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pz‘cblvm in at least two ways., Any inpub can :aatisfy any output in the

PROCEDUFE" IN LINEAR PROGRAMMING ;/ R

Milton M, Snodgrass ard Charles E. French ,Z_f
Purdue Univerai%y

To date, most agricultural economists using linear progres ar

have employed' the "general procedure" or "simplex method, " &‘%

solved by the "transportation-problem procedure™ or ™ODI ma"t.h"c,_i_d; “_-'

The "transportation-problem procedure” wes conceived to g!:vm"
minimum transport cost in satisfying a given set of needs from a
given set of sources, The need of sach location and the capacity of
each source were predetermined, Total needs equalled totsl caps~
cityo Thus, all coefficients of the matrix could be converted to
one or zero,

This would seem unduly restricting, but it is not difficult te
generalize the procedure to cover a large. group of problens where
the objective is to give a mdnimun cost, or maximum profit, in :
setisfying mny set of outputs from a given set of inputs. Any el
problem meeting the following formal characteristics can qualifys

"(1) One unit of any input can be used to produce one unit

of any output,

(2) The cost or margin which will result from conversion of
one unit of a particular input into one unit of a partie
cular output can be expressed by .a single figure regard-
less of the number of umits converted,

(3) The quantity of each individual input and outpu is fixed .

in advance, and the total of the inputs equals the totel
of the outputs -

Thua, the transportation problsm differs explicltly from the er I:" ..

tranaportation preblem, while thiz is usually not true in the gensral -
problem. A1so, total inmputs must squal total outputs in the transporbe

tion problem, huh this need ot be 4rue in the geneoral pro’ﬁlem; jf e 3
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Kocopmans illustrated early use of the "*ransncrtamic ~roblem pro-
cedurs® and Samﬁelson-Z/ later -showed its relationship to the broader
spatisl equilibrium problem, Judge 8/ nae solved with this procedure an
interregional competition problem in eggéc The authors 9/ have recently
completed a somewhat similar study in dairy products. Waugh 1o/ used a
modification of it to awafd contracts in connection with the school lunch
prograio

This proéedure makes for a much more simple formulation of a glven
problem than the "general piocedure;" Often hand calculaition will yiold
answers for sizeable problemso ;;/ Also, recent improved machine pro-:
grams developed by A. Charnes at Purdue have made digital compuber
solution quite simple for this type of problem,

The "general procedure? has been well illustrated in this Journal, ;21
The "transportation-problem procsdurs® has not been so illustrated in
sources readily available to agricultural economi.sts, L/ Thus, this
article will illustrate this procedure in detail. In the same vein
as the articles cited above by Heady and Boles, no complicated mathe-
matics will be used,

' This procedure can best be illustrated by example, Iet us assume
an interregional problem of detemmining the lowest transport cost in
satisfying fixed consumption needs of given regions from Tixed produc—
| uion Jevels within the same reglons,

Let us suppose that the United States is cowposed of four regiens
which are contiguous. Le%t us chooss one point in each region (praferabiy
near the center) which will serve ag a point of broduction for the region
.and also as a point of consumption for the region, The next logical
step is %o specify a given production and consumption requirement for

sach region, Suppose that 100 units of the product in question are
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produced in the whole country. If we eliminate the poassibllity of storing

the commodlty, then 100 units will also be consumed. Let us assume the

following:
SQE;QQ Production Consumption . Surplus Deficit,
1 10 30 e 20
2 15 25 e 10
3 30 23 3. =
4 hs 20 23, .
Cheek 100 = IOO 30 = 30

With regard to transportation; let us assume the following structurs

of rates which are independent of wvolume or direciion:

Regfon 1 Hegion 2 Regdon 3 Region
L
dollars per unit)

Region 1 0 2 & 6
2 2 0 é 2
3 L 6 0 L
b 6 2 L 0]

It should he noted that there is no cost involved in shipping from
any one region to the same reglon because we:assumed the same poiat in
the region for production and consumptions Hence, diagonal rates from
upper left to lower right are all zero. |

