

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from **AgEcon Search** may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

378.794 G43455 M-36 Suppl.

DIVISION OF AGRICULTURAL SCIENCES
AGRICULTURAL EXPERIMENT STATION
UNIVERSITY OF CALIFORNIA

WAITE MEMORIAL BOOK COLLECTION
AGRIC. AND APPLIED ECONOMICS

Statistical Supplement to:

Production Functions and Supply Applications for California Dairy Farms

by IRVING HOCH

GIANNINI FOUNDATION OF AGRICULTURAL ECONOMICS

July 1976

378.794 643455 M-36 Suppl.

STATISTICAL SUPPLEMENT TO:

PRODUCTION FUNCTIONS AND SUPPLY APPLICATIONS FOR CALIFORNIA DAIRY FARMS

This Statistical Supplement contains additional information extending the results presented in Giannini Foundation Monograph Number 36 (University of California, Berkeley). For economy of effort and presentation, the Monograph presents only limited information on standard errors and t ratios for estimated equations. This Supplement remedies that limitation by presenting those statistics as well as information on sample size and number of independent variables appearing in each equation. In addition, it presents more detail on a number of coefficient estimates; in particular, results obtained prior to introduction of firm effects are presented here for the various production equations employed.

The Supplement is organized in three sections: Section 1 presents additional information on Equations 1 through 6; Section 2 extends the results for Equation 7; and Section 3 extends results for the feed regressions used in estimating some of the feed quantities.

Because the information here should be of considerable interest primarily to the production specialist and econometrician, it is being presented as a Supplement rather than an appendix to the Monograph.

TABLE OF CONTENTS

		Page
Section 1:	Equations 1 Through 6 · · · · · · · · · · · · · · · · · ·	2
Section 2:	Equation 7 · · · · · · · · · · · · · · · · · ·	14
Section 3:	Feed Regressions · · · · · · · · · · · · · · · · · · ·	18
	LIST OF TABLES	
Supplement Table		
1	Number of Dummy Variables for Equations 1 Through 6 by Region and Sample	. 3
2	Detailed Results for Equation 1 by Region and Sample · · · ·	• 4
3	Detailed Results for Equation 2 by Region and Sample	5
4	Detailed Results for Equation 3 by Region and Sample	. 6
5	Detailed Results for Equation 4 by Region and Sample	. 7
6	Elasticity Estimates for Equation 5 by Region and Sample	. 8
7	Standard Errors for Equation 5 by Region and Sample	. 9
8	t Ratios for Equation 5 by Region and Sample	• 10
9	Estimates for Equation 6 by Region and Sample	- 11
10	Standard Errors for Equation 6 by Region and Sample	• 12
11	t Ratios for Equation 6 by Region and Sample	• 13
12	Some Detailed Results for Equation 7, All Samples	• 15
13	Estimated Elasticity Components for San Joaquin Valley (Northern Market) Expanding Firm Cases	• 16
14	Estimated Elasticity Components for San Joaquin Valley (Southern Market) Expanding Firm Cases	. 17
15	Feed Regressed on Cows Milking and Cows Dry Only (Initial Step) by Region and Sample	• 19
16	Feed Regressed on Extended Set of Independent Variables—Coefficients (Final Step) by Region and Sample	• 20
17	Feed Regressed on Extended Set of Independent Variables —— Standard Errors and t Ratios (Final Step) by Region and Sample • •	. 22

Section 1: Equations 1 Through 6

This section extends the presentation of results in the Monograph and its Appendices by exhibiting standard errors and t ratios for each of Equations 1 through 6 for both Case 1 (before firm effects introduced) and Case 2 (after firm effects introduced). Supplement Table 1 shows, by sample, the number of dummy variables for each set of dummies employed and then uses the information to indicate the maximum number of dummies that may appear for each sample. The maximum number of independent variables is then obtained by adding to this value the number of factors of production for a given equation. By equation, the number of factors was:

Equation	<u>Factor</u>
1	2
2	2
3	1
4	3
5	5
6	5

The following Supplement Tables extend the results for Equation 1 shown in Tables 7 and 8 of the Monograph; those for Equation 2 in Table 18; those for Equation 3 in Table 27; and those for Equation 4 in Table 29. Selected results for Equation 5 appear in the Monograph as Tables 31 and 32, while the full set of coefficients is presented as Appendix Table B.1. The latter table is reproduced here, followed by corresponding values of standard errors and t ratios for the individual samples. Similarly, selected results for Equation 6 appear in the Monograph as Table 34, while Appendix Table B.6 presents individual coefficient estimates by sample. That table is reproduced here, followed by corresponding standard errors and t ratios.

For all of the equations, information is also given on R², number of independent variables, and sample size (number of observations).

	<u> </u>	Numb	er of dummy vari	ables			
				Dairy Herd Improvement Association			pendent riables
Region lpha and sample	Firms Years	Breeds	(DHIA) and months	Total	Excluding firms	Including firms	
Sacramento Valley							
Market	64	6	4	13	87	20	83
Manufacturing	20	6	4	13	43	20	39
Left survey	21	6	3	13	43	19	39
Northern and Sierra Mountains	29	6	4	13	52	20	48
San Joaquin Valley			,				
Northern Market	46	6	4	13	69	20	65
Southern Market	, 51	6	4	13	74	20	70
Manufacturing	20	6	3	13	42	19	38
North Coast	29	3	4	13	49	17	45
Bay Area							
Northern	67	5	4	13	89	19	85
Southern	41	5	4	13	63	19	59
Southern California							_
Central	63	5	3 3	13	84	18	80
Peripheral	23	5	3	13	44	18	40

aCounties covered by specific samples were:

Sacramento Valley: Market, Manufacturing, and Left survey -- Butte, Colusa, Glenn, Placer, Sacramento, Shasta, Solano, Sutter, Tehama, Yolo, and Yuba.

Northern and Sierra Mountains: Lassen, Nevada, Plumas, and Siskiyou.

San Joaquin Valley: Northern Market--Madera, Merced, San Joaquin, and Stanislaus. Southern Market--Fresno, Kern, Kings, and Tulare. Manufacturing--entire region.

North Coast: Del Norte, Humboldt, and Mendocino.

Bay Area: Northern--Marin, Napa, and Sonoma. Southern--Alameda, Contra Costa, Monterey, Santa Clara, and Santa Cruz.

Southern California: Central--Los Angeles, Orange, Riverside, San Bernardino, and San Diego. Peripheral--Imperial, San Luis Obispo, Santa Barbara, and Ventura.

 $b_{
m Dummy}$ variable for DHIA plus 12 months.

 $^{^{\}mathcal{C}}$ One dummy from each set must be excluded to avoid exact collinearity.

