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Abstract: 

This paper compares methods to remedy missing value problems in survey data. The commonly used 
methods to deal with this issue are to delete observations that have missing values (case-deletion), replace 
missing values with sample mean (mean imputation), and substitute a fitted value from auxiliary 
regression (regression imputation). These methods are easy to implement but have potentially serious 
drawbacks such as bias and inefficiency. In addition, these methods treat imputed values as known so 
that they ignore the uncertainty due to 'missingness', which can result in underestimating the standard 
errors. An alternative method is Multiple Imputation (MI). In this paper, Expectation Maximization 
(EM) and Data Augmentation (DA) are used to create multiple complete datasets, each with different 
imputed values due to random draws. EM is essentially maximum-likelihood estimation, utilizing the 
interdependency between missing values and model parameters. DA estimates the distribution of missing 
values given the observed data and the model parameters through Markov Chain Monte Carlo (MCMC). 
These multiple datasets are subsequently combined into a single imputation, incorporating the uncertainty 
due to the missingness. Results from the Monte Carlo experiment using pseudo data show that MI is 
superior to other methods for the problem posed here. 
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I. Introduction 

This paper compares methods to remedy missing value problems in survey data. The analysis 

shows that commonly applied methods such as deleting the observations with missing values can result in 

bias and inefficiency. The method of Multiple Imputation appears to provide more reliable estimates for 

imputing missing values. 

The increasing interest m valuing environmental goods has created an explosion of data 

collection and estimation techniques for nonmarket valuation. The most widely used methods of 

nonmarket valuation, such as the Contingent Valuation Method (CVM) and the Travel Cost Method 

(TCM), commonly involve some form of survey data collection. Frequently, some people leave questions 

partially unanswered. Although more rigorous methods to deal with non-responded items are available 

(e.g., Mitchell and Carson, Hanemann and Kanninen), typically researchers apply "ad-hoc" methods, such 

as deleting observations with missing values, replacing missing values with sample mean, or imputing 

with regression estimation. These methods are easy to implement but could be inefficient or cause bias. 

An alternative method is Multiple Imputation (Ml), a method developed by Rubin (Rubin, 1987). MI 

uses some imputation methods, such as Data Augmentation (DA) to create multiple complete datasets, 

each with different imputed values due to random draws. These datasets are subsequently combined into 

a single imputation. The relative advantages of this different approach have not yet been explored in the 

nonmarket valuation setting. 

The purpose of this paper is to compare MI to the ad hoc applications. The analysis shows that 

MI is superior to other methods, with smaller sum of squared errors (SSE) and highest power. Case 

deletion performs particularly poorly, and results in by far the largest mean squared errors (MSE) and 

lowest power. Regression imputation has smaller MSE when correlations among variables are high but 

results in larger SSE and lower power in general. Mean imputation has relatively small MSE, but SSE is 

high and power is low. 
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II. Background 

Common Methods and Their Drawbacks: 

The common practices when facing missing values are (1) deleting observations that have 

missing values (case deletion), (2) substituting a sample mean for missing items (mean imputation), and 

(3) substituting a fitted value from auxiliary regression (regression imputation). These are easy to 

implement but have serious drawbacks. I will give a quick overview on the drawbacks in following. For 

more complete discussion, see Little and Rubin (1987). 

Case deletion is particularly common in practice. However, by throwing away the information in 

incomplete observations, it is inefficient and also can bias the estimation when data are missing in a 

systematic manner. Mean imputation, also a common method, can distort the marginal densities of the 

data and the covariance among variables. The regression method will underestimate the variability of the 

data by substituting fitted values from the regression. An extension of regression imputation is a method 

called stochastic regression imputation in which an error term is added to the imputed value. It will 

reduce the bias somewhat but will still not be able to mimic the variability of the full data. Regression 

methods in general are sensitive to model specification. 

The common drawback in all these methods is that they ignore the uncertainty due to the 

'missingness' by treating imputed values as known. As a result, standard errors for the estimated 

coefficients are underestimated. This will increase the probability of Type I error (Schafer and Olsen, 

1998). 

Development of Multiple Imputation: 

Rubin first proposed the paradigm of MI in late 70's (e.g., Rubin, 1977, 1978), but it was used 

only by experts since it typically required extensive statistical knowledge and computational tools. 

