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Introduction 

The obesity epidemic has become a global health challenge, coupled with a controversy on what 

to blame for causing this problem. A rich body of literature argues that the major factor causing 

obesity is over consumption of caloric sweeteners, particularly from sugar-sweetened beverages 

(SSBs) (see review and meta-analysis studies such as Malik et al., 2013 and Imamura et al., 

2015). However, there is also the argument that sugar overload alone does not cause obesity; 

other factors such as processed foods, food portion size, lack of physical activity, smoking habit, 

and genetics are also linked to obesity (NIH.org). Without a conclusive answer, government 

prevention policies, such as SSB taxes, are often criticized by the public. 

When assessing the effect of certain variables on obesity, applied researchers typically 

choose only a small number of control variables allowing simple variable transformation and 

interaction based on economic intuition. These pre-specifications are intuitively appealing and 

generally do a good job when the data is low dimensional in that only a few characteristics per 

observation are available. However, when the data is high dimensional, such as data from the 

National Health and Nutrition Examination Surveys (NHNES) including dozens of predictors or 

characteristics for each observation, researchers rarely know which of the many control 

variables, and what combination of them, actually correspond to the dependent variable (e.g., 

Body Mass Index). Then, an ad hoc decision of model specification can often lead to incorrect 

conclusions, especially when the inference of regression coefficients is the objective of interest. 
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Machine learning (ML) methods, motivated partly by the availability of Big Data (large data 

sets), have been commonly used by retail firms, health care and internet industries to improve 

business decisions. In this paper, we propose the application of supervised ML methods to assess the 

main factors causing obesity in the United States. First, through clustering analysis of the control 

variables, we determine the significance level of control variables. Then, we apply supervised ML 

methods to allow the automated learning of the relationship between an arbitrary number of control 

variables and the dependent variable to determine the impact that significant control variables, or the 

interaction of these variables, have on obesity. This analysis will also provide insight on designing 

practical and plausible obesity prevention policies. 

Methods and Data 

We use two standard ML clustering methods, K-Means and the Birch clustering algorithm to 

discover the significant control variables. Then, we apply four supervised ML methods from 

statistics and computer science literature which generally yield considerably more accurate 

regression estimates than linear or logistic models in applied economics research (e.g., Bajari et 

al, 2015; and Belloni et al., 2014): Random Forest Regression (RFR), Support Vector Regression 

(SVR), Kernel Ridge Regression (KRR), and Neural Networks (NN). Using these four models, 

we conduct a cross-model validation to verify the regression results. All proposed models are 

available in the open software package R and Python machine learning libraries. 

The proposed data set is composed of data from eight waves of NHANES which were 

publicly released in 2-year cycles from 1999-2000 to 2013-2014. NHANES is a national survey 

designed to assess the health and nutritional status of civilian noninstitutionalized U.S. 

population. These surveys collected dietary intake data in two 24-hour recall periods on 



4 
 

consumer demographics, self-perceptions of health and nutrition status, and health related 

behaviors. About 12,000 persons per 2-year cycle were asked to participate in NHANES. 

Response rates varied by year, but an average of 10,000 participated in data collection. Variables 

that we are particularly interested in include sugar intake from different sources, fat intake, 

physical activity, smoking habit, frequency of dining out, which are all included in the survey 

data. 

In more detail, we use the clustering algorithms on the NHANES data set control 

variables to split the data into several clusters. Then, we determine the significant control 

variables based on standard deviation for each variable in a data cluster, corresponding to the 

largest average BMI for instance. Finally, the four regression models are used to conduct 

parameter inferences of the significant control variables. 

Expected Results 

Each clustering algorithm is excepted to produce clusters that largely overlap corresponding to a 

specific level of BMI. We expect to find several control variables that are significant predictors 

of BMI. For instance, high caloric diets and low activity life styles are expected to be significant. 

Each of the four ML regression methods is expected to produce similar results on the impact of 

significant control variables, through which we can compare the impact of different control 

variables, sugar intake and fat intake for instance, on obesity (or BMI). 

To be continued. 
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