as proxies for the natural factors Si tend to change slowly
across neighboring units, and therefore, shocks in the error term in one location are likely correlated
to shocks in other locations. Moreover, many of these data are interpolations (e.g., temperature
and precipitation from weather stations) and as such, subject to measurement errors likely to be
systematically associated in spatial patterns, which can be captured by the model residuals (Anselin,
2002). Inferences based on parameters estimated in the presence of correlated residuals are flawed
due to biased standard errors (Brady and Irwin, 2011).

Second, decisions on where to locate markets, as well as on the investments needed to reduce
traveling costs from any plot to those markets may be related to the need to access the most suitable
lands for agriculture (Ullman, 1941; Chomitz and Gray, 1996). This simultaneous determination
of market access and land use choice could bias our parameter estimates and the land supply
elasticities that we derive from them. Previous work by Chomitz and Gray (1996), looking at the
role of roads in deforestation in Southern Belize, handled potential endogeneity of land use choices
and road penetration by constructing a distance-to-market measure that ignored the existence of
roads. This instrument also appears in the work by Nelson, Harris, and Stone (2001) which looks
at roads and deforestation in the Darien, Panama. Unfortunately, this instrument does not address
our concerns because it still relies on the crucial assumption that market locations are exogenous
to land-use choices.

As an alternative, we alleviate endogeneity concerns by following a two-pronged strategy. First, we
follow the standard practice of including in the regression a variety of land use determinants such
as soil quality, climate, and topology, all dimensions of land suitability that can reasonably purge
out of the error terms some of the elements of land use choices that can be correlated with market
access (Chomitz and Gray, 1996; Nelson, Harris, and Stone, 2001).

In addition, we exploit the spatial nature of the data. In particular, LeSage and Pace (2009, p. 27)
demonstrate that, if the omitted variables causing the correlation exhibit spatial dependence, the
inclusion of spatial lagged terms for the independent variables in the so-called Spatial Durbin Model
(SDM) makes the regressors orthogonal to the error term. Moreover, LeSage and Pace (2009, p.
68) empirically show that the SDM considerably reduces the bias of parameter estimates relative to
ordinary least squares. The SDM is discussed in Anselin (2013), and it includes a spatial lag of the
dependent variable along with the spatial lags of the independent variables. Modifying equation 6
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to reflect the SDM gives rise to:

log(R) = ρW log(R) +Xα+WXα∗ + µ. (14)

In this formulation, log(R)∗ is the n×1 vector of log net returns to agriculture; X = [1, A, S] is the
n×k matrix of explanatory variables; and W is the n×n weight matrix defining neighborhood rela-
tionships among the n gridcells in the sample; W log(R) is the spatially-weighted average of latent
agricultural returns in neighboring land-plots. Notice that this implies a dependency relationship
whereby neighboring profitability from cropland activities influences the land-use decision. Simi-
larly, WX are the spatially-weighted average of latent agricultural returns and explanatory factors
in neighboring land-plots. In LeSage and Pace (2009)’s model, these terms capture the correlation
between X and potentially omitted, spatially-dependent, omitted variables. The weight matrix is
row-standardized so that letting wij denote its typical element,

∑
j wij = 1. This particular stan-

dardization implies that for plot i,
∑

j wijRj is the average land rent of the neighboring grid cells,
weighted by the typical elements wij . The value of these weights is determined by assumptions
about the strength of spatial dependence, an issue that will be revisited at estimation time. The
parameter ρ is the so-called spatial lag parameter, α is a vector of parameter estimates on the
effects of X, and α∗ is the vector of parameter estimates on the effects of the spatially weighted X,
which capture the effects of the attributes of neighboring gridcells on the land rents in plot i. The
last term, µ is a n× 1 vector of independently, identically, and normally distributed errors.

As mentioned above, the parameters in equation 14 can be estimated by using the observable dis-
crete choice Zi that results from the latent profitability. This leads us to our third concern, which
is to find a suitable estimating strategy. Spatial autocorrelation is associated with heterokedas-
tic errors, which render standard maximum likelihood estimates inconsistent (McMillen, 2006).
Moreover, the likelihood function of a discrete choice variable with spatial dependence involves
evaluating as many integrals as observations, which for most datasets is practically impossible due
to high computation costs (Smirnov, 2010). Available Generalized Methods of Moments (GMM)
estimators are robust to distributional assumptions, but they are also not feasible for large samples
because each iteration requires inverting the n× n matrix (I − ρW ) (Klier and McMillen, 2008).

Klier and McMillen (2008) propose an estimator that circumvents these difficulties. They derive
a spatial logit GMM estimator based on the latent variable model that underlies the spatial logit.
The estimator is implemented as a standard logit followed by two-stage least squares. The discrete
choice model implied by their procedures is equivalent to a standard logit model estimated using a
transformed X weighted by both, heterokedastic variances and the degree of spatial autocorrelation
in the data:

P (Zi = 1|X∗∗i ) = Λ(αX∗∗i + α∗WX∗∗i + µi), (15)

where X∗∗ = X∗ (I − ρW )−1, X∗i = Xiσ
−1
i , and σ2i is a typical element of the diagonal of σ2,

the variance-covariance matrix of µ. The main advantage of this estimator is that it can handle
large amounts of data. Monte Carlo simulations by Klier and McMillen (2008) show that the
estimator accurately captures spatial effects when ρ < 0.5. Given these attributes, we adopt Klier
and McMillen (2008)’s estimator in our work below.
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Data

Table 2 reports descriptive statistics of all the variables used to estimate equation 15: table A-1
in appendix documents sources and other details of the data. The dependent variable is derived
by adding up the harvested area of the 175 crops from Monfreda, Ramankutty, and Foley (2008),
and assigning Z = 1 to any pixel which has more than 5% of its area under agriculture. This
threshold is admittedly arbitrary and below we examine the robustness of our parameter estimates
to different thresholds.

The market access variable comes directly from Verburg, Ellis, and Letourneau (2011), who com-
bined spatially explicit global data on physical distance, network infrastructure, and underlying
terrain to develop a high spatial resolution (1 km2) index of market accessibility determined by
traveling time from each plot to the closest and most influential market. The influence of the
market is given by market size: large markets include cities with more than 750,000 inhabitants
as well as maritime ports, while small markets are approximated by cities with more than 50,000
inhabitants. The authors assume that large markets are twice as important as smaller markets,
and for each grid cell i in the global map, they assign a market influence index (mai) based on
traveling time.

Figure 1 shows a large city at T = 0 and two small cities, B and C, 150 and 250 minutes away from
the large city. The accessibility index declines as one moves farther away from the main city, and
starts increasing as one gets close to city B. The plot at city B has a lower index just because it is
closest to a smaller market. As one moves away from B, the accessibility index declines, reversing
its trend as one gets closer to city C, just to fall again as the cities are left behind.

Potential vegetation is an important variable in our work because it identifies the natural land
cover from which there is a transition to cropland. Data on grid cell level potential vegetation is
from Ramankutty and Foley (1999). These data are based on satellite imagery and indicate the
dominant vegetation type in each grid cell that “would likely exist now in the absence of human
activities” for both cultivated and uncultivated grid cells. The original data from Ramankutty
and Foley (1999) divides natural potential vegetation into 15 vegetation types, which we further
aggregate to five land covers: temperate forests, tropical forests, grasslands, shrublands, and a
residual category we label “other” (see table A-2 in the appendix for the correspondence between
Ramankutty and Foley (1999) vegetation types).

