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Calculating Efficient Multi-Product, Multi-Factor
Production and Cost Relationships
- A Computerized Algorithm -

When estimating relationships between inputs and outputs of pro-
duction processes, it is often desirable to estimate the efficient or
frontier relationship rather than the average. Least-squares re-
gression methods are usually used for estimating average production
and cost functions. Extensive literature exists on functional form
problems, multiple product specification difficulties, and multicol-
linearity problems associated with standard regression approaches.
Much less attention has been given to the problem of estimating effi-
cient production and cost relationships although, from a theofetical
point of view, the efficient production function is of considerable
interest.

Two methods for calculating efficient production and cost rela-
tionships have been developed. Constrained-residuals regression was
originally suggested by D. Aigner and S. Chu (1968) and has been im-
plemented by C. Timmer (1971). This method consists of constraining
all of the regression residuals to have the same sign and as a result
the estimated function is forced to the "frontier" of the observationms.
For p;oduction function estimation with the residuals equal to the
predicted output minus the actual output, the residuals would be con-
strained to be nonnegative. The term "frontier" will be used in this
paper rather than "efficient" to denote those firms that use the mini-

mum levels of inputs for given levels of outputs and for other given

firm characteristics. Since the frontier relationships are only effi-

cient relative to the observed firms, the underlying, truly efficient

relationships cannot be determined from cross-sectional data.
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The other production frontier computational approach was origin-

ated by M. Farrell (1957, 1962), extended by J. Boles (1967, 1972),

and applied by W. Seitz (1971), B. Sitorus (1966), and D. Carlson
(1972, 1975). Essentially, Farrell's method is to plot the observa-
tions (firms) as points in a space of as many dimensions as there are
variables included in the analysis, to form the convex hull of this
set of points, and to take the appropriate part of the surface of the
convex hull as the estimate of the frontier relationship between all
of the variables. The work by Farrell, Boles, and Seitz has concen-
trated on the development of the method to compute efficiency indices
for each observed firm within a given sample.

The purpose of this paper is to further describe and extend
Farrell's technique following the linear programming approach developed
by J. Boles, to describe the procedures for using a computer program
that calculates efficiency indices and frontier production and cost
relationships, and to illustrate the use of the program with several
examples. The computerized algorithm described in this paper differs'
from the algorithm developed by J. Boles (1971) in one important
dimension. The procedure has been generalized to handle several 'qual-
itative" factors in addition to the inputs and outputs of.the pro-

" duction process. This capability is extremely useful for exploratory
work with poorly defined production processes. Also the computer
program described in the paper is much simpler to operate for an in-

dividual unfamiliar with linear programming.

Concepts of Economic Efficiency:

Defining measures of efficiency is an extremely difficult task

for production processes involving more than one input and one output.
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The problem is further complicated when scale and output quality is
included into the specification of the production process. Following
the approach by S. Dand (1966) and J. Henderson and R. Ouandt (1971),

the general implicit production function is written as

F(Xl’ csey XI; Yl, LI Y YJ; Ql’ soey QK; S) = O

where: Xi is input i
Yj is output j
Qe is quality factor k

S 1is a measure of the scale of the production process.

For the case where there are I inputs, one output, no quality
factors and constant returns to scale the production funcfion, Y1\=
f(Xl’ ceesy XI)’ is defined as the locus of the maximum output levels
for alternative combinations of inputs. From the definition of the
production function in this simple case, the measure of technical
efficiency for firm n is given by:

Y1n

TE = .
n f(Xln, es ey XIn)

Similarly, if input prices, Ci’ are specified, the total economic
efficiency of firm n can be measured by:

min I

}(]-, .‘0, XI 7: Y
f(Xl, ey XI) = Yln i=1
I Xin
X

i=1 Y1n 1

EE_ =
n

This definition of economic efficiency is based on the assumption
that all firms face the same input prices. This definition can be

generalized by replacing C, in the above equation with C However if

i in®

input prices are different across firms, the resulting measure of
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economic efficiency indicates something other than production effi-
ciency. Such a measure combines the efficiency of the firm's ability
to obtain inexpensive inputs with production efficiency.

Since total economic efficiency (EE) is equal to the product of
the technical efficiency measure (TE) and a measure of price or allo-
cative efficiency (AE), the latter effiéiency measure can be calculated
for firm n as follows:

AEn = EEn/TEn:

The above three definitions provide measures of the standard
types of efficiency for a production process with I inputs, one out-
put, and constant returns to scale. These measures assume that the

production function, Yl = E(Xl, cney XI), is known or can be estimated.

If the production process is extended to allow for nonconstant

returns to scale, the production function, Y1 = £(X;y eoey XI; S),
is defined as the locus of the maximum output levels for alternative
combinations of inputs and for different scales of operation
(Henderson and Quandt, 1971). 1In other words, there are a family of
production functions; one for each size of firm. To illustrate,
Figure 1 shows an isoquant for two of the inputs and several levels
of scale (S).

Figure 1: Isoquants for Alternative Scales of Operation

X,
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For this production situation, the measure of short-run technical

efficiency for firm n, TEE, follows directly from the constant returns

case. . Yl
TES = L .
n

f(Xln’ cee XIn; Sn)

And similarly for the measure of short-run economic efficiency,

min
I X
Xl, ..., XI z ?1— .Ci
EES - f(Xl’ ee ey )L-[; Sn) = Yln i=l ln
n

These definitions of short-run efficiency are based on the
assumption that in the short-run the firm can not change its scale of
operation. For the case of nonconstant returns to scale, the long-run
measures of technical and economic efficiency are the same as the
measures for the constant returns to scale situation. In the long
run it is possible for the firm to adjust its scale of operation and
therefore its efficiency should be measured relative to the optimal
scale of operation.

Following the approach of S. Dang (1966), quality parameters can
be included into the production function in the same manner as
Henderson and Quandt include the scale parameter. As illustrated in
Figure 1, a firm's efficiency should be determined relative to the
production function for that firm's scale of operation. Similarly, a
firm's efficiency should be determined relative to a production func-
tion with the same qualitative characteristics as that of the particu-
lar firm. The measures of short-run technical and economic efficigncy
are given by:

Y
TES = 1n

n f(Xln, veey X

In; an" L ] QKﬂ; sn)




min
xl, I..’ h

n
f(xl’ e oo XI; an’ ey Q

I in
I —/—/— .C

i=1 Yino

s kn’

EE~ =
n

i

The above definitions and measures of efficiency span all cases ex-
cept those production processes with several outputs gnd several inputs.,
Ignoring for a moment nonconstant returns to scale and quality parameters,
it is still difficult to define general measures of technical and eco-
nomic efficiency for a multiple output, multiple input production process.
Several approaches have been suggested but none are very appropriate for
many applications. One procedure is to construct an output index, Y%,
bv applying weights to each of the individuai outputs. The usual approach
is to use output prices to generate a total revenue variable to be used
as an index. This procedure assumes that all firms face the same output
prices and makes it impossible to separate technical efficiency from eco-
nomic efficiency with respect to the mix of outputs produced. That is,
if a firm is shown to be inefficient with this measure, it might be the
case that the firm is efficiently producing its set of outputs but that
the firm is producing the wrong mix of outputs given the price; of the
outputs.,

A second procedure for dealing with the multiple output, multiple
input. case is to construct an input index, X*, by applying weights to each
of the individual inputs. This approach is the input complement to the
above procedure and it suffers from the same problem.

A third technique is to base the efficiency measure on one of the

outputs with all the other outputs fixed at specified levels. This ap-

proach is useful in situations where one particular output is of primary




interest. The resulting measure of technical efficiency with respect

to an output r for firm n,.TE;, is given by:

Y
r rn

n fX n? v Xpps Yios eees

TE

Y

r-1,n’ Yr+1,n’ tee YJ)

Similarly, the measure of economic efficiency is:

min

Xl’ ooy XI [

Yl, e ooy Yr—l’ Yr"‘l’ o060y YJ N .C

E(X)s wees Xp5 ¥ys weey Y0y Y 0y ey Y =Y 1=l 'rn

I
i
r

EEn = ; ‘Xin |
i=1 ‘rn*

The difficulty with the above efficiency measures is that each
firm will quite likely have different relative measures of efficiency
depending upon the output chosen as the basis.

A fourth approach to this multiple input, output problem is one of
decomposition. If the prodﬁction process under study is not truly a
joint production process, then it may be possible to separate the
problem into an analysis of each output relative to the inputs used
for that output alone. In this manner, the problem reduces into a
form that can be handled with the single output measures discussed
earlier, A firm's efficiency would then be determined for the pro-
duction of each output separately.

The most general and satisfactory method for computing efficiency
measures for joint, multiple input-output processes has been developed
by M. Farrell (1957) but has been surprisiﬁgly neglected in empirical

applications. His measures of efficiency completely generalize to the

nultiple input, multiple output, nonconstant returns to scale production
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process with quality dimensions. The next section presents a graphi-

cal description of Farrell's approach and the fourth section describes

the computational algorithm required to implement his technique.

A Graphic Approach

Since Farrell's approach is not based on a statistically estimated
equation but rather operates directly §n the basic data, it is helpful
to describe the technique from a graphical perspective, If the pro-
duction process involves one input and one output, the production

function can be drawn as shown in Figure 2.

Figure 2: The Farrell Production Function

Each plotted point represents a firm and the production function,
as determined by Farrell's method, is given by the curve OABCD. That

is, the points on this curve represent the maximum output observed for




a given level of input or, alternatively, the minimum amount of input
observed for a given leyel of output. To define the curve OABCD as
the production function, it is necessary to assume that the producton
function is convex. This assumption implies that if two points are
attainable in practice (for example, B and C), then so is any point
representing a weighted average of them (points on the line connecting
B and C). It must also be assumed that the production process is non-
stochastic and that the variables are measured with no error. Cal-.
culation of the production function in this manner is obviously sensitive
to the accuracy of the data. Since by definition of the production
function, the desired relationship is to be at the extremes of the
data, it is difficult to avoid this problem. Extreme caution must be
taken with the data used in an analysis of this type.

This graphical approach of determining the production function

has one very important advantage over statistical techniques. In order

to estimate a production function with regression techniques, it is
necessary that a functional fqrm be specified. With the graphical
method this requirement is not necessary as the data determines the
shape of the relationships between all of the inputs and outputs.

The production function relationships between different inputs
and alternative outputs may be desired, so a consistent method of
constructing the production surface is needed. In order to accomplish
this graphically as well as computationally, it is necessary to treat
the input variables as positive and the output variables as negative.
These relationships are illustrated in Figﬁre 3.

Note that for all of the relationships, input versus input, input

versus output, and output versus output, the desired production curve




is the southwest portion of the outer ring circumscribing the scatter
of points. The familiar isoquant»relationship between two inputs
(these inputs must be scaled by output to be true isoquants) of the
production process appears in quadrant I of the graph in Figure 3.
Productivity curves are shown in quadrants II and IV and the output
transformation curve appears in the third quadrant. Since the outputs
are specified as negative, the transformation curve as drawn in Figure
3 is inverted from the standard form.