 $\mbox{SUPPLEMENT TABLE 2}$ Detailed Results for Equation 1 by Region and Sample

		cicity	1	ndard cors					
	est	imates	of es	stimate	t ra	tios			
	Feed	All other	Feed	All other	Feed	All other		Number of inde-	
	cost	inputs	cost	inputs	cost	inputs		pendent	Sample
Region lpha and sample	z ₁	Z ₂	^Z ₁	Z ₂	Z ₁	Z ₂	R ²	variables	size
		1 2	<u> </u>		firm eff	-	Į.		
		T		Belole	IIIIII EII	ects int	roduced		
Sacramento Valley									
Market	.816	.220	.023	.027	35.46	8.20	.893	22	1,330
Manufacturing	.813	.270	.046	.050	17.75	5.36	.840	22	404
Left survey	.379	.632	.057	.060	6.60	10.46	.926	21	318
Name la constant									
Northern and	.809	.256	.034	044	22.70	F 00	072	20	500
Sierra Mountains	1.009	.236	.034	.044	23.79	5.82	.873	22	529
San Joaquin Valley									
Northern Market	.838	.160	.019	.020	44.63	7.91	.955	22	1,446
Southern Market	.884	.132	.020	.023	43.93	5.75	.975	22	1,232
Manufacturing	.766	.278	.033	.042	23.30	6.70	.956	21	496
North Coast	.888	.055	.046	.052	19.29	1.06	.867	19	381
Bay Area									
Northern	.661	.409	.020	.024	33.53	16.97	.939	21	1 200
Southern	.734	.325	.020	.024	l .	1		i I	1,388
Bouthern	1.734	.323	.029	.029	25.11	11.36	.954	21	836
Southern California									
Central	.752	.263	.020	.021	37.28	12.23	.969	20	898
Peripheral	.684	.391	.047	.048	14.47	8.19	.942	20	341
		<u> </u>							
		1		After	firm eff	ects int	roduced		
Sacramento Valley									
Market	.330	.477	.026	.041	18.28	8.07	.953	85,	1,330
Manufacturing	942	.292	.070	.117	13.39	2.50	.879	40 ^b	404
Left survey	.259	.506	.062	.087	4.19	5.81	.950	41	318
37 .1 .				1					
Northern and Sierra Mountains	505	100	010	0.55	10.01	1	007	[
Sierra mountains	.595	.125	.048	.065	12.31	1.93	.921	50	529
San Joaquin Valley					,				
Northern Market	.709	.181	.027	.031	26.49	5.86	.969	67	1,446
Southern Market	.736	.175	.027	.035	27.07	5.04	.984	72 _b	1,232
Manufacturing	.673	.412	.050	.072	13.46	5.69	.971	39 ^D	496
North Coast	.510	.392	.072	.120	7.04	3.26	.917	47	381
Bay Area									
Northern	.545	.367	.031	.060	17.35	6.17	.958	87.	1,388
Southern	.576	.322	.040	.056	14.48	5.76	.974	87 60 ^b	836
Southern California									
Central	.484	.214	.031	.038	15.67	5.65	.981	81 ^b 41	898
	1 • 707		• • • •		10.01	J. UJ	• >OI	U 1 1	090

 $[^]a\mathrm{For}$ geographic coverage, see Supplement Table 1, supra , p. 3.

 $^{^{}b}_{\mbox{\footnotesize{Besides}}}$ base dummy, one additional firm dummy is eliminated because of collinearity.

	Ī			dard					
		icity mates		ors timate	. +	itios			
	Feed	All	Feed	All	Feed	A11		Number	
	in _b	other inputs	$_{\mathtt{IDN}^{b}}^{\mathtt{in}}$	other inputs	${ t in}_b$	other inputs	2	of inde- pendent	Sample
Region lpha and sample	Х ₁	ż ₂	Х ₁	z ₂	Х ₁	z ₂	R ²	variables	size
	1				firm eff	ects int	roduced		
Sacramento Valley									
Market	.806	.268	.024	.027	33.842	9.984	.888	22	1,330
Manufacturing	.840	.293	.048	.050	17.662	5.910	.839	22	404
Left survey	.449	.593	.060	.062	7.483	9.565	.895	21	318
Northern and									
Sierra Mountains	.802	.280	.035	.045	23.175	6.173	.879	22	529
San Joaquin Valley									
Northern Market	.875	.155	.019	.020	45.197	7.739	.956	22	1,446
Southern Market	.893	.151	.021	.024	41.725	6.377	.973	22	1,232
Manufacturing	.824	.272	.036	.042	23.061	6.431	.955	21	496
North Coast	.895	.098	.041	.045	21.692	2.169	.882	19	381
Bay Area									
Northern	.722	.389	.021	.024	34.294	16.107	.940	21	1,388
Southern	.699	.390	.031	.029	22.588	13.510	.949	21	836
Southern California									
Central	.753	.264	.021	.022	36.529	12.080	.968	20	898
Peripheral	.646	.432	.049	.049	13.290	8.863	.938	20	341
		· · · · · · · · · · · · · · · · · · ·	·	After	firm effe	cts intr	oducedc		
Sacramento Valley		ł							
Market	.499	.341	.026	.040	19.073	8.502	.953	85 40 ^d	1,330
Manufacturing	.980	.226	.072	.118	13.710	1.922	.881		404
Left survey	.334	.400	.069	.086	4.841	4.651	.954	41	318
Northern and									
Sierra Mountains	.651	.113	.048	.063	13.427	1.810	.924	50	529
San Joaquin Valley									
Northern Market	.736	.186	.028	.031	26.179	6.024	.969	67	1,44
Southern Market	.729	.214	.029	.035	25.492	6.072	.983	72 39 ^d	1,23
Manufacturing	.625	.455	.051	.074	12.358	6.179	.970	39"	490
North Coast	.565	.398	.074	.118	7.633	3.382	.919	47	38:
Bay Area									
Northern	. 597	.271	.033	.068	17.955	4.006	.959	87 ,	1,38
Southern	.598	.296	.041	.057	14.424		.974	87 60 ^d	83
Southern California									
Central	.476	.220	.031	.038	15.514	5.799	.981	81 ^d 41	898
Peripheral	.439	.120	.057	.079	7.711	1.523	.969	41 ^a	34:

 $[^]a$ For geographic coverage, see Supplement Table 1, supra, p. 3.

bTotal digestive nutrients.

^CThis table corresponds to Table 18 in *Production Functions and Supply Applications for California Dairy Farms*, University of California, Giannini Foundation Monograph No. 36 (Berkeley, 1976), p. 51.

 d_{Besides} base dummy, one additional firm dummy is eliminated because of collinearity.

Region b and samp 1 e	Elasticity estimates for all inputs combined,	Standard errors of estimate	t ratios	R ²	Number of independent variables	Sample size
	- Ú	Be	fore firm eff	ects introduc	ll ed	
Sacramento Valley			0.5.441	222		1 220
Market Manufacturing	1.077 1.122	0.011 0.028	95.661 40.448	.889 .830	21 21	1,330 404
Left survey	1.009	0.022	46.075	.925	20	318
Northern and						
Sierra Mountains	1.132	0.024	48.090	.867	21	529
San Joaquin Valley						
Northern Market	1.016	0.007	155.650	.950	21	1,446
Southern Market	1.057	0.006	178.167	.971	21	1,232
Manufacturing	1.081	0.013	84.816	.955	20	496
North Coast	1.003	0.027	37.155	.850	18	381
Bay Area						
Northern	1.093	0.008	135.980	.940	20	1,388
Southern	1.059	0.011	95.528	.953	20	836
Southern California					,	
Central	1.026	0.006	158.064	.967	19	898
Peripheral	1.078	0.026	41.445	.883	19	341
		Α	fter firm eff	ects introdu	ced	
Sacramento Valley						
Market	0.844	0.034	25.026	.953	84 39 ^c	1,330
Manufacturing	1.425	0.083	17.165	.875		404
Left survey	0.721	0.078	9.235	.950	40	318
Northern and				010	,	500
Sierra Mountains	0.806	0.059	13.763	.918	49	529
San Joaquin Valley						
Northern Market	0.908	0.027	33.833	.967	66	1,446
Southern Market	0.992	0.025	39.388	.983	71 37 ^d	1,232
Manufacturing	1.115	0.049	22.713	.972	3/	496
North Coast	0.908	0.105	8.676	.917	46	381
Bay Area			•			
Northern	1.022	0.045	22.619	.959	86 59	1,388
Southern	0.926	0.046	20.224	.975	59	836
Southern California						
Central	0.728	0.033	21.908	.981	80°	898
Peripheral	0.513	0.068	7.524	.938	40 ^c	341

aThis table is an extension of Table 27 in *Production Functions and Supply Applications for California Dairy Farms*, University of California, Giannini Foundation Monograph No. 36 (Berkeley, 1976), p. 74.

 $[^]b{\rm For}$ geographic coverage, see Supplement Table 1, supra, p. 3.

 $^{^{}c}\mathrm{One}$ firm dummy eliminated because of collinearity, reducing number of independents by one.

 $d_{\mbox{\scriptsize Two}}$ firm dummies eliminated because of collinearity.