We also add other covariates that aim to capture the role of biophysical and socioeconomic factors
in the land use decision. Biophysical factors include: soil fertility constraints (6 categories: no con-
straints, moderate, constrained, severe, very severe, and unsuitable for cultivation) were obtained
from IIASA/FAO (2012); global data on grid cell level soil organic carbon density (kg-C/m2 to 1
m depth) and soil pH (0-14) come from the SoilData System, which was developed by the Global
Soils Data Task from the International Geosphere-Biosphere Program (IGBP-DIS, 1998). These
data are based on statistical resampling of global soil samples (pedon records) that are consistent
with the FAO/UNESCO Soil Digital Map of the World.

12



Table 2: Descriptive statistics of non-cropland and cropland pixels
Non-cropland (69% of gridcells) Cropland (31% of gridcells)

Mean s.d. Min Max Mean s.d. Min Max

Market access index (1-100) 7 16 0 100 23 27 0 99
Area equipped for irrigation (% of gridcell) 0 3 0 79 4 12 0 100
Precipitation (mm) 1220 862 0 7513 990 539 52 4863
Temperature (C) 17 9 -1 28 17 6 4 28
Elevation (m) 714 872 -227 5411 563 599 -25 4420
Soil fertility (IIASA classes) 5 2 1 7 3 2 1 7
Soil carbon density (kg-C/m2) 6 3 1 24 6 2 1 22
Soil pH (0-14) 6 1 4 8 6 1 5 8
Built-up land (% of gridcell) 0 4 0 100 1 3 0 64

Protected areas Distribution between land-use categories (%)

Unprotected (U) 66 34
Protected (P) 90 10

U P U P
Distribution within land-use categories (%) 83 17 96 4

Natural potential vegetation Distribution between land-use categories

Shrublands (S) 74 26
Tropical forests (Ft) 81 19
Temperate forests (FT) 73 27
Savannas & Grasslands (G) 49 51

S Ft FT G S Ft FT G
Distribution within land-use category (%) 14 33 29 21 11 17 25 48

Notes: These are summary statistics for the sample of 15,093 observations (out of a total of 433,096) used to estimate the first
four specifications in table 3. Details about sources and preprocessing of the data are in Appendix table A-1. Tables S-1- S-12
(supportiong online materials) report several statistics and cross-tabulations of the data that demonstrate that the sample closely
mimics the information in the entire grid. Robustness tests of our main findings to different samples are discussed in the text.
The omitted “Other” covers categories capturing the difference between 100 and the sum of the cover types distribution within
land-use category.
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The average monthly temperature (oC) and average annual total precipitation (millimeters/year)
over the period 1961-1990 were constructed using the data from New, Hulme, and Jones (1999).
These data are commonly used for climate and ecosystem modeling and are obtained by interpolat-
ing weather station data using latitude, longitude, and elevation as predictors. The elevation data
(meters above sea level) were obtained from TerrainBase, a global model of terrain and bathymetry
on a regular 5-minute grid documented in NOAA (1995). We also add dummies for agroecological
zones (IIASA/FAO, 2012; Monfreda, Ramankutty, and Hertel, 2009) which capture changes in the
length of the growing seasons across the continent.

The socioeconomic data include area equipped for irrigation (expressed as % of the area of each 5
minute grid cell) which comes from Siebert et al. (2010). These data are based on global census-
based inventory data on irrigation sources and are from the national and subnational levels. The
built-up land data were obtained from SAGE and are based on observed built-up area density and
nighttime lights, which in turn are used to interpolate urban-area density for those sites in which
only nighttime light is observed. The 5-minute resolution data layer identifying protected areas
was obtained from van Velthuizen et al. (2006).

As discussed in the next section, our choice of estimator makes it straightforward to estimate a spa-
tial logit model using the entire continental grid: 433,096 observations below 55oN after extracting
islands and water bodies. However, deriving land conversion and supply elasticities requires using
the parameter estimates of 15 to calculate the marginal effects and to fit the predicted probabilities.
For this, we need to transform the matrix X to X∗∗, which requires inverting the matrix (I − ρW ).
Matrix inversion is expensive in terms of memory and forces us to draw representative samples
that preserve the gridded structure. We accomplished this by sampling +/- 15,000 observations in
a regular grid (3.5% of the total grid cells), which is equivalent to choosing one grid cell every 30
minutes. Regular sampling has the advantage of preserving the spatial structure of the grid, which
is the preferred method when handling spatially gridded data (Cressie, 1993).

Tables S-1 S-12 in the Supporting Online Materials report several statistics and cross-tabulations
of the data that demonstrate that the sample closely mimics the information in the entire grid. We
also discuss the robustness of our results to the use of different samples in the next section.

Results

Table 3 reports parameter estimates for five different specifications. The first two models use Klier
and McMillen (2008)’s estimator. S-I is a restricted version of equation 14 where the parameters
of the spatial lags of the independent variables are assumed to equal zero. S-II displays model 14,
which includes the spatial lags of both the dependent and independent variables (not displayed in
the table). Column Mean S-II uses the average and standard deviations of 10,000 sample estimates
of model S-II in order to test its sensitivity to the chosen sample. Columns C-I and C-II display the
results of estimating S-I and S-II using a standard logit model without explicit account of spatial
dependence.
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Table 3: Regression results
Spatial logit Conventional logit

S-I S-II Mean S-II C-I C-II

Intercept −5.378∗ −11.323∗ −10.755∗ −15.281∗ −12.458∗

(2.000) (1.765) (1.752) (1.543) (1.678)
Market access 0.017∗ 0.014∗ 0.013∗ 0.016∗ 0.015∗

(0.001) (0.001) (0.006) (0.001) (0.001)
Irrigation 0.119∗ 0.128∗ 0.136∗ 0.122∗ 0.130∗

(0.015) (0.016) (0.016) (0.008) (0.008)
Precipitation 0.001∗ 0.001∗ 0.001∗ 0.001∗ 0.001∗

(0.000) (0.000) (0.000) (0.000) (0.000)
Precipitation2 −0.000∗ −0.000∗ −0.000 −0.000∗ −0.000∗

(0.000) (0.000) (0.001) (0.000) (0.000)
Temperature 0.172∗ 0.567∗ 0.482∗ 0.755∗ 0.678∗

(0.080) (0.062) (0.063) (0.041) (0.049)
Temperature2 −0.007∗ −0.019∗ −0.016∗ −0.025∗ −0.022∗

(0.002) (0.002) (0.002) (0.001) (0.001)
Elevation −0.000 −0.001∗ −0.001∗ −0.001∗ −0.000∗

(0.000) (0.000) (0.000) (0.000) (0.000)
Elevation2 0.000 0.000∗ 0.000 0.000∗ 0.000∗

(0.000) (0.000) (0.000) (0.000) (0.000)
Soil fertility −0.146∗ −0.150∗ −0.149∗ −0.207∗ −0.166∗

(0.021) (0.021) (0.021) (0.019) (0.020)
Soil carbon 0.017 0.016 0.007 0.068∗ 0.014