Figure 3: The Multiple Input-Output Graphic Approach

Input

2

- Output Y

For a two input, one output production process, the measures of

technical, economic, and allocative efficiency are drawn in Figure 4

and calculated as below:




Figure 4: Graphical Efficiency Measures

Although this graphical procedure can be completely generalized
to several outputs and several inputs by expanding the number of di-
mensions of the graph, it is obviously not possible to draw the rela-
tionships. It‘is at this point that Farrell's computational method
muét be introduced. His procedure makes it possible to calculate
portions (or slices) of the multi-dimensional production surface which

can be graphed in two dimensions.

The "Farrell".AQproach

For the case of many variables, the computational method by M.

Farrell (1957, 1962) provides an efficient procedure for generating
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\
relationships like those illustrated in Figures 2-4. To determine the
frontier relationships with Farrell's basic approach, J. Boles

(1971, 1972) greatly simplified the computations required bv formu-
lating the procedure in terms of a linear programming problem. The
link between the graphic approach illustrated above and the linear
programming approach can best be made for the case of one output

variable and two inputs. The desired relationship is illustrated in

Figure 5.

Fisure 5: Illustration of the Computational Approach

To interpret the input isoquant graphically, the two input
variables should be scaled by the output variable. The relationship

between the two input variables with all the other variables held

constant is desired. To locate the observed firms that determine the

frontier relationship between the two input variables, each scaled by




the output variable, the procedure is to express the coordinates of
each firm as a linear function of the coordinates of the other firms
that lie closest to the origin of the graph in Figure 5. That is,

find two firms (a and b) for each firm, s, in the sample such that:

and (za + zb) is a maximum over all possible pairs of firms a and b.
The two firms that satisfy the above maximization problem lie on
curve CC'_in Figure 5. To force (za + zb) to the maximum, it is
necessary that the two observations closest to the origin of Figure
5 be selected as firms a and b. It is also necessary that the two
observations span firm s. That is, point s must lie between rays OA
and OB in Figure 5. If firm s lies on the curve, the solution to the
above problem is with z, = 1.0 and the rest of the z's equal to zero.
This solution féllows since if firm s is on the frontier there will
not exist any observations between the origin and point s or any
weighted average of points between s and the origin unless there are
identical observations or weighted averages of observations that are
identical to s.
By defining the variables,
Xit the quantity of the ith input used.by the tth firm
th

Yt = the quantity of output of the t~ firm

the above maximization problem for T firms can be written in a linear

programming framework as:




Subject to i =1,2

l’ LRI To

The procedure for determining those firms that are on the pro-
duction surface CC' (as drawn in Figure S) is to solve the above LP
problem once for each firm in the analysis. Each time that the LP is
solved a different firm is placed on the right-hand side of the con-
straints, All firms (including the one on the right-hand side) are
included on the left-hand side of the constraints. If the solution
with a barticular firm on the right-hand side specifies a z value of

one for that firm and a z value of zero for all of the other firms,

that firm is on the production surface. In this manner, all of the

firms that lie on the production surface can be identified. By
definition, these firms are the technically efficignt firms.

This simple, three-variable model can be generalized to include
several input variables, other output variables, quality dimensions,
and a scale parameter. These latter variables allow other aspects
of the production process (besides inputs and outputs) to be included

into the production or cost function specification. Let

Yrt the quantity of output r of the tth firm

= the kth quality factor for the tth firm
th

St the scale parameter for the tt:h firm,
then the general linear programming model for T firms, I input

variables, J output variables, and K quality variables is written as:




T
Maximize I z,
t=1
Subject to:

[1] Input constraints

Output constraints

T

L z Y, >Y
=1 t jt js

Quality constraints

Ze Qe

t = 1, ..., T.

The input constraints and the output constraints are identical ex-
cept that the inequality sign is reversed. This reversal is consis-
tent with the differences in sign used in the graphic illustration
shown in Figure 3. The constraints for the quality variables are

considerably different from the input and output variable constraints.

The input and output constraints are structured in a form that allows

large firms to have nonzero z solution values when a small firm is on
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the right-hand side of the constraints and vice versa. It is the
ratios between all the inputs and all the outputs that are important
and not the actual levels of the inputs and outputs. The magnitudes
of the z's will adjust for the differences in the input and output
levels. The quality and scale constraints, however, must be of a
different form to correctly construct the production surface. If a
high quality firm is on the right-hand side of the constraints, only

high quality firms (on the average) should have nonzero z's in the

solution. Since the magnitude of the z's will depend on the input

and output levels of the firms, the weighted average form of the
quality and scale constraints is necessary. For inputs and outputs,
the ratios of the variables are important in the determination of the
production surface and not their levels. For the quality and scale
variables, it is the levels and not the ratios with the inputs and
outputs that are important.

The quality dimensions are defined in such a way that they are
like outputs in the sense that they use resources. That is, a firm
producing a higher quality output will need to use more (or at least
as much) of the inputs. Therefore, the inequality signs for the
quality constraints are of the same direction as the output constraints.

Because of the existence of diseconomies as well as economies of
scale, it is possible to specify the scale constraint with the in-
equality in either direction. The economies of scale portion of the
relationship shown in Figure 6 as an illustration can be determined
with the scale constraint specified with a < inequality. The dis-
economies of scale portion can be determingd with the > scale constraint,

It is also possible to use a strict equality constraint to force the




scale to be exactly the same (on the average) as the scale of the

firm on the right-hand side. If the convexity assumption mentioned

earlier is not restrictive, it is better to use the inequality con-
straints for determining the production surface. With the inequality
- constraints the surface will obviously be convex and therefore the
relationships, such as shown in Figure 6, will be smooth curves
ranging from a straight line (no economies or diseconomies of scale)

to a "U" shaped curve (both economies and diseconomies of scale).

Figure 6: Illustration of the Scale Constraint

Economies
of
Scale

)

/
» Diseconomies
of
Scale

>

The linear programming model specified above yields a direct
measure of technical efficiency for multiple input-output production

processes. The measure of short-run technical efficiency for firm n

is given by-l.()/gl z, when the LP model is solved with firm n on the
right-hand sidet;f the constraints and the scale constraint is included.
If tgl z, = 1.0, iirm n is technically efficient. If firm n is in-
efficiént, then 21 z, will be greater than 1.0. The measure of
long-run technic:1 efficiency.for firm n is exactly the same but the
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LP should bé solved with the scale constraint omitted. The appro-
priate measure of economic efficiency will be developed in the
following section,

This computational methodology is useful for determining portions
of the production surface in addition to calculating efficiency in-
dices for individual firms. A slight change iﬁ the formulation of
the above LP is useful for easily calculating the production function
relationships between alternative input, output, quality, and scale
variables. The required modification is to place one of the input
or output variables into the objective function. To keep the quality
and scale constraints in a proper form it is also necessary to multiply
both sides of those constraints by the variable included in the objec-
tive function. The input and output constraints remain in the same
form as in the previous model. An illustration of the resulting, re-
formulated model is shown in Figure 7 with one of the output variables
in the objective function.

It should be noted that the choice of the variable appearing in

the linear programming objective function (Yrt in the example in

Figure 7) depends on the information that is desired. The distance

being maximized (or minimized in the case of an input variable) is
parallel to the axis of the variable in the objective function. It
should be stressed that this is not comparable to the choice of the
dependent variable in a regression equation, where the results can
be drastically different depending on the variable selected. With
the linear programming approach, the results are always consistent
regardless of the direction towards the frontier surface that the

results are generated.
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In éddition to using observed firms on the right-hand side of
the constraints, hypothetical firms can be constructed and used in
the LP model as well. This procedure makes it possible to more
systematically analyze the frontier relationships between different
variables. If an output variable is in the objective function and
the right-hand side value of an input constraint is varied, a frontier
productivity curve is traced out. A frontier transformation curve
results if an output constraint is varied with an output variable in
the objective function. With an input variable in the objective
function and varying an input constraiﬁt, a frontier isoquant is
computed. If an input variable is used in the objective function, the
problem is then one of minimization rather than maximization as

shown in Figure 7.

Figure 7: The LP Computational Model
Maximize

Subject to:

Least-Cost Modification

The basic computational algorithm as described above can be

‘modified to find the least-cost method of producing given levels of




outputs with specified firm characteristics from the observed data.

Letting Ci = the unit price of input i, the least-cost algorithm is:

Minimize

Subject to:

1, secey To

Verbally, the problem is to minimize the total cost of production
subject to the constraints that the constructed firm has at least as
nuch of each specified output and equals or exceeds the various firm
quality constraints.

From the solution valuesTof the zt's, the cost~minimizing level of
= I

t=1
 fixed, they can be included as constraints in the LP model, either as

*

each input is given by X; X

0 If certain inputs are considered
equalities or inequalities if idle capacity is allowed, and enter the
objective function.only.as fixed constants.

This procedure allows the computation of least~cost methods of
producing various output combinations with specified firm quality
factors, given inbut prices, and the production relationships observed
from the cross-section of firms. Instead of minimizing with respect

to one input (or maximizing with respect to one output) as done in

the basic computational approach, all the inputs are weighted'by




their unit prices, and their weighted sum is minimized. A measure of
total economic efficiency results from the solution of the model in
this formulation. For firm n the measure of economic efficiency would

be:

i=1

Alternatively, the quantity I C in the above formulation

oy it
can be replaced by the actual total expenditures of the tth firm,
This approach also yields information about the cost-minimizing be-
havior observed for the sample of firms. These procedures make the
appropriate link between the production relationships and the cost
relationships for this type of fréntier analysis. Revenue maximiza-
tion problems with given levels of inputs can also be formulated and

solved by this algorithm. The same procedure as outlined above could

be used with unit prices of the outputs used instead of input prices.

The Linear-Programming Computer Program:

As shown in Figure 7, the computational procedure for calculating

efficiency measures and frontier multi-product, multi~factor production

and cost relationships results in a very simple linear programming

problem. Since most empirical applications of the frontier technique
involve solving a large number of linear programs, it is desirable to
havé a general computer program that reads the production and cost
data for each firm, reads several control parameters describing a

specific application, processes all of this input information, sets
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up the linear programming problems, and uses an LP algorithm as a
subroutine to generate the desired solutions.

The remaining sections of this paper describe and illustrate the
use of the computer program developed for calculating'efficiency
measures and frontier production and cost relationships. The FPRTRAN
computer program is listed in the final section of this paper. The
alternative modes of operating the program are described, the control
parameters are defined, the input deck structure is laid out, and
several illustrative runs of the program are presented in the follow-

ing sections.

Modes of Operation:

Given the large number of alternative measures of efficiency that

have been defined and the alternative portions of the production surface

that can be calculated, there are several different ways in which the
computer program can be run. Each of the available options are
.described below.

