
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


 

Working Paper Number 17 – 1 | March 2017 
  

Community-level flood mitigation effects on household-level flood insurance and damage claims 

payments 

 

 

Eugene Frimpong 

East Carolina University 

krah3@illinois.edu 

 

Daniel R. Petrolia (corresponding author) 

Mississippi State University 

d.petrolia@msstate.edu 

 

Ardian Harri 

Mississippi State University 

ah333@msstate.edu 

 

Department of Agricultural Economics 

 Mississippi State University  

Box 5187 Mississippi State, MS 39762  

Phone: (662) 325-2049 

 Fax: (662) 325-8777  

www.agecon.msstate.edu 

mailto:krah3@illinois.edu
mailto:d.petrolia@msstate.edu
mailto:ah333@msstate.edu
http://www.agecon.msstate.edu/


1 

Community-level flood mitigation effects on household-level flood insurance and damage 

claims payments 

 

Eugene Frimpong 

Graduate Student 

Coastal Resources Management Ph.D. Program 

East Carolina University 

379 Flanagan 

Greenville, NC 27858 

frimponge16@students.ecu.edu 

 

Daniel R. Petrolia (corresponding author) 

Associate Professor 

Dept. of Agricultural Economics 

Mississippi State University 

Box 5187 

Mississippi State, MS 39762 

662.325.2888 

d.petrolia@msstate.edu 

 

Ardian Harri 

Associate Professor 

Department of Agricultural Economics 

Mississippi State University 

Box 5187 

Mississippi State, MS 39762 

ah333@msstate.edu 

 

 

 

 

Acknowledgements:  We wish to thank John Cartwright, Geosystems Research Institute, 

Mississippi State University, for his extensive assistance with obtaining and organizing much of 

the data, particularly the geospatial data, and for constructing the figures included here.  This 

publication was supported by the U.S. Department of Commerce’s National Oceanic and 

Atmospheric Administration under NOAA Award NA10OAR4170078 and the Mississippi-

Alabama Sea Grant Consortium. This work also supported by the National Institute of Food and 

Agriculture and the Mississippi Agricultural and Forestry Experiment Station via Multistate 

Project W-3133 “Benefits and Costs of Natural Resources Policies Affecting Ecosystem Services 

on Public and Private Lands” (Hatch Project MIS-033140). The views expressed herein do not 

necessarily reflect the views of any of these agencies.   

 

 

mailto:frimponge16@students.ecu.edu
mailto:d.petrolia@msstate.edu
mailto:ah333@msstate.edu


2 

Community-level flood mitigation effects on household-level flood insurance and damage 

claims payments 

 

Abstract 

The Community Rating System (CRS) was introduced to encourage community-level flood 

mitigation and increase household-level National Flood Insurance Program (NFIP) participation.  

It is not clear, however, if and to what extent community participation in the CRS increases 

household participation in the NFIP and decreases damage claims payments.  We employ genetic 

matching methods and estimate fixed-effects and Mundlak-style panel regression models that 

control for key geospatial, socioeconomic, and time effects to isolate the CRS treatment effect on 

these outcomes.  Results show a positive and significant effect of CRS participation on NFIP 

participation, whereas significant effects on damage claims payments are limited.   

 

Keywords: Community Rating System (CRS); damage claims payments; fixed effects; flood 

insurance; flood mitigation; flood risk; genetic matching; Mundlak; National Flood Insurance 

Program (NFIP)  
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Community-level flood mitigation effects on household-level flood insurance and damage 

claims payment 

 

I. INTRODUCTION 

 

The National Flood Insurance Program (NFIP) was created in 1968, with the goal of 

reducing the impact of flooding on private and public structures by providing affordable insurance 

to property owners and by encouraging communities to adopt and enforce floodplain management 

regulations (Federal Emergency Management Agency, FEMA 2015).  A community that chooses 

to participate in the NFIP is required to undertake some standard flood mitigation activities, 

including enforcement of building and zoning ordinances (FEMA 2015).  Individual property 

owners within that community are then eligible to purchase flood insurance.  

Participation in the NFIP, however, has lagged behind expectations (Thomas and 

Leichenko 2011).  This has led to continuous program reforms that aim at increasing participation 

via programmatic changes, mandatory NFIP participation, as well as premium rate adjustments 

(Thomas and Leichenko 2011).  In an effort to increase both flood mitigation activity at the 

community level and NFIP participation at the household level, FEMA created the Community 

Rating System (CRS) in 1990.  Participation in the CRS is optional, and provides a mechanism by 

which residents in a community can earn flood insurance premium discounts if the community 

undertakes additional flood mitigation actions.  Although the CRS program aims to encourage 

NFIP participation and reduce future flood damages, it is not clear if and to what degree 

participation in the CRS actually affects these outcomes.  Zahran et al. (2009) find a positive and 

significant relationship between increased CRS participation and NFIP participation (policies-in-

force).  Michel-Kerjan and Kousky (2010) find a negative relationship between increased CRS 
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participation and damage claims payments.  Highfield and Brody (2013) find a negative 

relationship between some, but not all, specific CRS mitigation activities and damage claims 

payments.  Brody et al. (2007a & 2007b) find a negative relationship between increased CRS 

participation and property damages (measured as the dollar value of total losses from flood 

events).    

However, with the exception of Michel-Kerjan and Kousky (2010), who analyzed the 

effect of CRS participation on damage claims payments, these studies have focused on within-

CRS effects, i.e., how marginal changes in CRS points or class affect NFIP participation (policies-

in-force), damages, or damage claims payments.  They have not examined the effect of 

participating (or not) in the CRS.    Furthermore, almost all such work has focused on either 

Florida or Texas.  Although Highfield and Brody (2013) used a sample of CRS participating 

communities across the U.S., they looked only at the effects of specific CRS activities on damage 

claims payments.   

Past studies have employed various sets of control variables to isolate the effect of CRS, 

but to the best of our knowledge, have not taken additional steps to isolate the treatment effect, 

such as the use of matching methods.  Matching is a method that seeks to balance a sample 

between treatment group (i.e., units that received program intervention) and control group (i.e., 

units that did not receive program intervention) observations.  Genetic matching, proposed by 

Diamond and Sekhon (2013), is a unique matching approach that employs a search algorithm to 

locate a metric distance that optimizes covariate balance.  With genetic matching, for each 

covariate, weights are assigned to the calculated metric distance between the treated units and the 

control units.  The weights determine the contribution of the units to achieving balance (Diamond 
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and Sekhon 2013).  We employ this method, using key geospatial and socioeconomic indicators 

during the matching procedure to achieve balance and obtain the final matched sample. 

In this paper, we depart from earlier studies by looking at the discrete impact of CRS 

participation (versus non-participation) on NFIP participation (measures as total number of 

policies-in-force in a community in a year) and damage claims payments (measured as total dollar 

value of claims in a community in a year), respectively.  Our study area focuses on panel data 

running from 1994 to 2013 for NFIP communities in Alabama and Mississippi.  Overall, we find 

that participation in the CRS leads to a significant increase in household participation in the NFIP, 

with relatively greater effects among coastal communities.  We find significant effects of CRS 

participation on damage claims payments only in one of the states studied (Alabama), and only 

among non-coastal communities.  

The rest of the paper is outlined as follows. In Section II we provide a background on 

NFIP and CRS. The study area and data used to inform our analyses are presented in Section III of 

the paper. In Section IV, we develop a model framework to link the outcome variables (i.e., NFIP 

participation and damage claims payments) to our independent variables. We also discuss the 

genetic matching technique used. The econometric models employed to inform our analyses are 

discussed in Section V. In Section VI, we present and discuss the results. In Section VII, we 

conclude and discussion policy implications. 

 

II. BACKGROUND 

 

National Flood Insurance Program (NFIP) 
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The National Flood Insurance Act of 1968 created the National Flood Insurance Program 

(NFIP) to provide flood insurance to individuals and businesses.  Prior to that, flood insurance 

was not widely available due in part to adverse selection and high costs of servicing claims when 

a major flood disaster occurred (Michel-Kerjan and Kousky 2010).   