(0.015) (0.016) (0.020) (0.013) (0.015)
Soil pH 1.015∗ 1.877∗ 1.826∗ 2.663∗ 2.193∗

(0.548) (0.522) (0.508) (0.479) (0.491)
Soil pH2 −0.070 −0.148∗ −0.141∗ −0.194∗ −0.176∗

(0.043) (0.042) (0.041) (0.038) (0.039)
Built-up land −0.051∗ −0.059∗ −0.045∗ −0.062∗ −0.061∗

(0.007) (0.008) (0.007) (0.006) (0.007)
Protected area −0.001∗ −0.001∗ 0.000 −0.001∗ −0.001∗

(0.000) (0.000) (0.000) (0.000) (0.000)
ρ 0.958∗ 0.377∗ 0.496∗

(0.107) (0.113) (0.211)
Pseudo-R2 0.30 0.47 0.36 0.38

Robust standard errors in parentheses
∗ indicates significance at p < 0.1

Notes: N = 15,093. ρ in models S-I and S-II is the coefficient of spatial autocorrelation estimated on
the spatial lag of the underlying, unobserved, dependent latent variable using Klier and McMillen
(2008)’s estimator. S-I and S-II assume a spatial autoregressive error process. In addition, S-II
includes spatial lags of all the independent variables (excluding squared terms). Spatially lagged
variables include up to 6 spatial lags. Mean S-II reports the average and standard deviation of S-II
regressions using 10,000 different samples. C-I and C-II are standard logit estimates of S-I and
S-II.
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A glance at table 3 reveals that the parameter estimates are consistent across the five specifications—
both spatial and conventional—in terms of magnitude, statistical significance, and sign. The notable
exception is the auto regressive parameter ρ (only estimated in S-I and S-II), which reduces almost
by a factor of three when we include spatial lags of the vector of independent variables, the reason
for which the model labeled S- II is our preferred specification.

To aid with the interpretation of these parameter estimates, figure 2 displays the average partial
effects (APE) of each regressor on the probability of land use corresponding to the SDM S-II.
These average partial effects are obtained by combining the relevant regressor (or combination
of regressors) with the average scale factor evaluated at each gridcell. As explained by (Greene,
2008, p. 784), this avoids the need for estimating different marginal effects for each combination of
variables handled as dummies (i.e., regions, agro-ecological zones and potential/natural vegetation),
making interpretation more tractable. The upper panel of the figure shows the average partial effect
for the variables with linear effects only while the lower panels display the average partial effects
for the variables with a quadratic component1.

Back on table 3, the market access index has a positive and statistically significant effect on the
probability of land being used in agriculture. This is a direct test of the hypothesis of the structural
model that treats market access as a proxy for land rents, and as discussed below, a pivotal
finding that permits calculating land-use transition probabilities as well as land supply schedules
directly linked to land returns. The average partial effect calculated using our preferred specification
(figure 2) indicates that a unit increase in accessibility increases the probability of land use by
around 0.17% (with a 0.14%-0.20% 95% confidence interval).

The area equipped for irrigation in each gridcell also has a positive and significant effect on the land
use decision, with an average partial effect bounded by a 95% CI of 1.10%- 1.91%—such a large
effect is not surprising given the enabling role of irrigation for agricultural production (Schlenker,
Hanemann, and Fisher, 2005).

Precipitation and temperature show statistically significant positive linear terms and negative
quadratic terms, suggesting that higher values of these variables decrease the probability of crop-
land use. The marginal effects for the observed range of these two variables in the data are shown
in Figure 2. For very low temperatures (in the neighborhood of zero oC), increases in heat during
the growing season increase the probability of land use by around 5% (95% CI: 4.6%-8.3%). This
partial effect decreases with higher temperatures, and at approximately 18oC degree Celsius, higher
temperatures discourage agriculture. Precipitation has much smaller effects on the probability of
land use (at the mean sample value, 2000 mm/year is practically zero), although for regions with
very high rainfall, the marginal effects tend to reduce the probability of agricultural land use in a
more pronounced way.

1Algebraically, the partial effect of the ith regressor on the probability of gridcell gth being in agriculture is given
by ∂P (Zg = 1|Xg)/∂xi = λ [βXg]βi, where Xg is gridcell g’s vector of explanatory variables (including xi) and β
is the vector of regression coefficients. The average partial effect we report is given by

∑
g λ [βXg]G

−1βi, where G
is the total number of gridcells. For regressors with both linear and quadratic terms, say, βi[1] an βi[2], the APE
is
∑
g λ [βXg]G

−1
(
βi[1] + 2βi[2]xi

)
, which depends on a specific value of the regressor xi. This is the reason why

figure 2 displays these average partial effects for all the in-sample range of the given variable.
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Figure 2: Average partial effects of SL-II: point estimates and 95% confidence intervals. The scale
factor of the displayed partial effects are obtained by averaging the scale factors—i.e., the logit
probability density functions evaluated using each gridcell’s set of explanatory variables—across
all the gridcells in the sample (for more details, see Greene, 2008). APE for regressors with linear
effects only are shown in the upper panel, while APE for regressors with quadratic effects are shown
for all the in-sample range of the variable. Standard errors were calculated using the Delta method.
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The acidity of the soil (pH) also has significant linear (positive) and quadratic (negative) terms,
and the APE in figure 2 suggests that the marginal effect is highest just below neutrality (ph =7)
and declines as the soils become more basic. This finding is in line with the agronomic and global
ecology literature, which indicates optimal growing conditions in soils with pH between 6.6 and
7.0 (Ramankutty et al., 2002).

Elevation, on the other hand, has a negative effect at first that becomes less negative as altitude
increases. The average partial effects are quantitatively small. Soil fertility constraints are also
significant determinants of the land use choice. More constrained soils are less likely to be used in
agriculture (the APE is -1.7% with 95% CI -2.2%- -1.25%). The amount of soil carbon does not
appear to significantly affect the land use decision (once we correct for spatial autocorrelation).

After correcting for accessibility, a greater share of built upland also reduces the probability of the
land being used in agriculture, which probably reflects the fact that urban uses are more profitable;
the effect is statistically significant with an APE of -0.68% (95% CI: -0.90%- -0.50%). We also find
that although the coefficient on protected areas is statistically significant, its quantitative effects on
reducing the probability of agricultural land use are small (APE = 0.01%, 95% CI: -0.02%-0.00%),
suggesting that on average, law enforcement of protected parks and natural reserve are not an
influential determinant of land use choices at a continental level.

Regarding goodness of fit, we use the parameter estimates of S-II to predict the probability of
land use in each in-sample grid cell. The proportion of grid cells that are in agriculture is 31%.
Following (Greene, 2008, p. 70-) we asume that each predicted probability that is greater than 31%
is considered to be cropland and conversely, if the predicted probability is less than or equal to 31%,
we consider the parcel to be non-cropland. We then compared the predicted binary variables with
the observed binary variables—we found that our model correctly predicts 85% of the observations
under cropland and 78% of the cases under non-cropland.

Robustness Tests

Our strategy of sampling a reduced number of observations begs the question about how rep-
resentative our parameter estimates are of the underlying population parameters. In addition,
estimation of the spatial logit model requires two critical choices, namely, the assumption about
spatial neighborhood structures and the percentage of cropland in each gridcell required to con-
struct the land-use choice binary variable that we aim to explain. In this subsection, we explore
the robustness of our results to different empirical alternatives.

