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Chaos, Economics, and Risk* 

ABSTRACT 

In recent years, research in both mathematics and the applied sciences has 

produced a revolution in the understanding of nonlinear dynamical systems. 

Used videly in economics and other disciplines to model change over time, 

these systems are now known to be vulnerable to a kind of "chaotic," 

unpredictable behavior. This paper places this revolution in historical 

context, explains several of the important mathematical ideas on vhich it is 

based, and discusses some of its implications for a probabilistic 

interpretation of longrun economic phenomena. 

Keyyords: Limits to predictability; nonlinear and chaotic dynamical systems; 

fractals; stochastic processes. 
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* This paper is adapted from "Nonlinear and Chaotic Dynamics: An Economist's 

Guide," to appear in The Journal of Agricultural Economics llesearch (1991). 

The forthcoming paper will include extensive discussions of structural 

stability and symbolic dynamics; the present one incorporates an expanded 

treatment of the probabilistic character of chaotic dynamics. The author 

thanks John McClelland and other participants in the ERS Chaos Theory Seminar 

for many stilIIlllating discussions on chaotic dynamics. Helpful reviev comments 

were received from Carlos Arnade and Richard Heifner. 
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IIITRODUCTIOI. 

In the last tvo decades, the vorld of science has come to a fundamentally 

nev understanding of the dynamics of phenomena that vary over time. Grounded 

in mathematical discovery, yet given empirical substance by evidence from a 

variety of disciplines, this nev perspective has led to nothing less than a 

re-examination of the concept of the predictability of dynamic behavior. Our 

implicit confidence in the orderliness of dynamical systems-specifically, of 

nonlinear dynamical systems-has not, it turns o~t. been entirely justified. 

Such systems are capable of behaving in vays that are far more erratic and 

unpredictable than once believed. Fittingly, the nev ideas are said to 

concern chaotic dynamics, or, simply, chaos. 

Economics is not imnnme from the implications of this nev understanding. 

After all, our subject is replete vith dynamical phenomena ranging from cattle 

cycles to stock market catastrophes to the back-and~forth interplay of 

advertising and product sales. Ideas related to the notion of chaotic 

behavior are nov part of the basic mathematical toolkit needed for insightful 

dynamical modeling. Agricultural economists need to gain an understanding of 

these ideas just as they vould any other significant mathematical contribution 

to their field. This paper is intended to assist in this educational pr~cess. 

What exactly has chaos theory revealed? In order to address this 

question, let us consider an economy, subject to change over time, vhose state 

at time t can be described by a vector, vt• of (say) 14 numbers (money supply 

at time t, inflation rate at time t, etc.). Formally, this vector is a point 

in the 14-dimensional state space m14 (vhere mis the real number line). 

Suppose that the economy evolves deterministically in such a vay that its 

state at any time uniquely determines its state at all later times.· Then, if 

the initial position of the economy in m14 at time O is v0 , the evolution of 
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h · · d b h . IR14 . the economy throug time will be represente ya pat in starting at v0 

and traced out by vt as time, t, moves forward. This path-called the· orbit 

generated by the initial position v0-represents a "future history" of the 

system. Figure 1 shows an orbit of a system whose state space is the plane, 

IR2 . Questions about the behavior of the economy over time are really 

questions about its orbits. We are often interested not so Imlch in the 

near-term behavior of orbits as in their eventual behavior, as vhen ve engage 

in long-range forecasting or study an economy's response to a new government 

policy or an unexpected "shock" after the initial period of adjustment has 

passed and the economy has "settled down." 

Fractals, Sensitive Dependence, and Chaos 

21 

Scientists long have known that it is possible for a system's state space 

to contain an isolated, "unstable" point p such that different initial points 

near p can generate orbits with widely varying longrun behavior. (For 

example, a marble balanced on the tip of a cone is unstable in this sense.) 

What was unexpected, however, was the discovery that this type of instability 

can occur throughout the state space-sometimes actually at every point, but 

often in strangely patterned, fragmented subsets of the state space-subsets 

typically of noninteger dimension, called fractals. Once investigators knev 

vhat to look for, they found this phenomenon, termed sensitive dependence on 

initial conditions, to be widespread among nonlinear dynamical systems, even 

among the simplest ones. Though technical definitions vary, systems 

exhibiting this unstable behavior have generally come to be called "chaotic." 

For chaotic systems, any error in specifying an initial point-even the 

most minute error (due to, say, computer rounding in the thousandth decimal 

place)-can give rise to an orbit whose longrun behavior bears no resemblance 
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Figure 1: An Orbit in 1R2 I 
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23 
to that of the orbit of the intended initial point. Since, in the real vorld, 

ve can never specify a point vith mathematically perfect precision, it follovs 

that prediction of the longrun pointvise behavior of a chaotic system is a 

practical impossibility. 

Attractors 

/ 
For a dynamical system, perhaps the most basic question is "vhere does 

the system go, and vhat does it do vhen it gets there?" In the earlier viev 

of dynamical systems, the "place vhere the system vent"-the point set in the 

state space to vhich orbits converged (called an attractor)-vas usually 

assumed to be a geometrically uncomplicated object such as a closed curve or a 

single point. Economic modelers, for example, have often implicitly assumed 

that a dynamic economic process vill ultimately achieve either an equilibrium, 

a cyclic pattern, or some other orderly behavior. Hovever, another discovery 

of chaos theory has been that the attractor of a nonlinear system can be a 

bizarre, fractal set vithin vhich the system's state can flit endlessly in a 

chaotic, seemingly random manner. 