Flood risk designation is accomplished via Flood Insurance Rate Maps (FIRMs), produced 

by the US Army Corps of Engineers.  On the FIRMs, flood risks are classified into two distinct 

categories:  the Special Flood Hazard Area (SFHA) and the area outside of the SFHA, referred to 

here as the Non-SFHA.  As the names imply, SFHA includes high risk areas and the Non-SFHA 

includes moderate-to-low risk areas.  Specifically, the SFHA is the land area covered by the 

floodwaters of the “base flood” on FIRMs.  The “base flood” is the flood having a one percent 

chance of being equaled or exceeded in any given year.  This is the regulatory standard, also 

referred to as the "100-year flood," and the SFHA is thus also referred to as the “100-year flood 

zone”.  The base flood is the national standard used by the NFIP and all federal agencies for the 

purposes of requiring the purchase of flood insurance and regulating new development.  Base 

Flood Elevation (BFE), which is the computed elevation to which floodwater is anticipated to rise 

during the base flood, is typically shown on FIRMs. 

The SFHA is further delineated into “A” and “V” zones.1  V zones are coastal high hazard 

areas that experience high-velocity wave action (i.e., storm surge), and A zones are inland high 

hazard areas.  Specific zones outside of the SFHA, i.e., the Non-SFHA zones, include B, C, X 

(shaded and unshaded), and D zones.  Zones B and X (shaded) are moderate flood hazard areas, 

                                                           
1 Actually, the zones in the SFHA include A, AO, AH, A1-30, AE, A99, AR, AR/A1-30, AR/AE, 

AR/AO, AR/AH, AR/A, VO, V1-30, VE, and V.  For the purposes of discussion here, “A” and 

“V” are sufficient. 
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whose risk falls between the limits of the base flood and the 0.2-percent-annual-chance (or 500-

year) flood.  Zone C and X (unshaded) are minimal flood hazard areas with elevation above the 

0.2-percent-annual-chance (or 500-year) flood.  Zone D is used for areas where there are possible 

but undetermined flood hazards, or where a community incorporates portions of another 

community’s area where no map has been prepared (FEMA 2016b). 

Properties located in flood risk areas that are not mapped onto the FIRM (referred to as 

“pre-FIRM”), i.e., where no flood maps exist, are eligible to receive subsidized flood insurance 

policies until FIRMs are created.  For areas located on the FIRM, strict building ordinances and 

actuarial flood insurance rates apply to new developments (Kunreuther and White 1994; Adelle 

and Leichenko 2011).  NFIP policies come in two forms, the actuarial policies and the discounted 

policies.  About a quarter of the entire NFIP policy rates are subsidized on pre-FIRM bases (Bin, 

Bishop, and Kousky 2012).  Flood insurance premia are set nationally, but vary according to flood 

zone designation and building characteristics such as elevation above base flood.    

The NFIP has seen several reforms over the years aimed at either increasing participation 

(especially in terms of homeowner’s purchase of flood insurance), or reducing insured damage 

claims, or both.  For example, in 1973, property owners with federally-backed mortgages were 

mandated to purchase flood insurance if the property was located in a SFHA.  The “Write-Your-

Own” program was introduced in 1983, which allowed insurance companies to write and market 

flood insurance policies while the federal government retained responsibility for the settling of 

claims.  The Community Rating System (CRS) was introduced into the NFIP program in 1990.  In 

1995, FEMA also introduced the “Cover America” program, a campaign that promoted awareness 

of flood risk (Michel-Kerjan 2010).  In the year 2004, the National Flood Insurance Act of 1968 

was reformed, with the primary goal of reducing payments on repeat-claim properties (FEMA 
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2016c).  Some specifics to this reform were the introduction of a pilot flood mitigation program 

for properties experiencing higher damages, and FEMA-funded flood mitigation activities for 

these properties (FEMA 2016c).  The Biggert-Waters Flood Insurance and Modernization Act was 

passed in 2012, and aimed at restructuring premium rates, enforcing the compulsory flood policy 

purchase for federally-backed mortgages, and addressing other mitigation issues (Center for 

Insurance Policy and Research 2012; FEMA 2016c).  In 2014, the Biggert-Waters Flood 

Insurance and Modernization Act was replaced with the Homeowner Flood Insurance 

Affordability Act.  This legislation seeks to reduce premium rates on selected policies and also 

cancel some rate increases that had previously been implemented (FEMA 2016c). 

 

Community Rating System (CRS)  

 

To participate in the CRS program, a community must first be a participant of the NFIP.  

Participation in the CRS is voluntary, and residents of a participating community are eligible for 

premium discounts on individual policies.  Thus the CRS links community-level flood mitigation 

with household-level NFIP participation.  Under the CRS program, there are 19 credit-generating 

flood mitigation activities organized under four general categories called “series”, labeled Series 

300, 400, 500, and 600, respectively (NFIP CRS Coordinator’s Manual 2013).  Activities under 

series 300 (public information) aim to motivate flood insurance purchase and provide information 

to residents on how to reduce flood damages.  Series 400 activities (mapping and regulations) 

involves mapping of areas onto FIRMs, protecting floodplains, managing storm water, and 

ensuring higher standard regulations.  Activities under series 500 (flood damage reduction) 

involve the adoption of good floodplain management plans, relocating flood-prone structures, and 
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maintaining community drainage systems.  Series 600 activities (warning and response) seek to 

provide warnings of possible floods, and also respond to flood events so as to minimize loss of 

life and property.2   

Depending on the degree to which participating communities undertake these activities, 

communities are awarded credit points up to the maximum allowed for each activity.  An NFIP 

community can undertake none, some, or all of the 19 CRS activities.     

Communities are then assigned a “class” based on the overall CRS credit points earned, 

ranging from 10 (lowest level of participation) to 1 (highest).  For every 500–point-increment in 

overall credit points, the CRS class improves (i.e., decreases).  In most cases, NFIP communities 

that enter the CRS program for the first time are rated as class 9 (FEMA 2015), but those that do 

not earn at least 500 points are eventually re-classified as class 10.  Class 10 communities are not 

eligible for premium discounts, and are treated as non-participating communities.  Table 1 reports 

the premium discounts associated with each CRS class, which differs for SFHA and non-SFHAs.  

Policy discounts range from 0% to 45%, in 5% increments for residents located in SFHAs.  For 

                                                           
2 Flood mitigation activities may be classified as “structural” or “non-structural”.  Structural forms 

consist of large-scale construction projects such as seawalls and channels, while non-structural 

forms consist of land use planning tools, flood insurance, education and training, and emergency 

and recovery policies (Highfield and Brody 2013).  A Community’s preference over the two 

forms has been shown to be a function of cost.  Highfield and Brody (2013) argue that CRS is 

skewed in favor of non-structural forms.  Brody et al. (2009a) found that local jurisdictions in 

Florida and Texas rely more on non-structural forms, whereas Brody, Kang, and Bernhardt (2010) 

find that Florida communities rely relatively more on non-structural forms whereas Texas 

communities rely more on structural forms. 
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residents in non-SFHAs, the policy discount is 5% if the community is rated class 7 through 9, 

and 10% if rated 6 or better.3   

The CRS program is updated every three years. However, some minor changes to the 

program occur on yearly basis (FEMA 2016f).  The recent major update to the CRS program 

occurred in 2013.  The goal of the changes were to reduce liabilities, improve disaster resiliency 

and sustainability of communities, integrate a “whole community” approach to emergency 

management, promote natural and beneficial functions of floodplains, increase understanding of 

risk, and strengthen adoption and enforcement of disaster-resistant building codes.  These changes 

are expected to have different degrees of impacts on CRS communities.  For example, points 

available for CRS activity 420 (Open Space Preservation) have increased whereas points available 

for CRS activity 320 (Map Information Service) have decreased.  Additionally, communities will 

now be required to earn a higher number of points to maintain their CRS participation status, i.e., 

to achieve a Class 9 (entry-level) status (FEMA 2013b). 