We explored the robustness of our preferred set of parameter estimates by estimating S-II using
10,000 randomly drawn samples. Table 3 (Mean S-II) shows the mean and and t-statistics of
the 10,000 regressions, demonstrating that the sample used for estimation generates results both
quantitatively and qualitatively comparable to those averaged over a large number of samples.

We also validate S-II by verifying its accuracy with out-of sample predictions. We performed the
same procedure we used to measure the models’ goodness of fit on 100 randomly drawn samples.
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We found that S-II correctly predicts 82.10%-84.53% of the cases that are under agriculture (with
probability thresholds ranging from 30.15% to 31.20%) and 80.54%-81.95% of the cases that are
out of agriculture.

Regarding the neighborhood structure, our preferred specification is based on a neighborhood
matrix that includes up to the 6 nearest neighbors. In order to test the sensitivity of our results
to different choices of these parameters, the upper-part of figure 3 shows estimates of the spatial
autoregressive (ρ) and market access parameters as we vary the number of neighbors from 1 to 6.
As displayed by the plots, the degree of spatial autocorrelation rapidly reduces as we include more
neighbors; meanwhile, the estimate of the effect of market access tends to increase as we improve
our correction for spatial autocorrelation.

Regarding the sensitivity of our results to changes in the threshold of harvested area after which
a gridcell is considered to be cropland (i.e., Zi = 1), the lower-right plot of figure 3 shows that
the proportion of gridcells which would be classified as cropland falls quickly as we increase the
threshold. In other words, very few parcels would be classified as cropland if we set the threshold to,
for example, 75%. Interestingly, the lower-right plot indicates that the point estimate of the effect
of market access is robust to the threshold. However, as the threshold increases, the parameter
estimate becomes less and less precise.

Land Supply Responses and Elasticities

In order to study the land supply response to changes in land rents, we calculated the marginal
effect of changes in land rents on the land-use transition probability for each one of the 15,000
plots in our sample. We also fitted predicted probabilities of land use in each one of these 15,000
plots. Combining these two series allowed us to calculate probability-weighted average elasticities
of land-use transition probabilities for different geographic aggregates of the data.

For instance, the probability-weighted average elasticities of non-crop-to-cropland transition prob-
abilities for the entire continent is 0.13, that is, a one percent increase in net returns to agriculture
causes a 0.13% increase in the probability of non-cropland shifting to cropland. However, a main-
tained hypothesis underlying this article is that the land supply response is heterogeneous across
geographies due to differences in the accessibility and quality of the land. Therefore, it is more
worthwhile to use our parameter estimates to investigate this diversity.

We start this investigation by validating our results with those in the existing literature. In the
case of Lubowski (2002), we needed to subset the pixels in our sample that are within managed
lands in the U.S. in order to match his spatial domain. For this, we calculated the shares of forests
and grasslands that are managed using the information on the areas under pastures, cropland, and
managed forest as well as areas under natural grasses and forests in Gurgel, Reilly, and Paltsev
(2007, Table 3, p.13). For the U.S., Gurgel, Reilly, and Paltsev (2007) indicate that 45% of
grasslands are managed pastures and 68% of forests are managed forests. We then ordered the
grid cells from closest to remotest to a market. The set of ordered grid cells whose cumulative area
of a given cover comprised the share of managed cover indicated by Gurgel, Reilly, and Paltsev
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Figure 3: Robustness tests. (Error bars indicate a 95% confidence interval.) The upper left panel
shows that the estimated autoregressive parameter decreases with the number of autoregressive
lags; meanwhile, the estimate of the effect of market access (upper right panel) increases slightly as
the correction for spatial autocorrelation improves. The lower left panel shows that the proportion
of grid cells used in agriculture declines rapidly as the % of harvested area used to consider a given
cell as used increases. Meanwhile, the lower right panel indicates that the range of variation for
point-estimates of the market access parameter is relatively small, although the coefficient is less
precisely estimated as we increase the threshold for use.
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(2007) was identified as “managed” while the rest were considered “unmanaged.” Notice that the
implicit assumption made here is that managed lands are directly related to accessibility. The
correspondence between accessibility and managed status is common in the economic literature on
global land use change (Hertel et al., 2009) and is derived from the notion that a parcel of say,
forest, will be commercially viable as long as the current value plus the expected value of the future
stream of returns equals or surpasses the current cost of access (Sohngen et al., 2009).

With a clear division between accessible and inaccessible lands, we obtained a weighted-average
elasticity of the land transition probability of each cover using as weights the predicted probabilities
of land use. This produced an estimated non-cropland-to-cropland transition probability elasticity
of 0.33 for forests and 0.23 for pastures. The comparable estimates by Lubowski (2002) are 0.34 and
0.30, respectively (table 1.) The remarkable closeness between these two sets of estimates obtained
using very different data, samples and methods is reassuring.

Our next target for comparison is Scott (2013), who estimates the land supply elasticity from
managed non-cropland to croplands in the U.S. using a dynamic model estimated with panel data;
he obtains a point-estimate value of 0.3. In contrast to Lubowski (2002)’s, this elasticity refers to
the percentage change in the number of hectares that are supplied to cropland given one percent
in net returns to agriculture. In order to get a comparable figure, we used the elasticity of the
land transition probabilities to changes in land rents to update the probability of land use given a
10% increase in land rents (equation 11), uniformly applied over the set of US accessible grid cells,
both under forests and grasslands (at least conceptually, this matches Scott (2013)’s geographic
domain.)

We then compared the updated predicted probability to the proportion of grid cells under cropland
(that is, those identified as Z = 1 in the regression estimation), over the whole continent; in other
words, τ in equation 12 equals 31% as per table 2. If the updated probability was greater than this
proportion, we assumed that the entire grid cell converted into cropland. We expressed the new
cropland as a percentage of the existing cropland and divided it by 10%, obtaining an elasticity
of 0.26. As in the case of the elasticity of the land-use transition probabilities, this estimate
is quantitatively indistinguishable from the estimates using times-series data and actual returns
from Scott (2013).

The fact that our estimated land supply responses for the U.S. are very close to other estimates
gives further confidence in our results, and encourages us to examine the diversity of land supply
responses, which we do next in the context of an important policy issue: the indirect land use
effects of biofuels.

Revisiting the Indirect Land Use Effects of Biofuels

We now explore the consequences of our findings for the analysis of Hertel et al. (2010) of the
indirect land use effects of corn-ethanol expansion in the U.S. We chose to replicate this work
because its indirect land-use estimates informed the biofuel regulations issued by the California Air
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Resource Board (Babcock and Iqbal, 2014) and the data and model are freely available and readily
accessible2. These authors model the expansion of US maize ethanol use from 2001 levels to the
2015 mandated level of 56.7 gigaliters by forcing 50.15 GL of additional ethanol production. As
mentioned in the introduction, they calibrate global supply responses using the land use transition
probabilities obtained from Lubowski (2002) for the U.S. Hertel et al. (2010) find that the biofuel
mandate expands cropland by 1.6 Mha in the U.S. and by 2.6 Mha in the rest of the world. As per
our replication, this expansion of cropland generates 953 teragrams of carbon dioxide (TgCO2).