Moreover, just as an economy can have tvo or more equilibria, a dynamical 

system can have tvo or more attractors. In such a case, the set of all 

initial points vhose orbits converge to a particular attractor is called a 

basin of attraction. A recent finding has been that the boundary betveen 

"competing" basins of attraction can be a fractal even vhen the attractors 

themselves are unexceptional sets. A type of sensitivity to the initial 

condition can operate here too: the slightest movement avay from an initial 

point lying in one basin of.attraction may move the system to a nev basin of 

attraction and thus cause it to evolve tovard a nev attractor. 
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Chaotic.behavior vithin a vorking model vould be easier to recognize if 

all orbits initiating near an erratic orbit vere also erratic. Hovever, the 

potentially fractal structure of the region of sensitive dependence can allov 

initial points vhose orbits behave "sensibly" and initial points vhose orbits 

are erratic to coexist inseparably in_the state space like tvo intermingled 

clouds of dust. Thus, siIIDllation of a model at a fev trial points cannot rule 

out the possibility of chaotic dynamics. Rather, ve need a deeper 

understanding of the mathematical properties of our models. Nor can chaotic 

dynamics be dismissed as arising only in a fev quirky special cases; as ve 

shall see, it arises even vhen the system's lav of motion is a simple 

quadratic. 

THE DISCOVERY OF CHAOS 

Recent years have vitnessed an explosion of interest and activity in the 

area of chaotic dynamics. What accounts for this nev visibility-a visibility 

extending even beyond the research comnrunity into the public media? To 

provide an ansver, ve briefly trace the historical development of the subject. 

The first recognition of chaotic dynamics is attributed to Henri 
~ 

Poincare, a French mathematician vhose vork on celestial mechanics around the 

turn of the century helped found the study of dynamical systems, systems in 

vhich some structure (perhaps a solar system, perhaps-as nov understood-an 
. / 

economy) changes over time according to predetermined rules. Poincare's 

vritings foresav the potential for unpredictability in dynamical systems vhose 

equations of motion vere nonlinear. Hovever, neither the mathematical theory 
.,, 

nor the imaging techniques available at the time permitted Poincare to explore 

his intuitions fully. 
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/ 
Folloving Poincare's vork and that of the American mathematician G.D. 
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Birkhoff in the early part of this century, and despite continuing interest in 

the Soviet Union, the subject of dynamical systems fell into relative 

obscurity. During this period, there vas some avareness among mathematicians, 

scientists, and engineers that nonlinear systems vere capable of erratic 

behavior. Hovever, examples of such behavior vere ignored, classified as 
/ 

"noise," or dismissed as aberrations. The idea that these phenomena vere 

characteristic of nonlinear dynamical systems and that it vas the vell­

behaved, "textbook" examples that vere the special cases had not yet taken 

root. 

Then, in the 1960's and 1970's, there vas a flurry of activity in 

dynamical systems by both mathematicians and scientists vorking entirely 

independently. Mathematician Stephen Smale turned his attention to the 

subject and used the techniques of modern differential topology to create 

rigorous theoretical models of chaotic dynamics. Meteorologist Edvard Lorenz 

discovered that a simple system of equations he had devised to sinmlate the 

earth's veather on a primitive computer displayed a surprising type of 

sensitivity: the slightest change in the initial conditions eventually vould 

lead to veather patterns bearing no resemblance to those generated in the 

original run. 

Biologist Robert May used the logistic difference equation 

to model population level, x, over successive time periods. He observed that, 

for some choices of the grorth rate parameter r, the population level vould 

converge, for other choices it vould cycle among a fev values, and for still 
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others it vould fluctuate seemingly randomly, never achieving either a steady 

state or any discernible repeating pattern. Moreover, vhen he attempted to 

graph the population level against the grovth rate parameter, he observed a 

strangely patterned, fragmented set of points. 

Physicist Mitchell Feigenbaum investigated the behavior of dynamical 

systems vhose equations of motion arise from unimodal (hill-shaped) functions. 

He noticed that certain parameter values that sent the system into repeating 

cycles alvays displayed the same numerically precise pattern: no matter vhich 

dynamical system vas examined, the ratios of successive distances betveen 

these parameter values alvays converged to the same constant, 4.66920···· 

Feigenbaum had discovered a universal property of a class of nonlinear 

dynamical systems. His discovery ultimately clarified hov systems can evolve 

tovard chaos. 

Thus, as these and other examples demonstrate, vhile mathematicians vere 

developing the theory of nonlinear and chaotic dynamics, scientists in diverse 

disciplines vere vitnessing and discovering chaotic phenomena for themselves. 

Ultimately, researchers learned of one another's findings and recognized their 

common origin. 

The role of the computer in the emergence of the contemporary 

understanding of dynamical systems is difficult to exaggerate. As ve nov 

realize, even the simplest systems can generate bevilderingly complicated 

behavior. The development of modern computer pover and graphics seems to have 

been necessary before researchers could put the full picture of nonlinear and 

chaotic dynamics, quite literally, into focus. 
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27 
THE IIA.THENATICS OF CHAOS 

We nov explain some of the basic mathematical ideas involved in nonlinear 

dynamics and chaos. We also adopt a slightly different perspective. In our 

previous discussion, ve have implicitly portrayed dynamical systems as being 

in motion in continuous time. Hovever, the equations of motion of such 

systems typically involve differential equations, and a proper treatment often 
.,.. 

requires advanced mathematical machinery. It is generally much easier to vork 

vith (and to understand) discrete time systems-systems in vhich time takes 

only integer values representing successive time periods. We nov shift our 

attention to these systems. 

