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Introduction

This paper presents a method whereby linear programming can be

utilized to implement safety first decision rules with a discrete and

finite population or sample. The method utilizes a stochastic inequality

constructed -with a lower partial moment. Should only a sample be

ayailable a statistical estimator of the lower partial moment is utilized

which can be shown to be both unbiased and strongly convergent. A brief

discussion of safety first and expected utility theory is followed by a

presentation of the model with an empirical example.

Safety First and Expected Utility

Real world decisions must often be made in a setting of uncertainty

when the outcomes of decisions are realized in future periods. Decision

processes in such settings continue to stimulate considerable research

efforts on the part of decision theorists and research economists.

Several approaches to decision making are discussed in the literature.

Included are expected utility theory, safety first, satisficing and game

theory. In agricultural economics perhaps the most developed and

accepted of the approaches-is that of expected utility maximization. A

rich literature field has developed dealing with the axiomatic

foundations of utility theory, utility elicitation, stochastic dominance

applications and other aspects of utility theory)'

Expected utility theory has not been the only decision method

discussed in the literature nor has it been free of criticism. The

French school of utility, founded in the early 1950's by Allais and

others, argues that expected utility maximization is not consistent with

many observed behavioral phenomenon. They argue that the higher moments

of utility (especially the second and third) are as important as mean
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utility in decision making. Expected utility maximization in this case

might give relatively good approximations of behavior should the choices

considered be in a sufficiently small subset of all possible choices.

Methods to so constrain the feasible set of actions are not immediately

apparent. A possible method might be to eliminate from consideration all

distributions where the probability of failing to achieve some critical

goal of the firm exceeds some threshold level. This concept is similar

to certain safety first concepts discussed in following sections.

Several alternative approaches have been proposed. Included among

these is the concept which has commonly been termed safety—first

behavior. Safety—first behavior can be defined as behavior which is

impacted or constrained by the probability of failing to achieve certain

goals of the firm. This probability can be denoted as Pr(x < g) < X with

g a goal of the firm and X an acceptable limit, on this probability. .

Various models of safety—first behavior have been discussed in the

literature including those of Roy. Miser, Kataoka, and various chance

constrained models. Roumasset presented a lexicographic system of safety

first decision criteria for subsistence farmers in the Philippines.

While these models have been proposed and discussed since the

1950's, they have not gained widespread popularity among researchers,

perhaps due to the common acceptance of expected utility theory. Many

tend to feel that safety—first behavior is of questionable theoretical

content or can be approximated by expected utility theory. Pyle and

Turnovsky demonstrated that,. with distributions uniquely defined by mean

and variance (such as the normal), safety first solutions could also be

obtained with properly specified expected utility models if borrowing and

lending were excluded. If borrowing or risk free lending was allowed,

the results were not consistent with expected utility. The methods
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utilized by Pyle and Turnovsky are applicable should the decision maker

desire to select a portfolio from a set of investments with a

multivariate normal distribution. Should the set of investments be non—

normally distributed and dependent, then implementing safety—first models

is much more difficult. In many cases, constructing probability

statements over a large set of possible linear combinations of non

normal, dependent random variables will be exceedingly difficult. As

safety first models require probability information on these linear

combinations, the ability to practically implement safety first models

has been quite limited. One method which has been utilized is to use

stochastic inequalities such as Chebychev's to generate sharp upper

bounds on the probability. thebychev's inequality is

Pr(Ix — pi < ka) < (1/k)2

The inequality places a sharp upper bound of (1/k)
2

on the.probability of

the random variable x falling more than k standard errors from the mean.

Such upper bounds tend to be quite conservative. This paper presents an

alternative method to implement safety first models should the decision

maker face a discrete and finite set of possible state vectors. The

method presented utilizes linear programming. A linear constraint

guarantees that the probability concerns of the safety first model are

satisfied. The linear constraint is constructed by utilizing a lower

partial moment stochastic inequality.

Lower partial moments are intimately related to stochastic

dominance. Stochastic dominance concepts are attractive in that a

partial ordering of distributions is often possible for individuals whose

utility functions satisfy certain conditions. These conditions can be

quite broad in which case stochastic dominance tests may eliminate only a
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small proportion of all possible outcomes. Imposing additional

conditions on the utility function allow further reductions in the

undominated set of possible outcomes. Commonly known forms of stochastic

dominance include first order (F.S.D,), second order (S.S.D.) and third

order stochastic dominance (T.S.D.). These forms will not be redefined

here but will be referred to in the following sections. Other forms of

stochastic dominance have been defined and have proven useful. Meyer's

stochastic dominance with respect to a function allows the elimination of

dominated distributions for all individuals whose risk aversion

characteristics lie within certain bounds (see Meyer, King and Robison).