Following Ahmed, Hertel, and Lubowski (2008), we use our estimates to calibrate the CET param-
eters of the land supply function for each region in Hertel et al. (2010) located in the Americas
(see notes to table 4). The first step is to obtain the cross-price supply elasticities of forests and
pastures by using equations 11-13 . Table 4 shows that these elasticities are quite different across
regions. In the case of forests, a 1% increase in the relative profitability of agriculture reduces forest
cover by 0.22% in the U.S. and only by between 0.01%- 0.03% in the rest of the continent. This
result suggests that the access to the remaining forests in the continent is costly, and that high
investments are needed to bring them into agricultural production.

Table 4: CET parameters for regions in Hertel et al.
Revenue shares Cropland-rent elasticity

Region Forests Pastures Forests Pastures Own CET

Brazil 0.08 0.16 -0.01 -0.02 0.01 -0.02
Canada 0.59 0.06 -0.02 0.00 0.03 -0.05
USA 0.13 0.16 -0.22 -0.10 0.06 -0.22
Energy exporters 0.07 0.17 -0.03 -0.06 0.02 -0.06
Rest LA 0.14 0.12 -0.02 -0.05 0.01 -0.04

Notes: Energy exporters are Mexico, Colombia, Venezuela, and Argentina.The Rest of LA in-
cludes Chile, Uruguay, Paraguay, Bolivia, Peru, Ecuador, Panama, Costa Rica, Nicaragua, and
Guatemala.

A similar pattern is observed for pastures and grasslands, although the gap between the U.S. and
other regions is much smaller than in the case of forests. Table 4 also displays the region-specific
own-price cropland elasticities and CET parameters (calibration details are in the appendix . Their
pattern is inherited from the cross-price elasticities of the non-cropland uses. These results suggest
that, although Latin America is one of the most land abundant regions in the world (Deininger
and Byerlee, 2011), the changes in commodity prices needed to justify converting natural covers to
agricultural production need to be large and sustained over time.

Figure 4 compares the original changes in land use and carbon dioxide emissions in Hertel et al.
(2010) with the changes obtained by using our region-specific elasticities of transformation. A caveat
to these results is that for the regions outside of the Americas, we kept the standard assumption of a
single elasticity of land transformation as used in Hertel et al. (2010), which may also be difficult to
justify in land abundant regions but that have high costs of land access, such as Africa (Chamberlin,
Jayne, and Headey, 2014; Liu and Villoria, 2015).

2https://www.gtap.agecon.purdue.edu/resources/res_display.asp?RecordID=3432
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Figure 4: Revisiting the land use effects of biofuels from Hertel et al. (2010). The figure shows
the global land conversion and associated greenhouse gas emissions due to increased maize ethanol
production of 50.15 gigaliters per year starting in 2007. The original results in Hertel et al. (2010)
are labeled as “A.” The results obtained using the elasticities obtained in this work (only for the
U.S., Canada, Brazil, and the rest of Latin America) are labeled as “B.”
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Few patterns are apparent from 4. Focusing first on the changes in land use—the left panel, where
“A” identifies Hertel et al. (2010)’s results and “B” identifies our results—the estimates of land
use change for the U.S. coincide across CET specifications. However, for Brazil, the region specific
estimates predict around five times less cropland expansion than the original CET (304,759 ha vs
58,174 ha); for the rest of Latin America, the original CET calibration predicts cropland expansion
of 145,283 ha above the region-specific estimates (100,839 ha); and for Canada, the results in Hertel
et al. (2010) are 271,234 ha more than what we obtained with region-specific estimates. Notice
too that by using region-specific estimates, we swap places between Brazil and the rest of Latin
America, which now has a larger cropland response. This is in line with Babcock and Iqbal (2014)’s
finding that model predictions from both GTAP and FAPRI/CARD of area expansion in Brazil
are too high relative to the rest of South America. Relative to the region-specific elasticities, the
imposition of a single CET across regions overestimates global cropland expansion by approximately
0.5 Mha and associated emissions by 133 TgCO2.

Conclusions

The geographic coverage of existing empirical estimates about the ease with which natural lands
transition from natural uses into agriculture is insufficient to evaluate the global contributions of
GHGE of a large number of policies concerned with food and environmental security. As Lubowski
(2002), Rashford, Walker, and Bastian (2011), and Scott (2013) demonstrate, estimating land sup-
ply responses with explicit information on land transitions requires large amounts of very spatially
and temporally detailed data on both land use choices and agricultural returns.

Our main contribution is to formulate a flexible empirical approach for analyzing land use responses
based on an explicitly-spatial model of land-use choice. The chief advantage of this method is that
it relies on readily available spatial data on land use patterns and biophysical attributes. This
approach is much less onerous in terms of required data, particularly prices, which are generally
unobservable at the land-plot level.

Another advantage of our approach is that identification of the land supply elasticities comes exclu-
sively from changes in the physical determinant of the prices that determine land rents, while keep-
ing land quality constant. This contrasts with methods using observed prices. For instance, Roberts
and Schlenker (2013) acknowledge that their estimates for the U.S. may be capturing policies that
incentivize setting land aside when crop prices are low. Likewise, Barr et al. (2011) document a
large temporal variability of aggregated land supply for Brazil, which presumably captures policy
decisions that affect the rate of land expansion/contraction, as documented by Malingreau, Eva,
and de Miranda (2012).

The tractability of our approach comes with some costs. First, we do not know the input and
output price elasticities with respect to market access, which could influence the effects of changes in
agricultural net returns on the land transition probabilities. In addition, the underlying dependent
variable is the percentage of each gridcell that is under cropland or improved pastures. By imposing
a binary structure, we lose information that may be important; incorporating spatial effects on
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discrete choice models with explicit treatment of fractional data (Papke and Wooldridge, 2008)
could help to remedy this caveat. Some limitations come from the data. In particular, land cover
maps are notoriously uncertain (Fritz et al., 2011). The data we use is one of many competing
products (Ramankutty and Foley, 1999; See et al., 2015). Therefore, investigating the sensitivity
of our findings to different data sources could shed light on the degree to which uncertainties about
land covers are reflected in the estimated land supply elasticities.

Despite these caveats, our results are robust to large variations in key assumptions underlying
the estimation procedure. And our estimates for the U.S. are remarkably close to those in the
existing literature. We take this as reassuring. The data on area changes after the high-price
period from 2006 to 2010 suggests a more nuanced response that what would be predicted by
land use models (Taheripour and Tyner, 2013; Babcock and Iqbal, 2014); our elasticities give a
quantitative explanation as to why this may be the case. We revisit the estimates of indirect land
use effects of US biofuels published by Hertel et al. (2010), and find that ignoring heterogeneous
land supply responses leads to overestimating global cropland expansion and associated GHGE.
Our findings underscore the importance of taking into account regional differences in global land
supply responses.

25



References

Ahmed, S., T.W. Hertel, and R. Lubowski. 2008. “Calibration of a Land Cover Supply Function Us-
ing Transition Probabilities.” GTAP Research Memorandum No. 14, GTAP Center, Department
of Agricultural Economics, Purdue University.

Anselin, L. 2013. Spatial Econometrics: Methods and Models. Springer Science & Business Media.

—. 2002. “Under the Hood: Issues in the Specification and Interpretation of Spatial Regression
Models.” Agricultural Economics 27:247–267.

