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FARM PRICE DETERMINATION IN STRUCTURAL 
MODELS: IMPLICATIONS OF QUANTI'IY-DEPENDENT 

AND PRICE-DEPENDENT SPECIFICATIONS 

Dean T. Chen and Gerard Dharmaratne* 

ABSTRACT 

Alternative farm price specifications in a structural model are examined. Differential price impacts of 
various specifications are analyzed with respect to an exogenous shock. Four propositions are formulated to 
explain the price variations in relation to structural coefficients, price elasticities, and price flexibilities of the 
models. A wheat model is used for empirical evaluation of price response properties of different specifications 
using simultaneous solution methods: Gauss-Seidel for a price-dependent model and Newton (Newton-Ralphson) 
for three quantity-dependent models. Wheat price impacts induced by the 1988 drought generally conform with 
the propositions. The analytical framework and procedures are useful for comparing structural model 
performance and identifying inappropriate and unsatisfactory specifications. . 
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INTRODUCTION 

Structural econometric models have been criticized for lack of uniformity or standard in assessing price 

impacts of exogenous shocks. As models often generate substantially different prices and price impacts, the 

choice of an appropriate specification has crucial implications for agricultural price analysis and policy simulation. 

These differential impacts are largely due to variations in model structure and estimated parameters. This 

suggests the need of a theoretical basis for evaluating price response properties in various structural models. 

In applied econometric literature, important progress has been made concerning price determination behavior 

in a structural model: Working in the identification of supply-demand structure, Cowles Commission in 

simultaneous estimation methods (Haavelmo), and more recently, Wu-Hausman in specification tests regarding 

normalization procedure and consistency properties of price and quantity endogeneity relations (Thurman). 

However, the literature has seldom addressed the crucial question of the simulation capability of a model under 

alternative price specifications. A prior knowledge of price response behavior should help enhance structural 

model performance and selection of appropriate price determination specifications. 

Dean T. Chen and Gerard Dharmaratne are professor and postdoctoral research associate, respectively, in the 
Department of Agricultural Economics, Texas A&M University, College Station, Texas 77843. 
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Numerous alternative specifications have been developed for farm commodity price determination in 

structural models. The two major categories· are quantity dependent and price dependent models. With each 

category containing several different specifications, numerous admissible models can be constructed. Selection 

of major types of specifications for simulation analysis should provide useful insight into the price response 

behavior of a farm commodity model. This is particularly true for large econometric models that emphasize 

intracommodity and intercommodity relationships, and that have important implications to farm commodity price 

analysis. 

The primary purpose of this paper is to empirically examine the implications of alternative farm price 

specifications in structural models. A theoretical framework is proposed to evaluate the model performance 

under conditions of exogenous shocks. A nonlinear simultaneous model for wheat is tested under four different 

price specifications: quantity (Q)-dependent, price (P)-implicit domestic demand; Q-dependent, P-implicit export 

demand; Q-dependent, P-implicit stock demand; and P-dependent, P-explicit stock demand functions. A 

comparison of price impacts induced by 1988 drought are evaluated across these models that are identical except 

for the price determination equation, and the market clearance identity. Numerical solution methods used for 

simulation experiment include Gauss-Seidel for the P-dependent, P-explicit model and Newton (Newton­

Ralphson) for Q-dependent, P-implicit models. This paper is organized as follows. In the next section we 

describe alternative specifications of Q-dependent and P-dependent models. Then, four major propositions 

relating differential price impacts to an exogenous shock are formulated. Theoretical aspects of model solutions 

are analyzed with respect to Newton and Gauss-Seidel methods. Then, assumptions and procedures of impact 

simulation of a wheat model, and empirical results of the shock induced by the 1988 drought, are examined. 

Finally, some important implications of the study are discussed. The concluding section offers a few 

recommendations for further research. 

Price Determination in Structural Models 

In formulating a structural model for farm commodity markets, one needs to specify and estimate a 

system of equations (a structural model) that captures all important demand, supply, and inventory stocks and 

their interrelationships. The basic form of components for such a simultaneous system (as described by Just for 



a particular commodity) consists of a system of seven equations: 1 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

3 

where Q 5 refers to quantity supplied, and Q with sUbscripts 0, e, d, x, and h refers to demands for food, feed, 

seed, exports, and inventory stocks, respectively. P, II, and X refer to price, profit, and relevant exogenous 

variables, respectively. Equation 7 is the supply demand balance identity for market clearance. 

In linear models, price can be explicitly determined by analytical reduced form equations2. However, 

with nonlinear models, the most common form of specifications, numerical methods need to be used to solve 

for price. Such numerical methods conform to the structure of the model which can be either (1) quantity-

dependent (price-implicit), or (2) price-dependent (price-explicit). 

