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1. ABSTRACT

The focus of this paper is on the relationship between the exponential smoothing methods of

forecasting and the integrated autoregressive-moving average models underlying them. In this

paper we derive, for the first time, the general linear relationship between their parameters. A

method, suitable for implementation on computer, is proposed to determine the pertinent

quantities in this relationship. It is illustrated on common forms of exponential smoothing. It is

also applied to a new seasonal form of exponential smoothing with seasonal indexes which

always sum to zero.

D ep artment of Econometrics & Business Statistics
Faculty of Business and Economics - Monash University
Clayton Campus - Clayton - Vic 3168
e-mail Roland.Shami@buseco.monash.edu.au
*e-mail Ralph.Snyder@buseco.monash.edu.au



1. INTRODUCTION

This paper is concerned with the links between exponential smoothing (Holt, 1957; Brown,

1959; Winters, 1960) and the underlying integrated autoregressive-moving average processes.

Particular cases of the relationship have been considered by Box and Jenkins (1976) and

Roberts (1982). In this paper, however, we seek the relationship in general form.

Our strategy is to cast both the general ARMA model and the data generating process (DGP)

underlying exponential smoothing in terms of first-order multi-state recurrence relationships.

Then we identify the so-called equivalent transformation linking both formulations. This is

used to establish the required general linear relationship between the parameters of the

exponential smoothing DGP and the parameters of the general ARMA model. A computational

method, suitable for implementation on computer, is outlined. It is applied to some common

examples of exponential smoothing. It is also applied to a new version of seasonal exponential

smoothing.

2. EXPONENTIAL SMOOTHING

The most general linear form of exponential smoothing emerged as an adjunct of a comparison

made by Box and Jenkins (1976, Appendix A5.3) of their approach to time series analysis with

that of Brown's general discounted least squares approach (Brown, 1962). It is centred on a

first-order error correction relationship. In typical period t, a prediction 5', is compared with

the actual series value y, to give the one-step ahead prediction error

et .= yt — 3"t • (2.1)

Quantities such as level, growth rate and seasonal effects, which define the major components

of the series under consideration, are collected together into a k-vector bt . They are computed

recursively with the first-order relationship
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= Th 1 + c:pet , (2.2)

T being a fixed k x k transition matrix and a a k-vector of smoothing parameters. A linear

combination of the components of k is used to generate the next prediction using

= x' b. (2.3)

Here x is a fixed k-vector.

The recurrence relationship (2.2) is seeded with a fixed k-vector Ia. More specifically

bo = (2.4)

The method is then applied sequentially to the sample y1,y2,...,y„ of the time series. Its use is

predicated on the assumption that the quantities T,a,x,16 are known or have been assigned

trial values.

Example 1

The additive form of Winters' method is based on a local trend and local seasonal effects.

Letting Lt denote the local level, 7; the local rate of change, and Ft the local seasonal effect,

this method for quarterly data, in error correction form (Gardner, 1985), relies on the

relationships Lt = Lt_1 + 7 + a1e, 7; = T + a2et and Ft = Ft_4 a3et . By defining the

state vector in time t as bt = (L1, 7 , Ft, F, Ft_2, F 3)', these relationships can be converted to

first-order form to give x = (1,1,0,0,0,1)' and

T=

1 1 0 0 0 0-

0 1 0 0 0 0

0 0 0 0 0 1

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

•
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Future values of the time series are unknown. They may be represented by random variables

"A, .3 , . where the notation — is used to indicate uncertain quantities. Given the nature of the

relationships in exponential smoothing, it is assumed that future values of the series are

governed by the data generating process

(2.5)

(2.6)

(2.7)

The relationship (2.6) is seeded with the value of the current state vector L,, = bn.

It also seems reasonable to assume that the same process underlies past time series values. Thus

(2.5), (2.6) and (2.7), together with the seed condition

1-30 =fl, (2.8)

are taken to be the data generating process underlying the Box-Jenkins version of exponential

smoothing. This data generating process is the innovations form of the linear state space model

(ISSM). It is distinguished from a conventional state space model in that is possesses only one

source of randomness - the so-called innovations. It is usually considered in conjunction with

Kalman filtering (Snyder, 1985), but is more conveniently used with exponential smoothing. A

generalisation, to non-linear state space models, is considered in Ord, Koehler and Snyder

(1997).