Avetisyan, M., U. Baldos, and T. Hertel. 2010. “Development of the GTAP Version 7 Land Use
Data Base.” GTAP Research Memorandum 19.

Babcock, B. 2009. “Measuring Unmeasurable Land-Use Changes from Biofuels.” Iowa Ag Review
No. 15, Iowa State University, Iowa.

Babcock, B., and Z. Iqbal. 2014. “Using Recent Land Use Changes to Validate Land Use Change
Models.” Staff Report No. 14 - SR 109, Iowa State University, Center for Agricultural and Rural
Development, Ames, Iowa.

Barr, K.J., B.A. Babcock, M.A. Carriquiry, A.M. Nassar, and L. Harfuch. 2011. “Agricultural Land
Elasticities in the United States and Brazil.” Applied Economic Perspectives and Policy 33:449
–462.

Brady, M., and E. Irwin. 2011. “Accounting for Spatial Effects in Economic Models of Land Use:
Recent Developments and Challenges Ahead.” Environmental and Resource Economics 48:487–
509.

Chamberlin, J., T.S. Jayne, and D. Headey. 2014. “Scarcity Amidst Abundance? Reassessing the
Potential for Cropland Expansion in Africa.” Food Policy 48:51–65.

Chomitz, K.M., and D.A. Gray. 1996. “Roads, Land Use, and Deforestation: A Spatial Model
Applied to Belize.” The World Bank Economic Review 10:487–512.

Cressie, N. 1993. Statistics for Spatial Data. New York, Chichester, Toronto, Brisbane, Singapore:
John Wiley & Sons.

Deininger, K.W., and D. Byerlee. 2011. Rising Global Interest in Farmland: Can it Yield Sustainable
and Equitable Benefits? . Washington D.C.: World Bank Publications.

Dumortier, J., D.J. Hayes, M. Carriquiry, F. Dong, X. Du, A. Elobeid, J.F. Fabiosa, and S. Tok-
goz. 2011. “Sensitivity of Carbon Emission Estimates from Indirect Land-Use Change.” Applied
Economic Perspectives and Policy , Jul., pp. ppr015.

Eickhout, B., H. van Meijl, A. Tabeau, and T. van Rheenen. 2007. “Economic and Ecological
Consequences of Four European Land Use Scenarios.” Land Use Policy 24:562–575.

Fritz, S., L. See, I. McCallum, C. Schill, M. Obersteiner, M.v.d. Velde, H. Boettcher, P. Havĺık,
and F. Achard. 2011. “Highlighting Continued Uncertainty in Global Land Cover Maps for the
User Community.” Environmental Research Letters 6:044005.

26



Gohin, A. 2014. “Assessing the Land Use Changes and Greenhouse Gas Emissions of Biofuels:
Elucidating the Crop Yield Effects.” Land Economics 90:575–586.

Golub, A., T. Hertel, H. Lee, S. Rose, and B. Sohngen. 2009. “The Opportunity Cost of Land Use
and the Global Potential for Greenhouse Gas Mitigation in Agriculture and Forestry.” Resource
and Energy Economics 31:299–319.

Greene, W.H. 2008. Econometric Analysis, 6th ed. Upper Saddle River NJ: Prentice Hall.

Gurgel, A., J.M. Reilly, and S. Paltsev. 2007. “Potential Land Use Implications of a Global Biofuels
Industry.” Journal of Agricultural & Food Industrial Organization 5.

Hayes, D., B. Babcock, J. Fabiosa, S. Tokgoz, A. Elobeid, T. Yu, F. Dong, C. Hart, E. Chavez,
S. Pan, M. Carriquiry, and J. Dumortier. 2009. “Biofuels: Potential Production Capacity, Effects
on Grain and Livestock Sectors, and Implications for Food Prices and Consumers.” Journal of
Agricultural and Applied Economics 41:465–491.

Hertel, T.W., A.A. Golub, A.D. Jones, M. O’Hare, R.J. Plevin, and D.M. Kammen. 2010. “Effects
of US Maize Ethanol on Global Land Use and Greenhouse Gas Emissions: Estimating Market-
Mediated Responses.” BioScience 60:223–231.

Hertel, T.W., H. Lee, S. Rose, and B. Sohngen. 2009. “Modeling Land-Use Related Greenhouse
Gas Sources and Sinks and Their Mitigation Potential.” In T. W. Hertel, S. Rose, and R. Tol,
eds. Economic Analysis of Land Use in Global Climate Change Policy . London and New York:
Routledge, pp. 123–154.

Hertel, T.W., S. Rose, and R.S. Tol, eds. 2009. Economic Analysis of Land Use in Global Climate
Change Policy (Hardback) - Routledge. Routledge Explorations in Environmental Economics,
London and New York: Routledge, Taylor & Francis Group.

IGBP-DIS. 1998. “SoilData(V.0) A Program for Creating Global Soil-Property Databases, IGBP
Global Soils Data Task, France.”

IIASA/FAO. 2012. Global Agro-Ecological Zones (GAEZ v3.0). IIASA, Laxenburg, Austria and
FAO, Rome, Italy.

Jones, C.A., and R.D. Sands. 2013. “Impact of Agricultural Productivity Gains on Greenhouse Gas
Emissions: A Global Analysis.” American Journal of Agricultural Economics 95:1309–1316.

Keeney, R., and T.W. Hertel. 2009. “The Indirect Land Use Impacts of United States Biofuel
Policies: The Importance of Acreage, Yield, and Bilateral Trade Responses.” American Journal
of Agricultural Economics 91:895–909.

Klier, T., and D.P. McMillen. 2008. “Clustering of Auto Supplier Plants in the United States.”
Journal of Business & Economic Statistics 26:460–471.

LeSage, J., and R.K. Pace. 2009. Introduction to Spatial Econometrics. CRC Press.

Liu, J., and N.B. Villoria. 2015. “Sub-Saharan Africa’s Land Supply Response.” In preparation.
No. TBI, Purdue University, West Lafayette, IN, USA.

27



Lobell, D.B., U.L.C. Baldos, and T.W. Hertel. 2013. “Climate Adaptation as Mitigation: The Case
of Agricultural Investments.” Environmental Research Letters 8:015012.

Lubowski, R. 2002. “Determinants of Land-Use Transitions in the United States: Econometric
Analysis of Changes among the Major Land-Use Categories.” PhD dissertation, Harvard Uni-
versity.

Malingreau, J., H. Eva, and E. de Miranda. 2012. “Brazilian Amazon: A Significant Five Year Drop
in Deforestation Rates But Figures are on the Rise Again.” AMBIO: A Journal of the Human
Environment 41:309–314.

McMillen, D.P. 2006. “Probit with Spatial Autocorrelation.” Journal of Regional Science 32:335–
348.

Miao, R., M. Khanna, and H. Huang. 2015. “Responsiveness of Crop Yield and Acreage to Prices
and Climate.” American Journal of Agricultural Economics, May, pp. aav025.

Monfreda, C., N. Ramankutty, and J.A. Foley. 2008. “Farming the Planet: 2. Geographic Distribu-
tion of Crop Areas, Yields, Physiological Types, and Net Primary Production in the Year 2000.”
Global Biogeochemical Cycles, Mar., pp. 1:19.

