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Slutsky, Let Me Introduce You to Arrow-Pratt:  
Competitive Price Effects with Uncertain Production 

 

ABSTRACT: The purpose of this article is to characterize the effect of a competitive price change on a 
producer’s commodity transactions under uncertainty and impatience.  The novelty comes from a 
methodological approach inspired by both Slutsky and Arrow-Pratt.  Combining and generalizing these 
methodological frameworks illuminates natural analogues between production and consumption with and 
without uncertainty, while facilitating the analysis of certain, risky, and uncertain choice within a consistent 
framework.  Contributions include (i) the introduction of the immediate profit function — a generalization 
of cost function to an economic environment with uncertainty and impatience, (ii) a generalization of 
Arrow-Pratt risk aversion to characterize preferences over time as well as over uncertainty, (ii) a 
generalization of Arrow-Pratt risk aversion to characterize technological and market uncertainty, (iv) the 
decomposition of price effects on commodity choices with uncertainty and impatience using Slutsky 
substitution and income effects, and the generalized Arrow-Pratt characterizations of uncertainty aversion, 
patience aversion, technological uncertainty and market uncertainty; and (v) a reexamination of Sandmo’s 
seminal comparative static analysis of a producer facing price risk in the context of price uncertainty and 
impatience. 

KEYWORDS: state-contingent, production, risk, uncertainty, comparative static 
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1 Introduction 

Early research exploring risky production assessed the effect of a producer’s choices on the distribution of profit 

when prices or output are random and then exploited expected utility theory to characterize optimal choices in 

relation to risk attitudes and changes in the production environment (e.g., Baron 1970; Feldstein 1971; Sandmo 

1971; Leland 1972; and Ratti and Ullah 1976).  These efforts produced analytically tractable and intuitively 

appealing results, which encouraged widespread adoption of what can be referred to as random profit models.  

While random profit models helped researchers understand risky production, their development was not well 

connected to production and consumption theory (PCT) where objects like supply, demand, production possibility 

frontiers, indifference curves, and isoquants; and taxonomies like income versus substitution effects, substitutes 

versus complements, and normal versus inferior goods have served as fundamental concepts for instruction, 

empirics and applied theory.  Instead, researchers seeking to contribute to or students trying to master results from 

this literature had to set aside much of these PCT concepts and open up a new set of analytical tools with objects like 

lotteries, probability distributions, expected profit and utility, certainty equivalents, risk premiums, mean preserving 

spreads, and stochastic dominance; and taxonomies like risk seeking versus averse, increasing versus decreasing risk 

aversion, risk increasing versus decreasing inputs, risk substitutes versus complements, and pure risk versus 

expansion effects. 

The necessity of dispensing with PCT foundations in order to understand risky production has been 

challenged in the past two decades through the extension and application of Arrow’s (1953) and Debreu’s (1959) 

state contingent models of choice under uncertainty (Chambers and Quiggin 1997, 1998, 2000, and 2001; and 

Quiggin and Chambers 1998 and 2001).  Three notable accomplishments of this literature are the establishment of 

more transparent links between the theory of certain and uncertain production, the extension of duality results from 

certain to uncertain production, and a reduction in the reliance on expected utility.  The rewards of these 

accomplishments are pedagogical, empirical, and practical.  Pedagogically, PCT foundations for risky production 

make it possible to convey concepts of risk and uncertainty with tools taught to students beginning with first 

principles.  Empirically, there is a vast tool box for analyzing consumption and production decisions in a certain 

world that could be opened up to analyzing production in an uncertain world.  Practically, much in the world is 

uncertain and evidence continues to mount that interpreting it through an expected utility lens is problematic.  
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Great progress has been made, but gaps remain.  The purpose of this article is to fill one such gap.  The gap 

we have in mind is the lack of a PCT interpretation of competitive price effects for uncertain production.  In 

particular, we develop a Slutsky style equation that decomposes the effect of a price change on commodity 

transactions into substitution and income effects.  Some of these effects are unambiguous, while more common 

ambiguous results invoke analogs to PCT taxonomies of substitute versus complement and normal versus inferior 

commodities.  The results also invoke analogies to Arrow-Pratt risk aversion, which are shown to generally relate to 

changes in marginal rates of substitution and transformation in response to changes in the production environment. 

Chambers and Quiggin (2001) decomposes the effect of a shock to the economic environment on input 

choices, but they do so by using pure-risk and expansion effects related to Rothschild and Stiglitz (1970, 1971) 

notions of mean preserving spreads, and a novel taxonomy of risk complements versus substitutes.  While their 

decomposition is inspired by Slutsky, it is distinct from the PCT foundations used here and draws on notions of risk 

developed in the context of expected utility that do not have obvious analogues in PCT (e.g., concepts like certainty 

equivalents, risk premiums, and stochastic dominance make less sense when looking at bundles of goods like food, 

clothing, transportation and shelter instead of farmer profit in years of normal rainfall, flood or drought).  Their 

approach also relies heavily on probabilistic sophistication (e.g., Machina and Schmeidler 1992) and globally risk 

averse preferences, the latter of which is inconsistent with empirical regularities such as individuals who are risk 

averse or seeking depending on whether there is a gain to be had or loss to avoid (Kahneman and Tversky 1979). 

The contributions of this article are (i) a generalization of the cost and revenue cost function that we refer to 

as the immediate profit function, (ii) a generalization of Nau’s (2003, 2011) uncertainty aversion matrix and the 

Arrow-Pratt taxonomy of relative and absolute risk aversion that includes temporal dimensions of preferences that 

can be applied locally as well as globally, (iii) a generalization of Nau’s uncertainty aversion matrix that 

characterizes technological and market uncertainty either locally or globally, (iv) the decomposition of the effects of 

a price change on uncertain input and output choices that is interpretable in the context of PCT substitution and 

income effects as well as our generalizations of the Arrow-Pratt risk aversion coefficients to uncertainty aversion, 

patience aversion, technological uncertainty and market uncertainty; and (v) a reexamination of Sandmo’s (1971) 

comparative static effects for a producer facing price risk that explores how robust the results are to preferences over 

time as well as uncertainty. 
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Section 2 outlines the state contingent framework for our analysis, and characterizes the immediate profit 

function as its dual representation.  Preferences are outlined in Section 3 and conditions for optimal production are 

derived.  Section 4 develops generalizations of Arrow-Pratt risk aversion coefficients for uncertain technology and 

markets as well as uncertain and impatient preferences.  Section 5 develops the general comparative static price 

effects with Slutsky and Arrow-Pratt interpretations.  Section 6 revisits Sandmo’s comparative static analysis using 

Arrow-Pratt interpretations of uncertain and impatient preferences.  Section 8 concludes.  

 

2 Technology 

There are L distinct commodities that are purchased or sold.  These transactions can be primary commodities like 

land and labor or commodities produced from other commodities like cotton and cloth.  The transactions may be 

certain or uncertain due to a dependence on the realization of some event, which makes it natural to think of certain 

transactions as immediate while uncertain transactions are negligibly or substantially delayed.  If there is substantial 

delay before uncertainty is resolved, temporal as well as uncertain preferences can become important for decision 

making.  Therefore, we clearly delineate certain transactions, which we refer to as immediate transactions, and 

uncertain transactions. 

Immediate transactions are denoted by the netput vector 𝐲𝐲𝟎𝟎 ∈ ℝ𝐿𝐿 where 𝑦𝑦𝑙𝑙0 > (<)0 implies the lth 

commodity is sold (purchased) on net as an output (input).  To characterize uncertain transactions, let there be S 

mutually exclusive states of nature and denote the netput vector in state s as 𝐲𝐲𝑠𝑠 ∈ ℝ𝐿𝐿 where 𝑦𝑦𝑙𝑙𝑠𝑠 > (<)0 implies the 

lth commodity is sold (purchased) on net as an output (input) in state s.  Let 𝐲𝐲𝑢𝑢 = (𝐲𝐲1, … , 𝐲𝐲𝑆𝑆) and 𝐲𝐲 = (𝐲𝐲0, 𝐲𝐲𝑢𝑢) to 

economize on notation. 

Production possibilities are described by 𝐏𝐏𝐏𝐏𝐏𝐏 ⊂ ℝ𝐿𝐿+𝐿𝐿×𝑆𝑆, which satisfies the assumptions 

A.1 𝐏𝐏𝐏𝐏𝐏𝐏 is non-empty. 

A.2 𝐏𝐏𝐏𝐏𝐏𝐏 is closed. 

A.3 Free Disposal: If 𝐲𝐲 ∈ 𝐏𝐏𝐏𝐏𝐏𝐏, 𝐲𝐲′ ∈ 𝐏𝐏𝐏𝐏𝐏𝐏 for all 𝐲𝐲′ ≤ 𝐲𝐲.  

A.4 Convexity: For all 𝐲𝐲, 𝐲𝐲′ ∈ 𝐏𝐏𝐏𝐏𝐏𝐏 and 𝛼𝛼 ∈ [0, 1], 𝜏𝜏𝐲𝐲 + (1 − 𝜏𝜏) 𝐲𝐲′ ∈ 𝐏𝐏𝐏𝐏𝐏𝐏. 

A.5 Representable by a continuous and differentiable transformation function 𝑇𝑇(𝐲𝐲) ∈ ℝ where 𝑇𝑇(𝐲𝐲) = 0 

implies that 𝐲𝐲 ∈ 𝐏𝐏𝐏𝐏𝐏𝐏 and 𝐲𝐲′ ∉ 𝐏𝐏𝐏𝐏𝐏𝐏 for all 𝐲𝐲′ ∈ ℝ𝐿𝐿+𝐿𝐿×𝑆𝑆, 𝐲𝐲′ ≥ 𝐲𝐲 and 𝐲𝐲′ ≠ 𝐲𝐲. 
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Assumptions A.1 and A.2 are the standard guarantees that there is something for a producer to do and the PPS 

contains its boundary.  Assumption A.3 is again standard and implies we can increase inputs and still produce the 

same output or produce less output with the same inputs.  Assumption A.4 is also typical implying averages of what 

is feasible are also feasible.  Assumption A.5 is employed mostly to facilitate more widely accessible calculus based 

arguments. 

While this production environment mirrors Chambers and Quiggin (2000), there are differences.  Chambers 

and Quiggin’s assume all immediate commodities are inputs, while all uncertain commodities are outputs.  We 

instead focus this distinction exclusively on whether commodity transactions are immediate or uncertain regardless 

of whether they are used as inputs or outputs, which is consistent with Luenberger’s (1995) treatment of production 

under uncertainty.  We choose to permit immediate outputs because they are a common feature of agricultural 

production, which is particularly well suited for this model given the inherent weather, pest, disease, occupational 

health, and marketing uncertainties faced by privately held farm businesses.  For example, a farmer may choose to 

rent some land to a neighbor rather than work it, provide custom planting or fertilizer services, or sell stored grain to 

generate operating capital.  Similarly, uncertain inputs are also common.  Inclement weather may preclude a pre-

emergent herbicide application or spark an unanticipated disease outbreak, leading a farmer to return to his 

agricultural retailer to trade for or purchase additional inputs such as a post emergent herbicide or fungicide.  

 Assuming competitive pricing, Chambers and Quiggin (2000) derive a revenue cost function as a dual 

representation of the technology.  This dual representation is analogous to PCT’s cost function and facilitates 

analysis by aggregating optimal commodity sales into uncertain revenue, reducing the dimensionality of the problem 

without loss of information.  For the problem at hand, let 𝐩𝐩0 ∈ ℝ++
𝐿𝐿  be a vector of competitive prices for certain 

commodities, 𝐩𝐩𝑠𝑠 ∈ ℝ++
𝐿𝐿  be a vector of competitive prices in state s for uncertain commodities, 𝐩𝐩𝑢𝑢 = (𝐩𝐩1, … ,𝐩𝐩𝑆𝑆), 

and 𝐩𝐩 = (𝐩𝐩0,𝐩𝐩𝑢𝑢) for notational convenience.1  Varying prices across states provides the opportunity to explore 

market as well as technological uncertainty.  In essence, the producer knows that whatever state emerges can 

influence its prices as well as its feasible input and output combinations.  For example, a drought can reduce a 

farmer’s corn yields, while also driving up corn prices depending on how widespread it is. 

                                                 
1 While one could certainly argue about the prospect of having complete, competitive markets across the spectrum 
of different states, it is the exogeneity of prices, possibly shadow prices, perceived by the decision maker in various 
states that matters. 



5 
 

With these prices, consider the problem of maximizing immediate profit, 𝜋𝜋0 = 𝐩𝐩0 ∙ 𝐲𝐲0, while meeting 

uncertain profit targets, 𝜋𝜋𝑠𝑠 for s = 1,…, S: 

(1) max
𝒚𝒚

𝐩𝐩0 ∙ 𝐲𝐲0 subject to 𝑇𝑇(𝐲𝐲) = 0 and 𝐩𝐩𝑠𝑠 ∙ 𝐲𝐲𝑠𝑠 ≥ 𝜋𝜋𝑠𝑠𝑢𝑢 for s = 1,…, S. 