However, recent improvement in the power and convenience of personal computers along with the 
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development of the method of Markov Chain Monte Carlo (MCMC) simulation in the late 90' s have 

made MI more accessible. 1 

Assumptions: 

Before going into the details of the MI algorithm, the assumptions necessary for its application 

are discussed. First are the assumptions on the population distribution and parameter distribution. The 

common assumptions are normal or logistic distribution.2 Schafer points out that the normal distribution 

works well in many discrete cases even when the normal assumption is only approximately true (Schafer, 

1997). 

The other key assumption is on the mechanism of "missingness" (Rubin, 1976, Little and Rubin, 

1987). MI assumes that data is missing at random (MAR). This is different from saying that the dataset 

has no systematic way of missing values, which is called missing completely at random (MCAR). 

MCAR is equivalent of random sampling, where the missingness is independent of both observed and 

missing data. MAR assumes that the missingness depends on observed data, but is independent of the 

missing data. Another way to put this is that the datum is a random sample of the subset of the dataset. 

MAR is less restrictive than MCAR, since the missingness can depend on the variable itself through its 

relationship with other variables (but not directly). 

Schafer and Olsen (1998) have an illustrative example. Consider two variables Y and X where 

Y=(Y1, Y2, ... , Yn) and X=(X1, X2, ... , Xn) and assume that some correlation exists between the two 

variables. For simplicity, assume further that Y has complete data while X has some missing values. 

Under MCAR, Y does not provide any information on missing X's since they are missing completely at 

random. However, under MAR, Y contains some information on the missing X's, for example, X's 

1 For example, Schafer developed PC-based software for computing ML The software can be downloaded from his webpage 
(http://wtat.psu.edu/-jls/mysoftwa.html). King modified Schafer's algorithm (King, et. al, 2000) and developed a Gauss-based 
software available on his web (http://Gking.Harvard.Edu). There is also a built-in S-Plus library called "missing". It was built 
upon Schafer's code, and it also provides useful commands to analyze the pattern of missingness. 
2 In S-Plus, a researcher can choose Gaussian, log-linear, or mixture of two as an estimation model, where log-linear 
can be used to impute factor/discrete variables. 

5 



corresponding to larger values of Y are more likely to be missing. They also discuss that when both 

variables have missing values, the principle here still applies. 

More formally, let R be the matrix of missing pattern, with the same dimension as the dataset. 

Each element of R takes the value 1 if the datum is observed and O otherwise. Let l; be the unknown 

parameter(s) of the missing mechanism. Then, MAR is defined as follows: 

P(R I xobs' xmis'<;) = P(R I xobs'<;) 

This indicates that the probability of observing or missing the datum depends on the observed data and 

the missing mechanism, but not on the missing portion of the data. 

Another assumption for MI is called "distinctness" (Rubin, 1976, Little and Rubin, 1987). This 

is not an intuitive assumption, especially from frequentist perspective. It means that the ''joint parameter 

space of ( 0, ~ must be the Cartesian cross-product of the individual parameter spaces for 0 and t 

(Schafer, 1997)". In Bayesian sense, this basically says that the joint prior distribution of the model 

parameter and the parameter of the missingness mechanism can be factored into the independent marginal 

densities, i.e., 1l( 0, t) = 1Ctf. 0)1C;j t), where rt s are prior distributions. When MAR and distinctness hold, 

the missingness mechanism is said to be "ignorable". If ignorability holds, then the likelihood function 

can be factored into two terms; one only involving model parameters and observed data, and one with the 

missingness mechanism and missingness parameters. Thus, we can ignore the nuisance term of the 

missing mechanism.3 As one can imagine, ignorability makes the estimation a lot easier. 

In general, the ignorability assumption holds when missingness is under the control of the 

researcher. For example, double sampling (concentrating efforts to obtain responses of the random 

sample of non-respondents from the first phase, for more discussion on double sampling, see for example, 

Rao 1983) is known to create a MAR situation. In this case, responses from non-respondents who are not 

chosen for the second phase are missing, but are missing randomly within the subset of non-respondents. 

Thus, the MAR assumption is satisfied. For item-nonresponse cases in CVM studies, whether MAR 

3 For more detailed discussio~ on the assumptions, see Rubin (1976), Little and Rubin (1987) and Schafer (1997). 
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holds or not is more ambiguous. Cases in which ignobility does not hold are still subject to an active 

discussion among statisticians.4'5 nonetheless, researchers may use MI as an alternative for other ad-hoc 

methods since these methods require even stricter assumptions. 