3. DERIVATION OF GENERAL ARMA REPRESENTATIONS

In this section we show, using the traditional lag operator approach, how to convert any ISSM

to its equivalent general ARMA representation



Yt = EPJYt-1 + et (3.1)
J=1 J=1

The word 'general' is used to emphasise the fact that (3.1) incorporates both stationary and

non-stationary time series. An ARIMA(0,2,2) process, for example, can be written as

Yt = 2Yt-i Yt-2 02et „ —Ole, 1+ et • (3.2)

Note that there has been a small change in notation. In the previous section, it was important to

maintain the distinction between exponential smoothing and the associated data generating

process, two things that are often confused in the literature. Now the focus will be on models

alone. The notation is simplified by dropping the convention of the circumflex (—) to designate

random variables.

The traditional lag operator L can be applied to the ISSM to derive the corresponding general

ARMA model. The lag operator, defined by Ly, = yt_,, can be applied to the recurrence

relationship (2.6) to give

= (I —TL)-1 ae, (3.3)

This may be used to eliminate k_1 from the measurement equation (2.5) to give

yt = x' (I —TL)' Lae t +et . (3.4)

Let A1, A2,... Ak be the roots of the characteristic equation of T. Then

—TLI1 = A(L)1/ 111(1—
j=1

Here A(L) is a polynomial matrix of at most degree k-1 in L and can be found by Gaussian

elimination. Equation (3.4) may be rewritten as

(3.5)

= x' A(L)Lae, + 1111(1— A iL)et , (3.6)
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Terms in this expression may be expanded as follows:

x' A(L)La =t7 Al • •

Substitution of these expansions into (3.6) gives the general ARMA representation (3.1) where

0. = go. —y
J J J (3.9)

Example 2

The local linear trend model underlying Holt's trend corrected exponential smoothing (Holt,

1957) is yr = Lt-i +Tt-i+ et , = 4-1+ rt-1 4- aiet = + a2e, with e, NID(0,o-2) .

1— L -L1
For this model x = (1 , 1), a =(a,,a2)' and T =[1 11. Thus I —TL =[

0 1 0 1— Li'

II —TLI= 1 —2L + L2 and so coi = 2 , co2 = —1, while A(L) = 
ri[1-0L 

1-
L 
L
1
. Hence

x' A(L)La=(a,+a2)L—a,L2 . Using (3.9), it follows that 01 = 2— a,— a2 and

02= -1+ a,. This confirms the well known result that the ARIMA(0,2,2) model (3.2)

underlies Holt's method.

4. EQUIVALENT STATE SPACE MODELS

In this paper we use a first-order representation of general ARMA models from Snyder (1985).

State variables are defined by the partial sums btj = coy, — eie, +b,_,J+1 where bt,k+1 = 0.

Hence yt=k-1,1+ et and b,i = +b+ (pi — 9i)e,. These relationships define a

particular ISSM, namely

+ et (4.1)
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rbt_, + Yet (4.2)

where It= (1, 0 ..., 0), -at= T'= (71, r2, rk) and

T [p (4.3)

Here q) is the k-vector of attoregressive coefficients, /k_i is a (k —1)x (k —1) identity matrix

and Ok_1 is a (k —1) -vector of zeroes. T is a so-called companion matrix, one that is

commonly used in control theory (Skelton, 1988). The model will be referred to as ISSM1.

As already illustrated, any linear exponential smoothing DGP can always be placed in the form

of the ISSM

x'bt-i+ et (4.4)

bt = Tbt_, + aet . (4.5)

We now explore the possibility of transforming any ISSM into the particular form ISSM1.

First, let Q be a non-zero k X k matrix. Multiply (4.5) by it to give

Qbt = QTbt_, + Qae, . (4.6)

Assume that 0 has the property that

7Q= OT . (4.7)

Then (4.6) becomes

Obt Qaet (4.8)

Furthermore, assume that

Q.

Then (4.4) can be written as

(4.9)

yt = Ob + et (4.10)
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By letting

and

E.; = Qb, (4.11)

7 = Qa , (4.12)

relationships (4.10) and (4.8) conform to the ISSM1 structure. Note that the condition (4.7)

indicates that T and 7 are equivalent matrices and that 0 has identical properties to a similar

transformation matrix.

Applying (3.9) to (4.12) we get

9 = co — Qa . (4.13)

For the first time, we have a general expression for the linear relationship between the

smoothing parameters and moving average parameters. The only problem, therefore, is to find

a method for determining co and Q.

The matrix 0 must satisfy the conditions (4.7) and (4.9). The condition (4.9) implies that the

first row of 0 must be x'. Condition (4.7) is like Liapunov's equation (AX + XB +0=0) and

similar reasoning to solve this kind of equations is used here. By vectorising the remaining

unknown elements of Q and the first column of 7 (the O's ) to give a vector X, (see Appendix),

the condition (4.7) may be rearranged as system of k2 linear equations

AX=B. (4.14)

If the matrix A is of full rank then it may be solved directly for the unknowns. In cases where it

is not of full rank it will be seen that a particular basic solution suffices.