Despite the potential benefits to participating communities and their residents, the CRS 

program, like the NFIP, appears to suffer from low participation, although it depends on how 

                                                           
3 Residents in flood zones B, C, and X, are also typically eligible for so-called “Preferred Risk 

Policies” that are cheaper than the standard policies in these non-SFHA zones.  Residents with 

such policies are not eligible to receive CRS premium discounts (FEMA 2013a).  Residents that 

have made repeated claims and/or received multiple federal flood relief disaster payments are not 

eligible for Preferred Risk Policies.  Residents of Emergency Program communities, which are 

communities where flood hazard information is not available and/or no FIRMs exist, are also not 

eligible for CRS premium discounts.  Residents in Emergency communities have a restricted 

amount of coverage that is less than the actuarial rates (FEMA 2016e).    
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participation is measured.  Of the more than 22,000 NFIP communities in the U.S., only 5% of 

them participate in the CRS (FEMA 2016d).  On the other hand, out of the 5.6 million NFIP 

policies-in-force in the U.S., 68% of them are in CRS-participating communities (FEMA 2016d).  

Thus, although few NFIP communities participate in the CRS, more than two thirds of NFIP 

policies-in-force are in CRS-participating communities.  Previous research has found that 

characteristics spanning from hydrological to socio-demographic may influence community 

participation in the CRS (Brody et al. 2009b; Landry and Li 2012; Sadiq and Noonan 2015).   

  

III. STUDY AREA AND DATA 

 

The states of Alabama and Mississippi are located on the Gulf of Mexico coast of the 

United States.  Figure 1 shows the distribution of CRS participation by communities in Alabama 

and Mississippi.4  Although both coastal and noncoastal communities participate in the CRS 

program, there is greater participation density in the coastal areas.  In Alabama, 12 out of 428 

NFIP communities participate in the CRS program, whereas in Mississippi, 31 out of 330 NFIP 

communities participate (FEMA 2013a).  The total number of NFIP policies-in-force in Alabama 

in 2013 was 58,383, of which 32,519 were in CRS participating communities.  Mississippi had a 

total of 74,299 policies-in-force, out of which 52,866 were in CRS participating communities.     

Data on NFIP policies-in-force, damage claims payments, CRS, geospatial and 

socioeconomics were merged into a single dataset by cross-referencing FEMA community 

                                                           
4 An NFIP “community” may be an incorporated city, town, township, borough or village, any 

incorporated area of a county, or an entire county.  It is simply a distinct geographical entity for 

the purpose of administering the NFIP and CRS programs in that locality. 
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identification codes, community name, state Federal Information Processing Standard (FIPS) 

codes, county FIPS codes, FIPS entity codes, American National Standards Institute (ANSI) 

codes,  and year.  The merging process was done using Microsoft Excel and ArcGIS software.  

NFIP communities that did not have at least 20 policies-in-force for at least two periods were 

omitted from the analysis.   

Table 2 presents the variables, their description, unit of measurement, and data source.  

The distribution of the dependent variables (i.e., NFIP policies-in-force and damage claims 

payments) were not normal, and were consequently log-transformed to approximate a normal 

distribution.  

  

IV. MODEL FRAMEWORK 

 

Based on findings from past studies (Smith 1968; Smith and Baquet 1996; Coble et al. 

1996; Marquis and Long 1995; Kriesel and Landry 2004; Schmidt and Zank 2007; Zahran et al. 

2009; Landry and Jahan-Parvar 2011; Petrolia, Landry, and Coble 2013; Gallagher 2013; Petrolia 

et al. 2015; Cummins and Tennyson 1996; Brody et al. 2007a and 2007b; Michel-Kerjan and 

Kousky 2010; Highfield and Brody 2013; Brody, Highfield, and Blessing 2015), we assume that 

at the aggregate level, NFIP policies-in-force and damage claims payments are a function of flood 

mitigation activities undertaken (i.e., CRS), geospatial factors of the community, and 

socioeconomic factors.   

The dependent variables are NFIP participation and Damage claims payments. The 

independent variables are categorized as policy-related, geospatial, socioeconomic, and fixed-

effects (by community and year).   Our variable of interest is CRS.  Specifically, let Equation 1 
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describe the relationship between outcome y (i.e., NFIP participation, measured as the number of 

NFIP policies-in-force in a community in a given year; or Damage claims payments, measured as 

total dollar value of claims in a community in a given year) and the set of explanatory variables: 

, , , , , ,

, , , , ,

, , ,

CRS Years in CRS  Coverage,A flood zones V flood zone B flood zone  C flood zone  

y f Coast,Mississippi Slope Elevation Stream density Precipitation,Household

Income  Education Community fixed effects Ye



 ar fixed effects

 
 
 
  

      

[1] 

The CRS variable, Years in CRS, and Coverage are the policy variables.  Coverage only 

enters the damage claims model while Years in CRS enters the NFIP participation model.  The 

Community fixed-effects and Year fixed-effect are to account for individual community 

heterogeneity and year effects respectively.  The geospatial variables we include in our models are 

A flood zones, V flood zone, B flood zones, C flood zones, Coast, Mississippi, Slope, Elevation, 

Stream density, and Precipitation.  We include Precipitation only in the NFIP participation 

model.  Socioeconomic variables are Household, Income, and Education.  

Cummins and Tennyson (1996) mention that because people’s marginal utility decreases 

as wealth increases, it is expected that wealthier policyholders would have lower motivation for 

filing damage claims.  However, one could also expect that when a damage event occurs, claims 

payments made to wealthy individuals will be higher, relative to low income earners given that 

wealthier people have higher coverage.  As such, to control for the different levels of coverage, 

we include dollar amount of Coverage in our damage claims payments model.  

We include the variables A flood zones, V flood zone, B flood zone, and C flood zone in 

both NFIP participation and damage claims models.  A and V flood zones are associated with 

SFHA and B and C flood zones associated with non-SFHA.  Petrolia, Landry, and Coble (2013) 

find a positive relationship between individuals located in SFHAs and flood insurance demanded.  

Michel-Kerjan and Kousky (2010) find that damage claims payments increases in SFHA relative 
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to non-SFHA, noting higher average claim payments in V zones relative to A zones.  We include 

in our models the variable Coast.  Zahran et al. (2009) finds a positive relationship between 

proximity to the coast and NFIP policies-in-force, and Petrolia et al. (2015) finds the same with 

regard to wind insurance purchase. We include Precipitation in our damage claims model. 

Gallagher (2013) finds that flood insurance uptake increases immediately after a community 

experiences flooding, and Brody et al (2007a and 2007b), Spekkers et al. (2013), Highfield and 

Brody (2013), and Brody, Highfield, and Blessing (2015) find that Precipitation has a positive 

effect on property damage, damage claims, damage claims payments, and insured flood losses, 

respectively.  We also include a Slope variable in our models.  Highfield and Brody (2013) find 

that slope has a positive effect on damage claims payments in SFHAs, whereas Brody, Highfield, 

and Blessing (2015) find a negative effect on insured losses (except for in the V zone).  We 

include an Elevation variable as well.  Although not in geospatial terms, Michel-Kerjan and 

Kousky (2010) find that Elevation of a building has a negative effect on damage claims payments.  

We include a Stream density variable.  Zahran et al. (2009) controlled for stream density but did 

not find any effect on NFIP participation, and Brody et al. (2007a) found no effect between stream 

density and property damage.      

For socioeconomic factors, we include Households, Income, and Education in our models.  

Dixon, Macdonald, and Zissimopoulos (2007) argue that rising demand for insurance for 

properties in the Gulf and Atlantic Coast can be explained by the increasing population growth 

and property values. With regards to damage claims payments, Highfield and Brody (2013) find 

population to be positively related to damage claims payments, and Brody, Highfield, and 

Blessing (2015) find a positive relationship between Households and insured flood losses.  

Browne and Hoyt (2000); Kriesel and Landry (2004); Kousky (2011); and Petrolia, Landry, and 
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Coble (2013) find Income to be positively related to flood insurance demand, whereas Coble et al. 

(1996) find a negative relationship between crop producers’ wealth and the likelihood that they 

will purchase crop insurance.  Related to this finding, Smith and Baquet (1996) note that wealthier 

farm operators are more likely to self-insure.  Marquis and Long (1995) find Income to be 

positively related to demand for health insurance by non-employment based insurance (i.e., 

workers who do not receive health insurance as work benefit).  Petrolia et al. (2015) find a 

positive relationship between the log of Income and wind insurance purchase.  Smith and Baquet 

(1996) observed in their study that farm operators’ level of Education is positively related to their 

decision to demand multiple-peril crop insurance.  Brody, Highfield, and Blessing (2015) find 

Income to be positively related to insured flood losses. We also include Education in our damage 

claims payments model.  