We begin by pointing out that, vhen the lav of motion of a discrete 

dynamical system is unchanging over time, the movement of the system through 

time can be understood as a process of iterating a function. To establish 

this point, consider a typical dynamic economic computer model, M, having k 

endogenous variables. To start the model nmning, ve enter an initial 

condition vector, v0 , of k numbers. The model computes an output vector, 

M(v0), containing the nev values of the k endogenous variables at the end of 

the first time period. The model then acts onM(v0) and computes a nev output 

vector, M(M(v0)), describing the economy at the end of the second time period, 

etc. Note that the model itself-the "lav of motion"-:remains unchanged 

during this process. In effect, M acts as a function, mapping k-vectors to 

nev k-vectors, applying itself iteratively to the last-computed function 

value. The state space of the economy is the k-dimensional space mk, and, for 

each initial condition vector v0, there is a corresponding orbit 



describing the future evolution of the economy. 

More generally, consider any function f. If f maps its domain (the set 

of all x for vhich f(x) is defined) into itself, then, for each x0 in the 

domain off, the sequence 

is vell--defined and may be considered an orbit of a dynamical system 

determined by f through iteration. 

Henceforth, for brevity, ve denote by 

28 

the nth iterate of a function f. Thus, f 1(x) = f(x), f 2(x) = f(f(x)), f 3 (x) = 
f(f(f(x))), etc. By convention, fO(x) = x. Of course, fn is itself a 

function. It should not be confused vith the nth derivative off, vhich is 

customarily denoted 

f(n). 

We point out that an orbit of a discrete dynamical system of the type 

being considered can alvays be expressed as a system of difference equations. 

In fact, if ve relabel an orbit 
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as 

ve obtain the system of difference equations 

uo - XO= 0, 

u1 - f(uo) = 0, 

u2 - f(u1) = 0, 

u - f(u 1) = 0, n n-

Conversely, given such a system of equations, ve may viev the sequence 

as the orbit of a discrete dynamical system generated by the function f and 

initiated at u0 (i.e., at x0). 

29 
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Orbit Diagrams . 

Fortunately for expository purposes, many of the important features of 

dynamical systems are present in one-dimensional systems. In fact, one of the 

important findings of chaos research has been that discrete dynamical systems 

generated by iteration of even the most elementary nonlinear scalar functions 

are capable of chaotic behavior. Thus, ve_ shall concentrate on functions that 

operate on the number line. 

For such functions, there is a particularly convenient technique for 

diagramming orbits. Consider a function f and an initial point x (see fig. 

2). Beginning at the point (x, x) on the 45° line, drav a dotted line 

vertically to the graph off; the point of intersection vill be (x, f(x)). 

From that point, drav a dotted line horizontally to the 45° line; the point of 

intersection vill be (f(x), f(x)). From there, drav a dotted line vertically 

to the graph off; the point of intersection vill be (f(x), f 2(x)). Continue 

this pattern of moving vertically to the graph off and then horizontally to 

the 45° line. The resulting orbit diagram shovs the behavior of the orbit 

originating at x. In particular, the orbit may be visualized from the 

intersection points marked on the 45° line; the dotted lines indicate the 

"direction of motion" of the system. Of course, the points (x,x), (f(x), 

f(x)), (f2(x), f 2(x)), ... only look like the orbit. They reside in the 

plane, vhereas the actual orbit, consisting of the numbers x, f(x), f 2(x), 

... , resides in the state space, i.e., in the number line. 

Dynamics of Linear Systems_ 

Though our basic interest in this paper is in nonlinear dynamics, 

examination of linear systems provides essential intuition about nonlinear 

ones. Thus, ve begin vith an exhaustive treatment of the linear case. 
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Figure 2: Construction of an Orbit Diagram 
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Choose any numbers a,b, and consider the function g defined by 

32 I 
g(x) =ax+ b. I 

I 
To compute a typical orbit of g, observe that 

I 
g2(x) = a(ax+b) + b 

I 
2 =ax+ b(1+a), I 

I 
3 2 =ax+ b(1+a+a ), I 

4 4 2 3 g (x) =ax+ b(1+a+a +a), I 
I 

and, in general, 

I 
I 

If a= 1, then I 
I 

Hovever, if a f 1, the fornD.1la for the sum of a geometric series gives I 
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[ b] b n - -= a x - 1-a + 1-a. 

N~e that, vhen a is nonnegative, an remains nonnegative, vhile vhen a is 

negative, an altemates betveen negative and positive. In particular, vhen 

a= -1, an altemates betveen -1 and 1. Moreover, vhen a# =1, the distance 

betveen an and 0 either converges monotonically to 0 or diverges monotonically 

tom as n ~ m according to vhether lal < 1 or lal > 1. Using these facts, ve 

nov analyze the behavior of all the orbits generated by g according to the 

various possibilities for the structural parameters a and band the initial 

point x. We shall find it convenient to organize our analysis around the 

possible value of a. We distinguish seven cases: (1) a< -1; (2) a= -1; (3) 

-1 <a< 0; (4) a= 0; (5) 0 <a< 1; (6) a= 1; and (7) a> 1. Within each 

of these cases, ve consider all possible values of the remaining structural 

parameter band the initial point x, and ve determine the longrun behavior of 

the orbit originating at x vhen g has structural parameters a and b. 