The solution to this problem are the conditional supply 𝐲𝐲(𝐩𝐩,𝛑𝛑𝑢𝑢), and Lagrange multipliers 𝛾𝛾𝑠𝑠(𝐩𝐩,𝛑𝛑𝑢𝑢) for s = 1,…, S 

and 𝛿𝛿(𝐩𝐩,𝛑𝛑𝑢𝑢) where 𝛑𝛑𝑢𝑢 represents a vector of minimally attainable uncertain profits.  Define the immediate profit 

(IP) function as 𝜋𝜋0(𝐩𝐩,𝛑𝛑𝑢𝑢) = 𝐩𝐩0 ∙ 𝐲𝐲0(𝐩𝐩,𝛑𝛑𝑢𝑢), which is a natural extension of Chambers and Quiggin’s revenue cost 

function and PCT’s cost function.  The solution to this problem and the IP function can be shown to satisfy familiar 

properties. 

Proposition 1:2 

P.1 𝐲𝐲(𝐩𝐩,𝛑𝛑𝑢𝑢) and 𝜋𝜋0(𝐩𝐩,𝛑𝛑𝑢𝑢) are homogeneous of degree zero and one in 𝐩𝐩0, and both are homogeneous of 

degree zero in 𝐩𝐩𝑠𝑠 and 𝜋𝜋𝑠𝑠𝑢𝑢 for s = 1,…, S; 

P.2 (𝐩𝐩0′ − 𝐩𝐩0) ∙ �𝐲𝐲0�(𝐩𝐩0′,𝐩𝐩𝑢𝑢),𝛑𝛑𝑢𝑢� − 𝐲𝐲0�(𝐩𝐩0,𝐩𝐩𝑢𝑢),𝛑𝛑𝑢𝑢�� ≥ 0 for all 𝐩𝐩0′,𝐩𝐩0 ∈ ℝ++
𝐿𝐿 and 𝜋𝜋0(𝐩𝐩,𝛑𝛑𝑢𝑢) is 

convex in 𝐩𝐩0; and 

P.3 𝜕𝜕𝜋𝜋0�𝐩𝐩,𝛑𝛑𝑢𝑢′�
𝜕𝜕𝜋𝜋𝑠𝑠

≤ 0, 𝑦𝑦𝑙𝑙𝑠𝑠(𝐩𝐩′,𝛑𝛑𝑢𝑢′) = −
𝜕𝜕𝜋𝜋0�𝐩𝐩′,𝛑𝛑𝑢𝑢′�

𝜕𝜕𝑝𝑝𝑙𝑙
𝑠𝑠

𝜕𝜕𝜋𝜋0�𝐩𝐩′,𝛑𝛑𝑢𝑢′�
𝜕𝜕𝜋𝜋𝑠𝑠

𝑢𝑢
, and 𝑦𝑦𝑙𝑙0(𝐩𝐩′,𝛑𝛑𝑢𝑢) = 𝜕𝜕𝜋𝜋0(𝐩𝐩′,𝛑𝛑𝑢𝑢)

𝜕𝜕𝑝𝑝𝑙𝑙
0  for l = 1,…,L and s = 1,…, S if 

𝜋𝜋0(𝐩𝐩,𝛑𝛑𝑢𝑢) is differentiable at 𝛑𝛑𝑢𝑢′ and 𝐩𝐩′, and 𝜕𝜕𝜋𝜋0�𝐩𝐩′,𝛑𝛑
𝑢𝑢′�

𝜕𝜕𝜋𝜋𝑠𝑠𝑢𝑢
< 0.  

Property P.1 implies only relative prices and uncertain profit targets matter.  Property P.2 implies that own price 

effects for immediate inputs and outputs are non-positive and non-negative (e.g., the law of supply and demand hold 

for immediate inputs and outputs).  Property P.3 implies that increasing uncertain profit in state s cannot be 

accomplished while also increasing certain immediate profit.  It also says commodity supplies can be recovered 

from the IP function provided it is differentiable, which is analogous to Roy’s Identity and Shephard’s Lemma. 

 

3 Preferences and Optimal Production 

                                                 
2 The proof of Proposition 1 closely mirrors the proofs of the properties of expenditure, cost, indirect utility, profit, 
and revenue cost functions, so they are not repeated here.  They are however available in the supplementary online 
appendix. 
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To determine the optimal production vector and uncertain profits, we characterize preferences using classical utility 

theory where the goods are a vector of immediate and uncertain profit: 𝛑𝛑 = (𝜋𝜋0,𝛑𝛑𝑢𝑢) ∈ ℝ𝑆𝑆+1.3  Specifically, 

preferences over 𝛑𝛑 are: 

A.6 Complete, transitive, and continuous so that they can be represented by a continuous, real valued utility 

function 𝑊𝑊(𝛑𝛑). 

A.7 Monotonic such that 𝑊𝑊(𝛑𝛑) > 𝑊𝑊(𝛑𝛑′) if 𝛑𝛑 ≥ 𝛑𝛑′ and 𝛑𝛑 ≠ 𝛑𝛑′. 

A.8 Twice differentiable where 𝑊𝑊𝑠𝑠(𝛑𝛑) = 𝜕𝜕𝑊𝑊(𝛑𝛑)
𝜕𝜕𝜋𝜋𝑠𝑠

 and 𝑊𝑊𝑠𝑠𝑠𝑠(𝛑𝛑) = 𝜕𝜕2𝑊𝑊(𝛑𝛑)
𝜕𝜕𝜋𝜋𝑠𝑠𝜕𝜕𝜋𝜋𝑡𝑡

 for all s and t. 

We dispense with common convexity assumptions that imply globally risk averse preferences.  We also do not use 

the assumption of additivity between immediate and uncertain profits, which provides latitude to use the model to 

characterize and explore preferences for the immediate over the delayed as well as the certain over uncertain.  

Allowing immediate profit to be imperfect substitutes for uncertain profit further differentiates our effort from 

Debreu (1959) and Luenberger (1995), which assume perfect substitutability over time and states, and Chambers 

and Quiggin (2000), which assumes perfect substitutability over time.  Finally, it is worth noting that a utility 

function of such generality can represent a fairly wide range of behavioral regularities not captured by risk averse, 

expected utility (e.g., preference for immediacy and certainty, probability weighting, and risk seeking over losses 

and risk aversion over gains). 

The producer is assumed to use this utility function to choose the optimal feasible production vector: 

A.9 𝐲𝐲(𝐩𝐩) = {𝐲𝐲 ∈ 𝐏𝐏𝐏𝐏𝐏𝐏|𝑊𝑊(𝐩𝐩0 ∙ 𝐲𝐲0, … ,𝐩𝐩𝑆𝑆 ∙ 𝐲𝐲𝑆𝑆)≥ 𝑊𝑊(𝐩𝐩0 ∙ 𝐲𝐲0′, … ,𝐩𝐩𝑆𝑆 ∙ 𝐲𝐲𝑆𝑆′) for 𝐲𝐲′ ∈ 𝐏𝐏𝐏𝐏𝐏𝐏}, 

which for expositional expedience, we assume  

A.10 𝐲𝐲(𝐩𝐩) is unique. 

This solution can also be obtained using the dual technology representation: 

(2a)  max
𝛑𝛑𝑢𝑢

𝑊𝑊(𝜋𝜋0(𝐩𝐩,𝛑𝛑𝑢𝑢),𝛑𝛑𝑢𝑢), 

which has the first order condition 

(2b) 𝑊𝑊𝑠𝑠(𝛑𝛑∗) + 𝑊𝑊0(𝛑𝛑∗) 𝜕𝜕𝜋𝜋0�𝐩𝐩,𝛑𝛑𝑢𝑢∗�
𝜕𝜕𝜋𝜋𝑠𝑠

= 0 or 𝜃𝜃𝑠𝑠0(𝛑𝛑) + 𝜕𝜕𝜋𝜋0�𝐩𝐩,𝛑𝛑𝑢𝑢∗�
𝜕𝜕𝜋𝜋𝑠𝑠

= 0 for s = 1,..., S 

                                                 
3 This problem could be attacked in greater detail by assuming profits are explicitly used for consumption similar to 
Bellemare, Barrett and Just (2013).  We instead subsume any such consumption decisions into the utility function in 
order to maintain a more focused analysis on production decisions. 
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where 𝜃𝜃𝑠𝑠0(𝛑𝛑) = 𝑊𝑊𝑠𝑠(𝛑𝛑∗)
𝑊𝑊0(𝛑𝛑∗)

 reflects the marginal rate of substitution between immediate and uncertain profit in state s.  

The solution to this problem is a vector of optimal profits depending on prices: 𝛑𝛑(𝐩𝐩) = �𝜋𝜋0�𝐩𝐩,𝛑𝛑𝑢𝑢(𝐩𝐩)�,𝛑𝛑𝑢𝑢(𝐩𝐩)�.  

The uncertain component of this vector can be used with the conditional supply found with equation (1) to 

determine optimal supply: 𝐲𝐲(𝐩𝐩) = 𝐲𝐲�𝐩𝐩,𝛑𝛑𝑢𝑢(𝐩𝐩)�.4 

The solution to this second problem is conveniently illustrated with two states of nature when immediate 

and uncertain profit are additive in the utility function (i.e., 𝑊𝑊(𝛑𝛑) = 𝑊𝑊(𝜋𝜋1 + 𝜋𝜋0,𝜋𝜋2 + 𝜋𝜋0)).  Figure 1 provides such 

an illustration.  The IP function embodies the producer’s profit possibility frontier (PPF), which is denoted by 𝛱𝛱𝑎𝑎 in 

Figure 1.  Along this PPF it is impossible to increase profit in any given state without decreasing profit in an 

alternative state, so it effectively captures the producer’s budget constraint.  The optimal combination of profit is 

found at point a where the indifference curve Wa is just tangent to 𝛱𝛱𝑎𝑎.  At this point of tangency, the marginal rate 

of transformation equals the marginal rate of substitution: 
𝜕𝜕𝜋𝜋0�𝐩𝐩,𝛑𝛑𝑢𝑢∗�

𝜕𝜕𝜋𝜋1
𝜕𝜕𝜋𝜋0�𝐩𝐩,𝛑𝛑𝑢𝑢∗�

𝜕𝜕𝜋𝜋2

= 𝑊𝑊1(𝛑𝛑∗)
𝑊𝑊2(𝛑𝛑∗)

.  Diagrammatically, Figure 1 is much 

like an intermediate level treatment of consumer demand except for the nonlinear budget constraint. 

 

4 Generalized Arrow-Pratt Measures of Uncertainty 

Figure 1 emphasizes that the optimal profit vector is found at a point of tangency between the PPF and the highest 

possible indifference curve given the PPF.  Before exploring the effect of a price change on a producer’s optimal 

profits and supply, the development of a systematic characterization of this point of tangency is worth some 

consideration.  We build insight by redeveloping and expanding Nau’s (2003, 2011) generalization of Arrow-Pratt 

risk aversion coefficients.  This generalization can be accomplished by considering how the marginal rate of 

substitution, 𝜃𝜃𝑠𝑠𝑠𝑠(𝛑𝛑) = �𝑑𝑑𝜋𝜋𝑠𝑠
𝑑𝑑𝜋𝜋𝑡𝑡

� = 𝑊𝑊𝑡𝑡(𝛑𝛑)
𝑊𝑊𝑠𝑠(𝛑𝛑)

 for s, t = 0,…, S, varies as profits increase either additively or proportionally.  

Figure 2(a) illustrates for an equal additive increase, while Figure 2(b) illustrates for a proportional increase 

assuming we have only two states of nature and additivity between immediate and uncertain profit.  Of interest is 

how the marginal rate of substitution varies as we move from point a to b in each figure where the marginal rate of 

substitution equals the slope of the line tangent at each of these points. 

                                                 
4 See Lemma 2 in the supplementary online appendix. 
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To measure these changes in the marginal rates of substitution, we first define the directional marginal 

substitution (𝛅𝛅-MS) coefficients where 𝛅𝛅 is a directional vector (e.g., from point a to b): 

Definition: The directional marginal substitution (𝛅𝛅-MS) coefficients are 

𝜌𝜌𝑠𝑠(𝛑𝛑,𝛅𝛅) = −∑ 𝛿𝛿𝑟𝑟𝑊𝑊𝑠𝑠𝑟𝑟(𝛑𝛑)𝑆𝑆
𝑟𝑟=0

𝑊𝑊𝑠𝑠(𝛑𝛑)
 for s = 0,…,S and 𝛅𝛅 ∈ ℝ𝑆𝑆+1. 

The 𝛅𝛅-MS coefficients are a generalization of Arrow-Pratt risk aversion coefficients.  To verify this, suppose 

𝑊𝑊(𝛑𝛑) = ∑ 𝜙𝜙𝑠𝑠𝑆𝑆
𝑠𝑠=1 𝑢𝑢(𝜋𝜋𝑠𝑠 + 𝜋𝜋0) where 𝜙𝜙𝑠𝑠 ≥ 0 is the probability of state s such that ∑ 𝜙𝜙𝑠𝑠𝑆𝑆

𝑠𝑠=1 = 1 and 𝑢𝑢(∙) is a 

Bernoulli utility function.  Differentiation and substitution then imply 𝜌𝜌𝑠𝑠(𝛑𝛑,𝛅𝛅) = −(𝛿𝛿𝑠𝑠 + 𝛿𝛿0) 𝑢𝑢′′(𝜋𝜋𝑠𝑠+𝜋𝜋0)
𝑢𝑢′(𝜋𝜋𝑠𝑠+𝜋𝜋0)

 for s = 

1,…,S.  Therefore, for 𝟏𝟏𝑆𝑆+1 equal to a vector of S + 1 ones, 𝜌𝜌𝑠𝑠 �𝛑𝛑, 1
2

× 𝟏𝟏𝑆𝑆+1� is the Arrow-Pratt coefficient of 

absolute risk aversion, while 𝜌𝜌𝑠𝑠(𝛑𝛑,𝛑𝛑) is the Arrow-Pratt coefficient of relative risk aversion. 