 

V. MATCHING 

 

In estimating the impact of a program on outcomes, it is suggested that for comparison, the 

units that received the program, and those that did not receive the program should share similar 

characteristics so as to eliminate program selection bias (Rosenbaum and Rubin 1983; Rubin and 

Thomas 2000; Stuart and Greene 2008).  To accomplish this, the literature suggests using 

matching methods (Rosenbaum and Rubin 1983; Rubin and Thomas 2000; Stuart and Green 

2008).  Matching is a method that seeks to balance a sample between treatment group (i.e., units 

that received program intervention) and control group (i.e., units that did not receive program 

intervention) observations.  Here, balance means that the differences in the distributions between 

the covariates (here the control variables) for the treatment group and the control group are 
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minimized.   Although one matches on covariates of units (here, communities) from the treatment 

group and that of the control group, matching becomes difficult when there are more than two 

covariates.  To overcome this, three main approaches have been identified in the matching 

literature: matching on metric distance (e.g., Mahalanobis-metric distance) (Rubin 1980), 

matching on propensity scores (Rosenbaum and Rubin 1983), and genetic matching (Diamond 

and Sekhon 2013). 

Generally, the Mahalanobis metric-distance performs better (in terms of balance) when 

covariates are ellipsoidally distributed (Rubin 1980; Diamond and Sekhon 2013).  However, an 

increase in the number of covariates matched on could distort the ability of the Mahalanobis 

metric-distance approach to find units with similar distribution of covariates (Gu and Rosenbaum 

1993; Rubin and Thomas 2000).  Alternatively, one may match on the propensity scores as 

suggested by Rosenbaum and Rubin (1983) if the covariates are distributed non-ellipsoidally.  A 

poorly-specified propensity score model, however, could worsen balance and also bias the 

estimates of the outcome (Diamond and Sekhon 2013).  Genetic matching, proposed by Diamond 

and Sekhon (2013), is a more general form of the Mahalanobis metric distance approach.  What 

makes genetic matching unique is that unlike other matching methods, it uses a search algorithm 

to locate a metric distance that optimizes covariate balance.   

Regardless of the method used, a matching algorithm is needed to select units from the 

control and treatment groups (Diamond and Sekhon 2013).  Various matching algorithms, 

including nearest-neighbor, radius, caliper, and stratification have been discussed in the literature 

(see Sianesi 2001; Stuart and Greene 2008; Dehejia and Wahba, 2002; Diamond and Sekhon 

2013).   
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Here, we employ the genetic matching approach of Diamond and Sekhon (2013).  With 

genetic matching, for each covariate, weights are assigned to the calculated metric distance 

between the treated units and the control units.  The weights determine the contribution of the 

units to achieving balance (Diamond and Sekhon 2013).  Following Diamond and Sekhon (2013), 

the generalized Mahalanobis distance is defined as  

     -1/2 -1/2

( , , ) = - -
i j i j i jGMD

 
k k w k k wz z k k

                                           
[2] 

where -1/ 2
z is the sample covariance of the covariates (Cholesky decomposition of z ), and k  is the 

vector of covariates.  The covariates could be replaced with estimated propensity scores or one 

can include both the estimated propensity scores and the covariates.  w  is the weight matrix, 

which is positive definite with zero off-diagonal elements. 

  We use the GenMatch algorithm included in the statistical package R (version 3.3.0).  

First, we categorize our data into CRS participating communities (treatment group) and non-

participating communities (control group).  The categorization is based on a community’s 

participation during the most recent year observed (i.e., 2013) to ensure that we maintain a 

balanced panel, i.e., that each NFIP community has the same number of observations.  We 

included estimated propensity scores, higher order, and interaction terms of the covariates that 

were continuous, in the GenMatch function in R.  Covariates used during the matching procedure 

included: A flood zones, V flood zone, B and C flood zone (i.e., B and C flood zone combined), 

Coast, Mississippi, Slope, Elevation, Stream density, Household, Income, and Education.5  The 

                                                           
5 We exclude the Precipitation variable from the set of pre-treatment covariates when performing 

the genetic matching because it reduces balance.  As recommended by Ho et al. (2007), although 

by theory one has to account for all variables that otherwise would have been used in a regression, 
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GenMatch algorithm assigns weights to the covariates such that the weights depict the importance 

of the covariates in achieving balance.  The weights generated by GenMatch were then fed into 

the Match algorithm in R, together with the covariates.  In both the GenMatch and the Match 

functions in R, we use the nearest neighbor with replacement option.  Specifically, for each treated 

unit we identify three units (m = 3) from the control group that are closest in distance.  The Match 

function yields a final set of weights that identify our final matched sample (where control units 

are weighted based on the number of times each is used as a match, and where all treatment units 

received a weight of one).  Table 3 reports the means of the covariates before and after the 

matching.  For the treatment group, means of the covariates are necessarily the same before and 

after matching.  For the control group, the means of the covariates for the control group are closer 

to the means of the treatment group after matching. For example, the treatment group mean for 

Elevation is 218.78.  Before matching, the mean of the control group is 367.73, but after matching 

is 224.06, as shown in Table 3.  

To examine the effectiveness of the matching procedure, we follow Ho et al. (2007) to 

construct quantile-quantile (QQ) plots of the pre-treatment covariates used in the genetic 

matching.  For binary variables Coast and Mississippi, we exhibit the distributions using 

histograms.  Figure 2 contains the QQ plots of the covariates before and after matching.  In the 

QQ plots, points more proximal to the 45o line depict good matches, whereas points more distant 

to the 45o line indicate poor matches, between the treatment units and the control units.  With the 

histogram, for a good match, the bars for the treated and the control units should be level or nearly 

level relative to before matching.  A visual examination of the QQ plots shows that pre-treatment 

                                                                                                                                                                                             

not all pre-treatment covariates are to be used especially when including them in the matching 

process leads to inefficiency and reduces balance. 
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covariates such as A flood zones, Slope, Elevation, Household, Income, and Education have 

improved distributions after the genetic matching was done relative to before.  On the other hand, 

the distributions of pre-treatment covariates V flood zone, B and C flood zone, and Stream 

Density, do not improve much.  The histograms indicate improvements in the distributions for 

Coast and Mississippi.  Table 4 contains the weighted summary statistics of the variables used in 

the econometric model, and reports the expected signs for the independent variables. 

   

VI. ECONOMETRIC MODEL 

 

The data comprise a panel (i.e., has a cross-section (N) and a time-series dimension (T)).  

Let 

 it it i ity c   x   [3] 

where, ity  is the dependent variable (NFIP participation and Damage claims payments) we seek 

to explain, itx  is a vector of covariates.  Specifically, the vector contains the policy-related 

variables CRSj , where, for the NFIP participation model,  j = Alabama Coastal communities pre-

Katrina, Alabama non-coastal pre-Katrina, Alabama coastal post-Katrina, Alabama non-coastal 

post-Katrina, Mississippi coastal pre-Katrina, Mississippi non-coastal pre-Katrina, Mississippi 

coastal post-Katrina, and Mississippi non-coastal post-Katrina; and for the Damage claims 

payments model, j = Alabama coastal communities, Alabama non-coastal, Mississippi coastal, 

and Mississippi non-coastal.  The vector also contains the policy-related variables Years in CRS 

and Coverage; geospatial variables A Flood Zones, V Flood zone, B Flood Zone, C Flood Zone, 

Coast, Mississippi, Coast × Mississippi,  Slope , Elevation, Stream density, and Precipitation; 
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socioeconomic variables Household, Income, and Education.    is a vector of parameters,  
ic  is 

the unobserved heterogeneity (i.e., Community and Year fixed-effects), and 
it  is the error term.  