Alternative Q-dependent and P-dependent Specifications 

In Q-dependent models, all demand relationships are expressed in quantity-dependent form, i.e., with 

quantity on the left-hand side of the equation. In such models, price can be solved only by an implicitly defmed 

1 Just specified a six-equation system. We also include a demand function for feed. 

2 If the simultaneous equation system (1)-(7) is in linear form, it can be expressed in compact matrix notation 
as 

BY t + rX t = 4 
where Y t is a mx1 vector of endogenous variables, X t is a nx1 vector of exogenous variables, B is an mxm 
matrix of coefficients of endogenous variables, r is a mxn matrix of coefficients of exogenous variables, U t is 
a mx1 vector of stochastic errors, and t = 1,2, ... , T observations. Then the system can be analytically solved to 
obtain reduced form equations for price (and all other endogenous variables) in terms of exogenous variables 
as 

where, II = - B-1 r, and V t = B-1 4. 
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price equation in the simultaneous system. If price is implicitly determined by a specific demand function, for 

example the stock demand, we need to express it in price-implicit form as 

(8) 

Thus, fot the a-dependent case it is possible to obtain different a-dependent specifications by using various 

price-implicit demand functions. In the seven-equation system described -in the previous section, at least three 

major demand functions can be used: a-dependent domestic demand, a-dependent export demand, and a­

dependent stock demand. Each of these demand functions can be expressed as a price implicit equation, to 

obtain three different structural model specifications. 

In P-dependent models the approach is to normalize a certain demand function, i.e., an inverse demand, 

for price determination. Conditions under which such normalization could be theoretically justified ar~ given 

by Fox, Heien, and Waugh. In empirical work, however, P-dependent models are generally viewed as direct 

transformations of a-dependent structural models, without an explicitly defmed theoretical foundation. Several 

studies have helped to develop theoretical justification of P-dependent specifications (Huang; Shonkwiler and 

Taylor), and to provide conditions for estimation of inverSe demand functions (Houck; Anderson). Among the 

various demand functions that could be normalized on price, those most commonly used are (i) P-dependent 

stock demand, (ii) P-dependent export demand, and (iii) P-dependent domestic demand. In these models, price 

is explicitly determined by a selected inverse demand function in the system. Table 1 presents these six different 

specifications: three a-dependent models and three P-dependent models. 

On Differential Price Impacts: Some Propositions 

a-dependent specifications are considered "pure" structural models. However, the theoretical appeal 

of these models is often shadowed by the difficulties encountered in the solution process. Apart from modifying 

the model to include a "price adjustment" mechanism (Subotoik and Houck; Bailey), to solve the model in Q­

dependent form numerical solution methods need to be invoked. When the model is price implicit, the Newton 

(Newton-Ralphson) method is the most widely used .. The Newton method requires inversion of the coefficient 

matrix of the endogenous variables, i.e., inversion of the Jacobian (Chiang). This Jacobian consists of the 

structural coefficients of price of demand functions. Since' structural coefficients of price' are related to price 
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Table I. Alternative P-dependent and Q-dependent Structural Models. 

Structural Model Specifications 1 
P-dependent Models Q-dependent Models2 

P-dependent P-dependent P-dependent Q-dependent Q-dependentQ-dpnbt . 
Domestic Export Stock Domestic Export Stock 
Demand D.emand Demand Demand Demand Demand 

Inventory Demand Qh=Qh(P;Zh) Qh=Qh(P;Zh) P=P(Qh;Zh) Qh=Qh(P;Zh) Qh=Qh(P;Zh) P=P+Qh(P;Zh) 

Domestic Demand P=P(Qo;Zo) Qo=Qo(P;Zo) Qo=Qo(P;Zo) P=P+Qo(P;Zo) Qo=Qo(P;Zo) Qo=Qo(P;Zo) 

Export Demand Qx=QiP;Zx) P=P(Qx;Zx) Qx=QiP;Zx) Qx=QiP;Zx) P=P+QiP;Zx) Qx=QiP;Zx) 

Feed Demand Qe=Qe(P;Ze) Qe=Qe(P;Ze) Qe=Qe(P;Ze) Qe=Qe(P;Ze) Qe=Qe(P;Ze) Qe=Qe(P;Ze) 

Seed Demand Qd=QiP;Zd) Qd=Qd(P;Zd) Qd=QiP;Zd) Qd=QiP;Zd) Qd=QiP;Zd) Qd=QiP;Zd) 

Supply Qs=QlU;Zs) Qs=Qs(IJ;Zs) Qs=Qs(II;Zs) Qs=Qs(IJ;Zs) Qs=Qs(IJ;Zs) Qs=Qs(II;Zs) 

Market Clearing Qo=Qh-1+QS Qx=Qh-1+Qs Qh=Qh-1+QS Qo=Qh-1+Qs QX=Qh-1+Qs Qh=Qh-1+Qs 
Identity -Qe -Qd-Qx -Qh -Qe -Qd-Qx -Qh -Qe-Qd-Qx-Qh -Qe -Qd-Qx -Qh -Qe-Qd-Qo-Qh -Qe -Qd-Qo -Qx 

LQs refers to quantity supplied, and Q with subscripts o,e,d,x and h refers to demands for domestic consumption, feed, seed, export, and inventory stocks 
respectively. P and n refer to farm price of wheat, and profits from wheat respectively. Z refers to the vector of relevant exogenous variables identified 
by the subscripts described above. 

2. Q-dependent, P-implicit stock demand model is solved by solving for implicit prices using Newton method. The computer code for specifying an implicit 
solution for prices using Q-dependent stock demand is P=P+Qh(Qh;Zh) (SAS/ETS, p. 51). 
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elasticities bya weight factor of relevant P 'and 0, this implies that price elasticities oral/demand functions have 

a direct impact on the price outcome. Thus, we formulate the ftrst proposition on the price iinpact of an 

exogenous shock." 