Region, b sample, and input	Elasticity estimates	Standard errors of estimate	t ratios	R ²	Number of independent variables	Sample size
		I	Before firm eff	ects introduced		!
San Joaquin Valley						
Southern Market						
Roughage and pasture Concentrates All other inputs	.563 .297 .155	.017 .010 .023	$ \begin{pmatrix} 33.76 \\ 30.49 \\ 6.62 \end{pmatrix} $.974	23	1,232
Southern California			·			
Central			*			
Roughage and pasture Concentrates All other inputs	.456 .375 .190	.015 .013 .021	29.90 29.06 9.13	.966	21	898
			After firm effe	cts introduced		
<u>San Joaquin Valley</u>			MICCI IIIm CIIC	2.002.00000		
Southern Market						
Roughage and pasture Concentrates All other inputs	.427 .256 .211	.021 .013 .035	$ \begin{array}{c} 20.05 \\ 20.23 \\ 6.13 \end{array} $.984	73	1,232
Southern California						
Central						
Roughage and pasture Concentrates All other inputs	.283 .239 .116	.022 .021 .035	13.09 11.49 3.31	.981	82 [°]	898

^aThis table is an extension of Table 29 in *Production Functions and Supply Applications for California Dairy Farms*, Giannini Foundation Monograph No. 36 (Berkeley, 1976), p. 78.

^bFor geographic coverage, see Supplement Table 1, supra, p. 3.

 $^{^{\}mathcal{C}}$ Besides base dummy, one additional firm dummy is eliminated because of collinearity.

 $\mbox{SUPPLEMENT TABLE 6}$ Elasticity Estimates for Equation 5 by Region and Sample

		Elasticit	y estimates	for input			
		Cow		Operat-	Capital	Sum	
a	Feed $_b$ in TDN b	service	Labor	ing	service	of	
Region lpha and	in TDN	flow	cost	cost	flow	elas-	R^2
sample	x ₁	x ₂	x ₃	x ₄	х ₅	ticities	R ⁻
			Before fi	rm effects i	ntroduced		
Sacramento Valley							
Market	.783	.015	.249	.094	109	1.032	.896
Manufacturing	.816	.068	.199	.023	.032	1.138	.837
Left survey	.406	.162	.279	.079	.119	1.045	.930
Northern and Sierra Mountains	.871	075	.160	.067	.046	1.069	.884
Sterra nouncarns	.0/1	.075	•100	•007			
San Joaquin Valley							
Northern Market	.884	005	.094	.049	.009	1.031	.956
Southern Market	.875	.016	.126	.046	024	1.039	.973
Manufacturing	.823	.034	.109	.082	.055	1.103	.954
-							
North Coast	.835	098	.266	.027	024	1.006	.891
Bay Area							
Northern	.726	021	.223	.150	.016	1.094	.942
Southern	.694	047	. 247	.180	012	1.062	. 954
Southern California						,	
Central	.724	.069	.128	.071	.016	1.008	.969
Peripheral	.687	.131	.101	.101	.083	1.103	.938
					<u> </u>	<u> </u>	
			After fil	m effects i	troduced	1	
Sacramento Valley	-					. 1	
Market	.259	.530	.007	.079	.244	1.119	.958
Manufacturing	.885	.161	.042	.045	.072	1.205	.881
Left survey	.202	.479	.099	.052	052	.780	.956
						1	
Northern and Sierra Mountains	.514	.249	.005	.022	.457	1.247	.929
Sierra Modificatins	.514	• 247	.005	****			
San Joaquin Valley				,			
Northern Market	.307	.602	.054	.025	.071	1.059	.971
Southern Market	.757	005	.081	.060	.079	.972	.983
Manufacturing	.475	.325	.223	.059	.265	1.347	.970
North Coast	.756	205	.304	.048	.055	.958	.913
Bay Area			2/2	00.5	1,,,	74.6	
Northern	.506	.248	.068	.035	111	.746	.959 .978
Southern	.298	.567	.083	.012	.249	1.209	.978
Southern California							
Central	.208	.445	.019	.016	.243	.931	.984
	.292	.283	039	.013	.200	.749	.971

 $^{^{\}alpha}\mathrm{For}$ geographic coverage, see Supplement Table 1, $\mathit{supra},$ p. 3.

 $b_{\mbox{\scriptsize Total digestive nutrients.}}$

 $\mbox{SUPPLEMENT TABLE 7} \label{eq:SUPPLEMENT TABLE 7}$ Standard Errors for Equation 5 by Region and Sample

		Standard er					
		Cow		Operat-	Capital	Number	
•	Feed $_b$ in TDN b	service	Labor	ing	service	of inde-	
, L		flow	cost	cost	flow	pendent	Sample
Region and sample	X ₁	x ₂	x ₃	x ₄	x ₅	variables	size
				rm effects i			
Comments Valley							
Sacramento Valley							
Market	.024	.013	.021	.016	.017	25	1,330
Manufacturing	.051	.037	.053	.030	.032	25	404
Left survey	.061	.034	.057	.033	.039	24	318
Northern and Sierra Mountains	.036	.022	.029	.022	.024	25	529
San Joaquin Valley							
	000	0.50	017	07.1	07.0	25	1 446
Northern Market	.021	.013	.017	.014	.013	25	1,446
Southern Market	.022	.012	.022	.013	.011	25	1,232
Manufacturing	.036	.024	.036	.021	.029	24	496
North Coast	.043	.030	.046	.027	.028	22	381
Bay Area							,
	.	0.5.6	007	0	65.4	0,	1 200
Northern Southern	.023 .031	.016	.025 .030	.015 .019	.014	24 24	1,388 836
Southern California		.010					
	000		000		010	22	000
Central	.023	.012	.020	.011	.010	23	898
Peripheral	.049	.033	.044	.030	.027	23	341
}			After fi	rm effects i	ntroduced		
Q							
Sacramento Valley							
Market	.034	.046	.028	.013	.062	88	1,330
Manufacturing	.133	.169	.106	.031	.098	88 43 ^c	404
Left survey	.069	.098	.064	.038	.099	44	318
Dejt survey	.003	.070	.004	.030	.0,,	, , ,	310
Northern and							
Sierra Mountains	.069	.076	.038	.024	.154	53	529
San Joaquin Valley							
Northern Market	.051	.060	.020	.014	.036	70	1,446
		1 0		.014	.025		1,232
Southern Market	.043	.047	.025	.025	.104	75 42 ^c	496
Manufacturing	.074	.094	.003	.025	1 .104	42	430
North Coast	.062	.055	.070	.038	.048	50	381
Bay Area							
Northern	.047	.072	.044	.021	.102	90	1,388
Southern	.049	.061	.036	.019	.104	90 63 ^c	836
Southern California							
Central	.039	.046	.030	.012	.061	84° 44°	898
Peripheral	.077	.097	.054	.029	.108	44 ^c	341
- 01 pp. 102 av		1	1	1	1		1

 $[^]a\mathrm{For}$ geographic coverage, see Supplement Table 1, supra , p. 3.

 $b_{\mbox{\scriptsize Total}}$ digestive nutrients.

 $^{^{\}mathcal{C}}$ Besides base dummy, one additional firm dummy is eliminated because of collinearity.