The Multiple Imputation Algorithm: 

The basic idea of MI is to estimate the missing value with an unbiased estimator using the 

parameter estimates and observed data, repeated M times. This will create M full datasets with imputed 

values different from each other due to the random draws. Since these are full datasets, a researcher can 

conduct analysis in the usual manner. At the end, the M results are combined, incorporating the 

uncertainty due to the missingness. The imputations can be obtained through a number of methods. One 

of the most popular approaches is the combination of EM and DA. This approach can be divided into 

three steps. (1) EM estimation; (2) DA estimation using EM as starting values; and (3) combining results 

from DAs to obtain the overall estimation. 

Step 1: Expectation Maximization 

EM is essentially maximum-likelihood estimation, utilizing the interdependency between missing 

values and model parameter 0. Let X be the dataset; then X can be partitioned into X = ( X obs, X mis ) 

where X obs contains the observed items of the data and X mis contains the missing items of the data. Then, 

the log-likelihood function can be written as 

1(0 IX)= 1(0 I xobs)+ log P(Xmis I xobs'0) +c 

since 

P(X I 0) = P(Xobs I 0)P(Xmis I xobs ,0) 

where 1(0 I Xobs) is a log-likelihood function of model parameters given observed data, and 

P(Xmis I Xobs'0)is called the predictive distribution of the missing data given 0. c is an arbitrary 

constant. However, P(Xmis I Xobs•0) is unknown since Xmis is not observed. Instead, we take the average 

4 See Schafer 1997, section 2.5.3, for example, for more discussion on the literatures of nonignorable cases. 
5 One of the familiar examples of nonignorable case for economists is Heckman's censored model (1976). 
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of the likelihood function over the predictive distribution P(Xmis I xobs'0<1>) where 0<1> is an estimate of 

0 for the tth iteration. Then, use P(Xmis I X 0bs'0<1)) to calculate the log-likelihood iteratively until it 

converges. For more complete discussion of EM, see Dempster, et. al. (1977). 

Step2: Data Augmentation: 

While EM converges to a single parameter estimate deterministically, DA will estimate the 

distributionP(Xmis I Xobs'0) itself using Markov Chain Monte Carlo (Tanner and Wong, 1987). The 

idea is to draw a missing value estimate X ~;;1> from the distribution P( X mis I X obs, 0u>) where 0<1> is an 

estimate of 0 for the tth iteration. Then, draw a new estimate 0<1+t) from the complete-data posterior 

P(0 I xobs, x~;;i) ). This yields a stationary distribution P(Xmis I xob)' the true distribution of missing 

values conditional on observed data from which we can draw an estimate of missing values. 

Assessing convergence is an important issue in MCMC. We need to check if the 

stationary distributions are attained so that draws from these distributions are in fact, from the 

desired distributions. Schafer suggests to look at the auto-correlation functions and time-series 

plots (Schafer, 1997). If distributions converge, auto-correlations should die out and time-series 

plots exhibit white noise. Researchers also should use enough bum-in period so that draws are 

from the stationary distribution. Bum-in period is pre-convergence iterations not used to the 

actual analysis. Auto-correlation and time-series plots help researchers to determine the length 

of bum-in periods that ensures the convergence. For more detailed discussion on MCMC, see 

Robert and Casella (1999). 

Step3: Combining Results 

In MI, each missing value is imputed for M times, which yields M complete datasets. M is 

typically 3 to 5, since more than 5 iterations does not gain much more efficiency (Rubin, 1987). The 
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point-estimate is simply the mean of the M imputations. The variance estimate is calculated by 

incorporating the uncertainty of substituting missing values (Rubin, 1987, also see Rubin, 1996). 

The point estimate is the mean of M imputations, thus calculated as: 

Let the estimated variance for each imputation be V m, then the within-imputation variance V and 

between-imputation variance B can be calculated as follows: 

V=_!__fv 
M m=I m 

B=-l-i(Qm-Q)2 
M-lm=I 

The total variance T can be obtained by calculating: 

1 
T=V+(l+-)B 

M 

The estimator is distributed approximately as: 

- [ ] Q-Q . V 
~-tv, wherevzs v=(m-1) 1+ 1 
T (l+M- )B 

Thus, use this distribution for inferences such as hypothesis testing and confidence intervals. 

III. An Application 

Data Generating Process and Estimation Models 

There are three variables, Xi, X2, and X3, generated as multivariate normal random variable with 

different values for correlations p, where p takes the values 0.1, 0.5, and 0.9. 