, PrOpositioia DnL In Q-dependent models, the magnitude of price impact of an exogenous ~hockis 

, determined by the summation of structural coeffic~ents of price of the demand junctions, and hence the price 

elasticitiesoldemaniJs in the model. This implies that the higher (lower) the summation of structural· 

coefficients of the demand junctions, the lower (higher) the price impact.' , 

, IIi P-dependent models, impacts of an exogenous shock on price may vary depending on the demand funCtion 

normalized. Price 'impact is thus directly determined by the inverse demand function, and indirectly by the other, 

demand functions in the model. Therefore, this suggests the second proposition. 

PrOposition' 7Wo: In P-dependent models the"magnitudeof price impact of,an, eXogenous shock is 

determined directly by the structural coefficient of quantity, and hence the price flexibility of the inverse 

demand junction in' the model; and indirectly by the price elasticities of the other demand junctions in the 

system. ' This implies that the higher (lower) the price flexibility, the higher (lower) the price impact; and 

the higher '(lower) the price elasticities of other demand junctions, then the higher (lower) the offsetting effect 

on price. 

In application for price analysis, the differential effects of an exogenous shock between a-dependent and P-

dependent models can be anticipated a priori by the knowledge, of structUral coefficients (pric;e elasticities and 

,price flexibilities). As magnitude of priceeiasticities and flexibilities are crucial indicators of solution outcomes, 

we formulate two additional propositions for intermodel comparison of price impact;' 

Proposition 77Iru: When the summation of structural coefficients o/price of dentaiad junctions (the value 

, of the inverse Jacobian) ina Q~pendent model is lower (higher) than the value Of the structural coefficient 

of quantity of the inverse demand (price flexibility) in a P-dependent mQde~ then the price impact in the 

, Q-depen'dent model is lower (higher) as compcued to the P-dependent model. 

In Q-dependentmodels, price is determined implicitly ht the simultaneous system. Regardless of the demand 

function chosen for price determination, the vallie of the Jacobian is the same across models, However, in P-
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dependent cases, different solutions are generated from different inverse demand functions. This distinction is 

the basis for the [mal proposition. 

Proposition Four: In Q-dependent models, the price impact of an exogenous shock is invariant to the 

selection of the specific demand junction as the implicit price equation. In P-dependent models, price 

impacts vary across models, depending on the specific demand junction normalized on price. 

These four propositions provide a theoretical framework for empirical evaluation of alternative structural model 
- -

performance regarding the price impact of an exogenous shock. 

Model Solutions: Theoretical Considerations 

In the previous section we formulated four propositions with reference to solution outcomes from 0-

dependent and P-dependent models. The distinction between these specifications is not only on the model 

structure, but also the model responses to an exogenous shock in relation to the estimated structUral coefficients, 

price elasticities, and flexibilities of the model. In this section, model solutions are analyzed with respect to the 

choice of numerical methods, i.e., Newton, and Gauss-Seidel solution algorithms. 

Solution of Q-dependent Models (Newton method) 

In a-dependent models, price is implicitly determined in the supply/demand framework to satisfy market 

equilibrium conditions. This structural model can be represented as 

F(Y, X; 8) = 0 (9) 

where F is a differentiable vector-function of endogenous variables Y, exogenous variables X; and estimated 

parameters 8 (Drud). The Newton inethod uses a derivative-based iterative procedure to generate (n+1) th 

solution from (n) th solution using 

Y n+1 = Y n - F(Y, X; 8 )/F '(V n' X; 8 ). (10) 

Consider the solution for price using stock demand as the implicit price equation in the model. Then 

(10) can be respecified as, 

" " 
P (h).(n+1) = P (h).(n) - F(O h' P (h) ; 8 )/F '(0 h' P (h) ; 8) (11) 

. where subscript h and n are for stock demand and number of iterations, respectively . 

. If we expand the denominator of the second term on the right hand side of (11), it is the matrix of 
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structural coefficients of endogenous variables, i.e. , the Jacobian, of the model. 

8 ~ (.) 8~ (.) 8 ~ (.) 8 ~ (.) 
, , 

8Y1 8Y2 8'1 8Ym 

J.= (12) 

8~(.) 8~(.) 8~(.) 8~(.) 
, 

8Y1 8Y2 8'1 8Ym 

For a particular demand function in the model, price and· quantity usually are the only endogenous variables in 

the function. Thus, the Jacobian consists basically of a column vector of 1's, and a vector of structural 

coefficients of price. Inversion of this Jacobian thus amounts to the inversion of the summation of the structUral 

coefficients of price. 

If we isolate the structural coefficient vector of price in the Jacobian, it can be given as a column vector: 

8~ (.) 

(13) 

8~m)(') 

These structutalcoefficients, if weighted by relevant P and 0 terms, are price elasticities of demand functions. 

For a particular demand function, price elasticity is given as 

E= M 

. . . " 

Equation (14) implies that the elasticities are nondecreasing functions of structural coefficients of price. This 

supports proposition one, that price impacts in O-dependentmodels are directly determined by the summation 
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of the structural coefficients, and hence the price elasticities of the demand functions. 