Porter first demonstrated the relationship between target

semivariance and second order stochastic dominance. Target semivariance

is defined as

(1) al— = • it.(t — x)2 f(x) dx

Solutions which are mean—target semivariance efficient were shown by

Porter to be members of the S.S.D. efficient set. Target semivariance is

a special case of a lower partial moment (L.P.M.). Fishburn presented a

general form of the lower partial moment which is defined as follows

(2) p(a,t) = ft(t — x)a f(x) dx

Fishburn showed that models which examined mean—lower partial moment

tradeoffs generated solutions which were S.S.D. efficient for all a 1 1

and T.S.D. efficient for all a 2_ 2. Thus Porter's target semivariance

model actually generated subsets of the T.S.D. set.

Tauer recently reported similar results for the discrete case with

a = 1. McCamley and Kleibenstein likewise reported that, with a = 2 and

. a discrete distribution, mean—target semivariance efficient solutions are

elements of the T.S.D. efficient set. In addition to the properties

discussed by Fishburn, L.P.M.'s are useful in a stochastic inequality



258

which can be utilized in safety first programming.

Lower Partial Moments and Safety First

Berck and Hihn first presented a mean—semivariance stochastic

inequality which generated considerably less conservative upper bounds

• than Chebychev's inequality. Atwood presented a general L.P.M.

inequality and demonstrated the ability of alternative forms to provide

less conservative upper probability bounds than the Chebychev or mean—

semivariance inequality.

The general inequality is

(3) Pr(x < g) = Pr(x < t — pe(a,t)) j (1/p)a

with g a goal of the firm as previously defined,

t a reference level of income,

a the power to which deviations are raised in Fishburn's

L.P.M. p(a,t),

Cast) is the a'th positive root of p(a,t) i.e.

0(a,t) = [p(a,t)ilia 1 0, and

p is the number of 0(a,t) units that g falls below t.11

Utilizing inequality (3) it can be shoin that enforcing the

following constraint is sufficient to guarantee that Pr(x < g) X. The

constraint is

(4) t q*O(a,t) 2. g

with (1/q*)a = or q* =

Should a = 1 then (4) becomes

(5) t — q*9(1,t) g

with q* = 1/X

Constraint (5) requires that p(1,t) = 0(1,0 be known. With a

finite discrete distribution this can be computed in a target—MOTAD
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model. Should the decision .maker possess an independently and

identically distributed sample of size n, the following statistic can be

shown to be both unbiased and strongly convergent as an estimator of

ga,t). The statistic is

(ast) = E [(t — x.)a I(x.)]
i=1 

1 (.....tt).

with x. the i'th observation of the random variable and

I(x) is the indicator or zero—one function which

multiplies by 1 if x
i 

t or

0 if x. > t1

If the decision maker desires to select a portfolio of k activities

which maximize expected aggregate income subject to a safety—first type

constraint on aggregate income, the above inequality can be utilized as

aggregate income in a univariate random variable. The sample in this

case would consist of a set of vectors. Using A(1,t) = 6(1,0 as an

estimator of ga,t) = 062,0 this problem can be modeled by system

(6) Max jc

Subject to

AS 1 11

Y. — 1 t + I . 0

t — q*(1/n)T d > g

2s L1 2. .9.
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with IT = transposed kxl vector of sample means for the k

activities,

= kxl choice vector of activity levels,

T 
= [yr 2, yn] with YI. = a kxl vector consisting

of the i'th observation of the k activities'

income levels,

1 = nil vector of ones,

= the reference level of income for the L.P.M.,

= nxn identity matrix

c=nil vector with i'th element = t — .
T 

if y.
T
c t

or = 0 if .Tc > t,

0 = column vector of zeros,

q* = 1/X.

(1/n) = nil vector with all elements equal to l/n, and

= the safety first goal.