General efficiency option: This option calculates the general

multi-product, multi-factor technical efficiency index for each firm

in the sample. The LP solution value yields the information required

to directly calculate the efficiency index. The LP solution value will
equal -1.0 for firms on the production frontier surface and will be

less than -1.0 for firms not on the surface. Since the LP activities
are firms in the sample, the primal solution also indicates which
frontier firms, when added together with the optimal coefficients of the

primal variables as weights, dominate each of the nonfrontier firms.

Specific efficiency option: This option calculates the technical

efficiency index relative to a specified variable for each firm in the




-23-

sample. The LP solution value yields the optimal value of the specified
variable (minimum value for inputs, maximum value for outputs) with all
of the other variables constrained for the particular firm. TFor input
variables, the technical efficiency index is calculated by dividing

the firm's actual value for the specified input by the LP solution
value. For input variables, the technical efficiency index is cal-
culated by dividing the LP solution value by the firm's actual value

for the specified output,

Production surface option: This option calculates points on a

portion of the production frontier surface. For example, if the
frontier relationship between one input and one output is desiréd the
procedure would be to specify the output variable in the objective
fuﬁction and to solve the LP for alternative values on the RHS of the
input constraint. As illustrated in Figure 8, the program computes

the maximum amount of output 1 for each of the levels of input 1

(Il, 12, and 13) with all the other outputs, inputs, and qualitative

Figure 8: Calculation of the Production Surface

* All other outputs
constant

* All other inputs
constant

* Scale constant

+ All qualitative
variables constant
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factors held constant. The three points on the frontier production
surface (01, 02, and 03) are calculated in one replication of the
program although the replication requires three linear programming

problems to be solved. If an input is specified in the objective

function and the RHS of an input constraint is varied, an iéoquant will

be traced out. If an output is specified in the objective function

and the RHS of an output constraint is varied, a product transformation
curve will be traced out., If an output (input) is specified in the
objective function and the RHS of an input (output) constraint is
varied, a marginal productivity curve is traced out. Similarly, out-
puts or inputs can be specified in the objective function and the RHS
of a quality factor or a scale constraint varied to yield frontier
relationships for the quality and scale factors.

Variable mean option: This option is designed to enable the user

to specify the point at which the production surface is to be cal-
culated. If this option is not used, the RHS of all of the constraints
are set equal to the mean value for each of the respective variables.
The production surface option enables the user to then vary one of the
constraint RHS's. With this variable mean option, it is possible to
change all or several of the constraint variables in order to trace

out different portions of the multi-dimensional production surface.

Least—cost option: This option is designed to trace out a portion

of the frontier cost surface using the per unit cost approach rather
than total expenditures directly. Per unit costs must be inputted for
each input variable that is to be included in total cost for the
objective function. Except for the additional data requirement, this

option has the same procedures and capabilities as the production
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surface option., It is also possible to use this option along with
the specific efficiency option to calculate indices of total economic

efficiency for each firm in the sample.

Control Parameters:

For any run of the computer program, the user must specify several
parameters that control the way the LP problem is to be set up. These
parameters allow the user considerable flexibility'in using the program
under the alternative options described above. The control parameters
are listed and defined below:

NVAR Number of constraint variables in the problem.

IS0 1 if a production surface runj; 0 if an effiéiency

run,

1 if a general efficiency run; 0 if a specific
efficiency run.

1 if different variable means are to be read in for
each replication; = 0 otherwise.

1 if a "least-cost" run is desired; = 0 otherwise.
Number of total variables for "least-cost" run;

= 0 if ICST = 0.

Number of replications; = 1 if ISO = 0.

Number of equality constraints. The equality con-~
straint variables must be specified first in INDEX
().

INDEX (°) Index numbers for variables; objective function

variable listed last.

COST (-) Per unit costs of inputs for "least-cost" option;

omit if ICST = 0.
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VMST (*) Variable means; listed in same order as INDEX; omit
if IVM = 0.

IFRST Index number of "isoquant" variable; omit if ISO = 0.

VONE () Three alternative values of "isoquant" variables;

omit if ISO = 0.

Input Deck Structure:

The sequence of control parameter cards and data cards are
described below:

CARD 1: NREP, NVAR, ISO, IEF, NEQ, ICST, IVM, ICN (Mandatory)

lI_LIIllllll3|lllllll|Ilolllilolllllo|llllo|llIl0!l||||lllll
5 10 15 20 25 30 35 40 45 " 50

The format for Card 1 is 8I5.

CARD 2: 1INDEX (-) (Mandatory)

4 -2 103 -1-105
|ll!ll|lll|||!llIillllLI'llllllLlIIIII!IIIIIIlIllI
5 10 15 20 25 30 35 40 L5 © 50

The index indicates the position of the desired variable in VST, the
input data matrix (see below). A minus sign indicates that the variable
is used in a > constraint and a positive sign indicates that the variable
is used in a < constraint. Qualitative variableslare specified by

adding 100 to the basic index and therefore 103 represents a quality

variable that appears in the 3rd position of VST. The format for Card

2 is 2014,

CARD 3: COST (*) (Optional)

1.25 E0.00 112.03

LIIIII!I!!LI!II I|||IlllllllIlllLLlIl!lllllllllllll

5 10 15 20 25 30 35 40 45 "50

This card(s) should be included only if ICST = 1. The format is 8F10.2

and if there are more than 8 inputs, use more than one card.
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CARD 4: IDENT (-), (VST(I,-), I =1, 20). (Mandatory)

140 150 69 7.0 76,.6 81 .2, 24 59 6.0 39..0

IIlllllll|IllllllllrllllllllllllIllIllllllllllllll'
5 10 15 20 25 30 35 40 45 ' 50

These cards should be set up in a format most conveniéht fof reading

in the data to be used in the analysis and the READ and FORMAT state-
ment in the program should be appropriately modified. IDENT (+) should
contain an identification number (integer) for each firm included in
the analysis and VST (I,:) should contain a value (real number) for‘
each of the I variables and for each firm. The program is currently
set up so that an IDENT code of '999999' indicates that all of the data
has been read in. The current format is 16, 9F10.0.

CARD 5: VMST () (Optional)

-5 45.6 -25. 2 98 .3 |, 3500,.0 ~90.4

lllll IIIlllllllll|l_lllll'lllll.llllllllllllllllllll-

5 10 15 20 25 30 35 40 45 "50

This card(s) should be included only if IVM = 1. The format is 10F8.0
and if NVAR > 10 more than one card must be used. Note that the sign
of the mean values must correspond to the sign of the appropriate
variable in INDEX (°).

CARD 6: TIFRST, (VONE(I), I =1, 3) (Optional)

5 -500,. 0 -546.,0 -600. 0

'Illlllllll.lllllllljllllllllllllllllllllL[Llll

5 10 15 20 25 30 35 Lo L5 50

lLLLl

This card(s) should be included only if ISO = 1. The format is (I5,
5X, 3F10.0) and there should be NREP of these cards if ISO = 1. The
first integer on the card refers to the position in INDEX of the

variable to be varied over three values and the following three real

numbers are the values.
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Illustrative Uses of the Program:

To better illustrate the alternative uses of this computer pro-
gram, several runs are described, the input cards laid out, and the
output presented in this section. For these examples, variables 1
and 2 are outputs, variables 3 and 4 are inputs, variable 5 is a scale

measure, and variable 6 is a qualitative factor. There are 50 firms

in the sample.




Example 1: A general efficiency run:

CARD 1: 1, 6, 0, 1, 0, 0, 0, 0
CARD 2: -1, -2, 3, 4, 105, -106

CARD(s) 4: DATA

The output of this run is shown on the following pages for the first 3 firms in

the sample. The general technical efficiency indices calculated from the results are:

Solution Index (-1.0/Solution)

-1.00 1.000

-4.78 0.209

-1.97 0.507

CONTROL PARAMETERS
NUMBER NF RFEPLICATIONS = 1
NUMRFR NF CONSTRAINT VARIABLES 6
NUMBER 0OF FQUALITY CONSTRAINTS = 0
MAXIMUM NUMBER OF INPUT VARTARLES FOR LEAST=COST ALGNRITHM =

VARTARLFE INDEX LTSTaae -1 -2 3 4105 =106 9
THTS IS NUOY AN TSOQUANT RUN

THIS 1S NOT A LFAST=INPUT=CcOST RUN
VARIARLE MFANS ARE MNT TO gbE RFAD FOR EACH RFPLICATION
NUMBRER OF NBRSERVATIONS= 50

VARTABLE MEANSe..
'43770‘3 =1130.8 27842




1 TSTING

O D NN S w3 -

NF DATA

1007
1052
1057
1089
1090
1101
1107
1345
1353
136n
1368
1378
1380
1480
1481
1546
1552
1561
1572
1573
1574
1590
1599
1601
1616
1620
1674
1759
1808
1812
1815
1816
1890
1915
1926
1927
1949
195n
19613
1076
1977
2002
2006
2008
2015
2017
2620
POV
2031
2184

HMATRIX

"14040
=2490,0
“106R.0

“113.0

=937,0
*1699.0

=166.0
=273.0
=139.0
'333200

*970.0
=2447.0

=598.,0

"317.0

“8R3.0

=53640
“145640
=1521.0

*"314.0

=290.0
“5466.,0

=256.0

“470.0

~589.0

=2285.0

=730.0
=134.0
=237R.,0
"7€9.0
=1722.0
=1903.0
~19%2.0
“62640
*3R80.0
'31710
30440
=1159.0
4484100
“717.0
48640
"768.0
106740
=239.0
62440
=-2949.,0
"645.0
10670
“463.0
~1474840
NDe0
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ADONCSCND D

=2236.0
=3743.,0
=4009.0
=2518.0
=5202.0
=3039.0
=171640
=2063¢0
=2262.0
=4920.0
=4207.0
=7324,0
=267640
=4024.0
36370
=2176.0
*1530.0
{9850
“4895.0
=-1831.n
»"53R2.n
=2278.0
=2963.9
*4192.0n
=459840-
“4049.0
=7692,0
~7274.0
={1A55.0
=1998.0
-2080.0
=2115.0
744340
=3903.0
=3878.0

~4601.0

*34448,.0
694640
=R?267+0
=505640
*525840
=8737.0
=3R72.N
638040
=R479.0
“4453.0
666940
064140
=8R24.0
=3043.0




TTERATIONS= 12
SNLUTION VAL UES=S

PRIMAL VARTARLFS
«100000F+01

DUAL YARTIARI LS

0.
0,
-053"3‘)9;"“?
O
0.
= H09Q60V+OC

1 10e?