More generally, consider how 𝜃𝜃𝑠𝑠𝑠𝑠(𝛑𝛑 + 𝛅𝛅𝜀𝜀) varies with 𝜀𝜀 at 𝜀𝜀 = 0: 

(3) 𝑑𝑑𝜃𝜃𝑡𝑡
𝑠𝑠(𝛑𝛑+𝛅𝛅𝜀𝜀)
𝑑𝑑𝜀𝜀

�
𝜀𝜀=0

= 𝜃𝜃𝑠𝑠𝑠𝑠(𝛑𝛑)�𝜌𝜌𝑠𝑠(𝛑𝛑,𝛅𝛅) − 𝜌𝜌𝑠𝑠(𝛑𝛑,𝛅𝛅)�. 

Equation (3) shows that the change in the marginal rates of substitution as profits change is proportional to the 

difference in the 𝛅𝛅-MS coefficients.  Therefore, the Arrow-Pratt coefficients of risk aversion systematically measure 

how the marginal rates of substitution change as profit or income in each state change either additively or 

proportionally, a concept that is broadly applicable beyond uncertain production or production in general.  Thus, we 

refer to 𝜌𝜌𝑠𝑠(𝛑𝛑,𝛅𝛅) for s = 0,…, S as the 𝛅𝛅-MS coefficients because they embody how the marginal rates of substitution 

change as the consumption of some vector of goods 𝛑𝛑 changes in the direction of 𝛅𝛅 where 𝛑𝛑 could easily be thought 

of as a vector of household consumption goods instead of state-contingent profit.  

The 𝛅𝛅-MS coefficients differ from Nau’s development in three ways.  First, Nau only considers state 

contingent income — any immediate income is additive to uncertain income.  Second, Nau uses an S×S matrix of 

generalized Arrow-Pratt coefficients to characterize uncertainty preferences, while as with Arrow-Pratt, our 𝛅𝛅-MS 

coefficients are differentiated only by the alternative states, including the certain state.  Third, Nau’s characterization 

is analogous to the Arrow-Pratt coefficient of absolute risk aversion, while ours is flexible enough to encompass 

notions of relative as well as absolute and many other potentially useful measures of risk or uncertain preferences. 

Luenberger (1995, p. 394) also offers a generalization of Arrow-Pratt risk aversion in the context of state 

contingent preferences.  This generalization differs from ours because it measures changes in the curvature of 
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indifference curves about the vector of equal state contingent incomes/profits (i.e., about points of certainty), while 

ours measures changes in curvature about arbitrary vectors of immediate and state contingent incomes/profits. 

With the 𝛅𝛅-MS coefficients defined, we can further define the S × S uncertainty aversion matrix analogous 

to Nau’s (2003) risk aversion matrix: 

(4) 𝚸𝚸 =

⎣
⎢
⎢
⎡𝜌𝜌0 �𝛑𝛑

∗, ∂𝛑𝛑
∂𝜋𝜋1

� − 𝜌𝜌1 �𝛑𝛑∗,
∂𝛑𝛑
∂𝜋𝜋1

� ⋯ 𝜌𝜌0 �𝛑𝛑∗, ∂𝛑𝛑
∂𝜋𝜋𝑆𝑆

� − 𝜌𝜌1 �𝛑𝛑∗, ∂𝛑𝛑
∂𝜋𝜋𝑆𝑆

�
⋮ ⋱ ⋮

𝜌𝜌0 �𝛑𝛑∗, ∂𝛑𝛑
∂𝜋𝜋1

� − 𝜌𝜌𝑆𝑆 �𝛑𝛑∗, ∂𝛑𝛑
∂𝜋𝜋1

� ⋯ 𝜌𝜌0 �𝛑𝛑∗,
∂𝛑𝛑
∂𝜋𝜋𝑆𝑆

� − 𝜌𝜌𝑆𝑆 �𝛑𝛑∗, ∂𝛑𝛑
∂𝜋𝜋𝑆𝑆

�⎦
⎥
⎥
⎤
. 

Intuitively, this matrix reflects uncertainty aversion because it measures how the marginal rates of substitution 

between immediate and uncertain profit change as uncertain profits increase.  We also define the S × 1 matrix that 

we refer to as the patience aversion matrix because it measures how marginal rates of substitution between uncertain 

and immediate profits change as immediate profit increases: 

(5) 𝚫𝚫 =

⎣
⎢
⎢
⎡𝜌𝜌1 �𝛑𝛑

∗, ∂𝛑𝛑
∂𝜋𝜋0

� − 𝜌𝜌0 �𝛑𝛑∗, ∂𝛑𝛑
∂𝜋𝜋0

�
⋮

𝜌𝜌𝑆𝑆 �𝛑𝛑∗,
∂𝛑𝛑
∂𝜋𝜋0

� − 𝜌𝜌0 �𝛑𝛑∗,
∂𝛑𝛑
∂𝜋𝜋0

�⎦
⎥
⎥
⎤
. 

The 𝛅𝛅-MS coefficients characterize how uncertainty and temporal preferences are changing as profits 

change.  This concept extends to characterizing how the marginal rate of transformation is changing as uncertain 

profits or prices change: 

Definition: The profit-directional marginal transformation (𝛅𝛅𝛑𝛑-MT) coefficients are 

𝜏𝜏𝑠𝑠𝛑𝛑(𝐩𝐩,𝛑𝛑𝑢𝑢 ,𝛅𝛅𝛑𝛑) =
∑ 𝛿𝛿𝑟𝑟

𝜋𝜋𝜕𝜕2𝜋𝜋0�𝐩𝐩,𝛑𝛑𝑢𝑢�
𝜕𝜕𝜋𝜋𝑠𝑠𝜕𝜕𝜋𝜋𝑟𝑟

𝑆𝑆
𝑟𝑟=1

𝜕𝜕𝜋𝜋0(𝐩𝐩,𝛑𝛑𝑢𝑢)
𝜕𝜕𝜋𝜋𝑠𝑠

 for s = 1,…,S and 𝛅𝛅𝛑𝛑 ∈ ℝ𝑆𝑆. 

Definition: The price-directional marginal transformation (𝛅𝛅𝐩𝐩-MT) coefficients are 

𝜏𝜏𝑠𝑠
𝐩𝐩(𝐩𝐩,𝛑𝛑𝑢𝑢 ,𝛅𝛅𝐩𝐩) =

∑ ∑ 𝛿𝛿𝑟𝑟𝑙𝑙
𝑝𝑝𝜕𝜕2𝜋𝜋0�𝐩𝐩,𝛑𝛑𝑢𝑢�

𝜕𝜕𝜋𝜋𝑠𝑠𝜕𝜕𝑝𝑝𝑟𝑟
𝑙𝑙

𝐿𝐿
𝑙𝑙=1

𝑆𝑆
𝑟𝑟=0

𝜕𝜕𝜋𝜋0�𝐩𝐩,𝛑𝛑𝑢𝑢∗�
𝜕𝜕𝜋𝜋𝑠𝑠

 for s = 1,…,S and 𝛅𝛅𝐩𝐩 ∈ ℝ(𝑆𝑆+1)×𝐿𝐿. 

The marginal rate of transformation is defined as 𝜑𝜑𝑠𝑠𝑠𝑠(𝛑𝛑𝑢𝑢) = �𝑑𝑑𝜋𝜋𝑠𝑠
𝑑𝑑𝜋𝜋𝑡𝑡

� =
𝜕𝜕𝜋𝜋0�𝐩𝐩,𝛑𝛑𝑢𝑢�

𝜕𝜕𝜋𝜋𝑡𝑡
𝜕𝜕𝜋𝜋0(𝐩𝐩,𝛑𝛑𝑢𝑢)

𝜕𝜕𝜋𝜋𝑠𝑠

 for s, t = 1,…, S.  How it varies as 

uncertain profits change in the direction of 𝛅𝛅𝛑𝛑 ∈ ℝ𝑆𝑆 is 

(6) 𝑑𝑑𝜑𝜑𝑡𝑡
𝑠𝑠(𝐩𝐩,𝛑𝛑𝑢𝑢+𝛅𝛅𝛑𝛑𝜀𝜀)

𝑑𝑑𝜀𝜀
�
𝜀𝜀=0

= 𝜑𝜑𝑠𝑠𝑠𝑠(𝛑𝛑𝑢𝑢)�𝜏𝜏𝑠𝑠𝛑𝛑(𝐩𝐩,𝛑𝛑𝑢𝑢 ,𝛅𝛅𝛑𝛑) − 𝜏𝜏𝑠𝑠𝛑𝛑(𝐩𝐩,𝛑𝛑𝑢𝑢 ,𝛅𝛅𝛑𝛑)�. 

Similarly, how it varies as prices change in the direction of  𝛅𝛅𝐩𝐩 ∈ ℝ(𝑆𝑆+1)×𝐿𝐿 is 
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(7) 𝑑𝑑𝜑𝜑𝑡𝑡
𝑠𝑠(𝐩𝐩+ 𝛅𝛅𝐩𝐩𝜀𝜀,𝛑𝛑𝑢𝑢)

𝑑𝑑𝜀𝜀
�
𝜀𝜀=0

= 𝜑𝜑𝑠𝑠𝑠𝑠(𝛑𝛑𝑢𝑢) �𝜏𝜏𝑠𝑠
𝐩𝐩(𝐩𝐩,𝛑𝛑𝑢𝑢 ,𝛅𝛅𝐩𝐩) − 𝜏𝜏𝑠𝑠

𝐩𝐩(𝐩𝐩,𝛑𝛑𝑢𝑢 ,𝛅𝛅𝐩𝐩)�. 

With these definitions and equations (6) and (7), we can define technological and market price uncertainty matrices 

that are the technological and market analogous to Nau’s uncertain preference characterization, and our uncertain 

and temporal preference characterizations: 

(8) 𝐓𝐓𝛑𝛑𝑢𝑢 =

⎣
⎢
⎢
⎡𝜏𝜏1
𝛑𝛑 �𝐩𝐩,𝛑𝛑𝑢𝑢 , ∂𝛑𝛑

∂𝜋𝜋1
� ⋯ 𝜏𝜏1𝛑𝛑 �𝐩𝐩,𝛑𝛑𝑢𝑢 , ∂𝛑𝛑

∂𝜋𝜋𝑆𝑆
�

⋮ ⋱ ⋮
𝜏𝜏𝑆𝑆𝛑𝛑 �𝐩𝐩,𝛑𝛑𝑢𝑢 , ∂𝛑𝛑

∂𝜋𝜋1
� ⋯ 𝜏𝜏𝑆𝑆𝛑𝛑 �𝐩𝐩,𝛑𝛑𝑢𝑢 , ∂𝛑𝛑

∂𝜋𝜋𝑆𝑆
�⎦
⎥
⎥
⎤
 and 𝐓𝐓𝑝𝑝𝑘𝑘𝑡𝑡 =

⎣
⎢
⎢
⎢
⎡𝜏𝜏1
𝐩𝐩 �𝐩𝐩,𝛑𝛑𝑢𝑢 , ∂𝐩𝐩

∂𝑝𝑝𝑘𝑘
𝑡𝑡�

⋮
𝜏𝜏𝑆𝑆
𝐩𝐩 �𝐩𝐩,𝛑𝛑𝑢𝑢 , ∂𝐩𝐩

∂𝑝𝑝𝑘𝑘
𝑡𝑡�⎦
⎥
⎥
⎥
⎤
. 

A similar characterization of market uncertainty in the context of risky household production with expected utility 

preferences is found in Bellemare, Barrett and Just (2013), while we are unaware of similar characterizations of 

technological uncertainty.  As will soon be evident, these systematic characterizations of preferences, technology, 

and markets are key ingredients in the optimal response to changes in competitive prices as well as other exogenous 

factors. 