The above system is a modification of the model presented by Held, Watts,

and Helmers. As constraint (S) is valid for all feasible levels for t,

the optimization model endogenously selects the least constraining level

of t. Should Y be a population or a subjectively estimated set of state

vectors, the vector (l/n) can be replaced with a probability vector r

with r. the probability of state .. The above model then becomes a

modified version of Tauer's Target—MOTAD.
3/

In the following section an empirical example will be presented.

The Y matrix is assumed to be a sample rather than a population. As such

A
the statistical estimator 0(1,0 =

T4. 
will be utilized.

Empirical Model

The empirical example of this section assumes that the decision
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maker wishes to select a combination of activities which maximize

expected income while satisfying certain 'safety goals of the firm. The

decision maker can select from six activities subject to a set of linear

technical constraints. Ten observations of the six activities are

available. The assumption is made that each of the ten observations is

from the same population of possible events that is currently anticipated

by the decision maker. Table 1 present the sample mean, standard error,

and coefficient of variation levels for the six activities. Table 2

presents the sample correlation coefficients. Note that while activity

six has by far the highest coefficient of variation in Table 1, it is

also the only activity which is negatively correlated to the others.

Activity six can thus not be eliminated from consideration a priori.

The tableau for this problem is presented in Table 3. An additional

row has been added to system'6 to allow separate computation of

0 = (1/n)Td. The final row enforces constraint (5) while allowing the

endogenous selection of the least constraining level for t. The tableau

as presented maximizes expected income subject to

Pr(income < $90000) < .2 = 1/q*. This gives q* = 5. The solution to

this problem and for alternative levels of g and X are presented in Table

4. Also reported in Table 4 are the actual number of times that income

fell below the goal (i—e. Mi < g) as well as the buffer between g and

the smallest .Tc g.Mi

Several points should be noted when examining Table 4. The

solutions for all levels of X 1 .1 = 1/n are identical. System (6) can

not effectively discriminate at X levels between 0 and 1/n. Note for X

levels of 0, .05, or .1 that no observations of income below either

$90000 or $95000 occur. However, for each the smallest value of .
T
g_Mi

equals g. Thus even though no observations actually occur below g, there
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may be one or more observations of .Tc exactly equal to g. In this

case, there is little room for specification or estimation error at

levels of X s. l/n. The same results hold if subjective probabilities r

are utilized rather than (1/n). The model will then not be able to

discriminate at probability levels less than the smallest r
i 
value.

Note also that at X levels above l/n, the solutions tend to be

conservative in that the number of observations below g divided by n are

less than the allowable X levels. This results from the fact that

inequality (3) generally provides conservative upper bounds for

Pr(x < g). An idea of the conservativeness of the solution can be gained

byexaminingthevalueoftherainannolvalueofX:re — ggiventhat.TSY/

g • This level represents the distance from g to the 'next highest'

income level observed. The greater this number, the more conservative

the solution can be said to be. For g = $90000 and X = .20, one

observationof:rc was below $90000 with the next lowest observation at

00788. It can be seen that a certain buffer for specification error

exists before the associated solution mix actually violates the condition

Pr(x < 90000) .2. The use of stochastic inequality (3) in safety—first

models as opposed to exact probabilities is thus seen to result in a

tradeoff. This tradeoff is between the conservativeness implicit to the

use of stochastic inequalities and specification error protection.

As demonstrated by Atwood, the use of inequality (3) potentially

results in less conservative upper bounds than Chebychev's or Berck and

Hihn's inequality. However, by reducing the conservativeness of the

upper bounds, the likelihood of underestimating Pr(x < g) has increased

should specification or sampling error exist. The seriousness of each

type of error will depend upon the specific problem being analyzed.
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Should the first type of error i.e. excess conservativeness be viewed as

more serious by the decision maker, the use of system (6) or perhaps an

even less conservative method may be warranted. Should the

underestimation of Pr(x < g) be viewed as more serious, the decision

maker may wish to utilize Berck and Hihn's or Chebychev's inequality with

a non—linear programming routine. Alternatively, system (6) could be

utilized with a more conservative g or X level.

A final point will be made concerning a comparison of the goals and

the expected income levels of Table 4. As the income goal of concern was

increased from $90000.to i95000, at a given X level, the maximum possible

mean income declined. No attempt will be made to rigorously prove why

this occurs but an intuitively based explanation might be in order at

this time. Maximizing expected net income with no probability

restrictions yields an expected income of $161088. The associated

activity mix yields no observations of .T2. < $84721. Thus any

probability restrictions on .g 1 $84721 would be satisfied and the L.P.