Example 3 (Local Linear Trend)

From example 2 we get
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7 [01
L02

1 1 1
01 and Q.[q, cid.

The condition (4.7) for this particular case, after vectorisation, is the system

_
—1 0 -1 0 --ql

1 0 0 -1 q2

0 -1 -1 0 01

1 1 0 102 _ _
- 

_

=

_
— 1-

0

—2

o

..

The rank of A is 4 and the required solution is X' = (-1, 0, 2, -1). Thus

I-911 j 2 1 J 1 11[ail

Le2] L-1] L-1 01a2]

The usual ARLMA.(0,2,2) representation y, = 23),_, — y,-, — 02e,_2 — 91e1_1+ et applies where

el = 2 — al — a2 and 02 = -(1- a1), in agreement with the earlier result obtained with the

backward shift operator.

Example 4

The method was coded in the computer language Gauss to handle more complicated versions of

exponential smoothing. The program was tested on Winters' version of exponential smoothing

(Example 1) for quarterly data. The associated equation system (4.14) consists of 36 equations

with 36 unknown variables. The rank of A, however, is 35. A value of zero is therefore assigned

to one of the unknowns, in this case the last element co6 in go . The effect is to simplify the

general ARMA representation by reducing the maximum lag of the autoregressive component

by 1. The solution, summarised in the form (4.13), was

,

9



•••

-91 1 1 1 0 0 0 1 al
02 0 01 0 0 1 —1 a2

93 0 0 1 0 1 —1 0 a3

94 1 0 1 1 —1 0 0 0

05 —1 —1 0 —1 0 0 0 0

060 0 0 0 0 0 0 0

5
the equivalent general ARMA model being yt =vt-I t-4 Y t-5 jet_i + et . This

generalises, for the case where there are p seasons per year, to the result (Roberts, 1982) that a

SARIMA(0,1,p + 1) x (0 ,1 ,0) p underlies Winters method for any seasonal frequency.

Example 5

The seasonal indexes in the model underlying Winters method follow a random walk. It is not

possible to ensure that they sum to zero, a common property of additive seasonal indexes. The

following is an alternative specification that overcomes this problem when generating

predictions. It is an adaptation of an approach developed by Harvey (1984) in the context of

multi-disturbance structural time series models. It takes the form, in the quarterly case:

t = Lt- i+ rt-i — — Ft-2 — Ft-3 + et.

Lt = Li_1 + T+ a let

Tt = T+ a,et

Ft = —Ft-1 — Ft-2 — Ft-3 + a3et •

The generalisation to any seasonal period is obvious.

This model may be converted to an ISSM where x'= (1,1,-1,-1,-1), a'=(ai,a2,a3,0,0) and
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02

03

04

95
-

1 1 0 0 0

0 1 0 0 0

T= 0 0 —1 —1 —1

0 0 1 0 0

0 0 0 1 0

Involving one less state variable than the ISSM for Winters' model, the associated equation

system (4.14) has full rank. The solution obtained with the aid of the computer program is

01 1 1 1 —1 —1 —1-

0 0 1 1 1 2

= 0 — 0 1 0 1 —1

1 0 1 1 —1 0

—1 —1 0 —1 0 0

al

a2

a3

0

0

This, like the previous example, generalises to a SAREVIA(0,1,p +1) x (0,1,0)p model.

5. CONCLUSIONS

In this paper we have found, for the first time, the general relationship between the parameters

of the exponential smoothing DGP and the parameters of the corresponding general ARMA

model. A computer program, based on this relationship, was developed and then applied to

more complicated versions of exponential smoothing. It was verified that the program

reproduced results for more common forms of exponential smoothing.

A new seasonal version of exponential smoothing was proposed. It always yields predicted

seasonal indexes which sum to zero. It also involves one less state variable if the Kalman filter

is to be used in place of exponential smoothing. It is therefore commended for use in practice as

an alternative to Winters' method.
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APPENDIX: Vectorisation of Equations (4.7) and (4.9)

0 may be written in terms of row vectors as follows

_q k

Collecting the unknowns from (4.7) to the left hand side, we get_
x'Oix'

0 k-lxt qk

0 icx3

Vectorising (A.2) yields
AX = b

where

q2

q kT o'

(A.1)

(A.2)

q 0') ,
k (A.3)

and b' = (x' T 01 • • • Ok,_k ) (A.4)

in which Or means the rth zero. Furthermore

[—T1 .•
1 

E 2

•A=

• • • {I dk-1

[—T1k-1

E k-1

Ek.

(A.5)

where E,. is a kxk zero matrix with the rth column amended to x. [41 represents the rth identity

matrix of order k with a similar convention for [ —71 .

•
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