 

5 Slutsky Price Analysis 

The Slutsky equation from consumer theory uses Hicksian demand and the expenditure function to decompose the 

effect of a price change on Marshallian demand into an income and substitution effect.  A similar strategy using the 

IP function and totally differentiating equation (2b) yields: 

Proposition 2: The effect of a change in the price of commodity k = 1,…, L in state t = 0,…, S on the 

commodity supply 𝐲𝐲(𝐩𝐩) is  

∂𝐲𝐲(𝐩𝐩)
∂𝑝𝑝𝑘𝑘𝑠𝑠

=
∂𝐲𝐲�𝐩𝐩,𝛑𝛑𝑢𝑢(𝐩𝐩)�

∂𝑝𝑝𝑘𝑘𝑠𝑠
+
∂𝐲𝐲�𝐩𝐩,𝛑𝛑𝑢𝑢(𝐩𝐩)�

∂𝛑𝛑𝑢𝑢
∂𝛑𝛑𝑢𝑢(𝐩𝐩)
∂𝑝𝑝𝑘𝑘𝑠𝑠

 

where 

𝜕𝜕𝛑𝛑𝑢𝑢(𝐩𝐩)
𝜕𝜕𝑝𝑝𝑘𝑘

𝑡𝑡 = (𝚸𝚸 + 𝚫𝚫𝛉𝛉0 − 𝐓𝐓𝛑𝛑𝑢𝑢)−𝟏𝟏 �𝚫𝚫 𝜕𝜕𝜋𝜋0�𝐩𝐩,𝛑𝛑𝑢𝑢∗�
𝜕𝜕𝑝𝑝𝑘𝑘

𝑡𝑡 + 𝐓𝐓𝑝𝑝𝑘𝑘𝑡𝑡 � and  

𝛉𝛉0 = �𝜃𝜃10�𝛑𝛑(𝐩𝐩)� ⋯ 𝜃𝜃𝑆𝑆0�𝛑𝛑(𝐩𝐩)��. 

The first equation in Proposition 2 breaks the effect of the price change on the commodity supplies into a 

substitution effect �∂𝐲𝐲�𝐩𝐩,𝛑𝛑𝑢𝑢(𝐩𝐩)�
∂𝑝𝑝𝑘𝑘

𝑡𝑡 � and an income effect �∂𝐲𝐲�𝐩𝐩,𝛑𝛑𝑢𝑢(𝐩𝐩)�
∂𝛑𝛑𝑢𝑢

∂𝛑𝛑𝑢𝑢(𝐩𝐩)
∂𝑝𝑝𝑘𝑘

𝑡𝑡 �.  From property P.2, we know own-price 

substitution effects are non-negative (non-positive) if the commodity is a certain output (input).  Otherwise, they are 
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ambiguous.  Given unambiguous own-price effects for certain inputs and outputs, it is intuitive to categorize cross-

price effects in terms of substitute versus complement commodities: 𝜕𝜕�𝑦𝑦𝑙𝑙
𝑠𝑠�𝐩𝐩,𝛑𝛑𝑢𝑢(𝐩𝐩)��
𝜕𝜕𝑝𝑝𝑘𝑘

0 > 0 versus  𝜕𝜕�𝑦𝑦𝑙𝑙
𝑠𝑠�𝐩𝐩,𝛑𝛑𝑢𝑢(𝐩𝐩)��
𝜕𝜕𝑝𝑝𝑘𝑘

0 < 0 for 

input 𝑦𝑦𝑙𝑙0�𝐩𝐩,𝛑𝛑𝑢𝑢(𝐩𝐩)� < 0 where l ≠ k, or 𝜕𝜕�𝑦𝑦𝑙𝑙
𝑠𝑠�𝐩𝐩,𝛑𝛑𝑢𝑢(𝐩𝐩)��
𝜕𝜕𝑝𝑝𝑘𝑘

0 < 0 versus  𝜕𝜕�𝑦𝑦𝑙𝑙
𝑠𝑠�𝐩𝐩,𝛑𝛑𝑢𝑢(𝐩𝐩)��
𝜕𝜕𝑝𝑝𝑘𝑘

0 > 0 for output 𝑦𝑦𝑙𝑙0�𝐩𝐩,𝛑𝛑𝑢𝑢(𝐩𝐩)� > 0 

where l ≠ k.  Both own- and cross-price substitution effects are ambiguous for uncertain inputs and outputs, which 

makes categorization based on the notion of substitute versus complement commodities more challenging.  This 

challenge is not exclusive to uncertain choice however with similar challenges emerging in certain production.  

These challenges have been met by appealing to supermodularity (see Topkis 1998), which is shown to extend to 

uncertain production by Chambers and Quiggin (2008). 

 The income effect reflects how the optimal use of the commodity changes due to a change in optimal 

uncertain profits.  The first part of this term �∂𝐲𝐲�𝐩𝐩,𝛑𝛑𝑢𝑢(𝐩𝐩)�
∂𝛑𝛑𝑢𝑢

� is generally ambiguous depending on whether an input or 

output is in demand for producing a particular uncertain profit.  The common taxonomy for such effects is normal 

versus inferior commodities.  If a commodity is normal (inferior) for a particular state’s uncertain profit, then its 

purchase or sale will be increasing (decreasing) in uncertain profit in that state: 𝜕𝜕�𝑦𝑦𝑙𝑙
𝑠𝑠�𝐩𝐩,𝛑𝛑𝑢𝑢(𝐩𝐩)��
𝜕𝜕𝜋𝜋𝑣𝑣

> (<)0.  The second 

part of this term and the second equation in Proposition 2 reflects how the price change affects the optimal supply of 

uncertain profit in a given state.  This term depends crucially on our uncertainty and patience aversion matrices, and 

technological and market uncertainty matrices. 

The net effect of the price change on the demand for uncertain profit can be conveniently illustrated in 

terms of substitution and income effects when there are two states of nature and additive immediate and uncertain 

profit in the utility function.  Figure 3 provides such an illustration for a price change that reduces profitability in 

both states such as an increase in land rental rates for a farmer.  The optimal combination of profit before the price 

change is at point a where the indifference curve Wa is just tangent to the PPF 𝛱𝛱𝑎𝑎.  Now suppose an increase in land 

rental rates drives the PPF down to 𝛱𝛱𝑏𝑏  resulting in a new optimum at point b where the indifference curve Wb is just 

tangent to the PPF 𝛱𝛱0𝑏𝑏 .  At this new optimum, profit in state 2 is relatively less costly to produce, which is seen by 

the comparison of the slope of the tangent through point b to the slope of the tangent through point a.  Overall 

however, production becomes more costly leading to a scaling back and lower welfare as reflected by the move to a 

lower indifference curve.  To discern the change in profits attributable to the substitution and income effect, we can 
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shift the new line of tangency at point b parallel until it is just tangent to the original PPF at point c.  The difference 

in total profits between points a and c (𝜋𝜋1𝑐𝑐 − 𝜋𝜋1𝑎𝑎 and 𝜋𝜋2𝑐𝑐 − 𝜋𝜋2𝑎𝑎) reflects a substitution effect — a movement along the 

original PPF.  This substitution effect is driven by how the producer’s tolerance for uncertainty changes as it scales 

back its production.  In this example, the marginal rate of substitution increases implying the producer is less willing 

to gives up profit in state 1 for profit in state 2.  Since state 2 profit exceeds state 1 profit at point b, this suggests the 

producer has become less tolerant of uncertainty.  The difference in profits between points c and b (𝜋𝜋1𝑏𝑏 − 𝜋𝜋1𝑐𝑐 and 

𝜋𝜋2𝑏𝑏 − 𝜋𝜋2𝑐𝑐) reflect the income effect — a jump from the original to the new PPF.  The income effect is driven by how 

much the producer’s welfare changes due to the increase in land rental rates.  This illustration is recognizable as an 

intermediate level graphical treatment of the Slutsky income and substitution effects except for the nonlinear budget 

constraint. 

 

6 Sandmo Revisited 

We further explore the utility of our 𝛅𝛅-MS coefficients and demonstrate how they are a natural generalization of 

Arrow-Pratt risk aversion coefficients by revisiting Sandmo’s (1971) comparative static analysis of a producer’s 

choice of output when facing price risk.  In this analysis, Sandmo assumed a producer chooses a certain output x 

given the cost function F(x) = C(x) + B where C(x) ≥ 0 are variable costs such that C(0) = 0 and C’(x) > 0, and B ≥ 0 

are fixed costs.  Price risk was characterized using a continuous distribution function, which we translate to the state 

contingent perspective by assuming ps +∆ > 0 is the price the producer receives for output in state s and ∆ ≥ 0 is an 

additive shift parameter to facilitate comparative static analysis.  Without loss of generality, we assume ps+1 > ps for 

s = 1,…, S – 1.  Preferences were characterized using risk averse expected utility, so immediate costs and uncertain 

revenues were treated additively (e.g., 𝑊𝑊(𝛑𝛑) = ∑ 𝜙𝜙𝑠𝑠𝑆𝑆
𝑠𝑠=1 𝑢𝑢(𝜋𝜋𝑠𝑠 + 𝜋𝜋0) where 𝑢𝑢′(∙) > 0 and 𝑢𝑢′′(∙) < 0).  We start with 

our more general utility function and explore what additional restrictions, if any, are sufficient to recover Sandmo’s 

results.  Given the profit tax rate τ ∈(0, 1), the producer’s problem is 

(9a)  max
𝑥𝑥≥0

𝑊𝑊(𝛑𝛑) where 𝛑𝛑 = (−𝐹𝐹(𝑥𝑥), (𝑝𝑝1 + ∆)𝑥𝑥, … , (𝑝𝑝𝑆𝑆 + ∆)𝑥𝑥)(1 − 𝜏𝜏), 

which has the first-order condition 

(9b)  𝐷𝐷 = ∑ 𝑊𝑊𝑠𝑠(𝛑𝛑∗)(𝑝𝑝𝑠𝑠 + ∆) −𝑆𝑆
𝑠𝑠=1 𝑊𝑊0(𝛑𝛑∗)𝐶𝐶′(𝑥𝑥∗) = 0 

where * denote optimal values. The solution to this problem, assuming it exists, depends on prices, fixed costs, the 

additive shift parameter, and tax rate: 𝑥𝑥(𝐩𝐩,𝐵𝐵,∆, 𝜏𝜏).   
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The key comparative static results derived by Sandmo include: 

(a) Positive/constant/negative relationship between optimal output and fixed costs (B) when preferences exhibit 

increasing/constant/decreasing absolute Arrow-Pratt risk aversion. 

(b) Positive relationship between optimal output and an additive increase in output prices (∆) when preferences 

exhibit decreasing or constant Arrow-Pratt risk aversion. 

(c) Positive/constant/negative relationship between optimal output and the tax rate (τ) when preferences exhibit 

increasing/constant/decreasing relative Arrow-Pratt risk aversion. 

To explore the robustness of these results, given our state contingent perspective and generalization of Arrow-Pratt’s 

risk aversion coefficients, we first propose two new definitions: 

Definition: Preferences exhibit increasing/constant/decreasing 𝛅𝛅-uncertainty aversion (𝛅𝛅-UA) at 𝛑𝛑 if 𝜌𝜌𝑠𝑠(𝛑𝛑,𝛅𝛅) >

/=/< 𝜌𝜌𝑠𝑠(𝛑𝛑,𝛅𝛅) when 𝜋𝜋𝑠𝑠 > 𝜋𝜋𝑠𝑠 for all s, t = 1,…,S. 

Definition: Preferences exhibit positive/neutral/negative 𝛅𝛅-patience aversion (𝛅𝛅-PA) at 𝛑𝛑 if 𝜌𝜌𝑠𝑠(𝛑𝛑,𝛅𝛅) >/=/<

𝜌𝜌0(𝛑𝛑,𝛅𝛅) for all s = 1,…,S. 

Since 𝜌𝜌𝑠𝑠 �𝛑𝛑, 1
2

× 𝟏𝟏𝑆𝑆+1� and 𝜌𝜌𝑠𝑠(𝛑𝛑,𝛑𝛑) equal the absolute and relative Arrow-Pratt risk aversion coefficients in the 

state contingent model with expected utility preferences, increasing/ constant/ decreasing absolute and relative 

Arrow-Pratt risk aversion are special cases of increasing/ constant/ decreasing 𝛅𝛅-UA.  Alternatively, positive/ 

neutral/ negative 𝛅𝛅-PA are novel, but related to the notion of risk averse, neutral and seeking preferences.  It is also 

important to note that these definitions are local as they depend on a specific 𝛑𝛑.  