Solution would be optimal. As g is increased above $84721, the activity

mix may need to be modified depending on X. This modification is likely

to require a reduction in the expected income as the feasible set of

solutions has now become more constrained. Increasing g further, given

X, constrains the model, resulting in previously attainable mean income

levels being non—attainable. As g increases from $90000 to $95000 the

model has become more constrained.

.Summary and Conclusion

This paper has demonstrated a method to implement safety—first or

probability constrained programming with linear programming. Probability

bounds on linear combinations of nonnormal and dependent random variables
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can be constructed utilizing a linear lower partial moment (L.P.M.)

inequality and a set of discrete state. vectors. The inequality in

general provides considerably less conservative upper bounds (and

activity mixes) than other published inequalities.

If only a sample is available, an unbiased and strongly Convergent

estimator of the L.P.M. can be utilized in lieu of the actual parameter.

(A subjective distribution can also be utilized.) As the solutions tend

to be conservative, some level of specification or sampling error can

exist with violating the probability constraint Pr(x < g). The

statistical properties of p(at) as an estimator of p(a,t) appear to

merit further study.

The potential usefulness of linear probability constraints appears

to be significant. All three safety—first criteria discussed by Pyle and

Turnovsky can be modeled although only one criteria has been demonstrated

in this paper. In addition, the possibility of expected utility

maximization within a probability constrained space could be explored.

Such a concept or approach might be more consistent with the views of the

French school of utility. The solution to system (6) will be a member of

the S.S.D. efficient set. Methods to generate additional stochastically

efficient solutions within the probability constrained space would be

useful. Such a procedure would reduce the F.S.D., S.S.D., or T.S.D.

efficient sets, perhaps significantly.

The probability constrained random variable need not be aggregate

income. The new method can thus be utilized to implement various forms

of chance constraints. Examples would be chance constraints on various

resources, internal flows, intermediate products or financial ratios if

discrete potential outcomes can be listed or derived. Most previous

applications of this type have utilized normality assumptions..
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. In conclusion, the potential usefulness of lower partial moments for

probability or safety constrained problems appears to be significant.

The method may not be suited to all applications but should prove to be a

useful tool for decision making under uncertainty.



266

1/
Footnotes

An interesting recent development in the area of stochastic

dominance has been the relationship discovered between lower partial

moments and stochastic dominance.. This relationship will be briefly

addressed in a following section of the paper.

2/ •
— For a proof of the inequality (3) and constraint (4) see Atwood.

3/ Muer demonstrated that solutions of the Target—MOTAD model were

subsets of the S.S.D. efficient set. In this case the probability

constrained solution to system (6) will also be a member of the

S.S.D. efficient set if t — q*rTd > g is constraining. Although the

optimization process endogenously selects the level for t, constraint

(5) effectively constrains 0(1,0 = r
T
d to be less than or equal to

some level M — g)/q while maximizing expected income.



Table

Sample Mean, Standard Error, and Coefficients of Variation

Activity A. a. ailgi1 1

C
1 

538.64 238.48 .526

C
2 

318.88 178.69 .560

C
3 260.78 65.24 .250

C
4 188.11 90.33 .480

C
5 123.04 44.94 .365

C
6 20.59 110.13 5.349

267

•
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Table 2 •

Sample Correlation Coefficients for Example Problem

Activity C
I 

C
2 
 C

3 
C
4 

C
5 

C6.

C
I 

I .877 .516 .838 .630 —.549

C
2 

1 .297 .706 .467 —.419

C
3 

1 .567 .709 —.404

C
4 

1 .805 —.453

C
5 

1 —.220

C
6 

1
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Table 3

Tableau for Empirical Example

ROw Cl C2 C3 C4 CS C6I DI 02 03 D4

083 rCN 538.6400 318.8800 260.7800 188.1100 123.0400 20.5900

RI 1 1.0000 1.0000 1.0000 1.0000 1.0000

R2 L 2.9700 1.7700 1.8200 1.8500 1.9060 0.4100

R3 1 1.0800 1.0900 1.2500 1.2800 0.2500

124 l 2.8400 3.7100 3.0800 1.1400 0.900

P5 L 2.3900 3.9100 4.4300 0.6400 1.2300 .