TTEPATINNS= 12
SALUTINN VAL UF=

PRIMAl VARTABLES
10 «309A28F+00C
?2? 158128401
29 « 3IN9H2AF+0Y

nuAl VARTABIES
0.
~280640F~03
= 977960F=N>
0
N,
“B494RICHO0

? 1052

TTFRATINNS= 21
SOLUTIAN VAL UE=

PRIMAL VARIABIFES
10 «13778arF+00
2?2 «169553r+n1
20 «137784r+00

NUAL VARTARES
0,
=e2806480F"03
=.97/79A0F=02
0
0
Se849483r+00

3 1057

=, 100000F+01

DUAL SiLACK
0

PRIMAL SLACK

Ue
ﬂ.
0
0.
(VI
O

1s000

= JU7777EF+I1

DUAL sl aCK
0.
{)l
O

PRIMAL SLACK
«7828729F 40y
O
Ue
«7H0000F+02
+385906F+0n3
Ne

U,209

=, 197110F+01

DUAL sSLACK
e
0
O

PRIMAL SI1ACK
e 78E9N0EF+03
!).
00
0.
e84 32517E+407
0,

14507

COST SENSITIVITY

“318R72F4+00

«161400F4+0N

RFSNURCE SFNSTTIVITY

Ne
0

=« 1R5750F+03

0. .
N,
=.100000F+21

«100000F+21
«100000F+21

0,

«100000F+29
«100CO0F+21

0.

CAST SENSTTIVITY

-.1(\706?{#“1
- 736527F=01
- 354967400

«145835F+00

«150731F+00
«311385F=01

RESOURCE SFNSITIVITY

-, 7092R829F+04
=.516603F+04
=e374214F+03
= 740000F+02
=+ 3IR5906F+03
=aJRE6NSHF+00

LJ00000F+21
«11R197F+0y
«5NAN31F+0]
«100000F+214
«100000F+21
W201T712F+01

CNST SFNSTTIVITY

= 107062F+01
~e786527F=0N1

=s3SUQETF+0N0

«145835F+00
«150731F+00
«314385F=01

RFSAURCFE SFNSTITIVITY

= 724904F+03
=s21065YF+04
=.376163F+N?
Ne

=oN32517F+02
=+ 1A278BR8F4+00

«100000F4+71
«H525635F+03
«?225038F+03
«10N000F+21
«100000F+21
«897035F+00




Example 2: A specific efficiency run:

CARD 1: i, 5, 0, 0, 0, 0, 0, O

CARD 2: -2, 3, 4, 105, -106, -1

CARD(s) 4: DATA

The output of this run is shown on the following pages for the first 3 firms

in the sample. The calculated technical efficiency indices relative to variable

1 (an output) are:

Actual Frontier Index
Value Value (-Actual/Frontier)

2,236 - 2,236 1.000
3,743 -11,824 0.317

4,009 - 4,903 0.818

CONTROL PARAMETERS
NUMBER NF RFPLICATIONS = 1
NUMBER NF CONSTRAINT VARIABLES = 5
NUMBER NF FQUALITY CONSTRAINTS = 0
MAXIMUM NUMBRER OF INPUT VARIABLES FOR LEAST=COST ALGORITHM = 0

VARTABLFE INDEX LTSTaee -2 3 4 105 =106 -
THIS IS NGT AN ISUQUANT RUN

THIS IS NOT A LEAST=-INPUT=CcOST RUN
VARIABLE MEANS ARE NOT TO pE READ FOR EACH REPLICATION
NUMBER OF OBSERVATIONS= 5C

VARTABLE MEANSe.. '
11308 278.2 ®4327.3




LISTING OF DATA MATRIX

1002 =2236.0 =140.0
1052 =3743,0 =2490.0
1057 =4009.0 =1068.0
1089 =2518.0 =113.0
1090 =5202.0 *937.0
1101 " =3039.0 =1699.0
1107 =1716.0 1660
1345 =2063.0 =273.0
1353 =2262.0 =130.0
1360 =4920.0 =3830.0
1365 =4207.0 =~970.0
1378 =7324.0 =244740
1380 =2676.0 =5984+0
1480 =~4024.0 =317.0
1489 =3637.0 =883.0
1546 =2176.0 =536+0
1552 =1530.0 =1456+0
1561 *1985.0 =1521.0
1572 =4895.0 =314.0
1573 =1831.0 =290+0
1574 =5382.0 =546640
1590 =2278.0 =256+0
15996 =2963.0 =700
16C1 =4192.0 =589,.0
1616 =4598.0 =228540
1620 =40489.0 =730.0
1674 =7692.0 =134¢0
1759 =72744.0 =2378+0
1808 =1855.0 =769¢0
1812 =1998.0 =1722+0
1815 =2080.0 =1903¢0
1816 =2115.0 =1952.0
1860 =7483.0 =6264+0
1915 =3903.0 =38n.0
1926 =3878.0 =317+0
1927 =4901.0 =304840
1949 =3444,0 =1159.0
1950 =6986.0 44100
1963 -8267.0 =717+0
1976 ~5056.0 486040
1977 “5258.0 =7684¢0
2002 =8737.0 “1067+0
2006 =~3572.0 =239+0
2008 =6380.0 =624.0
2015 =8479.0 =294940
2017 ~4453.0 64540
2020 =6669.0 =1067.0
2024 “4641.0 “463¢0
2031 =8824.0 =147440
2184 =3043.0 00
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TTERATIQONS= 19

SOLUTION VALUE=

PRIMAL VARTABLES

«100000F+01

DUAL VARIABLES

0.
=.120377E+02
0.
=e?230797F400
=+853991F+00

1 1002

TTERATIONS: 12
SOLUTION VALUE=

PRTIMAL VARIABLES
10 «120168F+01
29 «318721F+01

NUAL VARIABLES
0.

=«211153F+02
O
0
=+108036F+00

? 1052

YTTERATIONS= 19
SOLUTION VALUE=

PRIMAL VARIABLES
10 2 898269F 400
?29 +132155F+01

DUAL VARIABLES
0
".211153F+02

0¢
*¢108036F+00

3 1057

-,223600F+0G4

DUAL SLACK
0.

PRIMAL SLACK

0.
0.
0.
Oe
0.

=.118245E+05

bual sLACK
0
O

PRIMAL SLACK
o456581E+404
O
«740000E+02
+93660TE+0Q6
0

0.317

=, 490296£+04

DUaAL sLACK
Qe
Qe

PRIMAL SLACK
+185764E404
Q.
0.
«100014E+06
Qe

0.818

COST SENSITIVITY

=¢982017E+03

615227F+03

RESOURCE SENSITIVITY

(VI *
=.185750E+03
0.
~.968817E+04
=«100000E+21

«100000E+21
c.
«100000E+21
0.
0.

CoST SENSITIVITY

=1119184F+08
‘olOOOOOE*?l

«116718F+02
«580863F+02

RESOURCE SENSITIVITY

=, 456581E+04
=¢362376g+03
=,740000E+02
=e936607E+06
=, 106716E+05

+100000E+21
+100000E+21
«100000E+21
+100000E+21
+132568E+05

COST SENSITIVITY

~.119184F+04
~+100000E+21

«116718E+402
«580863F+02

RESOURCE SENSITIVITY

=o185764E+04
'ola7436ﬁ§03
0

=,100014E+06
= 4424891E+04

+100000F+21
+100000E+21
+100000E+21
«100000E+21
+549682E+04
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Example 3: A production surface run:

CARD 1: 1, 5,1, 0, 0, 0, 0, O
CARD 2: -2, 3, 4, 105, -106, -1
CARD(s) 4: DATA

CARD 6: 2, 200.0, 300.0, 400.0

The output of this run is shown on the following pages. The resulting portion

of the frontier production surface is illustrated below.

(an output) = 1,131
(an input) = 15.9
(a scale factor) = 14.1

8,000

X

(an output) 6,000 (a qualitative factor)
b}

= 2.7

4,000

2,000

X3

(an input)

CONTROL PARAMETERS
NUMBER NF REPLICATIONS = 1
NUMBER NF CONSTRAINT VARIABLES = 5
NUMBFR OF FQUALITY CONSTRAINTS = 0
MAXIMUM NUMRER OF INPUT VARIARLES FOR LEAST=COST ALGORITHM =0

VARIABRLE INDEX LISTeas -2 3 4 105 =106 -1
THIS IS AN ISOQUANT RUN

THIS TS NOT A LEAST-INPUT=COST RUN

VARIABLE MEANS ARE NOT TO BE RFAD FOR EACH REPLICATION

NUMBER OF OBSERVATIONS= 50

VARTABLE MEANSe..
=1130+8 27842 =0327.43
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The listing of the data matrix for this example is exactly the same as the

listing for the previous run.

1SN=RUN VARTABLE INDTCATOR AND VALUES

2
TTERATINNS= 18

200 300.

SOLUTION VALUES =, 434511E+04

PRIMAL VARTARLFS

0326766F+00
2 187570F+01

DUAL VARTABLES
0.
=e217255€+02
0
0o
) =.111159E€+00
TTERATIONS= 17

DUAL SLACK

0o
0.

PRIMAL SLACK

W 125622F+01
0

+158538E+02

+3382482€+405
0.

SOLUTION VALUES  =.651766E+04

PRIMAL VARTABLES

10 «890149F+00
29 +221354(+01

PUAL VARIABLES
0,
=.,217255F+02
0
0o
; =.111159F+00
TTERATIONS= 18

DUAL SLACK
Qe
0o

PRIMAL SLACK

v2448971E404
0.

+158538E+02

+501363F+05
0.

SOLUTION VALUE= =.869021F+04

PRIMAL VARIABLES

«653532F+00
e295139F+01

NUAL VARIABLES
0,
=+s217255F+02
Qe
O
=,111159€+00

DUAL SLACK
(/D)
O

PRIMAL SLACK

»364320E+04
0o

01585386402

«668484E+05
0

COST SENSITIVITY

'111918QE*OQ

=.100000E+21

«120126FE+02
+594890F+02

RESOURCE SENSITIVITY

-,125622E+404
-,105956E+03
=,158538F+02
=,334242E+05
=, 4809223E+04

+100000E+21
+100000E+21
«100000F+21
«100000E+21
+350357€+04

COST SFNSITIVITY

=-,119184F+04
=+100000E+21

«120126E402
«598890E+02

RESOURCE SENSITIVITY

“o2449T1E+08
=,205256E+03
=, 158538E+02
-.501363F+05
=,720335E+04

.100000E+21
«100000FE+21
«100000E+21
+100000E+21
«525536F+04

cOST SENSITIVITY

'111918QE+OA
=.100000E+21

+120126E+402
«594890E+02

RESOURGE SENSITIVITY

~,364320F+04
=,305256E+03
«e158538E+02
-, 668484E+05
-, 960446E+04

.100000E+21
+«100000E+21
+100000E+21
+100000E+21
«700715E+04




Example 4: A production surface run with variable means:

CARD 1: 2, 5,1, 0,0, 0,1, 0
CARD 2: -2, 3, 4, 105, -106, -1
CARD(s) 4: DATA

first CARD 5: -1130.8, 278.2, 15.9, 14.1, -2.0

replication CARD 6: 2, 200.0, 300.0, 400.0

CARD 5: -1130.8, 278.2, 15.9, 14.1, -4.0
second )

replication CARD 6: - 2, 200.0, 300.0, 400.0

The data listing for this run is exactly the same as the listing for example
2. The output of this run is shown on the following pages. The resulting portions
of the frontier production surface are illustrated below.