Monfreda, C., N. Ramankutty, and T. Hertel. 2009. “Global Agricultural Land Use Data for Climate
Change Analysis.” In T. W. Hertel, S. K. Rose, and R. S. Tol, eds. Economic Analysis of Land
Use in Global Climate Change Policy . London and New York: Routdlege, pp. 33–49.

Nelson, G.C., V. Harris, and S.W. Stone. 2001. “Deforestation, Land Use, and Property Rights:
Empirical Evidence from Darien, Panama.” Land Economics 77:187–205.

New, M., M. Hulme, and P. Jones. 1999. “Representing Twentieth-Century Space–Time Climate
Variability. Part I: Development of a 1961–90 Mean Monthly Terrestrial Climatology.” Journal
of Climate 12:829–856.

NOAA. 1995. “TerrainBase, Global 5 Arc-minute Ocean Depth and Land Elevation from the US
National Geophysical Data Center (NGDC).”

Papke, L.E., and J.M. Wooldridge. 2008. “Panel Data Methods for Fractional Response Variables
with an Application to Test Pass Rates.” Journal of Econometrics 145:121–133.

Ramankutty, N., and J.A. Foley. 1999. “Estimating Historical Changes in Global Land Cover:
Croplands from 1700 to 1992.” Global Biogeochemical Cycles 13:PP. 997–1027.

Ramankutty, N., J.A. Foley, J. Norman, and K. McSweeney. 2002. “The Global Distribution of
Cultivable Lands: Current Patterns and Sensitivity to Possible Climate Change.” Global Ecology
and Biogeography 11:377–392.

Rashford, B.S., J.A. Walker, and C.T. Bastian. 2011. “Economics of Grassland Conversion to
Cropland in the Prairie Pothole Region.” Conservation Biology 25:276–284.

Roberts, M.J., and W. Schlenker. 2013. “Identifying Supply and Demand Elasticities of Agricultural
Commodities: Implications for the US Ethanol Mandate.” American Economic Review 103:2265–
95.

28



Schlenker, W., W.M. Hanemann, and A.C. Fisher. 2005. “Will U.S. Agriculture Really Benefit from
Global Warming? Accounting for Irrigation in the Hedonic Approach.” The American Economic
Review 95:395–406.

Scott, P.T. 2013. “Dynamic Discret Choice Estimation of Agricultural Land Use.” Working paper,
Toulouse School of Economics.

Searchinger, T., R. Heimlich, R.A. Houghton, F. Dong, A. Elobeid, J. Fabiosa, S. Tokgoz, D. Hayes,
and T. Yu. 2008. “Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through
Emissions from Land-Use Change.” Science 319:1238–1240.

See, L., D. Schepaschenko, M. Lesiv, I. McCallum, S. Fritz, A. Comber, C. Perger, C. Schill,
Y. Zhao, V. Maus, M.A. Siraj, F. Albrecht, A. Cipriani, M. Vakolyuk, A. Garcia, A.H. Rabia,
K. Singha, A.A. Marcarini, T. Kattenborn, R. Hazarika, M. Schepaschenko, M. van der Velde,
F. Kraxner, and M. Obersteiner. 2015. “Building a Hybrid Land Cover Map with Crowdsourc-
ing and Geographically Weighted Regression.” ISPRS Journal of Photogrammetry and Remote
Sensing 103:48–56.

Siebert, S., J. Burke, J.M. Faures, K. Frenken, J. Hoogeveen, P. Döll, and F.T. Portmann. 2010.
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Appendices

Table A-1: Data sources.

Variables Units[Resolution(min)∗] Source

Potential vegetation 5 typesa[5] Ramankutty and Foley (1999)c

Soil fertility constraints 0-8a[5] IIASA/FAO (2012)d

Precipitation mm/year[30] New, Hulme, and Jones (1999)c

Elevation meters[5] NOAA (1995)c

Soil pH 0-14[30] IGBP-DIS (1998)c

Soil carbon (1m depth) kg-C/m2[30] IGBP-DIS (1998)c

Temperatureb oC[30] New, Hulme, and Jones (1999)c

Market access Index[5] Verburg, Ellis, and Letourneau (2011)e

Area equipped for irrigation % of gridcell[5] Siebert et al. (2010)f

Built-up land % of gridcell[5] Miteva, B.c

Protected areas 0-1a[5] van Velthuizen et al. (2006)g

GTAP Agro-ecological zones AEZs[5] Monfreda, Ramankutty, and Hertel (2009)h

∗ Datasets available at a 30-min resolution were resampled to 5-min by assuming that all the 5-min
degree cells within a 30-min degree cell have the same value.

a Description of categories for (i) Potential vegetation: Original 15 categories reduced to five cat-
egories as displayed in table A-2; (ii) Soil fertility constraints categories: (0) undefined, (1) no
constraints, (2) slight constraints, (3) moderate, (4) constrained, (5) severe, (6) very severe, (7) un-
suitable for cultivation, (8) water; (iii) Protected areas: (Original categories were 0) non-protected
areas, (1) protected areas where agriculture should not be occurring, and (2) protected areas where
agriculture could not be occurring; we coded them as a dummy that equals one for protected areas
and zero otherwise.

b Based on monthly average temperatures (1961-1990), we create a growing season average based
on hemispheres:

Season North South

Winter Dec-Jan-Feb Jun-Jul-Aug
Spring Mar-Apr-May Sep-Oct-Nov

Summer Jun-Jul-Aug Dec-Jan-Feb
Autumn Sep-Oct-Nov Mar-Apr-May

cData downloaded from the Atlas of the Biosphere, an initiative of the Center for Sustainability
and the Global Environment (SAGE) at the University of Wisconsin, http://www.sage.wisc.

edu/atlas/, last accessed on May 26, 2015. The Atlas strives to “include only those datasets that
presumably represent the pinnacle of current knowledge in a particular field.”

dData downloaded from http://www.iiasa.ac.at/Research/LUC/GAEZ/plt/zip/plate22.zip,
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last accessed on May 26, 2015.

eData downloaded from http://www.ivm.vu.nl/en/Images/marketinfluence_tcm53-229510.

zip, last accessed on May 26, 2015.

fData downloaded from http://www.fao.org/nr/water/aquastat/irrigationmap/index10.stm,
last accessed on May 26, 2015.

gData downloaded from http://www.fao.org/geonetwork/srv/en/metadata.show?id=31040, last
accessed on May 26, 2015.

hData downloaded from https://www.gtap.agecon.purdue.edu/resources/res_display.asp?

RecordID=3184, last accessed on May 26, 2015.

Table A-2: Correspondence between land cover types used in this work and the potential vegetation
types of Ramankutty and Foley (1999) .

Land covers (this work) Potential Vegetation (Ramankutty and Foley, 1999)

Tropical forests (1) Tropical Evergreen Forest/Woodland
(2) Tropical Deciduous Forest/Woodland

Temperate forests (3) Temperate Broadleaf Evergreen Forest/Woodland
(4) Temperate Needleleaf Evergreen Forest/Woodland
(5) Temperate Deciduous Forest/Woodland
(6) Boreal Evergreen Forest/Woodland
(7) Boreal Deciduous Forest/Woodland
(8) Mixed Forest

Savannas& Grasslands (9) Savanna
(10) Grassland/Steppe

Shrublands (11) Dense Shrubland
(12) Open Shrubland

Other (13) Tundra
(14) Desert
(15) Polar Desert/Rock/Ice

Calibrating a Constant Elasticity of Transformation Function Using
Land-use Transition Probabilities

1. Denote cropland by agr and non-croplands by nagr, i.e., pastures and forests. Let R denote
net returns to agriculture. Furthermore, let θ denote land-use revenue shares so that θagr +∑

nagr θnagr = 1. All the variables in this algorithm are region-specific; that is, they apply to
a defined set of grid-cells.