Solution of P-dependent Models (Gauss-Seidel method) 

In P-dependent models, price is explicitly expressed as an inverse demand function in the model. To 

illustrate the solution process in the transmission of an exogenous shock, we use a diagram to trace the price 

effect through the simultaneous system in a P-dependent stock demand model (Figure 1). 

Market P = f(Oh) OJ = g J (P) ; j = x,o,d,and f. 
Clearance f'< 0 g j < 0 

Yt lOst 10ht » P.£. » OJ t 

I 
(.6PC1 ) ) 

I 
Market 

Market Clearance. 
Clearance 

OJ t • tP. Oh .£. 
OJ = gJ (P) (.6P(2) ) P=f(Oh) 

g j < 0 f' < 0 

Figure 1. Supply Shock Transmission in a P-dependent Stock Demand Model. 
- , 

The initial effect of an exogenous shock, e.g. , an increase in yield per acre (Y), increases the quantity 

of supply (Os), and through market clearance, increases stocks (0 h)' The direct impact of this stock increase 

is an initial decrease in price,.6 P(1)' because of the negative coefficient of quantity of stock (f ' < 0) in the 

inverse demand function, P = f(O h)' This price impact is related to price flexibility (~ ) of the inverse demand 

function as 

~ (15) 

Equation (15) is reciprocal to equation (14) regarding the P and 0 relationship. Price flexibility is also a 

nondecreasing function of the structural coefficient. Thus, as stated in proposition two the initial price impacts 

are directly related to the price flexibility of the inverse demand function in the model. 
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This initial price reduction is transmitted through the system, inducing quantity increases in all the other 

demand functions, 0 J = g j (P), where j = x, 0, d, and f, because of the negative price coefficient (g 'j < 0). 

The effect of these quantity-of-demand increases, in turn, causes a stock reduction through market clearance 

adjustment. This constitutes a feedback relationship resulting in a second-round price increase (flP(2») through 

the same inverse demand function. The second-round price increase is a function of the structural coefficients 

of price. This suggests that the larger the structural coefficients (price elasticities), the larger the reduction in 

stocks, and hence the greater the second-round price increase. The overall price impact of the supply shock is 

the net result of the iteration process, until convergency is achieved. The convergency condition needs to satisfy 

(16) 

where a is a small positive number (Heien, Matthews, and Womack). 

Comparison of Solution Outcomes 

In·P-dependent models the structural coefficient of the inverse demand equation sets the upper bound 

on the price impact, while the inverse Jacobian sets the upper bound in the O-dependent model. If the inverse 

Jacobian is less than the value of the structural coefficient, lower price impacts are expected in O-dependent 

models than in P-dependent models, as stated in proposition three. 

O-dependent models, regardless of the implicit price function specified, are expected to converge to . -' . . , 

the same solution. For example, consider a domestic demand specification. Then equation (11) becomes 

" ..... 
P (0).(n+1) = P (0).(") - F(O 0' p(o) ; 8 )/F '(0 0 , p(o) ;8). (17) 

In the solution process, the initial value of price in specifications (11) and (17) may differ. However, 

when iteration stops at, say, pth iteration for stock demand and q th iteration for domestic demand, this implies 

F(Q 0' P (0) ; 8) JII$ F(Q h' P (h) ; 8) JII$ O. (18) 

Therefore,. when the models have converged the following conditions should hold: 

P (h).p = P± 6 (19) 

and 

P (O).q = P± 6 (20) 

where 5 is a small number which is the convergence error. As Pea" +, then 
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P (h).p ~ P (o).q (21) 

where 8ln + refers to the positive real number. 

Thus, for all practical purposes, a-dependent (P-implicit) stock demand and a-dependent (P-implicit) 

domestic demand (or any other a-dependent (P-implicit) specifications) generate almost the same solution value 

for price. On the other hand, P-dependent models may generate different solutions for price depending on the 

type of inverse demand function used (proposition four). 

Empirical Results 

To provide empirical support for the propositions formed, a complete sectoral model for wheat was 

used. The model for simulation study consists of seven equations (equations 1-7). For the purpose of 

comparative analysis of a-dependent and P-dependent models, only four of the six specifications described in 

the previous section were chosen. All three a-dependent specifications are needed for inter-model comparison 

of price implicit specifications. For simplicity, only one of the three P-dependent models (a more commonly used 

P-dependent stock demand specification) was chosen (Adams and Behrman; Chen; Meilke and Young; Gardner). 

The estimated models are presented in Table 2. The models were estimated using annual data from 1973 to 

1987. Specifications and estimated parameters of the models are generally consistent with those of previous 

modeling studies. Estimated price elasticities and price flexibilities are also similar to earlier work. Statistical 

results of all the demand functions in the models show a good fit, with high ~, and expected signs across 

different specifications. Most of the estimated coefficients have statistically significant t-values at the 95% level. 

1988 Drought Impacts On Wheat 

Due to adverse weather conditions in 1988, there was a significant decline in yield per acre for wheat. 