SUPPLEMENT TABLE 8

t Ratios for Equation 5 by Region and Sample

			s for coefficie	nts of						
	Feed in \mathtt{TDN}^b	Cow service flow	Labor cost	Operating cost	Capital service flow					
Region lpha and sample	x ₁	X ₂	X ₃	X ₄	X ₅					
			irm effects int							
Sacramento Valley										
Market	32.245	1.104	11.829	5,873	-6.561					
Manufacturing	15.920	1.809	3.759	0.758	0.997					
Left survey	6.649	4.815	4.883	2.384	3.054					
Northern and Sierra Mountains	24.322	- 3.410	5.461	3.034	1.935					
San Joaquin Valley										
Northern Market	42.356	- 0.343	5.414	3.583	0.642					
Southern Market	39.275	1.325	5.799	3.644	-2.120					
Manufacturing	22.728	1.427	3.024	3.937	1.886					
North Coast	19.522	- 3.290	5.813	0.988	-0.851					
Bay Area										
Northern	31.888	- 1.286	8.982	9.732	1.134					
Southern	22.752	- 2.658	8.328	9.530	-0.684					
Southern California										
Central	31.865	5.633	6.328	6.451	1.511					
Peripheral	14.029	4.032	2.286	3.334	3.035					
	After firm effects introduced									
Sacramento Valley										
Market	7.583	11.545	0.245	6.001	3.905					
Manufacturing	6.644	0.950	0.397	1.457	0.734					
Left survey	2.954	4.890	1.557	1.402	-0.530					
Northern and	7 (0)	2 27/	0 120	0.022	2.060					
Sierra Mountains	7.491	3.274	0.139	0.923	2.968					
San Joaquin Valley										
Northern Market	5.972	10.098	2.646	1.773	1.952					
Southern Market	17.540	- 0.100	3.217	4.404	3.144					
Manufacturing	6.404	3.468	3.510	2.415	2.553					
North Coast	12.124	- 3.712	4.318	1.237	1.151					
Bay Area										
Northern	10.804	3.455	1.541	1.678	-1.082					
Southern	6.067	9.337	2.282	0.641	2.395					
Southern California										
Central	5.407	9.738	0.634	1.324	3.987					
Peripheral	3.785	2.929	-0.725	0.445	1.847					

 $[\]alpha_{\mbox{For geographic coverage, see Supplement Table 1, $\it supra$, p. 3.}$

 $^{^{\}it h}{
m Total}$ digestive nutrients.

SUPPLEMENT TABLE 9 ${\tt Estimates} \ \ {\tt for} \ \ {\tt Equation} \ \ {\tt 6} \ \ {\tt by} \ \ {\tt Region} \ \ {\tt and} \ \ {\tt Sample}^a$

	Estimated value							
Region b and sample	С	a ₁	a ₂	a ₃	a ₄	a ₅	R ²	
			Before fir	m effects in	troduced			
Sacramento Valley							006	
Market	0.090*	0.864*	-0.054	0.230*	-0.167*	-0.003 -0.125	.906 .823	
Manufacturing	-0.172*	1.279*	0.274*	0.394	-1.088* -0.366*	-0.123	.940	
Left survey	-0.165*	0.169	0.471*	0.562*	-0.300^	-0.200	. 540	
Northern and								
Sierra Mountains	-0.074*	0.826*	0.184*	-0.260	0.412*	0.008	.908	
San Joaquin Valley								
Northern Market	-0.055	0.498*	0.431*	0.072*	0.048*	-0.047*	.968	
Southern Market	-0.163*	1.216*	0.158*	-0.058*	0.037	c	.973	
Manufacturing	-0.110*	1.294*	-0.076	-0.201*		0.130*	.976	
North Coast	-0.197*	1.007*	0.216*	-0.938*	1.099*	0.144	.879	
Bay Area								
Northern	-0.078	0.994*	0.155*		0.032	-0.003	.948	
Southern	-0.046	1.072*	0.131*	0.127	-0.097	-0.027	.965	
Southern California								
Central	-0.070	0.573*	0.298*	-0.064*	0.164*		.967	
Peripheral	-0.070	0.778*	0.174*		0.026*	0.007*	.968	
			After fir	m effects in	troduced			
Sacramento Valley								
Market	-0.183	0.455*	0.170*	0.029	0.087	-0.006	.958	
Manufacturing	-0.091	1.159*	0.064	-0.502	0.201	0.122	.895	
Left survey	0.238	0.343*	0.053	-0.336	0.494*	0.083	.964	
Northern and								
Sierra Mountains	0.047	0.685*	0.163*		-0.007	-0.041*	.944	
San Joaquin Valley								
Northern Market	0.141*	0.727*	0.185*	-0.035*	0.093*	-0.008	.982	
Southern Market	-0.027	0.957*	0.155*		0.047*	-0.015*	.984	
Manufacturing	-0.135*	1.172*	0.171	-0.204*		0.095*	.982	
North Coast	-0.179	0.834*	0.351*	-0.526	0.711*	0.017	.904	
Bay Area								
Northern	0.004	1.022*	0.136	1	-0.051	-0.010	.969	
Southern	-0.256	0.860*	0.333*		0.022	-0.026*	.978	
Southern California								
Central	0.118	0.955*	0.176*	-0.061*		0.007	.982	
Peripheral	0.337	0.587*	0.183	0.081*	-0.117*	-0.027*	.979	

^{α}Equation 6 is of the form Y = c + a_1 X₁ + a_2 Z₂ + a_3 (X₁ Z₂) + a_4 X₁² + a_5 Z₂² + Σ b₁ D₁ where Y is 3.4 percent equivalent milk in thousands of hundredweight; X₁ is feed in thousand pounds of total digestive nutrients; Z₂ is all other input in thousands of dollars; and D₁ is a general dummy variable covering time periods, breeds, Dairy Herd Improvement Association, and firms.

 $[^]b\mathrm{For}$ geographic coverage, see Supplement Table 1, supra , p. 3.

 $^{^{}c}$ Blanks indicate corresponding variable did not enter regression equation.

^{*}Statistically significant at the 5 percent level.

	Sta	ndard erro	rs for cor	responding	coefficie	b nts	Number of inde- pendent	Samp1e
Region ^a and sample	С	^a 1	a ₂	a ₃	a ₄	a ₅	variables	size
				ore firm e				
Sacramento Valley								
Market Manufacturing Left survey	.044 .043 .038	.079 .156 .129	.046 .101 .060	.070 .419 .157	.078 .406 .172	.019 .131 .040	25 25 24	1,330 404 318
Northern and Sierra Mountains	.023	.089	.045	.154	.186	.037	25	529
San Joaquin Valley								
Northern Market Southern Market Manufacturing	.032 .024 .026	.043 .061 .072	.026 .033 .053	.015 .019 .034	.015 .035	.004 c .019	25 25 24	1,446 1,232 496
North Coast	.042	.160	.075	.265	.256	.077	22	381
Bay Area								
Northern Southern	.037	.060 .082	.025 .033	.067	.022 .067	.004 .016	24 24	1,388 836
Southern California								
Central Peripheral	.065	.068 .106	.030 .046	.008	.019	.002	23 23	898 341
			Aft	er firm ef	fects intr	oduced	<u> </u>	
Sacramento Valley								
Market Manufacturing Left survey	.074 .061 .142	.089 .200 .143	.061 .164 .105	.069 .440 .171	.069 .449 .178	.020 .134 .049	88 43 ^{<i>d</i>} 44	1,330 404 318
Northern and Sierra Mountains	.046	.112	.059		.077	.017	53	529
San Joaquin Valley								
Northern Market Southern Market Manufacturing	.061 .088 .048	.060 .076 .115	.040 .047 .091	.014	.014 .019	.005 .006 .021	70 75 42 ^{<i>d</i>}	1,446 1,232 496
North Coast	.113	.223	.165	.293	.282	.099	50	381
Bay Area								
Northern Southern	.101 .132	.108 .092	.084	·	.041 .020	.015 .008	90 63 ^đ	1,388 836
Southern California								
Central Peripheral	.177 .277	.097 .156	.048	.010 .029	.036	.004 .009	84 ^d 44 ^d	898 341

 $[^]a$ For geographic coverage, see Supplement Table 1, supra, p. 3.

 $^{^{}b}$ These are coefficients for the following variables: a_{1} for X_{1} , a_{2} for Z_{2} , a_{3} for X_{1} , Z_{2} , a_{4} for $(X_{1})^{2}$, and a_{5} for $(Z_{2})^{2}$, where X_{1} is feed in total digestive nutrients and Z_{2} is all other inputs in dollars.

 $^{^{}c}$ Blanks indicate corresponding variable did not enter regression equation.

 $d_{\mbox{One}}$ firm dummy excluded because of collinearity in addition to base firm dummy.