R6 1 5.6800 . . I.74n0 . 0.2700

R7 L 2.7200 1.5600 1.6100 1.6300 0.6700

R8 L 1.0400 1.9900 1.2000 1.2200 0.0800
R9 1 0.5700 0.8800 0.8000 0.8300 0.3600
RIO L 0.1900 3.1500 3.6400 0.0800 0.1500
R11 1 5.3000 1.5800

R17 L • 1.0000
RI3 1 -1.0000 . 0.0780
RI4 1 -1.0000 . 0.1010

.

R15 1 . . . . -0.8000 0.1010 .

Y1 6 516.5200 217.9900 296.5000 132.1400 106.2200 -50.1600 -1.0000 1.0000

Y2 6 781.5100 412.9500 343.0400 203.0800 126.1600 -92.1200 -1.0000 1.0000

Y3 6 420.0760 322.1800 213.4200 114.5300 111.5500 200.4900 -1.0000 1.0000

Y4 6 280.7700 139.0000 166.1400 105.5500 101.0900 141:8907 -1.0000

Y5 6 332.2400 407.4100 198.0000 108.8801 65.7900 -9.630e -1.0000

Y6 6 271.2500 117.7100 339.7200 174.3100 173.2600 67.7606 -1.0060

Y7 6 507.0200 274,6300 262.2600 273.c100 139.9700 -50.0200 -1.0000

Y8 6 1137.6000 669.9600 287.1900 348.8700 194.9000 -141.1700 -1.0000

Y9 6 801.7500 490.1000 313.9600 307.7000 153.4400 119.9300 -1.0000

Y10 6 315.6200 136.8900 187.5800 117.7300 53.5100 26.0700 -1.0000 . .

THETA L . 0.1000 0.1000 0.1000 0.1W

SUFCCNST 6 1.0000

PO w 05 06 07 09 DIO T-THETA P H S
OBJ FCN111111*1
RI 1 400.0000
R2 1 1084.0000
R3 1 1127.0000
R4 1 611.0000
PS 1232.0000
R6 1 1084.0000
R7 1 805.0000
R8 1 768.0000
R9 1 1230.0000
RIO 1 904.0000
R11 897.0000
RI? L 300.0000
R13
F14 L
RI, L
Y1

Y2
Y1, 6
Y4 6
Y5 6 1.0000
Y6 6 1.0000
Y7 6 1.0000
Y8 6 1.0000
19 6 1.0000
Y10 6 1.0000
DIU L 0.1000 0.1000 0.1000 0.1000 0.1040 0.1000 -1.0000 .
SUCC0NS1 6 -5.0000 90000.0000



Table 4

,sfetv Firit Solutions for Examplf PrOleu

Income Probability Constraint Mean Actual Distance
Ooal Constraint Coefficient Income  Activity Levels  NuTber of to yearest

1 
cop 

1 
C
2 

C
3 

C C
s 

C
6 Xi e ( I xl 2 s

90000

95000 .

L.P.
Solution

0 • 159621 164.9 173.6 28.8 14.5 18.2 144.0 0 0

.05 20 159621 164.9 173.6 28.8 14.5 12.2 144.0 0 0

.40 10 159621 164.9 - 173.6 28.8 14.5 18.2 144.0 0 0

.15 6.67 159741 164.9 175.3 27.3 14.4 18.0 142.8 1 861

.20 5 159840 165.0 176:8 26.0 14.3 18.0 141.7 1 788

.23 4 160716 165.0 191.8 . 11.0 . 14.3 . 17.9 141.4 1 28

.30 3.33 161088 165.4 195.4 10.0 13.0 16.2 128.4 2 6484

0 • 154074 163.1 '90.9 99.5 20.5 25.7 203.3 0 0

.05 20 154074 163.1 90.96 99.8 20.5 25.7 203.3 0 0

.10 10 154074 163.1 90.96 99.8 20.5 25.7 203.3 0 • 0

.15 6.67 157032 164.1 135.0 61.9 17..3 21.7 171.7 1 4321

.20 5 157531 164.2 142.4 55.6 16.8 21.0 166.4 1 2525

.25 4 158564 162.7 171.1 16.9 .21.9 27.4 217.0 2 13140

.30 3.33 159373 163.6 178.9 14.7 19.0 23.8 188.5 2 9402

161088 165.4 195.4 10.0 13.0 16.2 128.4 .111.
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