The subscripts i  and t  are the units (in our case, the communities) and time (year), respectively.6   

 Panel data models vary based on the assumption that underlies the conditional mean,

i i
E c x   , of the unobserved heterogeneity  ic  in equation 3.  That is, we may have a pooled 

model,  i ii
E c x h x      , where   is a constant for all individual units, hence no individual 

unobserved heterogeneity, or a fixed-effects model which assumes that ( )i i ii
E c x h x      , 

where i  represents a constant term for a particular unit.  The random-effects model assumes that,

0i i
E c x     (Wooldridge 2002; Greene 2012).  Unlike the fixed-effects model, random-effects 

does not allow the individual unobserved heterogeneity to be correlated with the independent 

variables (Greene 2012).  It is important to mention that for the fixed-effects model, time-

invariant covariates cannot be estimated because they are confounded with the unit-specific 

constants (Wooldridge 2002; Greene 2012).  Another model variation is the Mundlak (1978) 

                                                           
6 The econometric model as shown in equation 4 is analogous to the difference-in-differences 

(DD) approach.  The DD seeks to compare changes in outcomes between a group that receives 

treatment (CRS participating communities) and those that did not receive the treatment (non-CRS 

communities) (Carpenter 2004, and Ravallion and Chen 2005).  Unlike the traditional DD that has 

two time periods (before and after), for panel data (with more than two time periods) where the 

treatment assignment is arbitrary, a set of year dummies are included in the regression framework 

(Imbens and Wooldridge 2007). Also, as noted by Gruber (1994), using a regression framework 

other than the traditional DD gives one the freedom to control for other covariates. 
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approach, which is similar to the random-effects model.  However, here, the correlation between 

the observed covariates and the unobserved heterogeneity are addressed by adding as covariates 

group-means of the time-varying covariates (Greene 2012).  For example, if an income variable is 

included in the model that varies over time, then an additional group-mean income variable would 

also be included that repeats the mean of a given individual’s income over all of that individual’s 

observations.  Thus, this approach assumes that [ | ] ( )i i i iE c h  x x x  .  As noted by Greene 

(2012), the Mundlak approach can be used as a compromise between the fixed and random-effects 

models. 

 

Testing for Model Assumptions  

 

To test for panel effects (i.e., to test a pooled model against a random- or fixed-effects 

panel model), the Breusch-Pagan (B-P) Lagrange multiplier test is used (Greene 2012).  The 

Hausman test (Hausman 1978) is then used to test the null hypothesis of random effects against 

fixed effects.  Wu’s variable addition test (Wu 1973) is also used to test if the individual effects 

are correlated with the regressors after including the means of time-varying variables and testing 

the joint hypothesis that the parameters on the group means are not different from zero.  We also 

test for the presence of serial correlation, contemporaneous correlation, and heteroscedasticity 

using Wooldridge’s test (Wooldridge 2002), the Pesaran (2004) test, and White’s general test 

(White 1980), respectively.    

Results on the tests for assumptions on the individual effects show that for the NFIP 

policies-in-force model, we reject the null hypothesis of no panel effects (Breusch-Pagan statistic, 

χ2 = 4340.31, df = 1).  The Hausman test for random-effects vs. fixed-effects shows that the null 
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hypothesis of random-effects is rejected (Hausman statistic, χ2 = 39.81, df = 12).  Result on Wu’s 

variable addition test (Wald statistic, χ2 = 97.97, df = 12) indicates a rejection of the null 

hypothesis that individual effects are not correlated with the regressors (i.e., the Mundlak’s 

approach does not mimic a random-effects model, but rather a fixed-effects model).  Therefore, 

we report results based on the Mundlak’s approach for the NFIP participation (number of policies-

in-force) model.   Considering the damage claims payments model, we reject the null hypothesis 

of no panel effects (Breusch-Pagan statistic, χ2 = 59.44, df = 1).  The Hausman test (Hausman 

statistic, χ2 = 24.26, df = 9), indicates that we fail to reject the null hypothesis of random-effects 

and the Wu’s variable addition test result (Wald statistic, χ2 = 37.23, df = 9) also indicates a 

rejection of the null hypothesis that individual effects are not correlated with the regressors (i.e., 

the Mundlak’s approach is preferred although at a weak level of significance).     

Based on the results of the tests for correlation and heteroscedasticity, we find the presence 

of serial correlation (Wooldridge statistic, F = 287.09, df = 1, 112), contemporaneous correlation 

(Pesaran statistic, Z = 10.38), and heteroscedasticity (White statistic, χ2 = 1369.50, df = 586) in 

the NFIP policies-in-force model.  The results also show evidence of heteroscedasticity (White 

statistic, χ2 = 901.77, df = 554) but no serial correlation (Wooldridge statistic, F = 0.31, df = 

1,112) and contemporaneous correlation (Pesaran statistic, Z= -2.83) in the damage claims 

payments model.   Where serial autocorrelation and heteroscedasticity exists, the robust 

covariance matrix estimator is used (Wooldridge 2002).  This estimator is valid in cases where 

one has issues of heteroscedasticity or serial correlation (Wooldridge 2002).  The use of the robust 

covariance matrix estimator and related test statistics, for a fixed number of time periods and large  

number of units relative to the number of time periods, which is the case here, results in no loss of 

information or properties even if there is no correlation or heteroscedasticity. 
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We estimate all models, with robust standard errors, using NLOGIT 5 software (Greene 

2012).  Matching weights serve as the regression weights. Here, the matching weights enter the 

regression as follows:    

                                 
1

w i i i i i ii i
w w y



       b x x x                                                     [4] 

where wb is the vector of estimated parameters, w are the matching weights and x and y are as 

previously defined.  

 

VII. RESULTS 

 

Effects of CRS Participation on NFIP Participation (log of number of policies-in-force) 

 

In Table 5, we report results on the effects of CRS participation on NFIP participation (log of 

number of policies-in-force), based on the fixed-effects and Mundlak’s approach.  Reported are 

the raw coefficients, robust standard errors, and marginal effects.  Marginal effects are calculated 

by exponentiating the raw coefficient.7  Although the fixed-effects approach has a much better 

overall model fit in terms of R2 value, the results are strikingly similar, making it possible to 

discuss both sets of results simultaneously.  The Mundlak model allows for inclusion and 

interpretation of additional policy-relevant time-invariant variables.  Additionally, although we 

discuss results based on the matched sample, we also estimate models using the full unmatched 

sample, reported in the Appendix.  We find that models based on matched data out-perform those 

                                                           
7 Exceptions are log-transformed coefficients, which have a different transformation and 

interpretation.  Examples are provided below. 
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based on the full, unmatched data set:  matched results have better fit statistics and a greater 

number of significant coefficients on policy variables (i.e., NFIP participation and Damage 

claims payments). 

The results show a positive and significant relationship between CRS participation and 

NFIP participation (policies-in-force) for coastal Alabama both pre- and post-Katrina, and for 

coastal Mississippi post-Katrina.  Specifically, we find that, pre-Katrina, the number of NFIP 

policies-in-force is 63% higher in coastal Alabama communities participating in the CRS, and 

90% higher post-Katrina.8  In coastal Mississippi, there is no significant effect pre-Katrina, but 

there is a 64% increase in the number of NFIP policies-in-force post-Katrina.   Zahran et al. 

(2009), also find a positive relationship between increased CRS participation and NFIP 

participation.  Unexpectedly, we find a significantly lower number of policies-in-force for non-

coastal Alabama communities pre-Katrina (15% lower), but find no other significant CRS effects 

among non-coastal communities.  Also somewhat surprisingly, the coefficient of Years in CRS is 

negative and significant. That is, for every additional year in CRS participation, NFIP policies-in-

force declines by 10%.  This result may reflect the fact that, as the time between major storm 

events increases, residents tend to let their coverage lapse. 