Let us first dispense vith the case a= 1. In this case, if b = 0, then 

every xis a fixed point of g (i.e., g(x) = x), and (since then also gn(x) = 

x) the system alvays remains at any initial point. In contrast, if b # 0, 

then no xis a fixed point of g; indeed, for any initial point x, gn(x) 

diverges monotonically as n ~ m to either m or -m according to vhether b > 0 

orb< 0. 

In discussing the six remaining cases-that is, the cases in vhich 

a f 1-ve take b to.be an arbitrary number. In·these cases, g has.exactly.one 

fixed point, b/(1-a), and any orbit originating there remains there. We next 
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examine the behavior of orbits originating at points other than b/(1-a). For 

this purpose, ve assume that the initial point xis an arbitrary number 

distinct from b/(1-a). 

If a< -1, then gn(x) has no finite or infinite limit; rather, it 

eventually alternates betveen positive and negative numbers as its absolute 

value diverges monotonically tom. 

If a= -1, the fixed point b/(1-a) equals b/2, and 

if n is odd 
if n is even. 

Thus, gn(x) alternates endlessly betveen the (distinct) numbers b-x and x. 

If -1 <a< 0, gn(x) converges to b/(1-a) vhile alternating above and 

belov it. 

If a= 0, then, for all n, gn(x) = b. Thus, the system moves from the 

initial point directly to band remains there. 

If 0 <a< 1, gn(x) converges monotonical~y to b/(1-a). The convergence 

is from above if x > b/(1-a) and from belov if x < b/(1-a). 

Finally, if a> 1, then gn(x) diverges monotonically, tom if x > b/(1-a) 

and to -m if x < b/(1-a). 

The possible behaviors of orbits in the one-dimensional linear system are 

illustrated in figures 3(a)-3(h). From these figures and the preceding 

discussion, tvo lessons emerge. First, the fixed point is often at the 

"center of the action:" it is to or from this point that orbits typically 

converge or diverge. Second, the slope parameter, a, plays a pivotal role.in 
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Figure 3(a): Orbit Diagram for Linear Function (a < -1) 
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Figure 3(b): Orbit Diagram for Linear Function (a = -1) 
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Figure 3(c): Orbit ·Diagram for Linear Function (-1 <a< 0) · 
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Figure 3(d): Orbit Diagram for Linear Function (a = 0) 

38 

I 
I 
I 
I 
I 
I 
I 
I 
I 
'I 
\. 

-
I 
I 
I 
I 
I 
I 
I 
I 



I 

' I 
I 
,I 
I 
I 
I, 
I 
l' 
I 
I 
I 
I 
I 
I 
I 
I 
I 

,.. 

~ 
' ' I 
I 
I 

Figure 3(e): Orbit Diagram for Linear Function (0 < a < 1) 
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Figure 3(f): Orbit Diagram for Linear Function (a = 1, b = 0) 
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Figure 3(h): Orbit Diagram for Linear Function (a > 1) 
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determining orbit dynamics. These tvo principles hold as vell for nonlinear 

systems. In the next tvo subsections, ve discuss their role in that context. 

Fixed Points and Periodic Points 

It is not a coincidence that, in the linear system, convergent orbits 

alvays converge to a fixed point of the underlying function. In fact, this 

property holds in general. For, suppose a continuous function f has a 

convergent orbit 

x, f (x), f 2(x), ... , fn(x), .... 

Let L be the limit . Then 

= lim fn+i(x) 
n-1a> 

= L, 

so that L is a fixed point of f. Thus, in partial ansver to our guiding 

question, "vhere does the system go, 11 ve·can reply: if it converges to any 

finite limit, that limit must be a fixed point. Correspondingly, if an 

economy converges to an equilibrium, the equilibrium state must be a fixed 

point of the system function. 

Closely related to fixed points are points vhose orbits may leave but 

later return (see fig; 3(b)). A point xis called a periodic point off with 
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period n if fn(x) = x. The smallest positive n for which the latter equation 

holds is called the prime period of x. It can be shown that any period of x 

is a lllllltiple of the prime period. 

Every fixed point of a function f is a periodic point off of prime 

period 1. It is also true that every periodic point is a fixed point (though 

not of the same function). For, the periodicity condition 

is nothing but the assertion that xis a fixed point of the function fn. 

Thus, properties of fixed points have counterparts for periodic points, and 

vice versa. 

If xis a periodic point off having prime period n0 , then necessarily 

etc. It follows that the orbit of x reduces to a finite set consisting of the 

2 no-1 
distinct points x, f(x), f (x), ... , f (x), through which the system 

endlessly cycles. (Such an orbit is called a cycle of length n0 . An economic 

example would be a ten-year business cycle.) As a consequence, whenever a 

system is initialized at a point known to have a small period, the system's 

entire future evolution can, as a practical matter, be calculated. 
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Hyperbolic Points 

Examination of the linear system reveals that, whenever lal < 1, all 

orbits converge to the fixed point b/(1-a). However, it is clear from figures 

3(c), 3(d), and 3(e) that, if a curve (i.e., a nonlinearity) were introduced 

into the graph of the function g at some distance from b/(1-a), any orbit 

originating near enough to b/(1-a) would still converge to b/(1-a). Such 

local convergence does not depend on the slope of the graph of the function 

far away from the fixed point; what matters is only the slope-i.e., the 

derivative-in a neighborhood of the fixed point. In fact, less obviously, 

but as we shall see momentarily, it is really only the derivative at the f ixe·d 

point itself that matters. 