10,000 ' X, = 2.0
X2 (an output) = 1,131 quality factor)
X4 (an input) = 15.9

X5 (scale) = 14.1

8,000 =4.0

%

(an output) 6,000

4,000

2,000

|
300

)

(an input)

CONTROL PARAMETERS
NUMBER 0OF REPLICATIONS = 2
NUMBER OF CONSTRAINT VARIABLES = 5
NUMBER 0OF EQUALITY CONSTRAINTS = 0 .
MAXIMUM NUMRER OF INPyUT VARIABLES FOR LEAST=COST ALGORITHM =0

VARTARLE INDEX LTST... -2 3 4 105 =106 =t
THIS 1S AN ISOQUANT RUN

THIS IS NOT A LEAST=INPUT=cQST RUN
VARIABLE MEANS ARE T0 BE READ FUR EACH REPLICATION
NUMBER OF OBSERVATIONS= 50

'VARTABLE MEANS... .
11308 278,42 *8327.3




VARTARLF MEANS FNR THIS REPLICATION
=1130.,8 27842 15,9

ISO=RUN VARTABLE INPDICATOR AND VALUES
2 200. 300,
TTERATIONS= 16 .

SOLUTION VALUE= -, 473456F+04

PRIMAL VARIABLFS DUAL SLACK
29 +255232F+01 0.

DUAL VARTABLES PRIMAL SLACK
0. o£31936E+03
=e236728F+0? Qe
Oe +159000E+02
0 «500588FE+05
"e121122F+00 O
TTERATIONS= 14

SOLUTION VALUE= =,710184E+04
PRIMAL VARIABLES DUAL SLACK
29 +382848F+01 Oe

DUAL VARIABLES PRIMAL SLACK
0 «181330F+04
“,236728F+(? Qo
Ol +159000F+02
0 +750882E+05
0 =.745058E=08
TTERATIONS= 15

SOLUTION VALUE= =.946912E+04

PRIMAL VARIABLES DUAL SLACK
29 +510465F+01 (R

DUAL VARIABLES PRIMAL SLACK
0. «279467E+04
=oa236728F+02 O
0o ¢+159000E+02
O +100118E+06
O - +186265FE=06

COST SENSITIVITY
*=+100000E+2! «6387948F+02

RESOURCE SENSITIVITY
=,831936E+03 «100000E+21
=e847731E+02 +100000E+21
=+159000€+02 «100000E+21
=+500588E+05 «100000F+21
=+762259E+04 0.

€nST SENSITIVITY
*+100000E+21 +853993F4+02

RESOURCE SENSITIVITY
=«.181330p+04
=+ 160000E+02
=¢159000E+02
'.750882[*05

e 745058E=08

+100000F+21
+100000E+21
«100000E+21
+100000E+21
+100000E+21

CNST SENSITIVITY
*+100000E+21 +853993E+02

RESOURCE SENSITIVITY
*=e279467E+04 +100000E+21
=e?228571E+403 +100000E+21
=«¢159000E+02 +100000E+21
=+100118E+06 +100000E+21
=«186265E=06 +«100000F+21




VARTARLE MEANS FNR THIS REPLICATION
“1130.8 278.2 15.9

TSO=RUN VARIABLE INDTCATCR AND VALUES

2 200. 300.
TTERATIONS= 19
SOLUTION VALUE®= =.381129¢+04

PRIMAL VARIABLES DUAL SLACK
10 «TT8653F4+00 0o

NUAL VARIABLES PRIMAL SLACK

0 ' 183767E404
=+190565F+02 O
i +159000E+02
0, +105314E+05
5 =¢975027€=01 0.
TTERATTIONS= 26

SOLUTION VALUE=  =,571694E+04

PRIMAL VARTABLFS nUAL SLACK

«116198F+01 O

NDUAL VARIABLES PRIMAL SLACK
0. +332191F+04
=.190565F+02 [V
0. +159000F+02
0 e 157971E+05
o T =ea975027E"01 O
TTERATINNS= 26
SoLUTTIQN VALUE= -, 762259F+04
PRIMAL VARIARLES buaL SLACK
10 «154931Fr+01 0.

DUAL VARTABLES PRIMAL SLACK
0O s 480614FE+04
~+190565F+02 ("N
0 «159000F+Q2
O e210628E+05
"e975027FE=01 O )

COST SENSITIVITY

“e119184F4+04

«105237€402

RESNURCE SFNSITIVITY

=¢183767E+04
=, 1723813€+03
=+159000E+02
=¢105314F+05
"e252288E+04

«100000E+21

+300000F+21

+100000E+21

«100000E+21
0.

COST SFNSTITIVITY

=,119184E+04

«105237€+0?

RFSOURCE SENSTTIVITY

~.332191E+04
=,223813g+03
~+«159000E+02
=s157971E+05
=e378432E+04

«100000F+21

+100000E+21

«100000E+21

+100000E+21
O,

COST SENSTITIVITY

—.11918&[+0“

«105237F+0?2

RESOURCE SENSITIVITY

'0080614E404
“+323813g+03
=«159000E+02
“0210628F+05
=+504577E+04

«100000F+21
«1000C0E+21
«100000E+21
«100000FE+21
0. :




Example 5: A total economic efficiency run:

CARD 1: i, 4, 0, 0, 0, 1, 0, 6

CARD 2: -1, -2, 105, -106, 3, 4

CARD 3: 20.0, 10.0

CARD(s) 4: DATA

The output of this run is shown on the following pages for the first 3 firms

in the sample. The total economic efficiency indices are:

Actual Frontier Index
Cost Cost (Frontier/Actual)

3,715 3,715 1.000
11,940 3,677 0.308

4,644 3,753 0.808

CONTROL PARAMFTERS
NUMBER 0OF REPLICATIONS = 1
NUMBFR NF CNNSTRAINT VARIABLES = 4
NUMBER NF EQUALITY CUNSTRAINTS = 0
MAXIMUM NUMRER OF INPUT VARIABLES FOR LEAST=COST ALGORITHM = 6

- VARIABLE INDEX LISTeas -1 =2 105 =106 3
THIS 1S NOT AN ISOQUANT RUN

THIS IS A LEAST=INPUT=~COST RUN
VARIARLE MEANS ARE NOT TO BE READ FOR EACH REPLICATION
INPUT PRICES FOR COST ANALYSIS
20.00 10,00
NUMRER OF NOBSERVATIONS= 50

VARTABLE MEANSs.o
»4327.3 =1130.,8 27842




LISTING

OP NI S WN -

0OF DATA

1002
1052
1057
1089
1090
1101
1107
1345
1353
1360
1365
1378
138n
1480
1461
1546
1552
1561
1572
1573
1574
1590
1599
1601
1616
1620
1674
1759
1808
1812
1815
1816
1890
1915
1926
1927
1949
1950
1963
1976
1977
2002
2006
2008
2015
2017
2020
2024
2031
2184

MATRIX

=2236.0
=3743.,0
=4009.0
=2518.,0
=5202.0
'303900
=1716.0
=2063.,0
=2262.,0
=4920.,0

S =4207.0

'73?“00
=267640
“4024.0
=3637.0
=21764.0
=1530+0
=1985.0
=4895.0
=1831.0
=5382.,0
=2278.0
=2963.0
=4192.0
=4598,0
=40489,0
=7692.,0
=7274.0
-1855,0
=1998.,0
“2080.0

“2115.0.

744340
=3903.,0
=3878,0
=4901.0
=344440
=694640
826740
=5056.0
=59258.0
-8737Q0
=3572.0
~6380.0
'8“79-0
445340
=6669.0
=4641,0
=8824,0

=3043.0

=140+0
24900
=1068¢0
=113.0
=937.0
~1690.0
=166e 0
=273¢0
=130,0
-3832,0
=9700
2844740
59840
=3170
“883.0
=536¢0
~145640
~1521.0
=314.0
2900
546640
=256+0
4700
=58940
=2285.0
=730+0
=13440
=2378+0
=76040
=17224¢0
=1903+0
=1952.0
6260
~380.0
=317.0
=304¢0
=1156+0
44100
=7170
=486 0
«76R.0
{0670
=239,0
=~6248+0
=2949.0
=64540
10670
=463.0
=147h0e0

Ne0

N
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3715.0
11940.0
4684,0
2230.0
5934,0
3640.0
226540
2495,9
2200.0
5163.6
5765.0
93R0.0
3675.0
5120.0
5112.0
2000.,0
2260.0
2325.0
6210,0
2010.0
14816,0
2192.0
3994,8
5640.0
6400.,0
5890.0
10391.0
12037.8
1567.2
2280.0
2300.0
2420.0
10127.0
4554,5
4506.0
6320.0
3780.0
10757.0
10030.0
5660.0
7554,7
9820.0
516040
8090.0
9729.0
5710.0
T6R6,2
51613.0
9700.0
4004.0




TTERATTIONS= 6
SOLUTIQN VALUE= .371500F+04

PRIMAL VARIABLES DUAL SLACK COST SENSITIVITY
«100000F+01 0, =.964082£+03 +100000E+21

DUAL VARIABLES i PRIMAL SLACK RESOURCE SENSITIVITY
=s166185F+01 0. =,100000E+21 0.
0. ) OQ 0. +100000E+21
».584911F+00 0 . *,100000E+21 0.
=,182437F+01 0. =.100000E+21 0.

1 1002

TTERATIONS= 9
SOLUTION VALUE= «367731E+04

PRIMAL VARIABLES DuUaL sLACK COST SENSITIVITY
10 «356080F+00 O = 722502E+02 .209446E+0a‘
29 «750044F+00 (VY =e672824E403 «100188E+03
31 «288343F+00 0 =e601341FE+03 «819S11E+02

DUAL VARIABLES PRIMAL SLACK RESOURCE SENSITIVITY
“.633102E+00 0. =,572205£403 e 796629E+403
=.525145€+00 0. “ 673237403 ¢330179€+03
0. v 286848E406 ",28648448F+06 «100000E+21
".704540F~02 O s 171690E+04 +365159F+04

? 1052 3.247

TTERATIONS=: 7
SOLUTION VALUE= +375293E+04

PRIMAL VARIABLES DUAL sLACK CaST SENSITIVITY
10 +363403F+00 0, «s100693E+04 0212791FE+03
29 «119734F+01 0. *,313440F+04 +820369F+02

NUAL VARIABLES PRIMAL SLACK RESOURCE SENSITIVITY
“,936127E+00 0, =,100000E+21 «21%814E404
0 : «124531E+04 =.124531E404 «100000E+21
0o «765550E+05 s 765550E+05 +100000E+21
=.108036E+00 0. “e420749E+408 «338701E+04

3 1057 1.237




Example 6: A cost surface run:

CARD 1: 1, 4,1, 0, 0, 1, 0, 6
CARD 2: -1, -2, 105, -106, 3, 4,
CARD 3: 20.0, 10.0

CARD(s) 4: DATA

CARD 6: 1, -2000.0, -4000.0, -6000.0

The output of this run is shown on the following pages. The data listing for
this run is identical to the listing for example 5. The resulting portion of the

frontier cost surface is illustrated below.