In conducting our simulation experiment, 1988 wheat yield per acre was shocked by using a normal weather 

condition of trend yield against the actuaf. To derive the normal weather projection, a trend analysis of wheat 

yield was performed. The projected wheat yield of 38.04 bushels per acre was used to simulate the weather 

3 The estimated trend function for wheat yield per acre with t-value in parentheses is 
Y a = - 1299.22 + 0.673 TREND 

(- 5.894) (5.744) 
R 2 = 0.73 R bar Sq. = 0.71 D.W. = 1.62 



Table 2. Estimated Wheat Models: Alternative a-dependent and P-dependentSpecifications. 

Supply and Demand Equations 

Inventory Demand a h = - 801.94 P - 517.88 (0 h / at) e - 2631.32 
. (3.79) (0.78) (4.0) 

R. Sq. = 0.83 R. bar Sq = 0.80 O.w. = 1.34 

Domestic Demand a 0 = - 14.63 P + 0.45 I - 280.00 
(1.33) (6.12) (3.81) 

R. Sq. = 0.94 R. bar Sq. = 0.92 D.w. = 1.36 

Export Demand Ox = - 103.98 P + 0.76 a x .. 1 + 267.19 X + 1.75 P w + 92.06 
(1.25) (6.95) (0.54) (1.59) (0.24) 

R. Sq. = 0.80 R. bar Sq. = o.n D.W. 2.14 

Seed Demand ad = 3.53 P + 1.33 A - 12.17 
(1.47) (3.56) 0.71) 

R. Sq. '" 0.51 R. bar Sq. 0.43 D.W. = 1.5 

Supply Os =YxA 

Price Equation and Market Clearance Identity· 

O-dependent P-implicit Stock Demand Model 
Price P = P + (- a h - 801.94 P - 517.88 (0 h / 0 tf - 2631.32) 

Market Clearance 

a-dependent P-implicit Domestic Demand Model 
Price P = P + (- 0 0 - 14.63 P + 0.45 Y - 280.(0) 

Market Clearance 

. O-dependent P-implicit EXJ?ort Demand Model 
Price P = P + (- Ox- 103.92P + 0.760 x"1 + 267.19X + 1.75 pW + 92.06) 

Market Clearance o x = Qh-1 + 0 5 - 0 d - 0 0 - 0 h 

P-dependent P-explicit Stock Demand Model 
Price P = - 0.00068 0 h - 1.16 (0 h / 0 t)e + 3.16 

(3.78) (4.08) (21.93) 
R. Sq. = 0.92 R. bar Sq. = 0.91 D.W. = 1.79 

Market Clearance 

t - statisticis given in parenthesis. D.W. is the Durbin-Watson Statistic. 

12 

P= farm wheat price (deflated), (0 h / 0 tf = expected stock/demand ratio, total demand 0 t = CO 0 + 0 e 

+0 d + a x), I = disposable income (deflated), 0 x, -1 = lagged exports, X = exchange rate, P W = world 
wheat price, A = acreage, and Y = yield per acre. . . 
• Price in O~dependent models are implicit equations derived from the corresponding estimated demand 
functions given above. Price in P-dependent model is directly estimated. 
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impact against the actual. The supply shock induced by an increase in yield per acre (from 34.1 bushels peracre 

to 38.04 bushels per acre) affects price in each model (Table 3). Total wheat production is projected to increase 

by 210 mil. bu. This increase generates a priCe reduction (due to the supply increase) of 47 cen~s in the p. 

dependent stock demand model, 64 cents in the a-dependent domestic demand model, 60 cents in the a-

dependent export demand mode~ and 62 cents in the a-dependent stock demand model. 

Table 3. Impact Analysis of 1988 Drought on Wheat. 

a-dependent a-dependent a-dependent P-dependent 
Domestic Export Stock Stock 
Demand Demand Demand Demand 

Supply Shock Assumption 

Yield per acre (bushels) 

Actual (Drought) 34.10 34.10 34.10 34.10 

Normal (Trend) 38.04 38.04 38.04 38.04 

Variable 

Production (mil. bu) 

Actual 1812 1812 1812 1812 

Impact 210 210 210 210 

Wheat Farm Price ($jbu) 

Actual 3.72 3.72 3.72 3.72 

Impact -0.64 -0.60 -0.62 -0.47 

Impact = Change from baseline. 
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Comparison of Pric.e bnpacts 

Based ilpon the analYtical framework and the propositions formulated, we empiri~yevaluate price 

. impacts. of an exogenous shock with respect to the Jacobian in the Q-depende~t -' mode~ and the structural 

-- coefficients In the P-dependent model. Using the estimated structural eoefficientsofdemimdfunctions in Table 
. . '. ." . . . 

-' 2, we obtain the Jacobian by taking the derivative Of each equation with respect to ea~h end~enouS variable. 

However, feed demand was excluded as it does not repreSe~t a major demand component for wheat. The order 
. - . 

in which derivatives are taken is P, 0 h' 0 0' 0 x' and 0 _d' The Jacobiari (1) is 

-801.94 . ~1 '0 0 0 

-14.63 - 0 -1 0 0 

J -103;98 0 0 . ~1 0 (22) 

3.53 0 0 0 -1 

0 -1 -1 -1 -1 

-To obtain the price impact of increased yield per acre (y), tile solution of a O-dependent model can be derived ..•.. 

by' taking the total differential of the equation _ system' 

-801.94 -1 0 0 0 dP/dY 0 

-14~63 0 -1 0 0 dOh/dY O. 