Similarly, all orbits in the linear system originating elsewhere than 

b/(1-a) move away from b/(1-a) whenever lal > 1. If a nonlinearity were 

introduced into the graph of g at a distance from b/(1-a), any orbit 

originating sufficiently close to (but not precisely at) b/(1-a) would still 

move away from b/(1-a) (at least initially; the possibility of an eventual 

return is another issue). Again, for such local "aversion" to b/(1-a), it 

turns out that only the derivative at b/(1-a) itself matters. 

These observations lead to the following definitions. A fixed point p of 

a function f is called hyperbolic if lf'(p)j I 1. When jf'(p)I < 1, pis 

called attracting, while when lf'(p)j > 1, pis called repelling. These 

adjectives are justified by the following two propositions, which are readily 

established: (1) If pis an attracting hyperbolic fixed point, there is an 

interval containing p such that any orbit originating therein converges top. 

(2) If pis a repelling hyperbolic fixed point, there is an interval 

containing p such that any orbit originating therein (but not at p itself) 

eventually leaves the interval (at least temporarily). For the function shown 
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in figure 2,.0 is attracting hyperbolic vhile the other tvo fixed points are 

repelling hyperbolic. 

In the literature, a periodic point x off of prime period n is defined 

as hyperbolic if l(fn)' (x)I f 1. The meaning of this definition becomes 

transparent once it is recalled that xis a fixed point of fn. 

In higher dimensional systems, the notion of the derivative at a point is 

expressed in terms of a Jacobian-matrix, and a periodic point is defined as 

hyperbolic if none of the eigenvalues of this matrix has complex modulus one 

(i.e., if none lies on the unit circle in the complex plane). 

When a fixed point pis hyperbolic attracting, the system can be 

considered stable at p vith respect to changes in initial conditions. If the 

system is initialized at p, it vill, of course, remain there. More important, 

though, the system vill converge top even if it is not initialized there, as 

long as it is initialized sufficiently near p. 

In the same vein, a hyperbolic repelling fixed point p can be considered 

a point of instability of the system vith respect to changes in initial 

conditions. For, vhile the system vill remain at p if initialized precisely 

there, it vill move away from p vhenever it is initialized sufficiently close 

to, but not at, p. 

One of the consequences of research in nonlinear dynamics has been a 

deeper understanding of certain sets called hyperbolic sets. Within a 

hyperbolic set, the orbits of any tvo nearby points initially move avay from 

each other. This behavior is reminiscent of the instability exhibited around 

individual hyperbolic repelling points. For a hyperbolic set, hovever, the 

tendency of nearby orbits to separate occurs everywhere. Hyperbolic sets are 

frequently associated vith the appearance of chaotic dynamics. The set A of 

the next sectlon vill be a case in point. 
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An Example of Chaotic Dynamics 

In order to gain a qualitative understanding of vhat is involved in 

chaotic dynamics, ve nov examine in detail the class of functions Fµ (µ > 1) 

defined by 

F (x) = µx(1-x). µ 

Using functions from this class as the lav of motion of a discrete dynamical 

system, ve shall investigate the longrun behavior of all orbits. We follov 

the notation and approach of (6). 

First, some basic facts (see fig. 4). Let Pµ = (µ-1)/µ. Then, 0 < Pµ 

< 1, and Pµ is a fixed point of Fµ Another fixed point is 0. Since Fµ(1) = 

0, the orbit originating at 1 goes innnediately to O and remains there. 

Finally, it is easy to shov that any orbit of Fµ originating at a point less 

than O (such as the point x0 of fig. 4) or greater than 1 (such as the point 

x1 of fig. 4) diverges to -m. 
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Next, suppose 1 < µ < 3. Since Fµ(O) = µ > 1, 0 is hyperbolic repelling. 

On the other hand, since F'(p) = 2-µ and -1 < 2-µ < 1, p is hyperbolic µ µ µ 

attracting. One can shov that the basin of attraction of Pµ is precisely the 

open interval (0,1); any orbit originating in this interval (such as at the 

point x2 of fig. 4) converges to Pµ· We have thus determined the longrun 

behavior of all orbits of F for all values ofµ in the range 1 < µ < 3, and 
µ -

ve have found nothing unusual in the dynamics arising in this parameter range.-

Hovever, asµ increases beyond 3, Fµ undergoes various qualitative 

changes. Among these is a change-that occurs asµ passes 4: the maxinnnn 

value of Fµ (namely Fµ(1/2), vhich equals µ/4) increases beyond 1, and some 

points in [0,1] are thus mapped outside of [0,1] by Fµ. For any such point x 
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we have Fµ(x) > 1, and it follows from a previous remark that the orbit·of · 

Fµ(x). 

i.e., _,.. 

2 3 ?+1 F µ (x) , F µ (x) • F µ (x) • . .. , µ (x) • . .. , 

must diverge to -m. Hence, the orbit of x itself must diverge to -m. More 

generally, any orbit that originates in [0,1] but does not remain in [0,1] 

must diverge to -m. 
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Of particular interest is the parameter rangeµ> 2 + ../5. Although there 

are smaller values ofµ for which chaotic dynamics appears, the demonstration 

of chaotic dynamics can be accomplished relatively simply whenµ> 2 + ../5 (6). 