The chosen sample size is n = JOO. These variables are to mimic explanatory variables to calculate 

willingness to pay (WTP) for some good. In particular, X1 can be thought of as an income variable, and 
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X2 and X3 are some other socioeconomic variables or taste variables that affect WTP. The mean and 

variance of X1 were taken from the income variable in a CVM study by Larson and Lew (2000). Mean 

and variance for the other two variables are arbitrarily chosen such that sensible values of WTP are 

generated. WTP is calculated as a linear function of these variables plus an error term. Parameters are set 

to be /J7 = (100, 0.4, -2, 0.8) . For example, WTP for the ith individual is calculated as 

WT~= a+ /31X Ii+ /32X 2; + /33X3; + £; where£; - N(0, 40) 

Here, WTP is directly observable and is a linear function of the explanatory variables. It is also assumed 

that this is a true data generating process. Surely, this is not what we face in reality. However, we would 

like to compare how well different methods works. For such comparisons, a simple model is more 

desirable because it allows for comparisons of differences purely due to the imputation methods. 

After the complete data is generated, some data points are deleted according to a mechanism such 

that some observations on X1 are missing for higher values (above average) of X3, some X2 are missing 

for lower values (below average) of X3, and some X3 are missing for higher values of X1 (above average) 

with probability 0.6, 0.5, and 0.5 for X1, X2, and X3 respectively. This process deletes between 20 to 40 

percent of each variable. The model applied for the estimation is a simple linear model. The methods of 

case deletion, mean imputation, stochastic regression imputation, and MI are applied to impute missing 

values. The imputed values for a sample iteration is shown in Appendix A. For comparison, estimation 

using the full data before the data deletion is also calculated. After models are fit, sum of squared errors, 

mean squared errors, and numerical power of tests are calculated. This process is repeated 300 times as a 

Monte Carlo experiment. 

IV. Estimation Results 

SSE: 

The sum of squared errors (SSE) is the measure of how well the response variable is predicted. 

Figure.I shows the density plot of SSE for each method, with different correlation parameter p. Note that 

case-deletion is not shown here because it is not directly comparable due to the discarded observations. 
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Smaller SSE indicates better prediction of the response variable. Thus, more distribution mass 

towards the left is an indication of better predictive power. Several observations can be made from 

Figure. I. First, the performances of the imputation methods depend on the correlation parameter p. For 

p=O.l, SSE is large in general, even with the full data. When p=0.5, SSE decreases, and the densities for 

mean imputation and regression imputation deviate from the full model, while the density for MI stays 

close to it. For p=0.9, regression imputation becomes somewhat closer to the full model while mean 

imputation is still off from it. MI remains close to full model. 
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Figure. I Density of SSE for each method with different correlation parameter rho 
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MSE: 

The mean squared error (MSE) allows overall comparison among estimators since it is a function 

of both the variances and the bias of the estimators. Figure.2 shows box-plots of the MSE for each 

method with different p. Note that MI incorporates the uncertainty of missingness by adding the 

variability within estimates where as other methods ignore this uncertainty. Consequently, methods other 

than MI have lower MSE due to the uncounted uncertainty term. In order to compare fairly, MI 

calculated without the uncertainty term is also provided in the figure. 

Box-plots graphically show the quantiles of the data. The stem shows the minimum and 

maximum, and the box shows the inner quantile (first and third). The middle dot is the median. More 

observations to the right indicate larger MSE. 

For almost all the cases, case deletion has by far the largest MSE. It is striking that case-deletion, 

the most common method in practice, works quite poorly. Mean imputation, regression imputation and 

MI perform relatively better compared to case deletion. It is not unambiguous which performs the best 

among these three. However, regression imputation seems have small MSE as correlations among 

variables get larger. It is as expected since larger correlation implies better predictive power of the 

auxiliary regression. 

Several things are worth noting. There seems to be some mixed cases where higher correlations 

affect the MSE positively or negatively. This is probably due to the fact that imputations use the 

relationships among variables. However, for large correlations, there is an effect of collinearity, where 

the variance estimates are inflated. Second, the regression method tends to bias the variance downward. 

This would explain why the regression method has relatively small MSE. It is well known that 

regressions are in general sensitive to misspecification (e.g. omitted variable bias, violation of linearity). 