 The implicit function theorem implies 𝜕𝜕𝑥𝑥(𝐩𝐩,𝐵𝐵,∆,𝜏𝜏)
𝜕𝜕𝜀𝜀

= −
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 for 𝜀𝜀 ∈ {𝐵𝐵,∆, 𝜏𝜏}.  For a unique maximum 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

< 0, 

so how optimal output changes depends on the sign of 𝜕𝜕𝜕𝜕
𝜕𝜕𝜀𝜀

, which for 𝜀𝜀 = B, ∆, and 𝜏𝜏, equals 

(10a) 𝜕𝜕𝜕𝜕
𝜕𝜕𝐵𝐵

=     ∑ 𝜌𝜌𝑠𝑠 �𝛑𝛑, ∂𝛑𝛑
𝜕𝜕𝐵𝐵
�𝑊𝑊𝑠𝑠(𝛑𝛑∗) �𝑝𝑝𝑠𝑠 + ∆ − 𝑊𝑊0(𝛑𝛑∗)𝐶𝐶′(𝑥𝑥∗)

∑ 𝑊𝑊𝑡𝑡(𝛑𝛑∗)𝑆𝑆
𝑡𝑡=1

�𝑆𝑆
𝑠𝑠=1  

                       +𝑊𝑊0(𝛑𝛑∗)𝐶𝐶′(𝑥𝑥∗)∑ 𝑊𝑊𝑠𝑠(𝛑𝛑∗)
∑ 𝑊𝑊𝑡𝑡(𝛑𝛑∗)𝑆𝑆
𝑡𝑡=1

𝑆𝑆
𝑠𝑠=1 �𝜌𝜌𝑠𝑠 �𝛑𝛑, ∂𝛑𝛑

𝜕𝜕𝐵𝐵
� − 𝜌𝜌0 �𝛑𝛑, ∂𝛑𝛑

𝜕𝜕𝐵𝐵
��, 

(10b) 𝜕𝜕𝜕𝜕
𝜕𝜕∆

= −∑ 𝜌𝜌𝑠𝑠 �𝛑𝛑, ∂𝛑𝛑
𝜕𝜕∆
�𝑊𝑊𝑠𝑠(𝛑𝛑∗) �𝑝𝑝𝑠𝑠 + ∆− 𝑊𝑊0(𝛑𝛑∗)𝐶𝐶′(𝑥𝑥∗)

∑ 𝑊𝑊𝑡𝑡(𝛑𝛑∗)𝑆𝑆
𝑡𝑡=1

�𝑆𝑆
𝑠𝑠=1  

                        −𝑊𝑊0(𝛑𝛑∗)𝐶𝐶′(𝑥𝑥∗)∑ 𝑊𝑊𝑠𝑠(𝛑𝛑∗)
∑ 𝑊𝑊𝑡𝑡(𝛑𝛑∗)𝑆𝑆
𝑡𝑡=1

�𝜌𝜌𝑠𝑠 �𝛑𝛑, ∂𝛑𝛑
𝜕𝜕∆
� − 𝜌𝜌0 �𝛑𝛑, ∂𝛑𝛑

𝜕𝜕∆
��𝑆𝑆

𝑠𝑠=1  

                        +∑ 𝑊𝑊𝑠𝑠(𝛑𝛑∗)𝑆𝑆
𝑠𝑠=1 , and 
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(10c) 𝜕𝜕𝜕𝜕
𝜕𝜕𝜏𝜏

=   ∑ 𝜌𝜌𝑠𝑠 �𝛑𝛑, ∂𝛑𝛑
𝜕𝜕τ
�𝑊𝑊𝑠𝑠(𝛑𝛑∗) �𝑝𝑝𝑠𝑠 + ∆ − 𝑊𝑊0(𝛑𝛑∗)𝐶𝐶′(𝑥𝑥∗)

∑ 𝑊𝑊𝑡𝑡(𝛑𝛑∗)𝑆𝑆
𝑡𝑡=1

�𝑆𝑆
𝑠𝑠=1  

                        +𝑊𝑊0(𝛑𝛑∗)𝐶𝐶′(𝑥𝑥∗)∑ 𝑊𝑊𝑠𝑠(𝛑𝛑∗)
∑ 𝑊𝑊𝑡𝑡(𝛑𝛑∗)𝑆𝑆
𝑡𝑡=1

�𝜌𝜌𝑠𝑠 �𝛑𝛑, ∂𝛑𝛑
𝜕𝜕τ
� − 𝜌𝜌0 �𝛑𝛑, ∂𝛑𝛑

𝜕𝜕τ
��𝑆𝑆

𝑠𝑠=1 . 

The first terms on the right-hand-side of equations (10a) – (10c) capture how a producer’s tolerance for 

uncertainty drives its response to the changing production environment.  Analogous expressions found in Sandmo’s 

analysis are evaluated by appealing to increasing/ constant/ decreasing absolute and relative Arrow-Pratt risk 

aversion.  To show how these arguments are just as applicable in our more general framework, we focus on equation 

(10a) assuming preferences satisfy increasing ∂𝛑𝛑
𝜕𝜕𝐵𝐵

-UA.  Define �̅�𝑝 = 𝑊𝑊0(𝛑𝛑∗)𝐶𝐶′(𝑞𝑞∗)
∑ 𝑊𝑊𝑡𝑡(𝛑𝛑∗)𝑆𝑆
𝑡𝑡=1

− ∆ and �̅�𝜌 = min �𝜌𝜌𝑠𝑠 �𝛑𝛑∗, ∂𝛑𝛑
𝜕𝜕𝐵𝐵
� |𝑠𝑠 =

1, … , 𝑆𝑆 and 𝑝𝑝𝑠𝑠 ≥ �̅�𝑝�.  For 𝑝𝑝𝑠𝑠 ≥ (<)�̅�𝑝, 

(11) 𝜌𝜌𝑠𝑠 �𝛑𝛑∗, ∂𝛑𝛑
𝜕𝜕𝐵𝐵
� ≥ (<)�̅�𝜌 and 𝑊𝑊𝑠𝑠(𝛑𝛑∗) �𝑝𝑝𝑠𝑠 + ∆− 𝑊𝑊0(𝛑𝛑∗)𝑐𝑐′(𝑥𝑥∗)

∑ 𝑊𝑊𝑡𝑡(𝛑𝛑∗)𝑆𝑆
𝑡𝑡=1

� ≥ (<)0. 

Multiplication then implies: 

(12)  𝜌𝜌𝑠𝑠 �𝛑𝛑∗, ∂𝛑𝛑
𝜕𝜕𝐵𝐵
�𝑊𝑊𝑠𝑠(𝛑𝛑∗) �𝑝𝑝𝑠𝑠 + ∆ − 𝑊𝑊0(𝛑𝛑∗)𝑐𝑐′(𝑥𝑥∗)

∑ 𝑊𝑊𝑡𝑡(𝛑𝛑∗)𝑆𝑆
𝑡𝑡=1

� ≥ �̅�𝜌𝑊𝑊𝑠𝑠(𝛑𝛑∗) �𝑝𝑝𝑠𝑠 + ∆− 𝑊𝑊0(𝛑𝛑∗)𝑐𝑐′(𝑥𝑥∗)
∑ 𝑊𝑊𝑡𝑡(𝛑𝛑∗)𝑆𝑆
𝑡𝑡=1

� 

with strict inequality for some s.  Summing equation (12) for s = 1,…, S yields the desired result  

(13) ∑ 𝜌𝜌𝑠𝑠 �𝛑𝛑, ∂𝛑𝛑
𝜕𝜕𝐵𝐵
�𝑊𝑊𝑠𝑠(𝛑𝛑∗) �𝑝𝑝𝑠𝑠 + ∆ − 𝑊𝑊0(𝛑𝛑∗)𝑐𝑐′(𝑥𝑥∗)

∑ 𝑊𝑊𝑡𝑡(𝛑𝛑∗)𝑆𝑆
𝑡𝑡=1

�𝑆𝑆
𝑠𝑠=1 > �̅�𝜌 ∑ 𝑊𝑊𝑠𝑠(𝛑𝛑∗) �𝑝𝑝𝑠𝑠 + ∆− 𝑊𝑊0(𝛑𝛑∗)𝑐𝑐′(𝑥𝑥∗)

∑ 𝑊𝑊𝑡𝑡(𝛑𝛑∗)𝑆𝑆
𝑡𝑡=1

�𝑆𝑆
𝑠𝑠=1 = 0. 

Through similar arguments, it is possible to establish that the first term in equations (10a) and (10c) will be positive/ 

zero/ negative when preferences exhibit increasing/constant/decreasing ∂𝛑𝛑
𝜕𝜕𝐵𝐵

 - UA and ∂𝛑𝛑
𝜕𝜕𝜏𝜏

 - UA.  Alternatively, the first 

term in equation (10b) will be negative/ zero/ positive when preferences exhibit increasing/constant/decreasing ∂𝛑𝛑
𝜕𝜕∆

 - 

UA. 

The second term in equations (10a) – (10c) captures how the producer’s patience aversion drives its 

response to the changing economic environment.  An analogous effect does not appear in Sandmo’s analysis due to 

the assumption that immediate costs are additive with uncertain revenue.  By definition, whether this term is 

positive/ zero/ negative depends on whether preferences exhibit positive/ neutral/ negative ∂𝛑𝛑
𝜕𝜕𝐵𝐵

-PA and ∂𝛑𝛑
𝜕𝜕𝜏𝜏

-PA for 

equations (10a) and (10c), or negative/ neutral/ positive ∂𝛑𝛑
𝜕𝜕∆

-PA for equation (10b). 



15 
 

The third term in equation (10b) is positive regardless of the producer’s tolerance for uncertainty or 

patience.  An analogous effect is found in Sandmo’s analysis, which he refers to as a substitution effect because it is 

optimal to produce more when you can sell for a higher price. 

 Our final proposition summarizes these findings as sufficiency conditions: 

Proposition 3: For a producer facing price uncertainty, there is a  

(a) positive/ constant/ negative relationship between optimal output and fixed costs (B) when preferences 

exhibit increasing/constant/decreasing ∂𝛑𝛑
𝜕𝜕𝐵𝐵

-UA, and positive or neutral/ neutral/ negative or neutral ∂𝛑𝛑
𝜕𝜕𝐵𝐵

-PA; 

(b) positive relationship between optimal output and an additive increase in output prices (∆) when preferences 

exhibit constant or decreasing ∂𝛑𝛑
𝜕𝜕∆

-UA and negative or neutral ∂𝛑𝛑
𝜕𝜕∆

-PA; and 

(c) positive/ constant/ negative relationship between optimal output and the tax rate (τ) when preferences 

exhibit increasing/constant/ decreasing ∂𝛑𝛑
𝜕𝜕𝜏𝜏

-UA and positive or neutral/ neutral/ negative or neutral ∂𝛑𝛑
𝜕𝜕𝜏𝜏

-PA. 

Proposition 3 reveals that Sandmo’s results are fairly robust for uncertain preferences when preferences also exhibit 

neutral 𝛅𝛅-PA, which is the case when uncertain and immediate profit is additive.  With non-neutral 𝛅𝛅-PA 

preferences, Sandmo’s results may still hold but are no longer guaranteed because of the producer’s preference for 

patience also matters.  For example, an increase in fixed costs unequivocally decreases immediate and certain profit 

relative to future uncertain profits.  To the extent a producer prefers immediate profit it will want to respond with a 

decrease in its output to reduce its immediate variable costs relative to its future revenue.  Such a desire will be 

reinforced and Sandmo’s result will hold if the producer’s tolerance for uncertainty decreases as its welfare 

decreases due to higher fixed costs.  This occurs because the producer will be inclined to reduce output to also 

reduce its uncertain revenue relative to its immediate and certain variable costs.  Alternatively, Sandmo’s result 

could fail if the producer’s tolerance for uncertainty increases with the welfare decrease because the producer will 

also have a desire to increase output in order to increase uncertain revenue relative to immediate and certain costs.  

Whether the preference for patience or tolerance for uncertainty prevails then becomes an empirical question.  

A final remark about Proposition 3 is that it applies locally and does not require the assumption of risk 

aversion.  Even though Sandmo assumed risk averse preferences, he did not use it in his original comparative static 

proofs except to say it guaranteed a unique maximum.  While risk aversion may be a sufficient condition for a 

maximum with expected utility preferences, it is not necessary with expected utility or more general preferences.  
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Therefore, these results will hold even if a producer is not risk averse, as typically defined, provided a unique 

optimal output is still obtained. 

 

7 Conclusions 

Recent efforts to reconnect the theory of uncertain production to the foundations of certain producer and consumer 

theory (PCT) have made remarkable progress.  Yet, these efforts have also remained tethered to concepts that are 

more appealing in a world of reasonably quantifiable objective risk, than in a world of difficult to quantify 

subjective risk or uncertainty.  In this article, we seek to sever one more restraint to the synthesis of certain and 

uncertain production that draws on concepts equally applicable to both by characterizing how a change in 

competitive prices affects optimal inputs and outputs using the concepts of substitution and income effects and their 

associate taxonomies of substitute versus complement and normal versus inferior commodities.  These 

characterizations do not rely on notions of risk averse preferences, even in a general sense, or probabilistic 

sophistication.  They do rely on generalizations of Arrow-Pratt’s absolute and relative risk aversion, which 

characterize risk seeking and neutral as well as risk averse preferences, and are demonstrably a systematic 

characterization of the marginal rate of substitution. 

 The value of our effort is pedagogical and empirical as well as theoretical.  Pedagogically, our further 

development of PCT foundations for uncertain production facilitates instruction by making it possible to convey 

important concepts of risk and uncertainty with tools that are taught to students beginning with first principles.  