We turn our attention, therefore, to this case. It will turn out that, on the 

set of initial points in [0,1] whose orbits never leave [0,1], Fµ behaves 

chaotically. 

Let A be this set; that is, let A be the set of all x in [0,1] for which 

each term of the orbit 

x, F (x) , F2 (x) , ... , ? (x) , ... µ µ . µ 

is in [0,1]. Our first task is to determine the structure of A. We shall do 

so by determining the structure of the complement of A-the set of those 

points of [0,1] that are not in A. 



For each n = 0, 1, 2, 3, ... , let A be the set of all x in [0,1] vhose . n 

first n + 1 orbit terms 

x, ... , ~(x) 

are in [0,1] but vhose next orbit term, ~+1(x), is not. Observe that A 

consists precisely of those points of [0,1] that lie in none of the A's. n 

Moreover, the A •s are pairvise disjoint. Thus, one can imagine constructing n 

A through the following recursive process: from the interval [0,1], first 

remove the subset A0; next, from what remains, remove A1; etc. In general, 

vhen A0, A1, ... , An have been removed from [0,1], An+l nru.st still (by 

disjointness) lie intact in the remaining subset of [0,1]. Remove A, and n 

continue this process ad infinitum. When all of the An's have been removed 

from [0,1], the subset of [0,1] that remains will be precisely A. 

To picture what this process actually looks like, ve rely on the fact 

that a point x lies in A +l if and only if F (x) lies in A .1 (This property 
. n µ n 
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follovs from the definition of the An's.) Nov, A0 is clearly an open interval 

of length less than 1 centered at 1/2; thus, removing A0 from [0,1] leaves tvo 

disjoint closed intervals, B~ and B~ (see fig. 5). A1 (fig. 6) consists of 

tvo disjoint open intervals, each lying inside of (and at a positive distance 

from the endpoints of) one of the closed intervals B~, B~. Thus, removing 

both A0 and A1 from [0,1] leaves behind four disjoint closed intervals. This 

process can be continued. In general, A vill consist of 2n disjoint open n 

intervals, each lying inside of, and at a positive distance from the endpoints 

of, one of the 2n closed intervals left behind after the removals of A0 , ... , 

A 1 • n-
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Figure 5: Reiooving A0 from [0,1] 
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Figure 6: Removing A1 after A0 
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53 
Thus, in brief, A is constructed by removing an open interval from the 

middle of the closed interval [0,1], then removing open intervals from the 

middles of the remaining closed intervals, etc., ad infinitum. This 

construction bears a striking resemblance to the construction of a classic 

mathematical object called the Cantor set, a set defined by removing from 

[0,1] the open "middle third" interval (1/3, 2/3), then removing the open 

middle third intervals (1/9, 2/9), (7/9, 8/9) from the tvo closed intervals 

remaining, etc., ad infinitum, alvays removing the open middle third interval 

of each closed interval remaining after the previous removals. The Cantor set 

has long been celebrated in mathematics for satisfying the folloving tvo 

conditions: (1) Its "length" is 0 (indeed, by the formula for the sum of a 

geometric series, the total length of the disjoint intervals removed from 

[0,1] in constructing the Cantor set is 

ro n-1 n 1·(1/3) + 2·(1/9) + 4•(1/27) + ... = ~ 2 /3 
n=1 

Q) 

= (1/2) ~ (2/3)n 
n=1 

= 1).2 

Yet, (2) the Cantor set contains as many points as all of [0,1] .3 

A is knovn to share property (2) vith the Cantor set. Hovever, it also 

shares tvo further properties having more direct empirical implications: 

first, it is perfect, whose significance here is that, as near as desired to 

any point of A, one can alvays find another point of A; i.e., no point of A is 

isolated. Second, it is totally disconnected (it contains no open 
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intervals), 4! from vhich it follovs that, as near as desired to any point of 

A, one can alvays find a point of [0,1] that is not in A. As a consequence, 

vhenever the dynamical system generated by Fµ is initialized on A, its longrun 

behavior is "infinitely sensitive" to errors in the initial condition; for, 

vithin any interval-no matter hov small-around an intended starting point in 

A, there exist both points in A (vhose orbits, by definition, remain in [0,1]) 

and points not in A (vhose orbits diverge to --u,). Thus, if one attempted to 

study this dynamical system on a computer, inevitable rounding errors in 

determining the points of A vould make accurate simulation over A impossible. 

This sensitivity of orbits to the initial condition, vhile suggestive of 

true "sensitive dependence on initial conditions," must be carefully 

distinguished from it. The sensitivity just described compares orbits 

originating in A vith orbits originating outside A. In contrast, and as ve 

shall see shortly, true "sensitive dependence" refers to a kind of separating 

behavior betveen orbits originating nearby within the same set. 

Irregular sets such as A and the Cantor set have recently gained the name 

11fractals. 116 Though the scientific community has not yet arrived at a 

consistent usage of this term, one often sees the folloving individual or 

joint criteria: exhibiting a high degree of jaggedness; self-similar (t,hat 

is, defined by a recursive process in such a vay that any part of the set, 

vhen magnified, looks the same as the entire set); and having noninteger 

d. . 7 1mens1on. 