The Mundlak’s approach which reports estimates on time-invariant geospatial variables 

shows that, as expected, A and V flood zones have a positive and significant relationship with 

NFIP participation.  However, only the coefficient on A flood zones is significant.  That is, 

ceteris paribus, a 10-percent increase in the proportion of land in a community that is in an A 

                                                           
8 For example, the CRS effect for coastal Alabama pre-Katrina is exp(0.49) = 1.63, i.e., a 63% 

increase over the base case (i.e., non-CRS communities in Alabama pre-Katrina). 
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flood zone increases NFIP participation by 37 percent.9  Parameter estimates on B and C flood 

zones are negative but not significant. B and C flood zones are non-SFHA (i.e., have less flood 

risk compared to A and V flood zones).  The coefficients on Coast and Mississippi are not 

individually significant, but the interaction between them is positive and significant, implying 

higher NFIP participation among coastal Mississippi communities.  Parameter estimates on Slope, 

Elevation, and Stream density are also negative but only Slope and Elevation significantly affect 

NFIP participation.  The coefficient on the Slope variable indicates that a one degree increase in 

the mean Slope of a community reduces the number of NFIP policies-in-force by 31 percent, 

ceteris paribus.  Also, a 100-foot increase in Elevation reduces NFIP policies-in-force by 18 

percent, ceteris paribus.  The negative relationship between Elevation and NFIP participation is 

as hypothesized.  On Stream density, Zahran et al. (2009) also find no effect between stream 

density and NFIP policies-in-force.    

Among the socioeconomic variables, log(Household) has a positive and significant effect 

on NFIP participation:  a 10 percent increase in the number of Households in the community 

increases the number of NFIP policies-in-force by 10 percent, ceteris paribus.10 The finding on 

the relationship between Household and the number of NFIP policies-in-force is consistent with 

the argument made by Dixon, Macdonald, and Zissimopoulos (2007).  Although the positive sign 

between Income and NFIP participation is as expected, the relationship is not significant.  The 

coefficient on Education is not significant in explaining the number of NFIP policies-in-force. 

 

 

                                                           
9 The marginal effect is calculated as exp(3.138/10) = 1.37. 

10 The marginal effect is calculated as 1.100.91 = 1.09.   
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Effect of CRS Participation on Damage Claims payments (log of Damage Claims Payment) 

 

Results presented in Table 6 are based on the Fixed-effects and Mundlak’s approach. We 

find a significant effect of CRS participation among non-coastal Alabama communities only.  

Specifically, we find that such communities have 90% lower claims (in terms of value).11  We 

tested for, but found no significant differences in CRS effects on damage claims pre- and post-

Katrina.  No other significant CRS effects on damage claims were found.   The parameter estimate 

for log(Coverage) is positive and significant in explaining Damage claims payments under the 

Mundlak specification only.  That is ceteris paribus, a 1-percent increase in total Coverage in the 

community leads to a 0.2 percent increase in Damage claims payments.   

On geospatial variables, results from the Mundlak’s approach show that the variables A 

flood zones, V flood zone, and B flood zone have a positive relationship with Damage claims 

payments but only V flood zone is significant.  That is, a 10-percent increase in land in the V flood 

zone increases damage claims payments by 58 percent, ceteris paribus.  With the exception of B 

flood zone, the positive coefficients are as hypothesized. We have no ready explanation for why 

this might be the case for B flood zone.  Parameter estimate on C flood zone is negative as 

expected but it is not significant.   The coefficient on Coast is also positive and significant as 

hypothesized.  Specifically, Damage claims payments are 442 percent higher for coastal 

communities compared to noncoastal communities.  The coefficients on Mississippi and the 

                                                           
11 Birmingham, Decatur, Hoover (a suburb of Birmingham), Homewood (a suburb of 

Birmingham), Huntsville, and Pell City are the only non-coastal Alabama communities 

participating in the CRS.  The sample contains a high number (50) of observations with zero 

claims for these communities. 
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Coast×Mississippi interaction are also positive but not significant.  The coefficient of Slope is 

positive and significant.  Highfield and Brody (2013) also find a positive relationship between 

Slope and total Damage claims payments, although their estimate is not significant.  Brody, 

Highfield, and Blessing (2015) on the other hand find a negative relationship between Slope and 

insured damage losses (except for losses in V-flood zones).  The parameter estimate for Elevation 

is negative as expected, but not significant.  Unexpectedly, the coefficient on Stream Density is 

also negative and significant.  Brody et al. (2007a) find no effect between Stream density and 

property damage. We find a positive and significant relationship between Precipitation and 

Damage claims payments as hypothesized.  However, it is significant only for the fixed-effects 

model.  That is, a 1-inch increase in Precipitation increases Damage claims payments by 19 

percent, ceteris paribus.  Both Highfield and Brody (2013) and Spekkers et al. (2013) find a 

positive relationship between Precipitation and Damage claims payments and the number of 

damage claims, respectively.  Brody et al (2007a & 2007b) also finds that Precipitation has a 

positive effect on property damage.   

On socioeconomic variables, both the fixed-effects and the Mundlak’s approach show a 

positive relationship between log(Household) and Damage claims payments.  However, only the 

result from Mundlak’s approach is significant.  That is, a 10 percent increase in the number of 

Households in the community increases Damage claims payments by 6 percent, ceteris paribus.  

We find no significance for, Income in both estimation approaches, although the relationship is 

positive.  Brody et al. (2007b) also find a positive but not significant relationship between Income 

and property damage (measured in dollars) from floods.  Although results show a positive 

relationship between Education and Damage claims payments, it is only significant for the 
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Mundlak approach.  That is, ceteris paribus, a 1 percent increase in the percent of college 

educated increases damage claims payments by 21 percent.   

      

 

VIII. SUMMARY AND CONCLUSIONS 

 

To the best of our knowledge, we present the first analysis on the impact of CRS 

participation (versus non-participation) on NFIP participation (measured as total number of 

policies-in-force in a community in a year) and damage claims payments (measured as total dollar 

value of claims in a community in a year), respectively.  We employ genetic matching methods to 

group CRS and non-CRS communities with similar characteristics in order to mitigate comparison 

bias.  This study is also the first to provide empirical findings specific to the states of Alabama 

and Mississippi.   

We find that participation in the CRS program increases participation in the NFIP.  We 

also find that growth in NFIP participation does not increase as the tenure of a community in CRS 

increases.  We find that overall, NFIP participation is higher among coastal communities in 

Mississippi compared to coastal communities in Alabama.  We can only speculate as to why this 

might be the case.  The NOAA Office for Coastal Management reports that Alabama has a larger 

coastal population than Mississippi (595,257 vs. 370,702), and more coastline miles (607 vs. 359), 

but that Mississippi experienced a slightly higher number of billion-dollar disasters between 1980 

and 2016 (62 vs. 57), and perhaps this last fact is the underlying reason (NOAA 2016a and b). The 

finding on the impact of CRS participation (versus non-participation) on NFIP participation 

appears to support the goal of the CRS program in improving NFIP participation.  This implies 
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that premium discounts awarded on individual policies in CRS communities may indeed be 

motivating residents to purchase flood policies.    

With regards to CRS effects on Damage claims payments, we find a significant effect of 

CRS participation on Damage claims payments only for Alabama non-coastal communities.  

Although one of the goals of the CRS program is to reduce damages to insured properties, we find 

very limited evidence for such effects in our study area, especially in the coastal zone, where we 

find no significance in either Alabama or Mississippi.  This lack of significant impact of CRS 

participation on Damage claims payments (with the exception of non-coastal Alabama) may be at 

least partly explained by the fact that in cases of severe flood damage events (like Hurricane 

Katrina), the impact of the damage event could overwhelm any mitigation effects.   

Overall, the analysis this paper provides indicates that the CRS program appears to be 

achieving its goal of increasing NFIP participation among CRS-participating communities.  To 

the extent that these additional policies cover the bulk of claims made in the event of a flood, our 

findings imply that increased NFIP participation should result in reduced burdens on state and 

federal agencies to provide emergency post-disaster aid to uninsured households.  However, our 

results indicate that there may be some disconnect between CRS participation and reduced 

damage claims.  Having said this, although FEMA might be witnessing an increase in household 

NFIP participation, its ability to financially sustain the NFIP program is threatened if flood 

mitigation strategies are not reducing damage claims payments.  Given the recent (2013) changes 

to the CRS program, future studies should consider investigating how the changes to the program 

have impacted on outcomes, especially in reducing damage claims payments.  This research 

should serve as a guide to studying the effect of CRS participation on outcomes in other states.         
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TABLE 1 

CRS Credit Points Earned, Classification Awarded, and Premium Discounts 

Classes Overall CRS points Discount (%) in 

SFHA 

Discount (%) in  

Non-SFHA 

1 4,500+ 45 10 

2 4,000 – 4,499 40 10 

3 3,500 – 3,999 35 10 

4 3,000 – 3,499 30 10 

5 2,500 – 2,999 25 10 

6 2,000 – 2,499 20 10 

7 1,500 – 1,999 15 5 

8 1,000 – 1,499 10 5 

9 500 – 999 5 5 

10      499 and below 0 0 

 Source: NFIP CRS Coordinator’s Manual (2013) 
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TABLE 2 

 Description of Variables 

 

Variables 

 

 Unit 

 

Description 

  

 Source 

Dependent Variables 

Policies-in-forcea (1000s) Annual total number of NFIP policies-in-

force. 