2. We estimate cross-price elasticities for pastures and forests, ηnagr,agr =
δnagr

nagr

R

δR
, using
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equations 11-13.

3. Ahmed, Hertel, and Lubowski (2008) demonstrate that the CET parameter of the land supply
function, σ, is given by:

σ = − ηagr,agr
1− θagr

. (A-1)

4. By virtue of the homogeneity of supply, we obtain:

ηagr,agr +
∑
agr

ηagr,nagr = 0. (A-2)

5. The task then is to recover ηagr,nagr from our estimates of ηnagr,agr.

6. For this, take advantage of the symmetry of the matrix of Allen-partial elasticities of substi-
tution, in particular, for any non-cropland use nagr:

σnagr,agr =
ηnagr,agr
θagr

= σagr,nagr =
ηagr,nagr
θnagr

. (A-3)

from which we can readily recover the ηagr,nagr, plug them into equation A-2, and solve for
ηagr,agr, which yields σ by virtue of equation A-1.

7. The land use revenue shares for each region in Hertel et al. (2010) are displayed in table 4;
these are taken from the GTAP land use database V.7 (Avetisyan, Baldos, and Hertel, 2010,
last accessed June 16, 2015) which is freely downloaded from https://www.gtap.agecon.

purdue.edu/resources/res_display.asp?RecordID=3426.
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Supporting Online Materials

Sample Description and Representativeness vis a vis Population

Table S-1: Proportion of gridcells used in agriculture in each land cover type (population vs.
sample)

UsedInData UsedInSample

A 0.03 0.03
Ft 0.18 0.19

FT 0.27 0.27
G 0.51 0.51
S 0.27 0.26

Table S-2: Share of each land cover type in natural (Z=0) and agricultural (Z=1) land use (popu-
lation vs. sample)

0 1 0 1

A 0.04 0.00 0.04 0.00
Ft 0.33 0.17 0.33 0.17

FT 0.30 0.24 0.29 0.25
G 0.21 0.48 0.21 0.48
S 0.13 0.11 0.14 0.11

Sum 1.00 1.00 1.00 1.00

Table S-3: Proportion of gridcells used in agriculture in each soil fertility category (1 is most fertile,
population vs. sample)

UsedInData UsedInSample

1 0.57 0.57
2 0.39 0.40
3 0.35 0.34
4 0.40 0.40
5 0.23 0.24
6 0.12 0.11
7 0.13 0.14
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Table S-4: Share of each soil fertility category (1 is most fertile) in aggregated natural (Z=0) and
agricultural (Z=1) land use (population vs. sample)

0 1 0 1

1 0.12 0.36 0.12 0.35
2 0.07 0.11 0.08 0.11
3 0.08 0.10 0.08 0.09
4 0.14 0.20 0.13 0.20
5 0.13 0.09 0.13 0.09
6 0.24 0.07 0.24 0.07
7 0.22 0.08 0.22 0.08

Sum 1.00 1.00 1.00 1.00

Table S-5: Proportion of gridcells under agricultural use in each country (population vs. sample)
UsedInData UsedInSample

ARG 0.28 0.28
BOL 0.16 0.16
BRA 0.24 0.24
CAN 0.20 0.20
CHL 0.12 0.13
COL 0.23 0.21
CRI 0.40 0.38

ECU 0.48 0.44
GTM 0.55 0.54
GUF 0.00 0.00
GUY 0.04 0.05
HND 0.54 0.56
MEX 0.38 0.38
NIC 0.45 0.46
PAN 0.28 0.33
PER 0.14 0.14
PRY 0.31 0.31
SLV 0.96 1.00
SUR 0.01 0.02
URY 0.25 0.22
USA 0.51 0.51
VEN 0.12 0.12
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Table S-6: Proportion of gridcells under agricultural use in each AEZ (population vs. sample)
UsedInData UsedInSample

1 0.17 0.18
2 0.31 0.33
3 0.43 0.44
4 0.38 0.36
5 0.24 0.25
6 0.12 0.12
7 0.24 0.23
8 0.51 0.50
9 0.38 0.38

10 0.63 0.64
11 0.72 0.71
12 0.55 0.54
13 0.17 0.19
14 0.05 0.05
15 0.08 0.08
16 0.17 0.15
17 0.00 0.00
18 0.00 0.00

Table S-7: Average market access of lands in natural and agricultural use (population vs. sample)
Z x InSample

0.00 6.67 6.67
1.00 22.70 22.91

Table S-8: Average market access of each soil fertility category in (population vs. sample)
SoilFert x InSample

1.00 15.56 15.52
2.00 16.02 16.38
3.00 15.43 15.45
4.00 18.60 18.76
5.00 9.63 9.75
6.00 5.51 5.68
7.00 4.79 4.87

Table S-9: Average market access of each land cover type (population vs. sample)
cover x InSample

A 4.55 4.10
Ft 5.40 5.58
FT 16.80 16.93
G 12.54 12.70
S 13.05 12.56
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Table S-10: Proportion of gridcells in each soil fertility-land cover type combination (sample)
A Ft FT G S

1 0.10 0.02 0.06 0.41 0.38
2 0.11 0.03 0.07 0.12 0.16
3 0.10 0.07 0.08 0.08 0.13
4 0.10 0.18 0.18 0.13 0.13
5 0.13 0.18 0.10 0.08 0.10
6 0.12 0.41 0.16 0.08 0.05
7 0.34 0.11 0.36 0.11 0.06

Sum 1.00 1.00 1.00 1.00 1.00

Table S-11: Average market access of each AEZ (population vs. sample)
AEZ18 x InSample

1 7.33 6.55
2 10.68 11.44
3 9.67 8.56
4 11.07 11.07
5 6.23 6.47
6 3.90 4.10
7 9.32 9.04
8 9.88 10.21
9 12.55 12.29
10 32.58 32.87
11 38.48 38.71
12 22.83 22.23
13 4.70 4.41
14 2.54 2.64
15 2.63 2.79
16 6.84 6.56
17 0.00 0.00
18 0.00 0.00
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Table S-12: Average market access of gridcells in agriculture in each country (population vs. sam-
ple)

Country x InSample

ARG 14.56 15.17
BOL 7.69 7.24
BRA 13.30 13.28
CAN 20.84 21.26
CHL 27.43 25.63
COL 28.76 30.61
CRI 24.75 25.93
ECU 10.78 12.04
GTM 40.65 39.97
GUY 9.18 8.64
HND 39.35 37.47
MEX 26.66 26.54
NIC 35.23 33.02
PAN 6.57 8.38
PER 4.94 6.00
PRY 6.89 7.22
SLV 66.05 68.61
SUR 21.14 0.00
URY 13.67 10.09
USA 28.78 28.82
VEN 23.48 27.47
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