_ -103.98- 0 0 -i -0 dOo/dY 0 (23) 

3.53 -1 0 0 0 dOx/dY 0 

0 -1 ~1 .. 1 -1 dOd/dY . AxdY 

whe~edY is the assumption on yield increase, and A, the acreage, is. constant. 

Us~g Cramer's rule, dP IdY coUld be solved as 

dP/dY"; IKI/IJI (24) 
. . . . 

where I KI is the determinant of the matrix produced by substituting column 1 of the Jacobian by the column 
. . . . . -

-vector on the right-hand side of (22), and IJI is the determinant of the Jacobian. 
. . 

_Thevalue of Iii can be expressed as the summation oftheelementsincolu:in~l of J,i:e~,the 
. . . . ~ . . 

-.. summation of price coefficients of all demand functions. Also, it is clear that regardless of the specific demand 
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function used as the implicit equation, IJ I remains unchanged. The value of I K I is equal to A x dY. 

Equation (24) yields 

dP /dY = - A x dY / ( 801.94 + 14.63 + 103.98 - 3.53 ) 

= - (0.0011) x (A x dY) . (25) 

The first term, - 0.0011 in equation (25) is the inverse of the summation of the structural coefficients of the 

demand functions. Thus, price impact of an exogenous shock induced by the increased supply is determined by 

structural coefficients of price in the model. Obviously, the price impact should be the same for all O-dependent 

specifications regardless of the selection of the implicit price equation. 

- In the P-dependent case, the estimated inverse demand equation used for analysis is 

P = 0.00068 Oh - 1.66 (0 h /0 T) e + 3.16 . (26) 

In determining price impact of a supply shock, wheat yield (Y) as well as quantity of supply (0 5) is first 

increased byA x dY. This effect is transmitted through the market clearance identity to increase stocks (0 h) 

by the same amount. Thus, the initial price impact is directly determined by the P-dependent stock demand 

function as 

(27) 

As dO h is equal to (A x dY), then 

dP /dY = - 0.00068 x (A x dY) . (28) 

The initial price impact sets an upper bound by equation (28), as described by proposition two. The 

final price outcome is determined by the iteration process in which the effect of the initial price decline increases 

quantities of other demands and reduces inventory stocks. This iteration can be viewed as a process generating 

the initial price decline by t.P(1» and subsequent price increases by t.P(2) due to a reduction in 0 h' The 

offsetting price increase is dependent upon the price elasticities of the demand functions. The iteration process 

continues until the system· converges, given th~ following inequality condition 4. 

4 If the price impact of the (n + 1) th iteration is greater than the impact of the nth iteration, then such an 
iterative process will not converge. Setting an iteration limit will result in a large positive number of a large 
negative number. On the other hand, if iterations are all of the same magnitude, but alternate in signs, then such 
a model would not converge either (see Thomas and Finney, 7th ed., p. 157). 
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(29) 

Absolute price change ofthe n+1 th. iteration has to be less than the absolute change of the it th iteration. 
- " 

Under convergency condition," absolute value of price decreases are greater than the absolute value of 

the offsetting price increases, due to a supply increase. Therefore, the fInaIpnce impact is directly related to 

" the" price tlexibility of the inverse demand function, and indirectly related to the price elasticities of the other 

demands in the model. 

The resUlts in Table 4 support the proposition thre~ that when P~dependent demand has a larger 

structural coefficient than the inverse Jacobian ofthe Q-dependent model, then the prlce impact is also larger. 

For e~mple, P-dependent eXport demand has the smallest structural coefficient of -0.OOO5,the smallest price "" 

flexibility of - 0.42, and hence has the smallest price impact of 0.29. When the value of the structural coefficient 
. - " 

" " " 

. . . . . '. .' 

" increases, so do the price flexibility and the price impact. The estimated coefficientofP~dependent stock 

dematldis~ 0.00068. Therefore, the price flexibility and price impact are larger than the P-dependent expoit " 

demand.model, at ~ 0.50: and - 0.47, respectively. P-dependent domestic demand has the largest structural 

coefficient of - 0.0113, and the largest price flexibility" of - 4.56. As a result this model show the largest priCe """" "" 

.".. . 

"impact of a supply shock, at $1.40 per bushel. 

. . . - ." '. . . 

Table 4." The" Relationship Among Structural Coefficients, Price Flexibilities, and Price Impacts. . . - . ," . 

Demand Specification 

P-dependent eXport demand 

P-depen~ent stock demand 

P-dependent domestic demand 

"O~dependent sto~k demand 

". Inverse Jacobian. -

Structural Coefficient Price Flexibility Final Price Impact 

- 0.0005 -0.42 - 0.29 

-0.50 -0.47 

"" - 0.0113 -4.56 - 1.40 

~ 0.0011· - 0.62 

Onthe other hand, the inverse Jacobian ofthe O-dependent stock demand is- 0.0011, and the fmal price 

impact is 0.62. A comparison of these four different specifIcations suggests that the price impact of the Q-
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dependent stock demand model is greater than the P-dependent export demand, P-dependent stock demand, but 

smaller than the P-dependent domestic demand. This supports proposition three regarding the price impact in 

relation to structural coefficients, and the inverse Jacobian. 