SUPPLEMENT TABLE 11 t Ratios for Equation 6 by Region and Sample

Region ^a and sample Sacramento Valley	c	^a l Bef	a ₂	a ₃	a ₄	^a 5
Sacramento Valley		Bef	EdmEE.			
Sacramento Valley			ore lirm ell	ects introduc	ced	
Sacramento Valley	ı					
Market	2.037	10.893	-1.174	3.307	-2.145	-0.135
Manufacturing	3.965	8.189	2.716	0.942	-2.681	-0.950
Left survey	-4.295	1.304	7.817	3.585	-2.122	-5.050
Northern and Sierra Mountains	-3.293	9.314	4.081	-1.686	2.211	0.22
San Joaquin Valley						
Northern Market	-1.699	12.083	4.679	-2.430	6.860	-1.75
Southern Market	-6.895	20.021	4.806	-3.086	1.065	C
Manufacturing	-4.213	17.955	-1.432	-5.886		6.80
North Coast	-4.721	6.312	2.881	-3.546	4.286	1.88
Bay Area						
Northern	-2.132	16.463	6.140		1.466	-0,63
Southern	-1.460	13.078	3.955	1.886	-1.465	-1.66
Southern California						
Central	-1.080	8.391	9.887	-7.713	8.681	
Peripheral	-0.490	7.371	3.805		-3.097	4.55
		Aft	er firm effe	cts introduc	ed	
Ţ						
Sacramento Valley						
Market	-1.659	5.104	2.776	0.419	1.256	-0.31
Manufacturing	-1.481	5.790	0.392	-1.141	0.448	0.91
Left survey	1.672	2.401	0.511	-1.959	2.779	1.70
Northern and Sierra Mountains	1.002	6.141	2.777		-0.090	-2.43
San Joaquin Valley						
Northern Market	2.306	5.972	10.098	2.646	1.773	1.95
Southern Market	-0.300	12.585	3.299		2.451	-2.42
Manufacturing	-2.818	10.154	1.878	-4.199		4.46
North Coast	-1.590	3.744	2.127	-1.794	2.520	0.17
Bay Area						
Northern	0.041	9.448	1.620		-1.234	-0.63
Southern	-1.930	9.355	4.818		1.103	-3.14
Southern California						
Central	0.666	9.878	3.691	-6.013		1.77
Peripheral	1.215	3.760	1.957	2.751	-3.201	-3.15

 $^{^{}a}\mathrm{For}$ geographic coverage, see Supplement Table 1, $\mathit{supra}\text{, p. 3.}$

 $[^]b$ These are coefficients for the following variables: a_1 for X_1 , a_2 for Z_2 , a_3 for X_1 , Z_2 , a_4 for $(X_1)^2$, and a_5 for $(Z_2)^2$, where X_1 is feed in total digestive nutrients and Z_2 is all other inputs in dollars.

 $^{^{}c}$ Blanks indicate corresponding variable did not enter regression equation.

Section 2: Equation 7

Equation 7 introduced slope shifters in the form of firm and time effects which were components of elasticities. In practice, the elasticity for a particular time period and firm, t and f, was written:

$$\alpha_{ift} = \alpha_{i0} + \alpha_{it} + \alpha_{if}$$

where

 α_{i0} = constant component

 α_{it} = slope shifter for year t

and

 α_{if} = slope shifter for firm f

with

i = 1, 2 covering feed and other input.

A total of 11 samples was examined using Equation 7, with 5 samples set up to cover expanding firms and 6 samples set up to cover nonexpanding firms. In the Monograph, results were presented in Tables 37, 38, 39, and 40, with additional detail appearing in Appendix Tables B.8 and B.9.

The case employing elasticity slope shifters plus firm intercept shifters was labeled Case 1, in contrast to Case 3, which employed firm effects as intercept shifters only. Some detailed results for those cases are presented here in Supplement Table 12 which extends the results shown in Table 37 of the Monograph. Supplement Table 12 presents coefficients for both feed and all other input, and R²'s, for Cases 1 and 3, respectively. (Case 2 included only slope shifters, and Case 4 excluded both slope and firm intercept shifters, corresponding to an ordinary regression of outputs on inputs. Those cases were omitted here since the information contained did not seem to justify the effort and space to present them.)

Supplement Tables 13 and 14 of this Supplement extend Table 39 of the Monograph by listing the various components of the elasticities (α_{i0} , α_{it} , and α_{if}); the standard errors; and the t ratios for the San Joaquin Valley expanding firm samples. Supplement Table 13 presents those results for the San Joaquin Valley (Northern Market) sample, and Supplement Table 14 presents them for the San Joaquin Valley (Southern Market) sample. (Corresponding results for the other nine samples can be obtained by writing the author.)

SUPPLEMENT TABLE 12 Some Detailed Results for Equation 7, All Samples $^{\!\alpha}$

			Case 1					Case 3		
		~	shifters in				α	shifters ou		
	Feed	All other	Sum of	Number of inde-			All other	Sum of	Number of inde-	
7.	elasticity	elasticity	elasti-	pendent variables c	R^2	Feed elasticity	input elasticity	elasti- cities	pendent variables	2
Region ^b and sample	(average)	(average)	cities	variables	K	erasticity	elasticity	CILICS	Variables	
San Joaquin Valley										
Northern Market					,					
Expanding Nonexpanding	.607 .214	.235 .500	.842 .714	66 59	.979 .977	.710 .468	.189 .326	.899 .794	32 30	.975 .974
Southern Market										
Expanding Nonexpanding	.785 .798	.201 .107	.986 .905	60 69	.984 .988	.788 .670	.151 .147	.939 .817	30 33	.980 .984
Southern California										.974
Expanding Stable Contracting	.276 .188 .298	.190 .075 .286	.466 .263 .585	49 65 40	.978 .981 .986	.331 .291 .220	.234 .069 .206	.565 .360 .426	28 33 27	.974 .976 .982
Bay Area								761	27	.971
Expanding Nonexpanding	.733 .199	.049 .250	.782 .449	52 67	.976 .968	.780 .313	018 .367	.761 .680	27 32	.961
Sacramento Valley										
Market										044
Expanding Nonexpanding	.554 .597	.202 .089	.756 .686	71 63	.958 .969	.499 .389	.286 .296	.785 .685	34 31	.944 .958

^aThis table is an extension of Table 37 in *Production Functions and Supply Applications for California Dairy Farms*, University of California, Giannini Foundation Monograph No. 36 (Berkeley, 1976), p. 91.

 $^{^{}b}\mathrm{For}$ geographic coverage, see Supplement Table 1, supra, p. 3.

 $^{^{\}mathcal{C}}$ Usually a small number of independent variables were deleted because of collinearity.