Thus, the small MSE for regression imputation may not be taken at face value. In this sense, MI is more 

flexible, since it does not require any model assumptions as in regression imputation. 
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Figure.2 MSE of each method with different correlation parameter rho 
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Power of test: 

The third important criterion is whether the model correctly rejects the nuU that coefficients are 

zero when they are significant in truth. Figure.3 shows how many times each model rejects this 

hypothesis correctly at the 95% confidence level in 300 repetitions.6 

a e. atio o correct 1y re1ecte T bl 1 R . f nu t at coe d 11 h ffi . 1c1ent 1s zero 

rho=0.1 beta1 beta2 beta3 

Full model 0.32 0.96 0.89 

Case deletion 0.09 0.67 0.16 

Mean imputation 0.24 0.91 0.59 

Reqression Imputation 0.23 0.90 0.46 

Multiple Imputation 0.38 0.97 0.66 

Multiple imputation (includinq b/w variability) 0.26 0.92 0.53 

rho=0.5 beta1 beta2 beta3 

Full model 0.79 1.00 0.98 

Case deletion 0.32 0.91 0.26 

Mean imputation 0.36 0.96 0.84 

Reqression Imputation 0.56 0.99 0.71 

Multiple Imputation 0.61 0.99 0.86 

Multiple imputation (includinq b/w variability) 0.45 0.97 0.73 

rho=0.9 beta1 beta2 beta3 

Full model 0.32 0.67 0.44 

Case deletion 0.11 0.29 0.12 

Mean imputation 0.22 0.14 0.39 

Reqression Imputation 0.08 0.57 0.29 

Multiple Imputation 0.36 0.74 0.48 

Multiple imputation (includinq b/w variabilitv) 0.19 0.60 0.27 

For all the cases, MI correctly rejects the null more frequently than case deletion, mean 

imputation and regression imputation. Case deletion performs quite poorly, rejecting null very few times. 

Mean imputation and regression imputation performs better than case deletion, but not as well as MI. 

Neither model perform well when p is high or low. When correlation is high among variables, 

multicollinearity will result, which inflate the variance. The poor performance when correlation is high is 

due to the multicollinearity. On the other hand, when co~elation is low, there is not much information in 

variables to predict missing observations. Thus, imputation does not work as well, which results in the 

6 The intercept estimates, not reported here, were significant for all the methods for all the correlations. 
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lower power. MI outperforms all the other methods in terms of the power of the test and shows 

robustness to multicollinearity. 

V. Conclusion 

In general, the performance of imputation methods depends on the quality of the data and how 

well the full model describes the data. Given that the data and full model are good, MI seems to 

outperform other methods, at least for the problems analyzed here. The analysis shows strong evidence 

that MI provides better estimation in terms of smaller SSE, more powerful test results, and relatively 

smallMSE. 

Results from MSE comparison were more ambiguous and difficult to determine which methods 

performed the best. However, regression imputation performed well when correlation is high. There 

seems to be a tradeoff between high correlation among variables and multicollinearity when linear 

regression is fit. Thus, regression imputation performs well in terms of smaller MSE compared to other 

variables, but it also results in lower power in hypothesis testing. 

In this analysis, I used only continuous data for simplicity. However in the CV literature, it is 

more common to observe categorical variables. A natural extension of this research is to see how well MI 

works for categorical data. The effect of misspecification would be another topic to explore. In this 

paper, the model was "correct". However in any real situations, we never know what the true model is. 

Also, the validity of the ignorability assumption in the survey data should be explored more extensively. 

In conclusion, MI is computationally more intensive than other methods, but it appears well 

worth implementing for better estimation results. 
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Appendix A: Sample Imputation Result: 

The actual imputed values for one sample iteration are shown by different patterns of 

missingness. There are 6 patterns of missingness, (1) no missing values, (2) only Xl missing, (3) only X2 

are missing, (4) only X3 are missing, (5) Xl and X3 are missing, and (6) X2 and X3 are missing. The 

percentage missing for each variable is such that 33%, 20%, and 23% are missing from Xl, X2, and X3 

respectively. 

The overall fit of this model can be diagnosed by SSE, shown in Table.Al. As one can see, 

regression with full data has SSE equals to 162,643. Mean imputation and regression imputation both has 

higher SSE than full data model. MI has smaller SSE on average than any other methods. 