Some Implications 

The inferences drawn in this study have important implications for modeling farm commodity markets 

in general, and agricultural price analysis in particular. Simulation results indicate considerable discrepancies 

in price impacts among Q-dependent and P-dependent models under an exogenous shock. The study illustrates 

how structural coefficients, and hence price elasticities and price flexibilities of demand functions affect the 

solution outcome in different models. The fmdings are particularly applicable for identifying appropriate and 

inappropriate structural model specifications. The analytical framework developed is useful for evaluating price 

response behavior in structural models for policy simulation. 

In practical applications, estimated price elasticities and price flexibilities from single equation models 

are more commonly used than impact simulation of structural models. The justification for single equation 

approach is often based on the assumption of invariability or inelastic nature of agricultural production in the 

short-run. There are three major drawbacks to this: first, inelasticity assumption fails to reflect the dynamic 

nature of agriculture production adjustment; second, the effect of changes in supply through inventory stock 

adjustment is not accounted for; third, the significant influence of the changes in other demand components are 

omitted. The limitation of this approach of price analysis.is particularly evident in the study. The price response 

generated by an inverse demand equation measures only the initial price impact as described in equation (28). 

On the other hand, the fmal price impact of the structural model depends not only on the price flexibility of the 

demand function, but also on price elasticities and changes in the quantities of other demands. A clear 

implication is that the single equation approach does not suffice for price analysis. Such an approach is likely 

to overestimate price impacts and underestimate demand responses, leading to seriously biased conditions in 

impact simulations. 

For modeling farm commodity markets, probably the most important implication of this study is on a 

prior information to identify appropriate and inappropriate specifications. Price response behavior across 
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different specifications suggests a set of conditions can be obtained to evaluate structural model performance. 

How can this be achieved? In general it is possible to perceive a reasonable price range in response to an 

exogenous shock. Such a range may be obtained by using the expert knowledge of commodity analysts and policy 

researchers 5. This generally can be a useful guideline in selection of structural model specifications. For 

example, if a reasonable price range is defmed as 6 R = (6 P max - 6P min) ,6 P max and 6 P min are the 

maximum and minimum values of price impacts, respectively. 

For a-dependent models, estimated structural coefficients may be utilized to calculate the initial price 

using equation (25). For P-dependent models, on the other hand, using the estimated structural coefficient of 

the inverse demand equation, initial impact can also be calculated by equation (28). If, 

(30) 

where subscript i identifies the initial impact, the model may be considered as inappropriate or unsatisfactory. 

This is because as the initial impact imposes an upper bound, the fmal price outcome must fall outside the 

reasonable range of 6 R. In the a-dependent case,6 P(ll is derived from the inverse Jacobian of all the demand 

functions in the system, while in the P-dependent case, it is calculated by the structural coefficient of a specific 

inverse demand equation. Taking fito account the effect of the feedback, fmal price impact would be even lower 

than the initial impact. Therefore, in P-dependent models the inverse demand specification may be considered 

inappropriate, while in a a-dependent model the overall structure of demand functions is not adequate. 

On the other hand, if the initial price impact of an exogenous shock is greater than the maximum value 

of the reasonable range 

(31) 

there is the possibility that the fmal price outcome may be within the range, depending upon the magnitUde of 

the offsetting price effect. This offsetting effect, which in the a-dependent case represents iterative solution 

outcomes until convergency, and reflects induced changes of other demand components in response to initial 

5 A survey of expert opinion from Food and Agriculture Policy Research Institute (FAPRI), and Wharton 
Econometric Forecasting Associates (WEFA) indicated a 210 mil. bu. increase of wheat production would lead 
to a 40-46 cents decrease in wheat· price. 
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price shock in P-dependent models. 

Implications of the study reach beyond the specification and solution issues, and extend to the estimation 

aspects of the demand functions. A priori knowledge of the final price impact provides useful guidelines in 

evaluating the magnitude of structural coefficients. For example, let us consider the P-dependent case. If the 

price impact is lower than the desired leve~ it may be the result of a smaller than the desired structural 

coefficient of the inverse demand, or larger than the desired structural coefficients of price in other demand 

functions. On the other hand, in a-dependent models this may be due to relatively elastic demands in the 

model. In both cases respecification and reestimation of the demand functions can be explored to improve the 

price response behavior of the models. 

In the search for a suitable structural model specification, an important consideration is a priori 

information on price response to an exogenous shock. An evaluation of the estimated parameters should help 

to anticipate the price response behavior of the model. The selection of P-dependent and a-dependent 

specifications has long been a controversial methodological issue in farm commodity modeling' work. 

Implications of this study suggest that if the price impact falls within a reasonable range, the decision on P­

dependent or Q-dependent specifications is a matter of choice. However, for P-dependent models there are 

conditions for price dependency to be satisfied (Fox; Heien)~ 

Another implication is on the sensitivity of the model to structural changes. The single equation 

approach fails to account for structural changes of other demand functions in the model. In the structural model 

framework, on the other hand,. the effect of structural changes of any demand function must be fully reflected 

in the solution process for price determination. For example, in a P-dependent stock demand mode~ the effect 

of structural changes in export demand and domestic demand can be tran.smitted through the changes in their 

price elasticities. The same type of effect can be directly traced in a a-dependent model from the changes in 

the inverse Jacobian of the model. Since single equation models have no such interdependent relationships, it 

is evident the model is not. capable of accounting for impacts of changes of other demand components. 
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Conclusions 

This paper examines alternative structural model specifications in farm price determination. Price may 

either be explicitly determined in price-dependent models, or implicitly determined in quantity-dependent models. 