X2 (an output) = 1,131
| X5 (scale) = 14.1
X6 (a quality factor) = 2.7

1 ]
4,000 6,000

X

(an output)

CONTROL PARAMETERS
NUMBER 0OF REPLICATIONS = |
NUMBER NF CNNSTRAINT VARIABLES = 4
NUMBER NF EQUALITY CONSTRAINTS = 0
MAXIMUM NUMRER OF INPUT VARIABLES FOR LEAST=COST ALGORITHM =6

VARTABLF INDEX LISTe.s «l =2 105 =106 3
THIS Is AN ISOQUANT RUN 4

THIS Is A LEAST=TINPUT=COST RUN
VARTABLE MEANS ARE NOT TO RE RFAD FOR EACH REPLICATION
INPUT PRICES FOR COST ANALYSIS
20,00 10.00
NUMBER OF OBSERVATIONS= 50

VARIABLE MEANSe..
=4327.3 *1130.8




TSN=RUN VARTABLE INDICATOR AND VALUES

1 =2000. =4000,
TTERATINNS= 11

SOLUTION VALUES= «185662F+04

PRIMAL VARTIARLFES DUAL SLACK

«133037F+00 0
«657227F+00 O
«607231F=01 0.

DUAl VARIARIES PRIMAL SLAGK
»,531945F+00 (U
=.524185F+00 0.

0o +132644F+05
'0703252F-O? O
TTERATIONS= 13

SNLUTTION VALUE= «364220E+04

PRIMAL VARIABLFS DUAL SLACK
10 «260983F+00 0.
29 e 186413FE+01 LS

NUAL VARIARLES PRIMAL SLACK
1 =,910550F+00 aq,
2 0 ' +995244F+03
3 0e e280172F+095
4 ~«105085F+00 0
TTERATIONS= 10
SALUTION VALUE= «546330F+04

PRTMAL VARIABLES NUAL SLACK
10 «391475F+00 O
29 «219620F+01 (VI

PRIMAL SLACK

DUAL VARIABRLES
=.910550F+00 0,
0 «205825€+04
0 «420258E+05
=,105085F+00 0

CNST SENSITIVITY

=¢722502E+02 «198539€+04
=s663057E+03 «100188F+03
=.584911E+03 «419511F+02

RESNURCE SENSITIVITY
=e127484E+03 «689584F+03
=s595043FE+03 «6T7T7T57T8E+02
“e132644E+05 «100000E+21
*¢362232F+03 «136678F+04

COST SENSITIVITY
=«100693E+04 «205789F+03
= 248762€E+04 2 802694F+02

RESQURCE SFENSITIVITY
~,100000E+21 «187252E+04
=.995244F+03 «100000E+21
=«2R80172g+05 «100000E+21
=.528954F+04 «250076F+04

COST SENSITIVITY 7
'.100693E+04 0205789E+03
=.288762E+04 «802694F+02

RESOURCE SENSITIVITY
=,100000F+21 «387252F+04
=.205825g+04 «100000E+21
=.420258E+05 «100000E+21
'.793a31[+00 0375114F+Oa




The Computer Program

The computer program for this algorithm is listed on the follow-
ing pages. The program is written in F@PRTRAN and it should be
compatible with most computer systems. The author has run the program

on a Burroughs 6700, an IB!M 360/165, and a CDC 6400. A card deck for

the program along with the sample data and control cards for the six

illustrative examples are available upon request from the author.




COMMON V(512200)2K(400)»1C200)5JC€200)sTSC200),F1(50),
TFCA00)»PYMsZLsMsMIoM2oNsNL SN2, LH) INP2IX?2sNOSNSs
20721 S»TTCoMNST»NLoKAMES INVT
NTHENSTION TNDFX(20),VMEANC20),IDENT(200),VST(21,200),
LVONE(10)»VMST(20)5C0ST(20)
RFAN(S»10) NRFPsNVAR, ISOs IEFsNEQsTCSToTUMs ION
FORMAT(BIS) »
KVAR=NVAR+1
RFADC5220) (INDEX(II)»11=1,20)
20 FORMAT(2014)
1ICX = ICN = KVAR + 1
TFCICST,EQ,.1) READ(S,30) (COST(CII),I1=1,ICY¥)
30 FORMAT(BF1042)
WRTITF(6540) NRFPsNVARSNEQ2»ICN,
TCINDFXCTII)»IT=1sKVAR)
40 FNRMAT({H1,'CONTROL PARAMETERS',/,10X, *NUMRFR OF 1,
1 REPLICATINNS ='5148,/510x2» *"NUMBER OF CNNSTRAINT 1,
P2'WARTARLES =',145/510Xs"NUMBER 0OF FQUALTITY ¢,
JUCNNSTRAINTS ='514,/410X, "MAXTMUM NUMBFR OF INPUT VARIABLFS
4'FOR LEAST=-CNST ALGORITHM =1,14,/,/,1%X, ' VARTABLE ¢,
SYINDFYX LISTese's5%X22015s/)

IFCISO0.EQ.D)
TFCISO.FQ,1)
TFCICST,EQ,0)
TFCICST.EQ.1)
TFCIVM.EQLD)
TFCIVM,ER,.1)

WRITF(6550)
WRITE(K260)
WRITE(C6970)
WRITE(G6280)
WRITE(6290)
WRITECA»100)

50 FORMAT(1X, ' THIS IS NNT AN TSOQUANT RUN',/)

60 FORMAT(IX,'THIS IS AN ISPQUANT RUN',/)

70 FORMAT(1X»'THIS IS NOT A LEAST=INPUT=COST RUN'»/)

80 FORMAT(1X»'THIS IS A LEAST=INPUT=COST RUN's/)

90 FORMAT(1X,'VARIABLFE MEANS ARF NOT TQ RE RFAD FOR FACH v,

1'RFPLICATIDNN, /)
100 FORMAT(1X»'VARTARLE MEANS ARE TO BRE READ FOR FAGCH REPLICATION',/Y)
TFCICSTLFAa1) WRITE(G»110) (COSTCTII)»1T=15TCX)
110 FORMAT(1X,INPUT PRICES FOR COST ANALYSTS',/,

15X210F10e25/95X»10F10.22/)

DN 120 II=s1,21

no 120 Jd=1,200

V(ITI»JJd)=0.0

nn 130 11=1,20

VMFAN(CII)=0.0

IFCIFF.EA41) KVAR = KVAR = 1

NN=0

TFCICSTLEQ.1) KVAR=ICN

NN=NN+1

RFAD (S»140) TINENT(AN)s CVSTC(ITsNN)»IT=1+6)
FNRMAT (T1604%Xs2F1040s/210X22F10425/560X%X2F10.697/530X2F10,05/)
IF(IDFNT(NN).GT;990978) a0 T0 150

no 160 Il=1,KVAR

KK=TABSCINNEX(TI))

TF(KK«GTo100) KK=KK=100

SGN=1,0

TFCINNDEXCTIT) ol Te0) SgN==1.40
VITTIsNN)ISSON*VST(KK,yN)
VMFANCIT)zUMFANCII)+V(IILNN)

CANTINUE -

G0 TN 170

KNT=NN=1

WRTITF(Hs18n) KNT




180 FORMAT(1X, 'NUMRER NF ORBSFRVATINNS=',T14,/)
nn 190 TI=1,KVAR
190 VMEANCIT)=UMEANCIT)/FLOATCKNT)
WRITF(6,200) (YMEANCTII)»TI=1,KVAR)
200 FORMAT(1X»s'VARTABLFE MEANSeee's/55Xs10F10.10 /s
15X»10F10e15/)
IFCIFFCFEQ,1) KVAR = KVAR + 1
TFCICSTL,EQ,1) KVAR=NVAR#
MaKVAR
TFCICST.EQ.0) GO TN 210
nn 220 II-I:KNT
HOLD=0.0
KK=0
nn 230 JJ=XVAR,ICN
KK=KK+1
HOLD = HOLN + (COST(KK)Y*V(JJsIT))
VEKVAR» TI)=HOLD
CANTINUE
N=KNT+1
M2=NE®
N?2=0
NL =0
KAME=0
INP=0
INVT=0
NST=0
71 =100E'8
WRITF(65240)
FORMATCIHLI» "LISTING OF NATA MATRIX's/5/)
NN 250 TI=1,KNT
TFCIFF.FQ,1 )V(MIII):"I.O
WRITFC65260) TTLIDFENTLITICVCYUrTIdsJJ=12KVAR)
FARMZTCIXs 135 1822Xs10F10.12/514Xs10F10415/)
CANTINUE
nn 270 IlzisM
Do 270 Jd=1,»N
VSTCIT»JJ)=V(IT,Jd)
nn 280 11=1,KVAR
YMST(11)=999.,9
DN 290 NR={sNRFP
KNTA;KNT
TFCIS0,FQ,0) GO TO 3000 %Z**CHANGED FROM 300 TN 300N0
KNTA=3
TIFCIVMeFQe1) RFAD(S5»310) (VMST(CII)»II=15,KVAR)
310 FORMAT(10FR.0)
TFCIVMGFQ,1) WRITEC(6,315) (VMST(TII)»II=1,KVAR)
315 FNORMAT(1HO, wARIABLE MEANS FOR THIS REPLICATINN,/,10(5X%,10F10,1,/
: $))
RFAD(S5»320) IFRST;(VDNE(II’pII 1.3)
320 FORMAT(I5,5X53F10.0)
WRITF(6,330) IFRST, (VONL(II),II 1,3
330 FNRMAT(1HO,'TSN"RUN yARIABIE INDICATOR AND VALUES's/»
110X51555X»10F10.02/)
nn 340 1I=1sKVAR
TFCVMSTCIT)eNF 99949 VMFANCIT)I=VMST(TI)
CONTINUE
DN 350 NA=1,KNTA %%+ CHANGED FROM 300 To 3000
IFCISO.FQ.0) GN TO 360
VHOLND=VMEAM(CIFRST)
VMEANCIFRST)=vONE(NA)Y