Until relatively recently, the Cantor-like sets nov called fractals vere 

considered exotic structures belonging solely to the vorld of pure 

mathematics. The discovery of their intimate connection vith nonlinear 

dynamics has been striking. Hovever, they are nov understood to be a typical 

concomitant of nonlinear dynamical systems. (See, for example, 9, 11, 16, and 
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the references contained therein.) They have been detected in the form of 

attractors, 8 in the form of the boundary betveen competing basins of 

attraction, 9 and-as ve shall nov see-in the form of the state space region 

on vhich chaotic behavior is manifested. 

Having characterized the structure of the set A of all points vhose 

F -orbits remain in [0,1], ve nov describe the chaotic behavior of F on this µ µ 

set. First, hovever, ve need a definition. Suppose X' and X are subsets of 
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the real line, m. Then, ve say X' is dense in X if, for any point x in X, one 

can find some point from X' as close to x as desired. 

Using a technique called symbolic dynamics, 10 one can shov that the set 

of periodic points of Fµ is dense in A. Thus, cyclic orbits can be found 

originating arbitrarily near any point of A. On the other hand, erratic 

orbits can also be found originating arbitrarily near any point of A. More 

specifically, one can use symbolic dynamics to shov that, arbitrarily near any 

point of A, there is a point of A vhose orbit is dense in A. Such an orbit 

vould appear erratic and essentially random, for it vould endlessly "dance" 

around A, visiting and revisiting the vicinity of each point of A infinitely 

many times. 

The real hallmark of chaotic dynamics is considered to be sensitive 

dependence on initial conditions. To define this concept, let X be any set 

endoved vith a distance measure, and let f be a function mapping X to itself. 

We say f exhibits sensitive dependence on initial conditions if there exists a 

o > 0 vith the folloving property: for any x in X and any E > 0, there is a 

point x' in X vithin a distance of_ E from x such that, for some n, the 

distance betveen fn(x) and fn(x') exceeds o. Heuristically, sensitive 

dependence means that there is a constant o > 0 such that, arbitrarily close 

to any point ·of X, one can find another point of X vhose orbit eventually 
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diverges (even if temporarily) from that of the given point by more than 6. 11 

Although this discrepancy in orbits is required only to exceed 6, not to be 

arbitrarily large in absolute terms, it should be noted that the ratio of this 

discrepancy to the distance betveen x and x' will become arbitrarily large 

vhen x' is chosen arbitrarily close to x. It is in this sense that sensitive 

dependence implies unpredictable longrun behavior for orbits originating 

arbitrarily near one another. 

Fµ exhibits sensitive dependence on initial conditions. To sketch a 

proof, let 6 be any positive number less than the distance betveen the 

intervals B~ and B~, i.e., less than the length of A0 (fig. 5). Choose any x 

in A and any e > 0. Since, as noted earlier, no point of A is isolated, there 

Im1st exist a point x' in A distinct from x vhose distance from xis less than 

e. Hovever, symbolic dynamics can be used to demonstrate that, for any 

distinct points of A-say, for x and x'-there exists an n such that either 

1(x) is in B~ and ~(x') is in B~ or vice versa. It follovs at once that the 

distance betveen 1(x) and 1(x') exceeds 6, and the property of sensitive 

dependence is established. 

While ve have discussed chaotic behavior over a fractal set A in order to 

illustrate important aspects of the subject, chaos is not a phenomenon that 

appears only on unusual sets. One can shov, for example, that the function F4 

given by 

F4 (x) = 4x(1-x) 

is chaotic on the entire interval [0,1]. Nor is the existence of chaos overly 

sensitive to functional form. The chaotic dynamics ve have described for Fµ 
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vill also be.exhibited by essentially any hill-shaped function vith 

sufficiently large slope. 

PROBABil.ISTIC BEHAVIOR OF CHAOTIC ORBITS 
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We have seen that the orbits of nonlinear models can behave in an 

erratic, seemingly random manner. This finding suggests that at least some 

purely deterministic economic models may be capable of generating the sort of 

jumpiness in economic variables that traditionally has been ascribed solely to 

external shocks. That is, nonlinear deterministic economic relationships are 

themselves quite capable of endogenously generating uncertainty. When the 

initial conditions lie in that portion of the state space over vhich chaos is 

manifested, attempts to make point forecasts of longrun economic behavior are, 

as a matter of mathematical principle, doomed to failure. The uncertainty is 

intrinsic to the model itself. 

There are different types of uncertainty, hovever, and it is appropriate 

to inquire vhether the erratic quality of chaotic orbits is utterly lacking in 

discernible structure or vhether, rather, it at least satisfies lavs of a 

probabilistic form. Recent vork provides encouraging evidence that, in a 

broad class of economic models, chaotic orbits do indeed behave in a strictly 

probabilistic manner. Furthermore, the probability distributions of the 

associated economic variables are potentially computable. 

Day and Shafer (4) demonstrate that, in the standard dynamic 

macroeconomic model developed by Mezler, Modigliani, and Samuelson, chaotic 

orbits vill, under reasonable assumptions, occur for a set of initial 

conditions of positive· measure (length). That is, a randomly selected initial 

condition vill have a positive probability of generating a chaotic orbit. 