Table.Al SSE 
Full Mean Regression Average 
Data Imputation Imputation Ml Ml 1 Ml 2 Ml 3 Ml 4 Ml 5 

162643 173617 177152 155382 165002 145691 174241 155250 136725 

Table.A2 to A6 shows the comparison between actual and imputed values for each method, by different 

missing patterns. 
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T bl A2 I a e. d l h l Xl. mpute va ues m cases w en omy 1s m1ssmg 
Mean Regression 

Actual X1 Imputation Imputation Average Ml MI1 Ml2 Ml3 Ml4 MIS 

34.13 67.52 82.70 65.45 -3.31 126.54 99.84 54.47 49.69 

86.66 67.52 114.97 127.37 220.12 170.01 95.19 114.31 37.23 

201.05 67.52 108.20 134.94 111.56 156.61 46.32 157.23 202.97 

65.73 67.52 94.37 89.60 133.23 88.35 57.09 129.03 40.29 

103.38 67.52 104.07 154.29 265.34 97.52 138.37 153.51 116.72 

100.03 67.52 87.49 71.55 -3.83 117.59 45.34 80.77 117.87 

72.77 67.52 90.81 69.19 60.10 14.53 114.49 86.64 70.20 

46.89 67.52 84.46 99.95 69.58 131.00 124.55 89.04 85.58 

122.56 67.52 97.63 93.45 52.25 112.92 95.87 79.30 126.89 

131.14 67.52 144.67 152.86 224.99 181.22 60.44 165.80 131.85 

147.49 67.52 103.96 77.37 85.58 47.21 97.91 77.37 78.75 

90.02 67.52 97.53 122.86 123.95 172.55 65.70 116.92 135.17 

78.85 67.52 113.73 104.46 136.00 64.91 149.09 82.01 90.31 

8.03 67.52 89.21 66.12 64.95 114.91 4.71 157.27 -11.24 

81.89 67.52 128.69 115.20 140.96 141.32 83.94 142.31 67.49 

69.35 67.52 73.80 57.05 48.10 81.87 50.46' 66.73 38.08 

105.86 67.52 138.01 149.49 128.95 121.21 177.19 160.01 160.10 

114.10 67.52 125.68 102.44 46.13 126.35 35.74 124.03 179.96 

79.93 67.52 96.56 89.25 32.74 103.98 72.03 119.60 117.91 

113.88 67.52 116.92 116.06 112.07 131.29 154.40 114.35 68.20 

87.42 67.52 96.33 69.47 143.23 28.45 124.29 38.33 13.03 

107.60 67.52 84.01 82.88 83.15 43.56 125.15 71.02 91.51 

160.67 67.52 86.25 125.41 117.59 116.32 122.24 82.11 188.77 

68.23 67.52 95.93 136.29 76.68 181.88 105.10 184.87 132.93 

83.05 67.52 69.59 57.12 -0.75 138.77 56.29 63.98 27.29 
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a e T bl A 3 I mpute d va ues m cases w en only 1s rmssmg h 1 x2· 
Mean Regression Average 

Actual X3 Imputation Imputation Ml Ml 1 Ml2 Ml3 Ml4 MIS 

20.77 24.43 24.17 17.49 15.90 35.61 6.90 9.08 19.95 

36.83 24.43 23.96 23.54 43.79 7.09 9.48 39.49 17.86 

21.36 24.43 24.18 21.28 11.07 22.76 33.66 15.37 23.57 

16.32 24.43 16.64 24.06 23.40 41.32 28.74 2.45 24.37 

12.28 24.43 21.29 19.64 8.68 25.68 14.56 23.28 25.99 

25.92 24.43 11.90 -3.14 -12.81 6.63 1.76 -13.09 1.81 

7.77 24.43 20.88 6.54 0.32 -3.79 17.57 17.72 0.88 

7.70 24.43 16.82 25.69 25.52 36.47 26.34 21.01 19.12 

45.94 24.43 32.12 34.79 19.40 40.08 34.01 48.11 32.38 

13.63 24.43 21.32 12.10 24.38 7.80 12.42 9.41 6.50 

14.67 24.43 15.62 18.96 16.89 27.42 9.73 25.27 15.51 

16.47 24.43 12.59 14.15 8.78 18.72 27.29 5.81 10.18 

10.76 24.43 9.09 13.41 12.24 16.57 5.28 26.31 6.66 

42.72 24.43 24.67 23.38 23.48 16.90 30.05 17.16 29.32 

T bl A4 I a e. mpute d h 1 x3· va ues m cases w en only 1s m1ssmg 
Mean Regression Average 