FEMA 

Damage claims 

paymentsb 

US $ Annual total damage claims payments.  

 

FEMA 

Independent variables 

Policy variables 

CRS Binary = 1 if an NFIP community is participating in 

the CRS program in a given year, = 0 

otherwise.  Participation is based on the 

year community enters the CRS program. 

FEMA 

Years in CRS units = 1 for the first year in CRS, =2 for the 

second year, etc. = 0 if no CRS 

participation.  

 

Coverage $US Annual total amount of coverage purchased and 

scaled (divide) by 10,000,000. 

FEMA 

Geospatial variables c  

A flood zone % Measured as the percent of land area in a 

community classified as A flood zones. 

FEMA 

V flood zone % Measured as the percent of land area in a 

community classified as V flood zones. 

FEMA 

B flood zone 

 

    %        Measured as the percent of land 

area in a community classified as 

B flood zone. 

   FEMA 

 

C flood zone     % Measured as the percent of land 

area in a community classified as 

C flood zones. 

   FEMA 

Coast Binary = 1 if NFIP community is a NOAA-designated 

coastal community, = 0 otherwise.   

NOAA 

Mississippi Binary = 1 if NFIP community is in Mississippi, = 0 

otherwise (Alabama). 

 

Slope Degree Maximum rate of change from a given grid cell 

to its neighbours. 

USGS 

Elevation Feet Highest point of community above sea level, in 

100 feet.   

USGS 

 



37 

 

TABLE 2 (continued) 

Stream Density miles Length of a stream divided by the square 

kilometers of an area and converted to square 

miles by multiplying the square kilometers 

values by 1.609344. 

USGS 

Precipitation inches Annual amount of precipitation received in 

inches. 

PRISM 

    

Socioeconomic variables 

Household Units The annual total number of household recorded 

for a community and scaled  (divide) by 1000 

US Census 

Bureau/ 

ACS 

Income $US Annual median income recorded for a 

community and scaled (divided) by 1000. 

US Census 

Bureau/ 

ACS 

Education % Percent college educated in a community. US Census 

Bureau/ 

ACS 

    

  Fixed-effects variables  

Post-Katrina Binary = 1 if year > 2005, = 0 otherwise (Pre-

Katrina) 

 

Community 

fixed-effects 

   

Year fixed-

effects  

Binary =1 for 1994, 0 otherwise, 1 for 1995, 0 

otherwise, etc. 

 

Note: NOAA is National Oceanic and Atmospheric Administration; USGS is United States Geological Survey; 

PRISM is Parameter-elevation Relationships on Independent Slopes Model; ACS is American Community Survey; 

1990, 2000, and 2010 US Census Bureau/ ACS data were used. 
a skewness = 4.24, kurtosis = 22.07, and Shapiro-Wilk normality test of 0.40 (p-value of 0.00) 
b skewness  = 17.16, kurtosis = 317.46, and a Shapiro-Wilk normality test of 0.08 (p-value of 0.00) 
c With the exception of Mississippi and Coast, geospatial variables were measured based on a 4 km grid cell. 
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TABLE 3 

Means of Covariates Before and After Matching 

 Mean of Treatment  Mean of Control 

Variables Before match After match  Before match After match 

A flood zone 0.234 0.234  0.202 0.229 

V flood zone 0.063 0.063  0.003 0.031 

B and C flood zone 0.661 0.661  0.770 0.729 

Coast  0.488 0.488  0.116 0.447 

Mississippi 0.721 0.721  0.474 0.587 

Slope 1.978 1.978  2.763 2.112 

Elevation 218.780 218.780  367.730 224.060 

Stream Density 1.279 1.279  1.506 1.456 

Household 14265 14265  69726 15961 

Income  44646 44646  38129 44087 

Education 0.179 0.179  1.228 0.168 
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TABLE 4 

 

Weighted Summary Statistics of Dependent and Independent Variables after Matching used in the 

Regression Analysis 

 

Variables Mean Std. Dev. Min  Max Expected 

signs* 

 Dependent Variables   

Policies-in-force 706.02 1536.53 0.00 10150  

Damage Claims 

Payments (scaled by 

100,000) 

15.63 165 0.00 3740  

 Independent variables  

 Policy variables  

CRS 0.274 0.45 0.00 1.00 +/- 

Years in CRS 2.560 5.13 0.00 20.00 +/ 

Coverage (scaled by 

100,000) 

1150 2920 0.00 22600 + 

      

 Geospatial variables   

A flood zones 0.25 0.17 0.00 0.68 + 

V  flood zone 0.03 0.08 0.00 0.61 + 

B flood zone 0.06 0.14 0.00 0.86 ? 

C flood zone 0.64 0.28 0.00 0.96 ? 

Coast 0.39 0.49 0.00 1.00 + 

Mississippi 0.59 0.49 0.00 1.00 ? 

Slope 2.23 1.51 0.12 6.98 ? 

Elevation 247.90 196.21 1.04 805.46 - 

Stream Density 1.44 0.45 0.00 2.26 + 

Precipitation 59.55 11.80 25.73 170.80 /+ 

 Socioeconomic variables   

Household 13.97 21.369 0.19 156.77 ? 

Income 32.56 12.837 2.00 96.78 +/? 

Education 18.89 11.215 2.10 60.80 +/? 

      

Fixed-effects variables 

Post-Katrina 0.40 0.49 0.00 1.00  

Community fixed-

effects 

     

Year fixed-effects      
 
N = 2260.  However, geospatial variables (except precipitation) are time -invariant 

 *Where two signs are shown, the first is the hypothesized sign for the NFIP policies-in-force model and the second, 

for damage claims payments model. 
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TABLE 5 

Fixed Effects and Mundlak’s Approach Linear Regression Analysis Predicting NFIP Participation 

 Fixed-effect  Mundlak 

Variables Coef. S. E. 

 

Marg. E.   Coef. S. E. 

 

Marg. E. 

Policy variables 

CRS        

Alabama        

    Coastal, Pre-Katrina 0.49*** 0.12 0.63  0.49*** 0.12 0.63 

    Non-Coastal, Pre-Katrina -0.16** 0.08 0.15  -0.16** 0.07 0.15 

    Coastal, Post-Katrina 0.64*** 0.16 0.90  0.64*** 0.16 0.90 

    Non-Coastal, Post-Katrina 0.09 0.11 0.09  0.09 0.11 0.09 

  Mississippi        

    Coastal, Pre-Katrina -0.17 0.22 0.16  -0.17 0.21 0.16 

    Non-Coastal, Pre-Katrina 0.13 0.14 0.14  0.13 0.13 0.14 

    Coastal, Post-Katrina 0.50** 0.24 0.65  0.50** 0.23 0.65 

    Non-Coastal, Post-Katrina 0.03 0.14 0.03  0.03 0.13 0.03 

Years in CRS -0.05*** 0.01 0.10 

 

-0.05*** 0.01 0.10 

Geospatial variables 

A Flood Zones 

  

 

 

3.14*** 1.00 0.37 

V Flood zone 

  

 

 

0.22 1.63 0.02 

B Flood Zone 

  

 

 

-0.72 0.81 0.07 

C Flood Zone 

  

 

 

-0.40 0.77 0.04 

Coast 

  

 

 

-0.58 0.46 0.44 

Mississippi 

  

 

 

-0.54 0.36 0.42 

Coast×Mississippi 

  

 

 

1.33** 0.54 2.78 

Slope 

  

 

 

-0.37*** 0.10 0.31 

Elevation 

  

 

 

-0.002* 0.001 0.18 

Stream density     -0.55 0.35 0.42 

Socioeconomic variables 

Log(Household) 0.91*** 0.26 0.09 

 

0.91*** 0.24 0.09 

Income 0.01 0.01 0.01  0.01 0.01 0.01 

Education -0.002 0.01 0.002  -0.002 0.01 0.002 

        

Year fixed-effects Yes 

 

 

 

Yes 

 

 

Mundlak Group Means No 

 

 

 

Yes 

 

 

Constant     4.18***       0.84  

        

R2 0.95 

 

 

 

0.74 

 

 

N 2260      2260    

Note: ***, **, and * shows significance at 1%, 5%, and 10% levels of significance. Standard errors (S. E.) are robust. 
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TABLE 6 

Fixed Effects and Mundlak’s Approach Linear Regression Analysis Predicting Damage claims 

Payments 

 Fixed-effects  Mundlak 

Variables Coef. S. E. 