Moreover, vhen the function f is the system's lav of motion, the sequence 
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f, f 'f' ... , f' ... 

of the iterates off vill behave precisely like a stationary stochastic 

process. In fact, there vill exist a probability distribution on the state 

space vith respect to vhich the sequence of iterates is, in a perfectly 

rigorous mathematical sense, a stationary stochastic process. Consequently, 

individual chaotic orbits may be vieved as realizations of such a process. 
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Day and Shafer not only provide a theoret~cal treatment of the problem; 

for a broad range of cases, they determine the actual form of the 

probabilistic behavior of the chaotic orbits, and they shov hov the pertinent 

probability distributions can be estimated numerically. They shov that 

longrun GNP can be characterized by its probabilities of lying in various 

intervals. In one scenario, they find that GNP cycles among finitely many 

intervals, varying randomly vithin each interval. Moreover, normalized sample 

means of certain model-generated values obey the Central Limit Theorem. This 

result implies that, even in the absence of exogenous influences, economic 

variability folloving a normal probability lav arises endogenously as a 

mathematical consequence of the economics itself. 

The authors conclude that chaotic behavior for vhich orbits act as· 

realizations of stationary stochastic processes is likely to occur for a large 

class of recursive economies. This vievpoint is supported by recent purely 

mathematical investigations that have led to the conjecture that "most" chaos 

is mathematically equivalent to the behavior of stochastic processes of a 

standard type (see 13, especially p. 22). It vould appear, then, that chaos 

theory may have led not merely to the negative finding that longrun point 

forecasting in many nonlinear models is logically untenable, but also to a nev 

understanding that certain longrun economic variables are fundamentally 
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probabilisti~, possessing potentially calculable probability distributions_ 

that arise from the nonlinear relationships themselves,· even in the absence of 

exogenous sources of uncertainty. 

COBCLUSIOBS 

Recent findings in the field of nonlinear dynamical systems varrant a 
/ 

rethinking of traditional attitudes tovard economic dynamics. It is nov kno-im 

that erratic longrun behavior and various forms of sensitivity to initial 

conditions can arise in even the simplest nonlinear models. Unless there are 

sound reasons in e~onomic theory to believe that a given dynamic economic 

process is linear, the process lilll.St be vieved as at least potentially liable 

to the type of chaotic behavior described here. 

Chaos theory suggests that the long-range prediction of nonlinear 

economic processes may be subject to the same basic mathematical limitations 

as long-range veather prediction. In both cases, future behavior may appear 

independent of the initial conditions that produced it. A significant and 

irreducible component of uncertainty may arise from the economic model itself 

irrespective of any external ·perturbations, data errors, or limitations of 

econometric technique. Prediction of point values, even vhen tempered by 

reliance on confidence intervals, may have to give vay to estimation of 

longrun probability distributions defined over the appropriate attractor in 

state space. 

It is difficult to study this subject vithout experiencing a certain 

humility concerning our ability to control nonlinear economic processes 

through policy intervention. Nonlinear systems can behave in a 

counterintuitive manner. The conditions under vhich ve can properly use 
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mathematical.models to predict the longrun implications of policy actions need 

to be clarified. 

The discoveries of recent years might seem to have revealed intrinsic 

mathematical limits to economic prediction. Yet, a deeper understanding of 

the limitations of longrun point prediction should ultimately enhance, not 

diminish, the accuracy and credibility of the information ve provide. A 

further enhancement may derive from the replacement, in certain cases, of 

longrun point forecasts by forecasts based, in part, on endogenous longrun 

probability distributions. 

We have attempted in this paper to sketch some of the major themes of 

contemporary nonlinear dynamics. Many topics, hovever, had to be omitted. 

Suggested further background reading vould include (9, 6, 16, 11, 7, 14). For a 

sampling of the nascent economics literature on chaos, see (1, 2, S, 4, 5, 8, 10, 

15, 17). 
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FOOTNOTES 

1. In mathematical parlance, An+1 is the preimage of An relative to the 

function Fµ. 

2. Modified forms of the Cantor set having positive length can be .,.. 

constructed by removing shorter intervals. 

3. Specifically, it can be sholm that there exists a one-to-one 

correspondence.betveen the Cantor set and [0,1]. Since the elements of 

both sets can thus be paired off, the total number of points in each set 

must be the same. The fact that this number happens to be infinite 

should not be held against it. Infinite sets have sizes too. 

4. This property should seem at least plausible in viev of the method of 

construction of A. Interestingly, the property implies that every point 

of A is on the boundary of A. 

5. It is in proving this property that the assumption thatµ> 2 + {5 is 

first put to use. See (6). 

6. From the Latin fractus, meaning "broken." 

7. There are many vays to extend the usual concept of dimension (0 for a 

point, 1 for a curve, 2 for a surface, etc.) to more complicated sets. 

Hausdorff dimension (12), perhaps the most videly used, assigns to the 

Cantor set a dimension of 1n 2/ln 3, or approximately 0.63. Some other 
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notions.of dimension suggested for application to fractal sets are 

information dimension, correlation dimension, and Lyapunov dimension (see 

16). 

8. A fractal attractor is called a strange attractor. 

9. Thus, consider an economic model that allovs different initial conditions 

to generate different equilibria. Here the boundary betveen basins of 

attraction corresponding to distinct equilibria may be a fractal 

exhibiting a type of sensitivity to the initial condition (see the 

"Attractors" section of the Introduction). The equilibrium generated by 

an initial condition lying on this boundary vould be unpredictable. 

10. This method is explained in (18). 

11. Lyapunov exponents are sometimes used as a pragmatic measure of this 

divergence. See (16). 
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