360 DO 370 TI=1,M
D0 370 JJ=1sN

370 VCIT»JJI=VST(TIT,Jdd)
DN 380 II=1,NVAR
VCITISN)=VSTC(ITI,NA)
TFCISOsEQa1) VCII»N)SVMEANCII)
KK=IABSCINDEX(II))
IF(KK.LT+100) GO TO 380
VeIIsNI=0,0
no 390 JJ=1,KNT
XAzVSTCII, JJ)wVST(KVAR,JY)
XR=VMEANCIT)*VST(KVAR»JJ)
IFCIS0.EQ.0) xB= VST(II:NA)*VST(KVAR)JJ)
SGN=1,0
IFCINDEXCIT)oLTa0) SGN==140
VCIT,JJ)=SGN#CABS(XA)=ABS(XB))
CONTINUE
CONTINUE
V(KVAR»>N)=0.0
CALL LINEAR
IFCISO.FQe1) YMEANCIFRST)I=VHOLD
IFCISO.EQ.1) g0 TO 350
FFF=999,0
VL=VMIN)
IFCVL.NE«0.0) EFF=ABSCVST(KVARsNA))/ABSCVL)
WRITE(65400) NA»IDENTC(NAYSEFF
FORMAT(/22%X52110,F15,35/5/)
CONTINUE
CONTINUE
STOP
FND

SURRQOUTINE LINFAR

COMMON V(212200)5K¢400)»70200)5JC200)57S5(¢200), F1(20)p
1FCA00)sPYMsZL oMo MIsM2oNs NI N2 LHS IDP2»IX25NOs NS
20 TsLSsITC,NSI,NLoKAME, INYT

CONTROL PRNGRAM AND INDEX SELECTION

4 CALL READIN
6Gn Tn 13
EXEGUTE PIVOT TRANSFORMATION
8 ITC=T1TC+1
TFCARSCVC(LT2LS))eGT42ZL)GO TO 9
801 v(LT»LS)Y)=0.0

NN=NO+1

Gn T0 13

CALL TRANS

INTERMEDTATE TABLEAU PRINT OUT
IFCIDPEQ,1)CALL PRINT

INDEX SELFCTION

TAKE CARE OF zL WIPEQUT
TFCNO.LT+2)G0 TO 12
KC=NO=(2*(NO/2))

L1=K(NO=KC)

LPo=K(NO=1+KC)
IFCVCL1,L2)eFQa04INDOaNO=Y

IF (NO.GT.?) GO TO 47

IF (NO.EQ.?) G0 TO 27

N0 IS ONE




NA = 2

INXi=N1+1

TNX2= M =

1 21 IR=IX1,1NnX2

TF (V(IRsN)Y«LTaNe) 51 T 24
T (VCEIR»NIGFQOL0,) G T 21
TF (TRLEL HY N TO 21

12 (TCIRYE ,M2Y GO T 24
CANTINGE

K(?2) = M

59 1n 27

K{?) = IR

NDOTS Twd

IR = K(?)

TNX1 M1 4+ 1

TnX2 N o= 1

HST=n

N 39 [c=T17X1,TNX2

TF (VTR IC)eGT«0e) 30 TN 34
IF (VCIRsIFILFR.04) 30 Tn 39
TF (TRFQ,M) 6N TO 44

IF (V(TR»NYWGF WD) 67 TN 36
an TN 44

IF (ITRFQ.v) 60 10 33

TF (VCIRPNIWGTL0L) G 10 44
TF (ICelEaiH) 6t TN 139

TF (JCICY AT N?) 60 19 39
TFCARS(U{TR»TCY)eLFe3STIAU TO 39
RET=ARS(VITHRSIC))

K(3)=71C

CANTINUE

TFC(RSTAGT OGN TO 43

FINAL PRINT anv

TF (K(2)Y«NF oMY GO Ti) 472

6N In 43

FANRMAT (0 TNCONSISTENT CNNSTRAINTS'/(2076))
WRTITFE (6241) TCTIR)»CICITYSTIT=1o1L10)

ThP=n

CALL PRINT

RETURN

NO = 3

NN AT i.FAST THRFE

KG = N o= 2 « (NO 7/ 2))
TF (KCLFQR,n) gn 10 121
NA nne

SFT SCANKING SFGUENCH
TnYt N1 + 1

T2 MO = g

TnX3 Mo

T (T0DX2.6T40) GO TG 569
NS = IOX3 = NI

nn 57 TR=1,NS

I5CIR) = IR + NI

6n In 69

NS = 0

nn A7 IR=INX1,T0X3

NN 64 TC=1,10%X2,2
ITNXCNt = K<IC)

TF (VCTIR»INXCNI YeNFa)e) a0l TO A7
CONTINMIF




NS = NS + 1

IS(NS) = IR

CONTINUE

NETERMINE TRANSFORMATION

LS = K(NO)

1.1 = K(NO=1{)

12 = K(NO=2)

IF (L1.NE.M) GO TO 77
FXTREM31.,0F20

TF (V(L121.S).LEeO04) A0 TN 78
FXTREM = =FXTREM

GO TN 78

FXTREM = V(L1,1.2) /7 v(L1,LS)
1T =11 :

NN 109IR=1,NS

INXR = ISCIR)

IF (V(IDXR,LS).EQ.04) GO TO 109
RATIN = V(IDXR»1.2) 7/ VCINXR,LS)H
NDECISION NFT

IF (RATIO.LT.0.) GN TO 105
IF (RATIO0.6T,0,) GO TO 102
IF (1L SeLEJLH) 6O TO 87

IF (JCLS),LE,N?2) GO TO 90
IF (TDXReLFsLH) GO T 94

TF CICIDXR)eGT.M2) GN TO 94
SFT TRANSFNRMATION

LT = IDXR

Gn Tn 117

TFST FOR DFGENFRACY

NO = NO +

K(NO) = IDYR

Gn T0 13

TFST FOR EXTREME

RATIN PQOSITIVE

IF (FXTREMJ,LE.O0.,) GO TO

IF (EXTREMJLE.RATIN) GO

G0 TN 107

RATIN NFGATIVE

IF (FXTREML,GE.N.) GU TO

TF (RATIOLLELEXTREM) GO

LT = IDXR

EXTREM = RATIN

COMTINUE

UNROUNNED TARLFAU PRINT nUT
IF (LT.NE.M) GO TO 115
60 TO 112

FORMAT('O0EXTREME UNBOUNDFD'I4)
WRITF (65111) J(LS)

6N TO 43

TF (LTeNE.L1) GO TO 117

NnD = NO = 1

NA = NO = 1

6N Tn 8

NO EVEN

SFT SCANNING SFQUENCE

1InXt M1 + 1

10X2 NO = 4

X3 N = 1

IF CIDX2.6T.0) GO TU 129




NS = IDX3 = M1

NO 127 1C=1sNS

TSCIC) = 1C + Mi

6o TN 139

nn 137 1C=TDX1,1DX3

DO 134 IR=2,1DX2s2

IDXR = KCIR)

IF CVCINDXR,IC).NE«Q.) GO TN 137
CONTINUE

NS = NS + 1

TS(NS) = 1IC

CONTINUE

DETERMINE TRANSFORMATION

LT 3 K(ND)

111 = K(NO=1)

L2 = K(ND=?)

FXTRFM = V(L2,L1) /7 V(LT»LY)
1S = L1t

nO 171 IC=1,NS

InXcAL = 1SCIC)

TF (VLT INXCOL)«ER40.) g0 TO 171
RATID = V(1.2,INnXCOL) /7 VeLT,1DpXCOL)
NECISION NFT

NS = 0

TF (RATIO,ILT.0.) GN TO 1647

IF (RATTULATL0.) G0N TO 144

TF (IDXCOL.LF.LH) GO TU 156
TF ¢(JcIDXcnLy,6T,N2) GO 10 156
SFT TRANSFNRMATION

1s = IbxcoL

6o TO 174

TEST FOR DFGENERACY

IF (VCLT»INXCOlI )eGFe0s) 60 TO 171
NO = NO +

K(NOY = Inxent

60 TOD 13

TFST FAR EXTREME

RATIP POSTTVE

IF (FXTREMJ.LF.0.) GO TO

IF (EXTREM.LE.RATIN) GO

G0 TO 169

RATIO NEGATIVF

IF (EXTREM.GE.N.) GO TO

TF (RATIOLIELEXTREM) GO

1S = INDXCOI

FXTREM = RATTO

CONTINUE

IF C(LSeNE.11) 60 TN {74

NP = N =1

NO=SNA=1

6o Tn 8

FND

SURROUTINE TRANS
COMMON V(215,200)5KC400)51€200)2JC200),15C200),F1(20),
1FCA00)sPYMsZ s MsMIsM2oNsN1sN2sLHs IDP»TIX25NNs NS>
21 TsLSsITC,NSTI,NL,KAME,INYT
¢ THIS TRANSFURMATInN SURRNUTINE MODIFIEN TQ 7ZERD NFAR=7ERQ FLEMENTS




FIRST STAGF

71=71 %01

NIVEVLT»LS)

Vel Te18Y=1,0

MS=0

np o9 1C=1,w

VI T TC)=VCLT»TCY/N D™
TECARSCVCLT»TIC))GT o2 TOGP
vt T,1C)Y=0,

ot TN 9

LS=NS+1

TSINSI=IC

CONTINUE

no 15 JR={,M

TP (TRFOGTY a0 T8 15
x=VITR,LS)

IF (¥.EQeC.) 6N TH 18
“'(IR.‘S):O. .

np 14 IP=f,nNS

IC=1S¢IrP)
CNETRATE)=VCTR,TC)=X*y(LT,IC)
TFCARSCYCTIRTCId Wl F oY1V CIR,TICY=0,
CoMTTINUE

CONTINUF

TF (1T EatHY GO TP 18

T (LSl P HY an TP 20

o In g0 ’

TE (LS. Fat Yy o T0 ®3

G TN 2R

ROW TINTFRCHANGF

| TEMP = 1(18)

1¢1SYy = T(1i 1)

Tt Ty = LTFMP

TE (TCLSY AT MDY GIF T

CALL INCHC (1LSsM141,1)

M1 o= M1 o+

RFETURN

COLUMN TMIFHCHANGE

| TEME (1 8)

JLS)Y vl Ty

JLT) LTfmp

TF CJCLTY AT N2Y G T

CALL INCERCL T, N1+151)

NI = NYV#I

RETURN

AND ROW AND GO LiMN

CALL TNCHR(L Tol H+1 00

CALL TNCHOCLS, B+l

TF (TCLH+1Y AT M2) GO Tir &7
CALL INCHC C(LE + 1, Ml ¢ 1,1)
Mt = M1 + 1

IF (UCLH+1YGGTWN?2) 6o TO 20
CALL INCHR (I H + 1oNt + 12 1)
MYo= NY O+

TH = LH + 1

RFTURN

RELETE ROw AND COLYMW

CALL TNCHR(LT,I Hs1

CALL TNCHOILS,LEs1)

fii = | H = ¢




RFTURN
END

SURROUTINE INCHRCLRIsLR2,LR3)
coMMAN V(21,200)5KC400),70(200)5J(200),75(200),F1(2n0),
1EC800),PYM,ZL ,MoM1 , M2, N, N1, N2,LH,IDP,IX2,N0O,NS»
2LToLSsITCHNSISNLoKAMES INYT

Dn 7 1C=1,N

TFMP = V(LR1,»1IC)

VC(LR1»IC) = V(LR2,1IC)
VCLR?2,IC) = TEMP

IF (LR3.GT.0) GO 70O 11

LTEMP = T(LR1)

TCLR1)Y = I(LR?2)

TCLR?2) = LTEMP

¢n To 12

LTFMP = J(LR1)

JCLR1)Y = JCLR?)