 

Marg. E.   Coef. S. E. 

 

Marg. E. 

Policy variables 

CRS        

  Alabama        

     Coast 0.79 2.09 1.20  0.79 2.04 1.20 

     Non-Coast -2.34*** 0.28 0.90  -2.34*** 0.28 0.90 

  Mississippi        

     Coast 0.64 0.74 0.90 

 

0.64 0.72 0.90 

     Non-Coast  0.90 2.19 1.46 

 

0.90 2.13 1.46 

Log(Coverage) 0.19*** 0.04 0.002  0.17*** 0.02 0.002 

Geospatial variables 

A Flood Zones 

  

 

 

0.39 1.58 0.04 

V Flood zone 

  

 

 

4.54* 2.52 0.58 

B Flood Zone 

  

 

 

1.68 1.33 0.18 

C Flood Zone 

  

 

 

-0.18 1.20 0.02 

Coast 

  

 

 

1.69* 1.03 4.42 

Mississippi 

  

 

 

0.76 0.54 1.14 

Coast×Mississippi 

  

 

 

0.66 0.95 0.94 

Slope 

  

 

 

0.47* 0.28 0.60 

Elevation 

  

 

 

-0.002 0.002 0.18 

Stream density 

  

 

 

-1.35** 0.57 0.74 

Precipitation 0.17*** 0.02 0.19  0.65 0.59 0.92 

Socioeconomic variables 

Log(Household) 0.65 0.65 0.06  0.05* 0.03 0.01 

Income 0.05 0.04 0.05  0.02 0.04 0.02 

Education 0.02 0.04 0.02  0.19*** 0.04 0.21 

   

 

   

 

Year fixed-effects Yes 

 

 

 

Yes 

 

 

Mundlak Group Means No 

 

 

 

Yes 

 

 

Constant     -4.56 4.47  

   

 

   

 

R2 0.47 

 

 

 

0.36 

 

 

N 2260      2260    

Note: ***, **, and * shows significance at 1%, 5%, and 10% levels of significance. Standard errors (S. E.) are robust. 
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FIGURE 1 

A Map Showing CRS Participation Across Alabama and Mississippi (Source: John Cartwright, 

Geosystems Research Institute, Mississippi State University) 
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FIGURE 2 

QQ Plots Showing the Distribution of Pre-treatment Covariates Before and After Matching 
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FIGURE 2, CONTINUED 
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APPENDIX:  TABLE A1: 

Fixed Effects and Mundlak’s Approach Linear Regression Analysis Predicting NFIP Participation 

based on Full (Unmatched) Sample 

 Fixed-effects  Mundlak 

Variable Coef. S. E. 

 

Marg. E.  Coef. S. E. 

 

Marg. E. 

Policy variables 

CRS          

 Alabama        

    Coastal, Pre-Katrina 0.42*** 0.10 0.52  0.42*** 0.10 0.52 

    Non-Coast, Pre-Katrina 0.29 0.34 0.34  0.29 0.33 0.34 

    Coastal, Post-Katrina 0.53*** 0.13 0.70  0.53*** 0.13 0.70 

    Non-Coastal, Post-Katrina 0.43 0.34 0.54  0.42 0.33 0.52 

  Mississippi        

    Coastal, Pre-Katrina -0.17 0.22 0.16 

 

-0.17 0.21 0.16 

    Non-Coastal, Pre-Katrina 0.21 0.15 0.23 

 

0.21 0.14 0.23 

    Coastal, Post-Katrina 0.44* 0.23 0.55  0.44* 0.23 0.55 

    Non-Coastal, Post-Katrina 0.10 0.16 0.11  0.10 0.15 0.11 

Year in CRS -0.04*** 0.01 0.04 

 

-0.04*** 0.01 0.04 

Geospatial variables 

A Flood Zones 

  

 

 

2.24*** 0.44 0.25 

V Flood zone 

  

 

 

0.48 1.31 0.05 

B Flood Zone 

  

 

 

0.01 0.41 0.001 

C Flood Zone 

  

 

 

-1.10*** 0.35 0.10 

Coast 

  

 

 

0.31 0.3 0.36 

Mississippi 

  

 

 

-0.03 0.18 0.03 

Coast× Mississippi 

  

 

 

0.73* 0.39 1.08 

Slope 

  

 

 

-0.06 0.06 0.06 

Elevation 

  

 

 

-0.001 0.00 0.10 

Stream density 

  

 

 

-0.43*** 0.16 0.35 

Socioeconomic variables 

Log(Household) 0.33*** 0.12 0.03  0.33*** 0.11 0.03 

Income 0.02*** 0.01 0.02  0.02*** 0.01 0.02 

Education 0.01 0.01 0.01 

 

0.01 0.01 0.01 

        

Year fixed-effects Yes 

 

 

 

Yes 

 

 

Mundlak Group Means No 

 

 

 

Yes 

 

 

Constant     3.07***       0.44  

R2 0.93 

 

 

 

0.63 

 

 

N 5860 

 

   5860 

 

 

Note: ***, **, and * shows significance at 1%, 5%, and 10% levels of significance. Standard errors are robust. 
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APPENDIX:  TABLE A2: 

Fixed Effects and Mundlak’s Approach Linear Regression Analysis Predicting Damage claims 

Payments based on Full (Unmatched) Sample 

 Fixed-effects  Mundlak 

Variables Coef. S. E. Marg. E.   Coef. S. E Marg. E. 

Policy variables 

CRS        

  Alabama        

    Coast 1.05 2.07 1.90  1.05 2.01 1.90 

    Non-Coast 0.53 1.70 0.70  0.53 1.65 0.70 

  Mississippi        

    Coast 0.69 0.74 1.00 

 

0.69 0.72 1.00 

    Non-Coast  1.30 2.00 2.70 

 

1.30 1.94 2.70 

Log(Coverage) 0.13*** 0.03 0.001  0.13*** 0.03 0.001 

Geospatial variables 

A Flood Zones 

  

 

 

1.71** 0.85 0.19 

V Flood zone 

  

 

 

2.54 2.24 0.29 

B Flood Zone 

  

 

 

0.99 0.82 0.10 

C Flood Zone 

  

 

 

-1.41** 0.59 0.13 

Coast 

  

 

 

1.14* 0.58 2.13 

Mississippi 

  

 

 

0.75*** 0.27 1.12 

Coast×Mississippi 

  

 

 

1.26* 0.71 2.53 

Slope 

  

 

 

0.24** 0.11 0.27 

Elevation 

  

 

 

-0.001 0.001 0.10 

Stream density 

  

 

 

-0.58** 0.29 0.44 

Precipitation 0.13*** 0.01 0.14  0.13*** 0.01 0.14 

Socioeconomic variables 

Log(Household) 0.89*** 0.28 0.09  0.88*** 0.27 0.09 

Income 0.02 0.02 0.02  0.02 0.02 0.02 

Education 0.003 0.03 0.003  0.003 0.03 0.003 

   

 

   

 

Year fixed-effects Yes 

 

 

 

Yes 

 

 

Mundalk Group Means No 

 

 

 

Yes 

 

 

Constant     -7.89*** 2.52  

   

 

   

 

R2 0.42 

 

 

 

0.31 

 

 

N 5860      5860    

Note: ***, **, and * shows significance at 1%, 5%, and 10% levels of significance. Standard errors are robust. 

 

 