Empirically, by removing any reference to a producer’s subjective probabilities, our framework does not face the 

difficulties of uniquely identifying risk preferences and perceptions as well as the other major empirical challenges 

to risky production reviewed by Just et al. (2010).  Furthermore, viewed from the PCT perspective, a primary 

challenge to the estimation of a certain profit function is incomplete information on uncertain prices and net 

commodity supplies.  Yet, similar issues have historically challenged attempts to estimate cost and expenditure 

systems when information on prices and quantities are incomplete.  This challenge has been met by coming up with 

clever empirical strategies that do not require this missing information.  Thus, a fertile direction for future empirical 

work on uncertain production may well be the exploration of how existing econometric tools can be redeployed to 

the interpretation of the incomplete data collected on production decisions in environments with substantial risk or 

uncertainty. 
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Figure 1: Illustration of optimal profit determination in an uncertain world. 
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Figure 2: Illustration of changes in the marginal rate of substitution as uncertain profits increase (a) additively and 

(b) proportionally. 
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Figure 3: Substitution (point a to c) and income effects (point c to b) with uncertain production. 
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Online Supplemental Appendix for  

“Slutsky, Let Me Introduce You to Arrow-Pratt: Competitive Price Effects with Uncertain Production” 

 

Notation and Assumptions 

Certain commodity transactions are denoted by the netput vector 𝐲𝐲𝟎𝟎 ∈ ℝ𝐿𝐿  where 𝑦𝑦𝑙𝑙0 > (<)0 implies the lth 

commodity is sold (purchased) on net as an output (input).  Uncertain commodity transactions are denoted by the 

netput vector 𝐲𝐲𝑠𝑠 ∈ ℝ𝐿𝐿 for states s = 1,…, S where 𝑦𝑦𝑙𝑙𝑠𝑠 > (<)0 implies the lth commodity is sold (purchased) on net 

as an output (input) in state s.  Let 𝐲𝐲𝑢𝑢 = (𝐲𝐲1, … , 𝐲𝐲𝑆𝑆) and 𝐲𝐲 = (𝐲𝐲0, 𝐲𝐲𝑢𝑢) to economize on notation.  Production 

possibilities are described by 𝐏𝐏𝐏𝐏𝐏𝐏 ⊂ ℝ𝐿𝐿(𝑆𝑆+1) and assumed to satisfy: 

A.1 𝐏𝐏𝐏𝐏𝐏𝐏 is non-empty. 

A.2 𝐏𝐏𝐏𝐏𝐏𝐏 is closed. 

A.3 Free Disposal: If 𝐲𝐲 ∈ 𝐏𝐏𝐏𝐏𝐏𝐏, 𝐲𝐲′ ∈ 𝐏𝐏𝐏𝐏𝐏𝐏 for all 𝐲𝐲′ ≤ 𝐲𝐲.  

A.4 Convexity: For all 𝐲𝐲, 𝐲𝐲′ ∈ 𝐏𝐏𝐏𝐏𝐏𝐏 and 𝛼𝛼 ∈ [0, 1], 𝜏𝜏𝐲𝐲 + (1 − 𝜏𝜏) 𝐲𝐲′ ∈ 𝐏𝐏𝐏𝐏𝐏𝐏. 

A.5 Representable by a continuous and differentiable transformation function 𝑇𝑇(𝐲𝐲) ∈ ℝ where 𝑇𝑇(𝐲𝐲) = 0 

implies that 𝐲𝐲 ∈ 𝐏𝐏𝐏𝐏𝐏𝐏 and 𝐲𝐲′ ∉ 𝐏𝐏𝐏𝐏𝐏𝐏 for all 𝐲𝐲′ ∈ ℝ𝐿𝐿+𝐿𝐿×𝑆𝑆, 𝐲𝐲′ ≥ 𝐲𝐲 and 𝐲𝐲′ ≠ 𝐲𝐲. 

Preferences are characterized over bundles of certain profit 𝜋𝜋0 ∈ ℝ and a vector of state contingent uncertain profit 

𝛑𝛑𝑢𝑢 ∈ ℝ𝑆𝑆 such that 𝛑𝛑 = (𝜋𝜋0,𝛑𝛑𝑢𝑢) ∈ ℝ𝑆𝑆+1.  Assumptions employed for these preferences are 

A.6 Complete, transitive, and continuous so that they can be represented by a continuous, real valued utility 

function 𝑊𝑊(𝛑𝛑). 

A.7 Monotonic such that 𝑊𝑊(𝛑𝛑) > 𝑊𝑊(𝛑𝛑′) if 𝛑𝛑 ≥ 𝛑𝛑′ and 𝛑𝛑 ≠ 𝛑𝛑′. 

A.8 Twice differentiable where 𝑊𝑊𝑠𝑠(𝛑𝛑) = 𝜕𝜕𝑊𝑊(𝛑𝛑)
𝜕𝜕𝜋𝜋𝑠𝑠

 and 𝑊𝑊𝑠𝑠𝑠𝑠(𝛑𝛑) = 𝜕𝜕2𝑊𝑊(𝛑𝛑)
𝜕𝜕𝜋𝜋𝑠𝑠𝜕𝜕𝜋𝜋𝑡𝑡

 for all s and t. 

The producer’s objective is assumed to be utility maximization with competitive input and output markets.  

Let certain competitive commodity prices be 𝐩𝐩0 ∈ ℝ++
𝐿𝐿 , while uncertain competitive commodity prices are 𝐩𝐩𝑠𝑠 ∈

ℝ++
𝐿𝐿  for states s = 1,…, S.  For notational convenience, 𝐩𝐩𝑢𝑢 = (𝐩𝐩1, … ,𝐩𝐩𝑆𝑆) and 𝐩𝐩 = (𝐩𝐩0,𝐩𝐩𝑢𝑢).  Profits are defined as 

𝜋𝜋𝑠𝑠 = 𝐩𝐩𝑠𝑠 ∙ 𝐲𝐲𝑠𝑠 for s = 0,…, S such that producer’s objective is  

A.9 𝐲𝐲(𝐩𝐩) = {𝐲𝐲 ∈ 𝐏𝐏𝐏𝐏𝐏𝐏|𝑊𝑊(𝐩𝐩0 ∙ 𝐲𝐲0, … ,𝐩𝐩𝑆𝑆 ∙ 𝐲𝐲𝑆𝑆) ≥ 𝑊𝑊(𝐩𝐩0 ∙ 𝐲𝐲0′, … ,𝐩𝐩𝑆𝑆 ∙ 𝐲𝐲𝑆𝑆′) for all 𝐲𝐲′ ∈ 𝐏𝐏𝐏𝐏𝐏𝐏}. 

For expositional convenience, we also assume 
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A.10 𝐲𝐲(𝐩𝐩) is a nonempty, singleton set. 

 

Proofs of Lemmas and Propositions 

We first establish that production is efficient, so we can use our transformation function to characterize production 

possibilities in subsequent analysis. 

 

Lemma 1: Production is efficient — If 𝐲𝐲′ ≥ 𝐲𝐲(𝐩𝐩) and 𝐲𝐲′ ≠ 𝐲𝐲(𝐩𝐩), then 𝐲𝐲′ ∉ 𝐏𝐏𝐏𝐏𝐏𝐏. 

Proof: Suppose this is not the case such that there exists a 𝐲𝐲′ ∈ 𝐏𝐏𝐏𝐏𝐏𝐏 such that 𝐲𝐲′ ≥ 𝐲𝐲(𝐩𝐩) and 𝐲𝐲′ ≠ 𝐲𝐲(𝐩𝐩).  If 𝐲𝐲′ ≥

𝐲𝐲(𝐩𝐩) and 𝐲𝐲′ ≠ 𝐲𝐲(𝐩𝐩) then 𝜋𝜋𝑠𝑠′ = 𝐩𝐩𝑠𝑠 ∙ 𝐲𝐲𝑠𝑠′ ≥ 𝐩𝐩𝑠𝑠 ∙ 𝐲𝐲𝑠𝑠 = 𝜋𝜋𝑠𝑠 for all s and 𝜋𝜋𝑠𝑠′ > 𝜋𝜋𝑠𝑠 for some s.  By A.7, 𝑊𝑊(𝛑𝛑′) > 𝑊𝑊(𝛑𝛑), 

which contradicts A.9.          Q.E.D. 

 

Proof of our first proposition is facilitated by defining the set 𝛀𝛀(𝐩𝐩𝑢𝑢,𝛑𝛑𝑢𝑢) = {𝐲𝐲 ∈ 𝐏𝐏𝐏𝐏𝐏𝐏 |𝑇𝑇(𝐲𝐲) = 0 and 𝐩𝐩𝑠𝑠 ∙ 𝐲𝐲𝑠𝑠 ≥

𝜋𝜋𝑠𝑠𝑢𝑢 for  𝑠𝑠 = 1, … , 𝑆𝑆}, which includes all efficient production vectors that yield a vector of uncertain profit that is at 

least as large as 𝛑𝛑𝑢𝑢 given prices 𝐩𝐩𝑢𝑢.  A more general definition for the conditional supplies can then be written as 

E1 𝐲𝐲(𝐩𝐩,𝛑𝛑𝑢𝑢) = �( 𝐲𝐲0, 𝐲𝐲𝑢𝑢) ∈ 𝛀𝛀(𝐩𝐩𝑢𝑢,𝛑𝛑𝑢𝑢) |𝐩𝐩0 ∙ 𝐲𝐲0 ≥ 𝐩𝐩0 ∙ 𝐲𝐲0′for all � 𝐲𝐲0′, 𝐲𝐲𝑢𝑢′� ∈ 𝛀𝛀(𝐩𝐩𝑢𝑢,𝛑𝛑𝑢𝑢) �, 

with the immediate profit (IP) function  

E2 𝜋𝜋0(𝐩𝐩,𝛑𝛑𝑢𝑢) = 𝐩𝐩0 ∙ 𝐲𝐲0(𝐩𝐩,𝛑𝛑𝑢𝑢). 

 

Proposition 1: 

P.1 𝐲𝐲(𝐩𝐩,𝛑𝛑𝑢𝑢) and 𝜋𝜋0(𝐩𝐩,𝛑𝛑𝑢𝑢) are homogeneous of degree zero and one in 𝐩𝐩0, and both are homogeneous of 

degree zero in 𝐩𝐩𝑠𝑠 and 𝜋𝜋𝑠𝑠𝑢𝑢 for s = 1,…, S; 

P.2 (𝐩𝐩0′ − 𝐩𝐩0) ∙ �𝐲𝐲0�(𝐩𝐩0′,𝐩𝐩𝑢𝑢),𝛑𝛑𝑢𝑢� − 𝐲𝐲0�(𝐩𝐩0,𝐩𝐩𝑢𝑢),𝛑𝛑𝑢𝑢�� ≥ 0 for all 𝐩𝐩0′,𝐩𝐩0 ∈ ℝ++
𝐿𝐿 and 𝜋𝜋0(𝐩𝐩,𝛑𝛑𝑢𝑢) is 

convex in 𝐩𝐩0; and 

P.3 𝜕𝜕𝜋𝜋0�𝐩𝐩,𝛑𝛑𝑢𝑢′�
𝜕𝜕𝜋𝜋𝑠𝑠

≤ 0, 𝑦𝑦𝑙𝑙𝑠𝑠(𝐩𝐩′,𝛑𝛑𝑢𝑢′) = −
𝜕𝜕𝜋𝜋0�𝐩𝐩′,𝛑𝛑𝑢𝑢′�

𝜕𝜕𝑝𝑝𝑙𝑙
𝑠𝑠

𝜕𝜕𝜋𝜋0�𝐩𝐩′,𝛑𝛑𝑢𝑢′�
𝜕𝜕𝜋𝜋𝑠𝑠

𝑢𝑢
, and 𝑦𝑦𝑙𝑙0(𝐩𝐩′,𝛑𝛑𝑢𝑢) = 𝜕𝜕𝜋𝜋0(𝐩𝐩′,𝛑𝛑𝑢𝑢)

𝜕𝜕𝑝𝑝𝑙𝑙
0  for l = 1,…,L and s = 1,…, S if 

𝜋𝜋0(𝐩𝐩,𝛑𝛑𝑢𝑢) is differentiable at 𝛑𝛑𝑢𝑢′ and 𝐩𝐩′, and 𝜕𝜕𝜋𝜋0�𝐩𝐩′,𝛑𝛑
𝑢𝑢′�

𝜕𝜕𝜋𝜋𝑠𝑠𝑢𝑢
< 0.  
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Proof: P.1 follows immediately from equations E1 and E2 given 𝛼𝛼𝐩𝐩0 ∙ 𝐲𝐲0 ≥ 𝛼𝛼𝐩𝐩0 ∙ 𝐲𝐲0′ implies 𝐩𝐩0 ∙ 𝐲𝐲0 ≥ 𝐩𝐩0 ∙ 𝐲𝐲0′, 

and 𝛼𝛼𝐩𝐩𝑠𝑠 ∙ 𝐲𝐲𝑠𝑠 ≥ 𝛼𝛼𝜋𝜋𝑠𝑠𝑢𝑢 implies 𝐩𝐩𝑠𝑠 ∙ 𝐲𝐲𝑠𝑠 ≥ 𝜋𝜋𝑠𝑠𝑢𝑢 such that  𝛀𝛀(𝐩𝐩𝑢𝑢,𝛑𝛑𝑢𝑢) is homogeneous of degree zero in 𝐩𝐩𝑠𝑠 and 𝜋𝜋𝑠𝑠𝑢𝑢 for s = 

1,…,S. 

 

Equations E1 and E2 also imply  

E3a 𝐩𝐩0′ ∙ 𝐲𝐲0(𝐩𝐩0′,𝐩𝐩𝑢𝑢,𝛑𝛑𝑢𝑢) ≥ 𝐩𝐩0′ ∙ 𝐲𝐲0(𝐩𝐩0,𝐩𝐩𝑢𝑢 ,𝛑𝛑𝑢𝑢) and 

E3b 𝐩𝐩0 ∙ 𝐲𝐲0(𝐩𝐩0,𝐩𝐩𝑢𝑢,𝛑𝛑𝑢𝑢) ≥ 𝐩𝐩0 ∙ 𝐲𝐲0(𝐩𝐩0′,𝐩𝐩𝑢𝑢 ,𝛑𝛑𝑢𝑢)  

for all 𝐩𝐩0,𝐩𝐩0′ ∈ ℝ++
𝐿𝐿 . Summing these equations and some algebra yields the desired result for the first part of P.2. 