Actual X3 Imputation Imputation Ml Ml 1 Ml2 Ml3 Ml4 MIS 

33.94 47.63 46.49 42.53 15.72 36.78 26.58 73.35 60.20 

34.75 47.63 35.32 40.39 50.15 26.29 55.28 32.72 37.53 

34.33 47.63 35.34 26.88 25.82 8.92 22.66 42.66 34.34 

93.67 47.63 30.69 43.59 23.48 5.78 73.92 76.79 37.98 

24.26 47.63 40.73 44.92 41.14 70.09 72.79 12.31 28.26 

9.99 47.63 26.88 32.29 32.96 8.16 57.08 13.72 49.52 

3.43 47.63 34.70 34.85 31.99 -11.52 55.01 43.94 54.85 

59.82 47.63 46.49 25.81 7.53 43.03 23.87 29.61 25.02 

18.50 47.63 33.92 47.14 81.99 37.70 63.03 24.96 28.05 

22 



a e. T bl A5 I mpute d l h Xl dX3 va ues m cases w en an are rrussmg 
Mean Regression 

Actual X3 Imputation Imputation Avera~e Ml Ml 1 Ml2 Ml3 Ml4 MIS 

X1 70.80 67.52 74.50 67.10 15.75 93.87 58.15 68.19 99.55 

67.52 67.52 72.65 56.35 72.40 76.12 57.70 9.75 65.78 

67.91 67.52 65.37 95.31 70.67 123.67 12.83 109.98 159.40 

6.74 67.52 97.50 66.02 44.03 38.97 131.85 44.36 70.88 

4.10 67.52 104.44 93.81 38.33 61.46 133.35 167.84 68.07 

72.48 67.52 69.36 57 .35 138.88 4.37 -0.52 82.38 61.64 

29.07 67.52 96.99 59.42 101.93 96.25 14.76 60.08 24.10 

60.28 67.52 113.93 61.39 76.72 36.10 20.40 118.24 55.49 

Mean Regression 
X3 Actual X3 Imputation Imputation Average Ml Ml 1 Ml2 Ml3 Ml4 MIS 

51.91 47.63 47.36 48.40 7.11 60.57 64.01 44.73 65.58 

83.84 47.63 47.39 33.94 50.22 49.70 26.95 35.08 7.74 

60.97 47.63 47.92 44.82 51.25 67.41 40.28 27.55 37.59 

46.71 47.63 47.31 38.86 26.53 52.24 11.84 48.74 54.94 

71.55 47.63 49.51 56.42 14.11 82.06 68.29 56.94 60.72 

81.32 47.63 47.11 16.60 28.36 3.96 2.49 34.74 13.45 

64.90 47.63 48.11 51.73 49.77 57.70 41.32 56.36 53.52 

67.38 47.63 49.67 43.29 13.19 63.18 40.83 70.20 29.07 

a e. T bl A6 I mpute d va ues m cases w en an h X2 dX3 are rrussmg 
Mean Regression Average 

Actual X3 Imputation Imputation Ml Ml 1 Ml2 Ml3 Ml4 MIS 

X2 13.92 24.43 15.57 22.00 27.88 13.90 16.46 21.78 30.01 

18.67 24.43 14.84 18.12 15.19 21.59 17.58 27.55 8.71 

33.53 24.43 18.48 16.21 15.08 18.70 22.85 13.58 10.84 

31.96 24.43 18.87 28.31 42.87 26.33 36.64 19.36 16.37 

17.96 24.43 14.49 10.11 1.20 8.56 11.73 18.81 10.26 

18.62 24.43 14.31 15.28 17.35 35.86 -6.80 12.49 17.53 

. Mean Regression Average 
Actual X3 Imputation Imputation Ml Ml 1 Ml2 Ml3 Ml4 MIS 

X3 34.03 47.63 39.83 34.19 15.54 50.29 23.05 40.36 41.69 

0.53 47.63 37.61 23.28 -27.87 51.23 35.57 21.27 36.22 

39.61 47.63 45.92 24.79 32.95 37.07 20.28 33.74 -0.09 

42.49 47.63 40.86 57.12 100.62 63.90 46.64 17.61 56.83 

11.78 47.63 32.50 37.82 46.56 14.49 49.90 40.99 37.18 

1.05 47.63 35.62 15.86 14.50 40.45 3.40 3.55 17.40 

23 


	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023