clasticity component Coefficients Standard errors t ratios Coefficients Standard errors t ratios Constant element, uio 1.008 0.171 5.89 .235 0.307 0.77 Time component, uit 0 0 0 0 0 0.115 1.17 1960 168 0.106 -1.58 .135 0.115 1.17 1961 396 0.118 -3.35 .370 0.125 2.96 1962 269 0.124 -2.18 .240 0.132 1.82 1963 253 0.134 -1.89 .197 0.144 1.37 1964 277 0.131 -2.11 .211 0.147 1.44 Firm component, α _{1f} 0 0	Estimated	ļ	Feed			All other input	S
Constant element, α_{10}		Coefficients		t ratios	Coefficients		t ratios
ponent, u_{11} 1959 0^b a 0^b a 0^b 1960 -1.68 0.106 -1.58 0.135 0.115 0.117 1961 -0.396 0.118 -3.35 0.370 0.125 0.296 0.1962 -0.269 0.124 -2.18 0.240 0.132 0.182 0.182 0.182 0.1963 0.1963 0.1964	Constant						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1959	o^b	c		o^h		·
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1960	168	0.106	-1.58	.135	0.115	1.17
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1961	396	0.118	-3.35	.370	0.125	2.96
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1962	269	0.124	-2.18	.240	0.132	1.82
Firm component, α_{if} 1 0^b 2 407 0.231 -1.76 139 0.360 -0.39 3 240 0.224 -1.07 164 0.378 -0.43 4 .194 0.241 0.81 578 0.365 -1.58 5 139 0.230 -0.60 020 0.133 -0.15 7 0.019 0.293 0.07 1.61 0.524 0.31 8 196 0.261 -0.75 318 0.529 -0.60 9 416 0.227 -1.83 173 0.463 -0.37 10 329 0.266 -1.24 693 0.522 -1.33 11 120 0.254 -0.47 042 0.390 -0.11 12 267 0.251 -1.06 435 0.373 -1.17 13 055 0.213 -0.26 056 0.380 -0.15	1963	253	0.134	-1.89	.197	0.144	1.37
ponent, α_{if} 1 0^b 2 407 0.231 -1.76 139 0.360 -0.39 3 240 0.224 -1.07 164 0.378 -0.43 4 $.194$ 0.241 0.81 578 0.365 -1.58 5 139 0.230 -0.60 220 0.466 -0.47 6 0^d 020 0.133 -0.15 7 0.19 0.293 0.07 .161 0.524 0.31 8 196 0.261 -0.75 318 0.529 -0.60 9 416 0.227 -1.83 173 0.463 -0.37 10 329 0.266 -1.24 693 0.522 -1.33 11 120 0.254 -0.47 042 0.390 -0.11 12 267 0.251 -1.06 435 0.373 -1.17 13 055 0.213 -0.26 056 0.380 -0.15	1964	277	0.131	-2.11	.211	0.147	1.44
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Firm component, $\alpha_{ ext{if}}$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 1	0 ^b			o^b	,	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	407	0.231	-1.76	139	0.360	-0.39
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	240	0.224	-1.07	164	0.378	-0.43
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	.194	0.241	0.81	578	0.365	-1.58
7 .019 0.293 0.07 .161 0.524 0.31 8 196 0.261 -0.75 318 0.529 -0.60 9 416 0.227 -1.83 173 0.463 -0.37 10 329 0.266 -1.24 693 0.522 -1.33 11 120 0.254 -0.47 042 0.390 -0.11 12 267 0.251 -1.06 435 0.373 -1.17 13 055 0.213 -0.26 056 0.380 -0.15	_. 5		0.230	-0.60	220	0.466	-0.47
8 196 0.261 -0.75 318 0.529 -0.60 9 416 0.227 -1.83 173 0.463 -0.37 10 329 0.266 -1.24 693 0.522 -1.33 11 120 0.254 -0.47 042 0.390 -0.11 12 267 0.251 -1.06 435 0.373 -1.17 13 055 0.213 -0.26 056 0.380 -0.15	6	o^d			020	0.133	-0.15
9 416 0.227 -1.83 173 0.463 -0.37 10 329 0.266 -1.24 693 0.522 -1.33 11 120 0.254 -0.47 042 0.390 -0.11 12 267 0.251 -1.06 435 0.373 -1.17 13 055 0.213 -0.26 056 0.380 -0.15	7	.019	0.293	0.07	.161	0.524	0.31
10 329 0.266 -1.24 693 0.522 -1.33 11 120 0.254 -0.47 042 0.390 -0.11 12 267 0.251 -1.06 435 0.373 -1.17 13 055 0.213 -0.26 056 0.380 -0.15	8	196	0.261	-0.75	318	0.529	-0.60
11 120 0.254 -0.47 042 0.390 -0.11 12 267 0.251 -1.06 435 0.373 -1.17 13 055 0.213 -0.26 056 0.380 -0.15	9	416	0.227	-1.83	173	0.463	-0.37
12 267 0.251 -1.06 435 0.373 -1.17 13 055 0.213 -0.26 056 0.380 -0.15	10	329	0.266	-1.24	693	0.522	-1.33
13055 0.213 -0.26056 0.380 -0.15	11	120	0.254	-0.47	042	0.390	-0.11
	12	267	0.251	-1.06	435	0.373	-1.17
14483 0.261 -1.85024 0.486 -0.05	13	055	0.213	-0.26	056	0.380	-0.15
	14	483	0.261	-1.85	024	0.486	-0.05

^aThis table is an extension of the left-hand side of Table 39 in *Production Functions and Supply Applications for California Dairy Farms*, University of California, Giannini Foundation Monograph No. 36 (Berkeley, 1976), p. 94.

 $^{^{}b}\mathrm{Omitted}$ to avoid collinearity, ex ante.

 $^{^{}c}$ Blanks indicate not applicable.

 $[^]d\mathrm{Omitted}$ to avoid collinearity, ex post.

SUPPLEMENT TABLE 14 Estimated Elasticity Components for San Joaquin Valley (Southern Market) Expanding Firm Cases a

Estimated		Feed			All other inputs	3
elasticity component	Coefficients	Standard errors	t ratios	Coefficients	Standard errors	t ratios
Component	OGCITICIENCS	CITOIS	c racios			
Constant element, $\alpha_{ extbf{i}0}$	0.384	0.250	1.54	1.193	0.307	3.88
Time com- ponent, ^α it				,		
1959	o^b	c		o^b		
1960	0.318	0.239	1.33	-0.454	0.314	-1.44
1961	0.485	0.225	2.15	-0.620	0.290	-2.14
1962	0.616	0.209	2.95	-0.795	0.274	-2.90
1963	0.505	0.213	2.37	-0.657	0.275	-2.39
1964	0.437	0.229	1.91	-0.636	0.293	-2.17
Firm com- ponent, α _{if}	o^b			\mathfrak{o}^b		
1 2	o ^d			-0.288	0.316	-0.91
		0.016	0.20		0.275	-0.96
3	-0.083 0.131	0.216 0.213	-0.38 0.61	-0.264 -0.672	0.332	-2.03
5	-0.095	0.195	-0.48	-0.373	0.267	-1.40
6	-0.357	0.250	-1.43	0 ^d	0.207	1.40
7	-0.094	0.273	-0.35	-0.273	0.338	-0.81
8	0.118	0.199	0.59	-0.885	0.328	-2.70
9	0.116	0.199	0.68	-0.673	0.316	-2.13
10	0.406	0.227	1.55	-0.675	0.349	-1.93
11	0.408	0.266	0.00	-0.765	0.366	-2.09
			-0.48	-0.706	0.382	-1.85
12	-0.096	0.199	-0.48	-0.700	0.302	-1.0)
		<u> </u>	.1		l	L

^aThis table is an extension of the right-hand side of Table 39 in *Production Functions and Supply Applications for California Dairy Farms*, University of California, Giannini Foundation Monograph No. 36 (Berkeley, 1976), p. 94.

 $^{^{}b}\mathrm{Omitted}$ to avoid collinearity, ex ante.

 $^{^{}c}\mathrm{Blanks}$ indicate not applicable.

 $^{^{}d}\mathrm{Omitted}$ to avoid collinearity, ex post.

Section 3: Feed Regressions

For a two-stage process for 30-40 percent of the overall sample, feed was estimated from a regression of the remaining feed observations on exogenous and predetermined variables. As an initial step, feed was regressed on cows milking and cows dry. As a final step, feed was regressed on those independents plus 4 season dummies, 3 breed dummies, body weight, value per head, and year dummies, with a maximum of 20 independent variables specified. Coefficients for the initial step appear as Appendix Table A.6 of the Monograph, while selected results for the final step appear as Appendix Table A.7. The following Supplement Tables present coefficients, standard errors, and t ratios for each of the individual samples employed, consisting of 10 samples, including 2 combined cases. Appendix Table A.8 and Table 6 present results for the 10 samples combined into 1 overall sample.