JCLR2) = LTEMP

no 13 IR=2,NN,?

TF (LR2.,EQ.KCIR)) GO TO 15
CONTINUE .

GO TN 16

K(IR) = LRt

RETURN

FND

SURROUTINE INCHC(LC1,LC2,LC3)
coMMaN V(215,200)2KC400)57(200)5JC200)515€(200),F1C20)s

1FCU400),PYM,ZL , M,y M1 M2, Ny NL ,N2,LH,IDP,IX2,NN,NS,
2L TsLSsITCoNSTLNLsKAMES INYT
no 7 TR=1,M

TFMP = V(IPRsLC1)

VCIR»LC1) = V(IRsLC2)
VCIR,LC2) = TFMP

TF (1¢c3.G67,0) 6O TO 11
LTEMP = J(1C1)

J(LC1) = JeLe2)

JOLC2) = LTEMP

G0 TO 12

LTEMP = T¢i1C1)

TCLC1Y = TCLC?)

TC(LC2) = LTEMP

DO 13 IC=1,NN,2

TF (LC2.,EQ.K(CIC)) GO TO 15
CONTINIUE

G0 TN 16

KcIC) =LC3

RETURN

FND

SUBROUTINE READIN
COMMON v(215200)sKC400)57(200)»J(200),15C200),F1(20),
1FCA00)sPYMyZL sMsMLIsM2oNsNLISN2sLHs IDPsIX2,NOsNS>»




21 Tol S»UTCoMSTsNL s KAME » INVT
Z1=1,00= 8

TF(KAVME oFR.0.) GO Tn 19

nn 1a IR=1.M

VCIRsN#1)=1,0

no 15 TC=1.N

VIM+1,1C)==1,0

TRANSLATE TO FOSITIVE PAYUFF
PYM=0,0

nn 16 IR=1,»M

nn 16 IC=1,N

IFC(VCIR,IC) «GFe PYM) GO 1D 16
PYM=V(IR,IC) ’
_CONTINUE '

1F(PYM LGE. 0.0) GO TO 18

no 17 IR=1,M

no 17 IC=1»N

VCIRSIC)=VC(IR,TC) =PYM

M=M4+y

N=N+1

V(MsN) =0,

IFCINYT «Foe 0) GO Tn 33
TRANSPOSE TO nUAL

| TEMP=M

M = N

N = | TEMP

| TFMP = MD

M2 = N2

N? = LTFMP

IF (M.GF«N) GO TO 22

TPX1=N

6nh TN 23

IDX1=M

nn 27 IR=1,1nX1

no 27 IC=IR,I1DX1
TFMP==V(IR,1C)
VCTIRsICY==V(T1C,sIR)

V(ICs IRI=STFMP

nn 29 IC=1,N

VM, TC) = =V(M,]C)

nn 31 I[R=1,M

VCIRsN) = =V(IRsN)

COMPI FTE STEP SETUP

LH= 0

M1
N1
NS
LT
1S )

17C=0

1s (1) =0

NN 34 IR=1,M

T¢CIR)=IR

nn 36 IC=1,N

Jeicy=Ic

Nn=1

K(1)=N

INTTTAL TARLFAUL PRINT OUT
TFCINP +EQ. 1) CALL PRINTY
RETURN

wononouou




SURRNUTINF PRINT
COMMON V(215200)sKC400)T(200)»J(200),515C200),F1(20),
1FC800YsPYMsZLsMsML o M2sNsN s N2, H, INP»TIX2sNNoNS»
20 T>LS» ITCHNSTHNLsKAMES INVT
NIMENSTION yT¢300),SL¢300)sRL(300),RUC300)
DATA AEQsATQsAFVSANVsRHSsWW/2HEGC,2HIC,2HFVs2HNV»2HRSs 2HRR/
IFCINPL.FR,0)GD TO 36
TARLEAU PRINT nUT
IFCITC.FQ,0)GD TO 10
FORMAT(7H PIvaT(I3,1Hs»13,1H))
WRITEC6,4)1.TsL S
FORMATCr0! //v ITERATION=',14)
WRITF(65,9)TTC
FORMAT(21H EQUATIONS IN kERNEL=13)
WRITF(6,11IM1
FORMAT(?26H FREE VARIABLES IN KERNEL=I13)
WRITF(A» 13Nt .
FORMAT(25H CURRENT CANTROL SEQUEMCE)
WRTTF(6,15)
FORMATC7H K(NN)Y=28T4/(1H 3014))
WRITFEC6,17)(K(TIR)»TR=15ND)
FORMAT(21H CUPRFNT KERNE) STZF=13)
WRTTFCAs 19ILH
FORMAT(21H BASTC TABI EAU V(M,N))
WRTITF(6,21)
no 22 Jc=1,N
TF (JCLELLHIIS(JCI=T(JC)
TFCJCLGTLHITISCJCI=J(JC)
TFCCICeLELLHY ANDSCJCSLE.M1)IVT(UCI=AER
TECCJCILELI HIGAND o (o GT MIDIVT(JCI=ATR
IFCCUCeGT oL H) ANDS(JCJC) JLELN2IIVTCJCI=AFV
TFCCJCGTLHY ANDLCJCJC) ,GT N2))IVT(JCHI=ANV
VT(N)=RHS
FORMAT (R(T13,A2))
WRTITECA,28)CTSCICI»VT(ICY2»TC=1sN)
FARMAT(1H »I354258F1%.6/(6H »8E15.,A))
nn 28 IR=1,M
TFCIRGLFeLHIISCIRI=JCIR)
TFCIRGGTSLHIISCIRI=I(IR)
IFCCIROLEGILHYANDo CIRWLE(NIDIIVTCIR)I=AFY
TFCCIRLLE LH) AND,,CIR,GT N1)IVTCTIR)I=ANV
TECCIReGToLHYANDOCI(IR)LF4M2)IVTCIR)=AFQ
TFCCTReGToI HY AND CI(IR) L GToM2)IVUT(IRI=ATO
IF(IROEQOM)VT(TR)=WN
28 WRITF (6,26 ISCTR)sVT(IRI,(V(TIR,ICI,IC=1,N)
RETURN
FINAL PRINT OUT
35 FORMAT(' ITERATIONS=',T4)
3A TF(RAME.GE.1)GN TO 118
WRITF(6,35) ITC
40 FORMATC1EHASOI UTION VALUF=F15,6)
VI ==V (M,N)
WRITEC6,88) VL
47 FORMATC1HOsSX»16HPRIMAL VARIABLES»7Xs10HDUAL SLACK»12X»16HCOST SFN
1STTIVITY)
WRITF(G6s47)




SFT PRINT VECTORS
NF=N=1

no 58 JC=1,NF

JEM=JCC) -
TFCJC.GTeLHIGO TO 56
VTCJEMI=V(JC,N)
SLCJLMY=0,0

G0 TO 58

SLCJIMYI=V (M, JC)
VTCJLMI=0,0

CONTINUF

M3=M141

nn 76 J1=1,NF

LIM=JCde)

TFCJ1.GTeLHIGN TO 74
RGU=1,0F20 ‘

RGL==1.0E20

N 70 J2= M3,NF
TFCV(J15J2)4EQ.04)G0 TO 70
RATIO= VIM,J2)/V(J1,.42)
TFCRATTINGLT«0.360 TO 68
TFCRATINGGFRGUIGO Tn 70
RGU=RATIO

Gn Tn 70
IF(RATINGLF.RGLIGO T 70
RGIL=RATIOD

CONTINUE

RLCLLMI=RG

RUCLLM)=RGI!

Gn TN 76

RLCLILM)==V(MyJ1)
RUCLLM)=1,0E20

CONTINUE

FORMATCIH T3sF17¢69E20665E18465E18.6)
Nn 79 JC=1,NF
IFCVT(JC) . FQ,0.,0) GO TO 79
WRITF (6,77 CJCsVTCJCYI»SLCJCISRLCJCHI»RUCIC))

79 CONTINUE
SET DUAL PRINT VECTORS
81 FORMAT(1HOSXs14HDUAL VARTARLES»7X»12HPRIMAL SLACK»10X»20HRESOURCE

1SFNSTTIVITY)

WRITF(6,81)

MF=M=1

N0 92 IC=1,MF

MLM=T(IC)

TFCIC.GTWLHIGD TO 90
VTCMLMY==y (M, IC)
SLCMEM)=0,0

6o Tn 92

SLCMLMISVCTIC,N)
VT(MIM)=0,0

CANTINUE

M3 = N1 + 1

nn 112 I1=1sMF

NIM=TCT1)

TFCI1.GYoLH)GO TO 110
RGU=1,0E20

RGL==1.0E20

N0 106 12=N3,MF
IFCV(TI2,11).FR.0.,)60 TO 106




RATIN==y(I2,NY/V(I1?2,71)
TF(KATINGLT0,YG0 T 104
ITF(RATIQ«GFRGINIGE T 166
RAUZRATIO

an TN 106

TFCRATTINSLF «RGLIGO Tr
RGL=RATTIO

CAMTINUE

RL (NI M)I=RGI

RUCNI M)=RgU

an TN 112
RLONILMY==V(T1,N)
RUCNLMI=1,0E20

CONTTINUE

N 1148 IC=1r,MF

WRTTFC6s 77 (T VTCTCY»SLOLEYSRLCTC)sRICTED)
RETURN

GAME THEOQRY nuTpuyr
FORMAT(12HOGAMF VALULE=F1584F)
GV=( 1e0/yeVMyN))+FYM
WRTTF(H»117)GV

MFzM=

nn 122 IC=1,MF
VIC(IC)Y=0.0

TFCLEFEQe0YGN T 127

ne 128 TC=tsl H

ML M=TCIC)

VIIMI M)I=V (VY1) 7V (M)
FOPMAT(1IHGROW PLAYER)
WRTTF(6s12F)
FORPNAT(TI3sF11,.6)
WRTITFCOs122)CCTC»VTCTIC)»TC=1MF))
MF=h=1

DN 132 JC=1,MF

VTI(JC)=0.0

TFCLRLFQL0YGH T 137

ne 135 JC=1,L M

dEMEG0de)

VICJI M)=V(GC,MY/VIMeN)
FORMAT(1A4ECCN] 1IMN FLAYER)
WRTTF(6,13A)
WRTTFCOH,128)CC 0 VTLUCYIY, 0= ,0ME)
RETLFRM

FND
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