 

For the second part of P.2, convexity in 𝐩𝐩0 implies 

E4 𝛼𝛼𝜋𝜋0(𝐩𝐩0,𝐩𝐩𝑢𝑢,𝛑𝛑𝑢𝑢) + (1 − 𝛼𝛼)𝜋𝜋0(𝐩𝐩0′,𝐩𝐩𝑢𝑢,𝛑𝛑𝑢𝑢) ≥ 𝜋𝜋0(𝛼𝛼𝐩𝐩0 + (1 − 𝛼𝛼)𝐩𝐩0′,𝐩𝐩𝑢𝑢,𝛑𝛑𝑢𝑢)  

for all 𝐩𝐩0,𝐩𝐩0′ ∈ ℝ++
𝐿𝐿  and 𝛼𝛼 ∈ [0,1].  Suppose this is not the case such that there exists 𝛼𝛼0 ∈ [0,1] where 

E5 𝛼𝛼0𝜋𝜋0(𝐩𝐩0,𝐩𝐩𝑢𝑢,𝛑𝛑𝑢𝑢) + (1 − 𝛼𝛼0)𝜋𝜋0(𝐩𝐩0′,𝐩𝐩𝑢𝑢,𝛑𝛑𝑢𝑢) < 𝜋𝜋0(𝛼𝛼𝐩𝐩0 + (1 − 𝛼𝛼)𝐩𝐩0′,𝐩𝐩𝑢𝑢 ,𝛑𝛑𝑢𝑢). 

By equations E1 and E2 

E6a  𝛼𝛼0𝐩𝐩0 ∙ 𝐲𝐲0(𝐩𝐩0,𝐩𝐩𝑢𝑢 ,𝛑𝛑𝑢𝑢) ≥ 𝛼𝛼0𝐩𝐩0 ∙ 𝐲𝐲0(𝛼𝛼𝐩𝐩0 + (1 − 𝛼𝛼)𝐩𝐩0′,𝐩𝐩𝑢𝑢,𝛑𝛑𝑢𝑢) and 

E6b  (1 − 𝛼𝛼0)𝐩𝐩0′ ∙ 𝐲𝐲0(𝐩𝐩0′,𝐩𝐩𝑢𝑢,𝛑𝛑𝑢𝑢) ≥ (1 − 𝛼𝛼0)𝐩𝐩0′ ∙ 𝐲𝐲0(𝛼𝛼𝐩𝐩0 + (1 − 𝛼𝛼)𝐩𝐩0′,𝐩𝐩𝑢𝑢,𝛑𝛑𝑢𝑢). 

Summing these equations and substitution using equation E2 then yields the contradiction. 

 

For P.3, note that the producer’s problem can also be written as  

E7a  max
𝒚𝒚

𝐩𝐩0 ∙ 𝐲𝐲0 subject to 𝑇𝑇(𝐲𝐲) = 0 and 𝐩𝐩𝑠𝑠 ∙ 𝐲𝐲𝑠𝑠 ≥ 𝜋𝜋𝑠𝑠𝑢𝑢 for s = 1,…, S, 

which has the Lagrangian  

E7b  𝐿𝐿 = 𝐩𝐩0 ∙ 𝐲𝐲0 − 𝛾𝛾𝑇𝑇(𝐲𝐲) + ∑ 𝜆𝜆𝑠𝑠(𝐩𝐩𝑠𝑠 ∙ 𝐲𝐲𝑠𝑠 − 𝜋𝜋𝑠𝑠𝑢𝑢)𝑆𝑆
𝑠𝑠=1  

and first order conditions  

E7c  𝜆𝜆𝑠𝑠
∗𝑝𝑝𝑙𝑙𝑠𝑠 − 𝛾𝛾∗ 𝜕𝜕𝜕𝜕(𝐲𝐲∗)

𝜕𝜕𝑦𝑦𝑙𝑙
𝑠𝑠 = 0 for s = 1,…, S and l = 1,…,L, 

E7d  𝑝𝑝𝑙𝑙0 − 𝛾𝛾∗ 𝜕𝜕𝜕𝜕(𝐲𝐲∗)
𝜕𝜕𝑦𝑦𝑙𝑙

0 = 0 for l = 1,…,L, 

E7e  𝐩𝐩𝑠𝑠 ∙ 𝐲𝐲𝑠𝑠∗ = 𝜋𝜋𝑠𝑠𝑢𝑢 for s = 1,…, S, and 

E7f  𝑇𝑇(𝐲𝐲∗) = 0. 



 

4 
 

Now note that  

E8 𝜋𝜋0(𝐩𝐩,𝛑𝛑𝑢𝑢) = 𝐩𝐩0 ∙ 𝐲𝐲0(𝐩𝐩,𝛑𝛑𝑢𝑢) − 𝛾𝛾(𝐩𝐩,𝛑𝛑𝑢𝑢)𝑇𝑇�𝐲𝐲(𝐩𝐩,𝛑𝛑𝑢𝑢)� + ∑ 𝜆𝜆𝑠𝑠(𝐩𝐩,𝛑𝛑𝑢𝑢)(𝐩𝐩𝑠𝑠 ∙ 𝐲𝐲𝑠𝑠(𝐩𝐩,𝛑𝛑𝑢𝑢) − 𝜋𝜋𝑠𝑠𝑢𝑢)𝑆𝑆
𝑠𝑠=1  

such that the envelope theorem implies 𝜕𝜕𝜋𝜋0(𝐩𝐩,𝛑𝛑𝑢𝑢)
𝜕𝜕𝜋𝜋𝑠𝑠𝑢𝑢

= −𝜆𝜆𝑠𝑠(𝐩𝐩,𝛑𝛑𝑢𝑢) ≤ 0, 𝜕𝜕𝜋𝜋0(𝐩𝐩,𝛑𝛑𝑢𝑢)
𝜕𝜕𝑝𝑝𝑙𝑙

𝑠𝑠 = 𝜆𝜆𝑠𝑠(𝐩𝐩,𝛑𝛑𝑢𝑢)𝑦𝑦𝑙𝑙𝑠𝑠(𝐩𝐩,𝛑𝛑𝑢𝑢) or 𝑦𝑦𝑙𝑙𝑠𝑠(𝐩𝐩,𝛑𝛑𝑢𝑢) =

−
𝜕𝜕𝜋𝜋0�𝐩𝐩,𝛑𝛑𝑢𝑢�

𝜕𝜕𝑝𝑝𝑙𝑙
𝑠𝑠

𝜕𝜕𝜋𝜋0(𝐩𝐩,𝛑𝛑𝑢𝑢)
𝜕𝜕𝜋𝜋𝑠𝑠

𝑢𝑢
 for 𝜕𝜕𝜋𝜋0(𝐩𝐩,𝛑𝛑𝑢𝑢)

𝜕𝜕𝜋𝜋𝑠𝑠𝑢𝑢
< 0, and 𝑦𝑦𝑙𝑙0(𝐩𝐩,𝛑𝛑𝑢𝑢) = 𝜕𝜕𝜋𝜋0(𝐩𝐩,𝛑𝛑𝑢𝑢)

𝜕𝜕𝑝𝑝𝑙𝑙
0  as desired.     Q.E.D. 

 

Lemma 2: For 𝛑𝛑𝑢𝑢(𝐩𝐩) = argmax
𝛑𝛑𝑢𝑢

𝑊𝑊(𝜋𝜋0(𝐩𝐩,𝛑𝛑𝑢𝑢),𝛑𝛑𝑢𝑢), 𝐲𝐲(𝐩𝐩) = 𝐲𝐲�𝐩𝐩,𝛑𝛑𝑢𝑢(𝐩𝐩)�. 

 

Proof: Given Lemma 1 and A.5, A.9 can also be written as 

E9a  max
𝐲𝐲

𝑊𝑊(𝐩𝐩0 ∙ 𝐲𝐲0, … ,𝐩𝐩𝑆𝑆 ∙ 𝐲𝐲𝑆𝑆) subject to 𝑇𝑇(𝐲𝐲) = 0, 

which has the Lagrangian  

E9b  𝐿𝐿 = 𝑊𝑊(𝐩𝐩0 ∙ 𝐲𝐲0, … ,𝐩𝐩𝑆𝑆 ∙ 𝐲𝐲𝑆𝑆) − 𝛾𝛾𝑇𝑇(𝐲𝐲) 

and first order conditions  

E9c  𝑝𝑝𝑙𝑙𝑠𝑠𝑊𝑊𝑠𝑠(𝐩𝐩0 ∙ 𝐲𝐲0, … ,𝐩𝐩𝑆𝑆 ∙ 𝐲𝐲𝑆𝑆) − 𝛾𝛾∗ 𝜕𝜕𝜕𝜕(𝐲𝐲∗)
𝜕𝜕𝑦𝑦𝑙𝑙

𝑠𝑠 = 0 for s = 0,…, S and l = 1,…,L, and 

E9d  𝑇𝑇(𝐲𝐲∗) = 0. 

These conditions imply 

E9e  
𝜕𝜕𝜕𝜕(𝐲𝐲∗)
𝜕𝜕𝑦𝑦𝑙𝑙

𝑠𝑠

𝜕𝜕𝜕𝜕(𝐲𝐲∗)
𝜕𝜕𝑦𝑦1

0

𝑝𝑝1
0

𝑝𝑝𝑙𝑙
𝑠𝑠 = 𝑊𝑊𝑠𝑠�𝐩𝐩0∙𝐲𝐲0,…,𝐩𝐩𝑆𝑆∙𝐲𝐲𝑆𝑆�

𝑊𝑊0�𝐩𝐩0∙𝐲𝐲0,…,𝐩𝐩𝑆𝑆∙𝐲𝐲𝑆𝑆�
 for s = 0,…, S, l = 1,…,L, and s ≠ 0 and l ≠ 1. 

The solution to equations E9d and E9e is 𝐲𝐲(𝐩𝐩). 

 

Now consider the problem  

E10a max
𝛑𝛑𝑢𝑢

𝑊𝑊(𝜋𝜋0(𝐩𝐩,𝛑𝛑𝑢𝑢),𝛑𝛑𝑢𝑢), 

with its associated first order condition 

E10b 𝑊𝑊𝑠𝑠(𝛑𝛑∗) + 𝑊𝑊0(𝛑𝛑∗) 𝜕𝜕𝜋𝜋0�𝐩𝐩,𝛑𝛑𝑢𝑢∗�
𝜕𝜕𝜋𝜋𝑠𝑠

= 0 for s = 1,...,S. 

Note that E7f in the derivation of the IP function is identical to E9d.  Also note that equations E7c and E7d, and the 

proof to P.3 imply  



 

5 
 

E11  −𝜕𝜕𝜋𝜋0(𝐩𝐩,𝛑𝛑𝑢𝑢)
𝜕𝜕𝜋𝜋𝑠𝑠𝑢𝑢

= 𝑝𝑝1
0

𝑝𝑝𝑙𝑙
𝑠𝑠

𝜕𝜕𝜕𝜕(𝐲𝐲∗)
𝜕𝜕𝑦𝑦𝑙𝑙

𝑠𝑠

𝜕𝜕𝜕𝜕(𝐲𝐲∗)
𝜕𝜕𝑦𝑦1

0
 for s = 0,…, S, l = 1,…,L, and s ≠ 0 and l ≠ 1. 

Substitution of equation E10b into E11 and some algebra then yields equation E9e.  Therefore, the solution to E9a 

and A.9 must equal the combined solution to equations E1 and E10a as desired.    Q.E.D. 

 

Proposition 2: The effect of a change in the price of commodity k = 1,…, L in state t = 0,…, S on the 

commodity supply 𝐲𝐲(𝐩𝐩) is  

∂𝐲𝐲(𝐩𝐩)
∂𝑝𝑝𝑘𝑘𝑠𝑠

=
∂𝐲𝐲�𝐩𝐩,𝛑𝛑𝑢𝑢(𝐩𝐩)�

∂𝑝𝑝𝑘𝑘𝑠𝑠
+
∂𝐲𝐲�𝐩𝐩,𝛑𝛑𝑢𝑢(𝐩𝐩)�

∂𝛑𝛑𝑢𝑢
∂𝛑𝛑𝑢𝑢(𝐩𝐩)
∂𝑝𝑝𝑘𝑘𝑠𝑠

 

where 

∂𝛑𝛑𝑢𝑢(𝐩𝐩)
∂𝑝𝑝𝑘𝑘

𝑡𝑡 = (𝚸𝚸 + 𝚫𝚫𝛉𝛉0 − 𝐓𝐓𝛑𝛑𝑢𝑢)−𝟏𝟏 �𝚫𝚫 𝜕𝜕𝜋𝜋0�𝐩𝐩,𝛑𝛑𝑢𝑢∗�
𝜕𝜕𝑝𝑝𝑘𝑘

𝑡𝑡 + 𝐓𝐓𝑝𝑝𝑘𝑘𝑡𝑡 � and 

𝛉𝛉0 = �𝜃𝜃10�𝛑𝛑(𝐩𝐩)� ⋯ 𝜃𝜃𝑆𝑆0�𝛑𝛑(𝐩𝐩)��. 