Simulation .of simultaneous equation systems reveals considerable price discrepancies among models. In P­

dependent models, inverse demand function has a direct impact, while in a-dependent models the overall 

demand structure plays a critical role. Price differentirus between a-dependent and P-dependent models can 

be analyzed with respect to price flexibility of the inverse demand function, and the summation of price 

elasticities of the a-dependent models. Based on these findings, useful guidelines can be developed to evaluate 

price response behavior of structural models . 

. Our knowledge of farm price determination can be greatly expanded by simulation studies of other p~ 

dependent specifications, especially domestic demand, which is inelastic, and export demand, which· is elastic .. 

The impact analysis of the weather-induced production cutback in 1988 provides useful information regarding 

structural model response to an external. shock. Further study ·neecls to address internal shockS· induced by 

changes in export demand and domestic consumption. Testing stochastic distributions of parameters, elasticities,· 

and flexibilities should help us to understand the sensitivity of the· model. Further research on these. topics can. 

help improve our understanding of the structural model performance, and enhance the model's capability for 

forecasting, impact simulation, and policy analysis. 



. . 

21 

References 

Adams, F. Gerard, and Jere R. Behrman. Econometric Modeling of World Commodity Policy. Lexington, MA: 
Lexington Books, D.C. Heath and Company. 1978 

Anderson, R. W. "Some Theory of Inverse Demand For Applied Demand Analysis." Euro. Econ. Rev. 
14(1980):281-290. 

Bailey, Kenneth W. "A Structural Econometric Model of the World Wheat Market." Technical Bulletin No. 
1763. United States Department of Agriculture. 1989. 

Chen, Dean T. "The Wharton Agricultural Model: Structure, Specification, and Some Simulation Results." 
Amer. J. Agr. Econ. 59(1977):107-116. 

Chiang, Alpha C. Fundamental Methods of Mathematical Economics. New York, NY: McGraw-Hill Book 
Company. 1974 

Drud, Arne. "A Survey of Model Representations and Simulation Algorithms in Some Existing Modeling 
Systems." Joumal of Economic Dynamics and Control 5(1983):5-35. 

Fox,. K. A. Econometric Analysis of Public Policy. Ames, IA: The Iowa State· College Press. 1957. 

Haavelmo, T. ''The Statistical Implications of a System of Simultaneous Equations." Econometrica 11(1943): 
1-12. 

Gardner, Bruce. "Public Stocks of Grain Storage and the Market for Grain Storage." New Directions in 
Econometric Modeling and Forecasting in U.S. Agriculture. Gordon C. Ratisser, ed. New York: North­
Holland. 1982. 

Heien, D. M. "Price Determination Processes for Agricultural Sector Models. Amer. J. Agr. Econ. 
59(1977):126-132. 

Heien, D., Jim Matthews, and Abner Womack. "A Methods Note on the Gauss-Seidel Algorithm for Solving 
Econometric Models." Agr. Econ. Res. 25(1973):71-80. 

Houck, J. P. "A Look At Flexibilities and Elasticities." J. of Fann Econ. 48(1966):225-232. 

Huang, Kuo S. "An Inverse Demand System for U.S. Composite Foods." Amer. J.Agr. Econ. "70(1988):902-909. 

Just, Richard E. "Modelling the Interactive Effect of Alternative Sets of Policies on Agricultural Prices." Primary 
Commodity Prices, Economic Model and Economic Policy. L. Alan Winters, and David Sampsford, eds. 
Center for Economic Policy' Research. London .. 1990. 

Meilke, Karl D., and Larry Young. "A Quarterly North American Soybean Model." Working Papers, No.4. 
Policy, Planning and Economics Branch. Agriculture Canada. 1979. 

Shonkwiler, S., and T. G. Taylor~ "The Impact of Estimating Market Demand Curves by Least Squares 
Regression." Euro. R. Agr. Econ. 11(1984):107-118. 

Statistical Analysis System (SAS). SASjETS Users Guide. Version 5 Edition. Cary NC: SAS Institute, Inc. 
1984 . 



22 

Subotnik, Abrahm, and James P. Houck. "A Quarterly Econometric Model For Com: A Simultaneous 
Approach to Cash and Futures Markets." Technical Bulletin No. 318. Agriculture Experiment Station. 
University of Minnesota. 1979. 

Thomas, George B., Jr., and Ross L. Finney. Calculus and Analytical Geometry. Seventh edition. New York, 
NY: Addison-Wesley Publishing Company. 1988. 

Thurman, Walter N. "Endogeneity Testing in a Supply and Demand Framework." The Review of Economics 
and Statistics. 1986. pp. 638-646. 

Working, E. J. "What Do Statistical 'Demand Curves' Show?" Quarterly Journal of Economics 41(1927):35. 

Waugh, F. V. Demand and Price Analysis. Washington, DC: U.s. Department of Agricu1ture. Tedt. BuI. No. 1316. 1%4. 