SUPPLEMENT TABLE 15 Feed Regressed on Cows Milking and Cows Dry Only (Initial Step) a by Region and Sample

	Number		1	Coeffi	lcient	Standar			atio
,	of	2		Cows	Cows	Cows	Cows	Cows	Cows
Region b and sample	observations	R ²	Constant	milking	dry	milking	dry	milking	dry
Sacramento Valley									
Sacramento variey									
Market (567	.921	- 27.022	25.516	16.273	0.445	1.740	57.393	9.355
Manufacturing }			57.556	26.480	5.734	1.129	4.834	23.456	1.186
Left survey	142	.920	37.330	20.400	3.734	1.12	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Northern and						0.560	1 000	40.536	6.738
Sierra Mountains	266	.927	103.663	23.065	12.286	0.569	1.823	40.536	0.730
N		·							
San Joaquin Valley									
ban boaqain variey		`						00.040	14.647
Northern market	560	.979	-227.145	25.940	24.630	0.323	1.682 1.618	80.243 66.240	8.550
Southern market	693	.956	82.671	24.831	13.837	0.375	2.530	47.610	3.446
Manufacturing	182	.978	-102.778	24.179	8.719	0.508	2.550	47.010	3.440
North Coast	66	.888	140.432	21.913	10.722	1.066	2.405	20.553	4.459
Bay Area		-				ļ			
bay Alea					!				0.007
Northern	619	.957	136.656	23.192	12.075	0.318	1.508 1.360	72.969 78.762	8.007 15.668
Southern:	660	.975	68.885	24.387	21.312	0.310	1.360	78.762	15.000
	i								
Southern California									
Bouthern Garrania									
Central }	1,099	.987	-143.913	29.273	19.328	0.229	0.778	127.992	24.847
Peripheral \(\)	1,000								
			!	1	ļ	-		 	
				1					
Average:				1					
10 market samples	c		8.901	24.878	14.492				
								1	

^aThis table is an extension of Appendix Table A.6 in *Production Functions and Supply Applications for Californic Dairy Farms*, Giannini Foundation Monograph No. 36 (Berkeley, 1976), p. 122.

 $b_{\mbox{For geographic coverage, see Supplement Table 1, $\it supra$, p. 3.}$

 $c_{
m Blanks}$ indicate not relevant.

 ${\tt SUPPLEMENT\ TABLE\ 16}$ Feed Regressed on Extended Set of Independent Variables--Coefficients (Final Step) $^{\alpha}$ by Region and Sample

		Sacramento Valley		Northern	_						
		Market and Manu-	Left	and Sierra	San Northern	Joaquin Vall Southern	ey Manu-	North	Bay	Area	Southern
		facturing	survey	Mountains	Market	Market	facturing	Coast	Northern	Southern	California
Numbe obser	er of vations	567	142	266	560	693	182	66	619	660	1,099
	er of inde- ent variables	17	18	18	18	18	18	15	17	16	16
R ²		.941	.944	.048	.984	.989	.983	.944	.975	.981	.989
Const	ant	-741.258	-1,478.683	411.048	-2,738.055	-508.031	-1,462.597	-1,392.723	-831.096	-1,220.101	-3,522.273
Coeff	ficients .										
x ₁ :	number of cows milking	19.821*	26.886*	13.128*	18.293*	15.101*	26.817*	14.265*	19.368*	14.391*	29.583*
x ₂ :	number of cows dry	20.237*	2.057	14.571*	23.845*	15.262*	12.694*	13.332*	16.239*	20.948*	18.477*
x ₃ :	expected milk per cow (pounds per day)	3.953	5.751	- 4.555	- 11.629	- 5.169	19.469*	- 10.352	5.925	- 9.577*	3.807
X ₄ :	expected milk total (hundred pounds per day) on dummies	12.849*	- 0.341	34.515*	18.090*	27.570*	- 12,030	25.380	9.000*	23.363*	- 0.771
x ₅ :	current summer	121.131*	- 23.303	5.340	135.006*	5.007	3.056	165.992	- 22.129	44.641	- 52.265
x ₆ :	current winter	38.398	13.124	0.866	70.714	8.023	- 31.984	76.924	- 63.032	- 5.536	- 11.423
x ₇ :	lagged summer	44.311	11.349	- 55.207	115.801	- 52.195	- 67.069	54.565	- 59.099	2.449	18.318
x ₈ :	lagged winter	29.306	20.898	5.127	61.630	31.210	61.778	140.384	20.837	18.326	- 105.110*

(Continued on next page.)

SUPPLEMENT TABLE 16--continued.

			to Valley	Northern							
		Market	. c.	and		Joaquin Vall	.ey Manu-	North	Ray	Area	Southern
		and Manu-	Left	Sierra Mountains	Northern Market	Market	facturing	Coast	Northern	Southern	California
		facturing	survey	Hountains	Harket	Harket	raccuring				
Breed	l dummies ^b										
x ₉ :	Guernsey	-114.354	372.068*	-143.715*	-444.671*	-106.935	- 39.972	-418.853	-163.770*	c	-746.980*
x ₁₀ :	Jersey	- 81.977	- 28.196	-160.994*	224.670	-276.240*	321.252	-217.843	- 51.291	18.974	
x ₁₁ :	mixed	- 21.322	328.509*	-100.149*	114.402	-214.334*	41.431	-322.697	- 42.903	-70.554*	-216.162*
x ₁₂ :	body weight (hundred pounds)	17.660	139.867*	- 17.493	93.546	35.626*	54.897	117.457	51.969*	60.902*	122.664*
x ₁₃ :	value per head (dollars)	1.641*	- 1.263	- 0.174	6.903*	2.632*	0.913	5.117	1.364*	3.585*	4.964*
Year	dummies ^b										
x ₁₄ :	1965	- 18.681		172.831*			1				438.642*
х ₁₅ :	1964	-110.231*		- 0.075	-312.805*	-498.314*	- 51.152	-462.242*	-191.679*	-48.819	12.805
х ₁₆ :	1963	- 76.577	37.011	32.653	- 62.483	-474.831*	- 22.923	-241.273*	-134.335*	-77.251*	159.661
x ₁₇ :	1962	- 22.330	192.716	73.365	- 0.622	-342.108*	- 21.596		95.937*	- 3.449	61.795
x ₁₈ :	1961		152.118	82.561	-167.493	-363.578*	- 84.146		6.460	- 7.769	
x ₁₉ :	1960		-129.414		-151.941	-405.376*	69.091				
x ₂₀ :	1959		- 4.197				î				
							: 				

^aThis table is an extension of Appendix Tables A.7 and A.8 in *Production Functions and Supply Applications for California Dairy Farms*, Giannini Foundation Monograph No. 36 (Berkeley, 1976), pp. 124 and 125.

 $^{^{}b}$ Omitted dummies: remaining months, both current and lagged season; Holstein, 1958, and earlier.

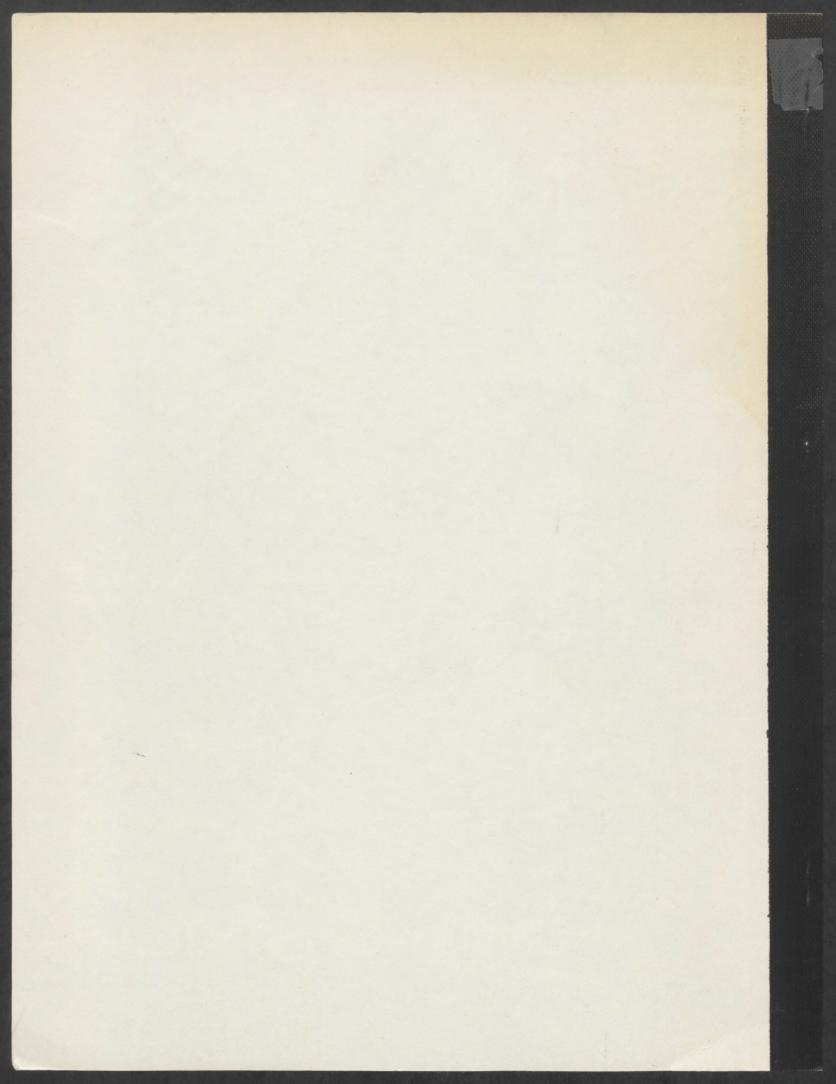
 $^{^{}c}$ Blanks indicate years not in equation.