 

Proof: The first equation in Proposition 2 is simply an application of the chain rule.  For the second equation, 

rewrite equation E10b as 

E12a   𝜃𝜃𝑠𝑠0(𝜋𝜋0(𝐩𝐩,𝛑𝛑𝑢𝑢∗),𝛑𝛑𝑢𝑢∗) + 𝜕𝜕𝜋𝜋0�𝐩𝐩,𝛑𝛑𝑢𝑢∗�
𝜕𝜕𝜋𝜋𝑠𝑠

= 0 for s = 1, …, S 

where 𝜃𝜃𝑠𝑠0(𝛑𝛑) = 𝑊𝑊𝑠𝑠(𝛑𝛑)
𝑊𝑊0(𝛑𝛑)

 and totally differentiate with respect to 𝛑𝛑𝑢𝑢∗ and 𝑝𝑝𝑘𝑘𝑠𝑠  to get 

E12b ∑ �𝜕𝜕𝜃𝜃𝑠𝑠
0(𝛑𝛑∗)
𝜕𝜕𝜋𝜋0

𝜕𝜕𝜋𝜋0�𝐩𝐩,𝛑𝛑𝑢𝑢∗�
𝜕𝜕𝜋𝜋𝑟𝑟𝑢𝑢

+ 𝜕𝜕𝜃𝜃𝑠𝑠0(𝛑𝛑∗)
𝜕𝜕𝜋𝜋𝑟𝑟𝑢𝑢

+ 𝜕𝜕2𝜋𝜋0�𝐩𝐩,𝛑𝛑𝑢𝑢∗�
𝜕𝜕𝜋𝜋𝑠𝑠𝜕𝜕𝜋𝜋𝑟𝑟

� 𝑑𝑑𝜋𝜋𝑟𝑟𝑢𝑢𝑆𝑆
𝑟𝑟=1  

                                                            + �𝜕𝜕𝜃𝜃𝑠𝑠
0(𝛑𝛑∗)
𝜕𝜕𝜋𝜋0

𝜕𝜕𝜋𝜋0�𝐩𝐩,𝛑𝛑𝑢𝑢∗�
𝜕𝜕𝑝𝑝𝑘𝑘

𝑡𝑡 + 𝜕𝜕2𝜋𝜋0�𝐩𝐩,𝛑𝛑𝑢𝑢∗�
𝜕𝜕𝜋𝜋𝑠𝑠𝜕𝜕𝑝𝑝𝑘𝑘

𝑡𝑡 � 𝑑𝑑𝑝𝑝𝑘𝑘𝑠𝑠 = 0 for s = 1, …, S. 

Note that  

E12c 𝜕𝜕𝜃𝜃𝑠𝑠0(𝛑𝛑∗)
𝜕𝜕𝜋𝜋0

= 𝜃𝜃𝑠𝑠0(𝛑𝛑∗) �𝜌𝜌0 �𝛑𝛑∗, ∂𝛑𝛑
∂𝜋𝜋0

� − 𝜌𝜌𝑠𝑠 �𝛑𝛑∗, ∂𝛑𝛑
∂𝜋𝜋0

�� and 𝜕𝜕𝜃𝜃𝑠𝑠
0(𝛑𝛑∗)
𝜕𝜕𝜋𝜋𝑟𝑟𝑢𝑢

= 𝜃𝜃𝑠𝑠0(𝛑𝛑∗) �𝜌𝜌0 �𝛑𝛑∗, ∂𝛑𝛑
∂𝜋𝜋𝑟𝑟

� − 𝜌𝜌𝑠𝑠 �𝛑𝛑∗, ∂𝛑𝛑
∂𝜋𝜋𝑟𝑟

�� 

where 𝜌𝜌0 �𝛑𝛑∗, ∂𝛑𝛑
∂𝜋𝜋0

� = −𝑊𝑊00(𝛑𝛑∗)
𝑊𝑊0(𝛑𝛑∗)

, 𝜌𝜌𝑠𝑠 �𝛑𝛑∗,
∂𝛑𝛑
∂𝜋𝜋0

� = −𝑊𝑊𝑠𝑠0(𝛑𝛑∗)
𝑊𝑊𝑠𝑠(𝛑𝛑∗)

, 𝜌𝜌0 �𝛑𝛑∗, ∂𝛑𝛑
∂𝜋𝜋𝑟𝑟

� = −𝑊𝑊0𝑟𝑟(𝛑𝛑∗)
𝑊𝑊0(𝛑𝛑∗)

, and 𝜌𝜌𝑠𝑠 �𝛑𝛑∗,
∂𝛑𝛑
∂𝜋𝜋𝑟𝑟

� = −𝑊𝑊𝑠𝑠𝑟𝑟(𝛑𝛑∗)
𝑊𝑊𝑠𝑠(𝛑𝛑∗)

.  

Equation E12b can then be rewritten as 

E12d  ∑ ��𝜌𝜌0 �𝛑𝛑∗, ∂𝛑𝛑
∂𝜋𝜋0

� − 𝜌𝜌𝑠𝑠 �𝛑𝛑∗, ∂𝛑𝛑
∂𝜋𝜋0

�� 𝜕𝜕𝜋𝜋0�𝐩𝐩,𝛑𝛑𝑢𝑢∗�
𝜕𝜕𝜋𝜋𝑟𝑟𝑢𝑢

�𝑑𝑑𝜋𝜋𝑟𝑟𝑢𝑢𝑆𝑆
𝑟𝑟=1 + 
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               ∑ ��𝜌𝜌0 �𝛑𝛑∗, ∂𝛑𝛑
∂𝜋𝜋𝑟𝑟

� − 𝜌𝜌𝑠𝑠 �𝛑𝛑∗, ∂𝛑𝛑
∂𝜋𝜋𝑟𝑟

�� −
𝜕𝜕2𝜋𝜋0�𝐩𝐩,𝛑𝛑𝑢𝑢∗�
𝜕𝜕𝜋𝜋𝑠𝑠𝜕𝜕𝜋𝜋𝑟𝑟

𝜕𝜕𝜋𝜋0�𝐩𝐩,𝛑𝛑𝑢𝑢∗�
𝜕𝜕𝜋𝜋𝑠𝑠

�𝑑𝑑𝜋𝜋𝑟𝑟𝑢𝑢𝑆𝑆
𝑟𝑟=1 =  

 

                    −

⎝

⎜
⎛
�𝜌𝜌0 �𝛑𝛑∗,

∂𝛑𝛑
∂𝜋𝜋0

� − 𝜌𝜌𝑠𝑠 �𝛑𝛑∗,
∂𝛑𝛑
∂𝜋𝜋0

�� 𝜕𝜕𝜋𝜋0�𝐩𝐩,𝛑𝛑𝑢𝑢∗�
𝜕𝜕𝑝𝑝𝑘𝑘

𝑡𝑡 −

𝜕𝜕2𝜋𝜋0�𝐩𝐩,𝛑𝛑𝑢𝑢∗�

𝜕𝜕𝜋𝜋𝑠𝑠𝜕𝜕𝑝𝑝𝑘𝑘
𝑡𝑡

𝜕𝜕𝜋𝜋0�𝐩𝐩,𝛑𝛑𝑢𝑢∗�
𝜕𝜕𝜋𝜋𝑠𝑠

⎠

⎟
⎞
𝑑𝑑𝑝𝑝𝑘𝑘𝑠𝑠 . 

Also note that  

E12e  
𝜕𝜕2𝜋𝜋0�𝐩𝐩,𝛑𝛑𝑢𝑢∗�
𝜕𝜕𝜋𝜋𝑠𝑠𝜕𝜕𝜋𝜋𝑟𝑟

𝜕𝜕𝜋𝜋0�𝐩𝐩,𝛑𝛑𝑢𝑢∗�
𝜕𝜕𝜋𝜋𝑠𝑠

= 𝜏𝜏𝑠𝑠𝛑𝛑 �𝐩𝐩,𝛑𝛑𝑢𝑢 , ∂𝛑𝛑
∂𝜋𝜋𝑟𝑟

� and 

𝜕𝜕2𝜋𝜋0�𝐩𝐩,𝛑𝛑𝑢𝑢∗�

𝜕𝜕𝜋𝜋𝑠𝑠𝜕𝜕𝑝𝑝𝑘𝑘
𝑡𝑡

𝜕𝜕𝜋𝜋0�𝐩𝐩,𝛑𝛑𝑢𝑢∗�
𝜕𝜕𝜋𝜋𝑠𝑠

= 𝜏𝜏𝑠𝑠
𝐩𝐩 �𝐩𝐩,𝛑𝛑𝑢𝑢 , ∂𝐩𝐩

∂𝑝𝑝𝑘𝑘
𝑡𝑡� 

such that equation E12d becomes 

E12f  (𝚸𝚸 + 𝚫𝚫𝛉𝛉0 − 𝐓𝐓𝛑𝛑𝑢𝑢)𝐝𝐝𝛑𝛑𝑢𝑢(𝐩𝐩) = �𝚫𝚫 𝜕𝜕𝜋𝜋0�𝐩𝐩,𝛑𝛑𝑢𝑢∗�
𝜕𝜕𝑝𝑝𝑘𝑘

𝑡𝑡 + 𝐓𝐓𝑝𝑝𝑘𝑘𝑡𝑡 � 𝑑𝑑𝑝𝑝𝑘𝑘
𝑠𝑠  

where 𝚸𝚸 =

⎣
⎢
⎢
⎡𝜌𝜌0 �𝛑𝛑

∗, ∂𝛑𝛑
∂𝜋𝜋1

� − 𝜌𝜌1 �𝛑𝛑∗, ∂𝛑𝛑
∂𝜋𝜋1

� ⋯ 𝜌𝜌0 �𝛑𝛑∗,
∂𝛑𝛑
∂𝜋𝜋𝑆𝑆

� − 𝜌𝜌1 �𝛑𝛑∗, ∂𝛑𝛑
∂𝜋𝜋𝑆𝑆

�
⋮ ⋱ ⋮

𝜌𝜌0 �𝛑𝛑∗, ∂𝛑𝛑
∂𝜋𝜋1

� − 𝜌𝜌𝑆𝑆 �𝛑𝛑∗, ∂𝛑𝛑
∂𝜋𝜋1

� ⋯ 𝜌𝜌0 �𝛑𝛑∗, ∂𝛑𝛑
∂𝜋𝜋𝑆𝑆

� − 𝜌𝜌𝑆𝑆 �𝛑𝛑∗, ∂𝛑𝛑
∂𝜋𝜋𝑆𝑆

�⎦
⎥
⎥
⎤
, 𝚫𝚫 =

⎣
⎢
⎢
⎡𝜌𝜌1 �𝛑𝛑

∗, ∂𝛑𝛑
∂𝜋𝜋0

� − 𝜌𝜌0 �𝛑𝛑∗, ∂𝛑𝛑
∂𝜋𝜋0

�
⋮

𝜌𝜌𝑆𝑆 �𝛑𝛑∗,
∂𝛑𝛑
∂𝜋𝜋0

� − 𝜌𝜌0 �𝛑𝛑∗,
∂𝛑𝛑
∂𝜋𝜋0

�⎦
⎥
⎥
⎤
, 𝐓𝐓𝛑𝛑𝑢𝑢 =

⎣
⎢
⎢
⎡𝜏𝜏1
𝛑𝛑 �𝐩𝐩,𝛑𝛑𝑢𝑢 , ∂𝛑𝛑

∂𝜋𝜋1
� ⋯ 𝜏𝜏1𝛑𝛑 �𝐩𝐩,𝛑𝛑𝑢𝑢 , ∂𝛑𝛑

∂𝜋𝜋𝑆𝑆
�

⋮ ⋱ ⋮
𝜏𝜏𝑆𝑆𝛑𝛑 �𝐩𝐩,𝛑𝛑𝑢𝑢 , ∂𝛑𝛑

∂𝜋𝜋1
� ⋯ 𝜏𝜏𝑆𝑆𝛑𝛑 �𝐩𝐩,𝛑𝛑𝑢𝑢 , ∂𝛑𝛑

∂𝜋𝜋𝑆𝑆
�⎦
⎥
⎥
⎤
, 𝐓𝐓𝑝𝑝𝑘𝑘𝑡𝑡 =

⎣
⎢
⎢
⎢
⎡𝜏𝜏1
𝐩𝐩 �𝐩𝐩,𝛑𝛑𝑢𝑢 , ∂𝐩𝐩

∂𝑝𝑝𝑘𝑘
𝑡𝑡�

⋮
𝜏𝜏𝑆𝑆
𝐩𝐩 �𝐩𝐩,𝛑𝛑𝑢𝑢 , ∂𝐩𝐩

∂𝑝𝑝𝑘𝑘
𝑡𝑡�⎦
⎥
⎥
⎥
⎤
 and 𝛉𝛉0 = [𝜃𝜃10(𝐩𝐩) ⋯ 𝜃𝜃𝑆𝑆0(𝐩𝐩)].  Some algebraic 

manipulation of equation E12f then yields the desired result.     Q.E.D. 