^{*}Statistically significant at the 5 percent level.

SUPPLEMENT TABLE 17

Feed Regressed on Extended Set of Independent Variables--Standard Errors and t Ratios (Final Step) by Region and Sample

		Sacramen	to Valley	Northern					<u> </u>		T
		Market		and		Joaquin Val			_		
		and Manu-	Left	Sierra Mountains	Northern Market	Southern Market	Manu- facturing	North Coast	Northern	Area Southern	Southern California
		facturing	survey	Mountains			s of estimat		Northern	Southern	Callionnia
Coaff	icients										
				0.107	1 (01	0.75/	0.467	, ,,,,	1 151	1 252	0.904
x ₁ :	number of cows milking	1.771	4.982	3.187	1.621	0.754	2.467	4.483	1.151	1.253	
x ₂ :	number of cows dry	1.581	4.682	1.728	1.601	0.837	2.758	2.297	1.229	1.223	0.729
x ₃ :	expected milk per cow (pounds per day)	4.819	8.854	5.541	6.288	3.109	6.258	15.338	4.391	3.726	5.092
x ₄ :	expected milk total (hundred pounds per day)	5.009	15.016	10.689	3.746	2.186	8.589	17.426	3.448	2.910	1.967
Seaso	n dummies ^a										
x ₅ :	current summer	44.165	111.409	40.549	63.166	23.321	48.241	121.526	29.830	29.377	38.824
x ₆ :	current winter	42.438	91.244	27.379	67.207	28.110	52.598	104.633	42.363	32.372	44.389
x ₇ :	lagged summer	46.193	106.933	40.820	74.459	27.289	56.484	129.238	41.951	33.270	40.703
x ₈ :	lagged winter	32.780	79.982	27.042	54.214	23.843	39.167	127.072	32.675	28.971	41.364
Breed	dummiesa	·									
X_{9} :	Guernsey	63.072	178.755	66.746	107.049	67.881	61.530	234.470	43.877	Ь	133.432
x ₁₀ :	Jersey	61.283	166.400	56.384	505.593	48.866	184.680	189.835	45.141	156.743	
x ₁₁ :	mixed	35.456	108.756	43.709	82.320	31.396	51.240	179.218	25.701	30.849	48.863
x ₁₂ :	body weight (hundred pounds)	16.796	47.061	15.947	53.035	16.249	33.080	60.438	13.408	19.500	28.966
x ₁₃ :	value per head (dollars)	0.423	1.027	0.442	1.778	0.743	1.095	3.552	0.501	0.903	1.579
Year	<u>dummies</u> a										
X _{1/1} :	1965	72.084		51.349							136.524
x ₁₅ :	1964	42.946		44.390	103.561	36.551	74.653	119.624	42.704	40.427	95.207
X ₁₆ :	1963	39.090	144.712	41.121	92.739	35.577	74.190	107.779	32.961	38.923	94.783
	,	38.431	122.979	42.438	87.925	35.621	74.305		32.934	36.520	95.074
X ₁₇ :		30.431	130.985	49.366	86.876	35.938	75.994		31.975	36.666	
X ₁₈ :	1961			49.300	1	70.475	82.515				
X ₁₉ :	1960		117.279		90.963	/0.4/3	02.313	1		1	
X ₂₀ :	1959		127.259		l	l				<u> </u>	


(Continued on next page.)

SUPPLEMENT TABLE 17 -- continued.

			to Valley	Northern							
		Market and Manu-	Left	and Sierra	Sar Northern	Joaquin Val	ley Manu-	North	Ray	Area	Southern
		facturing	survey	Mountains	Market	Market	facturing	Coast	Northern	Southern	California
	-			· · · · · · · · · · · · · · · · · · ·		t ra	tios				
Coeff	ficients										
x ₁ :	number of cows milking	11.190	5.397	4.120	11.285	20.033	10.871	3.182	16.831	11.485	32.736
x ₂ :	number of cows dry	12.799	0.439	8.432	14.892	18.238	4.603	5.803	13.216	17.130	25.344
x ₃ :	expected milk per cow (pounds per day)	0.820	0.650	-0.822	- 1.849	- 1.663	3.111	-0.675	1.349	- 2.570	0.748
X ₄ :	expected milk total (hundred pounds per day) on dummies ^a	2.565	-0.023	3.229	4.829	12.610	- 1.401	1.456	2.610	8.027	- 0.392
x ₅ :	current summer	2.743	-0.209	0.132	2.137	0.215	0.063	1.366	- 0.742	1.520	- 1.346
$ x_6 $	current winter	0.905	0.144	0.032	1.052	0.285	- 0.608	0.735	- 1.488	- 0.171	- 0.257
x ₇ :	lagged summer	0.959	0.106	-1.352	1.555	- 1.913	- 1.187	0.422	- 1.409	0.074	0.450
x ₈ :	lagged winter	0.894	0.261	0.190	1.137	1.309	1.577	1.105	0.638	0.633	- 2.541
Breed	l dummies ^a										
x ₉ :	Guernsey	- 1.813	2.081	-2.153	- 4.154	- 1.575	0.650	-1.786	- 3.732		- 5.598
x ₁₀ :	Jersey	- 1.338	-0.169	-2.855	0.444	- 5.653	1.740	-1.148	- 1.136	0.121	
x ₁₁ :	mixed	- 0.601	3.021	-2.291	1.390	- 6.827	0.809	-1.801	- 1.669	- 2.287	- 4.424
x ₁₂ :	body weight (hundred pounds)	1.051	2.972	-1.097	1.764	2.192	1.660	1.943	3.876	3.123	4.235
X ₁₃ :	(dollars)	3.876	-1.230	-0.394	3.883	3.544	0.834	1.441	2.723	3.971	3.145
<u>Year</u>	<u>dummies</u> a										
X ₁₄ :	1965	- 0.259		3.366							3.213
x ₁₅ :	1964	- 2.567		-0.002	- 3.020	-13.633	-0.685	-3.864	- 4.489	- 1.208	0.134
	1963	- 1.959	0.256	0.794	- 0.674	-13.346	-0.309	-2.239	- 4.076	- 1.985	1.684
	1962	- 0.581	1.567	1.729	- 0.007	- 9.604	-0.291		2.913	- 0.094	.650
x ₁₈ :	1		1.161	1.672	- 1.928	-10.117	-1.107		0.202	- 0.212	
	1960		-1.103		- 1.670	- 5.752	0.837				
x ₂₀ :	1959		-0.033								

 $[\]overline{a}$ Omitted dummies: remaining months, both current and lagged season; Holstein, 1958, and earlier.

 $b_{\mbox{\footnotesize{Blanks}}}$ indicate years not in equation.