Given these datapAthe mroblem becomes one of moving 100 unite of
production into consumption at a minimum total cost., By inapection
of the data, one would guess thst Region 1 will consume all 10 of the
unites it produces since no cost is involved, Similarly, it would bs.
expacted that Region 2 will consume all 15 of the units it produces.
Since Region 3 and 4 are surplus regions, it would seem likely that
they would meet all of thelr consumption needs from their own production,
As a result, then, a guess that only 30 units of the prodvct will move
i8 quite logical, It will be seen later how this process of inspasction
can cut down considerably the tims inwolved in aétualLy solving the |

problem,
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Next, the formulation of the problem matrix is necessary. To
designate the squares in the matrix, the notation Xy 3 is used where
§ refers to the reglon of production or orligin and J refers to the
region of consumption or destination., Thus the sum of the :r.ij"s would
equal 100 as all 100 that are produced are moved into conesumption, The
following table illustrates the situaitlon where x5 j equals the amount

(4f any) moving from state 1 to state Jo

i Xy X3 Xy
”%-, Example: The amount in this ¢ell
oy Xya Xpg Q will represent ths amount
"~ produced and shipped f£rum

A
(a) 331 Esp 133 2310 zigiR:& inf:f consumption

Iy F2 X3 Ry,

The total number of cells in table matrix (A) totals 16 as would be
expacted; four rows and four columns each with four cells If we le‘g
4 prodl.tction be indicated by rows and consumption by columns, and at the
same time let P's (production) represent rows and U's, colums (consumption),

the following relationships are establisheds
Przxy £ a2 fagfay =10

~ Pa = Xpo # Xy f xgy = 18
(8) 3 2

P3 2 xq3 £ 232 7;333 95135&230
Po = my f xip # Bz £ 3y, = 45
Py 4 Py & Py 4 Pp ~100¢= Exm = Total production
Uy = Iy xzz'/‘xsz X = 25
©)

U3 = xy3 # Xyg / xq9 # 3 = 25

U = myy F By, of 3y, f = 20
Uy 40y & Uy 4 & = 100 22313 & Total consumption
Finelly: &

L
Pe = =
2 f U£=10@
Ci=h



The next step is the formulation of a basic solution or, in other
words, to formulate a @ype of solusion to the problem which will satis-
fy the above requirements., It may also be called a firsf approximation
and it will no doubt yield a total cost figure greater than the opiimum,
The solving for the optimm therzfore ia nothing more than a series of
approximations each of which gives a lesser total cost than the preéiouso

To formulate a base, or first approximation, it is necessary te
£111 seven of the 16 cells or xij“so The number of cells that must be
filled te constitute a basic solution is always obiained by adding the
number of rows to the number cf coluwmns and subtracting one., Ia this
case, four plus four minus one; equals seven.

The next question is, which seven are chosen fer the first gpproxic
mation? It is here that inspection of the data "pays off" == in guiding
the problem solwver in making the best first approximation possible., To
the extent the researcher has either empirical or theoretical knowledge
of his problem, he can hypothesize logical interreglonal flows, These
flows can be built into the basic sclution within certain limits (explained
later)s A good first approximation saves considerable time in reaching
the optimum,

The combination of seven cells chosen must meet certain requirements
to be valid, The first requirement is that it must séﬁisfy all row and
column requirements de;ignated in (B) and (C) aboéen

Following are two examples of basic solutions. Included in the
uppsr right of each cell i; the appropriate transportation rate.

In example (D), the seven zijﬁs or ¢ells in the solution and their
amounts chosen were xlk (10), Zop, (10); x§3 (5), Xaq (20), X3 {10),

%5 {15), and x3 (30)o The totsl cost of this approximation would be the

sum of each of the amounts times its particular rate. If we designate the



=8

transportation rates by "tij",, then the total cost of this solution would

be gxﬁaﬁ or (10 x 8) £ (10 x 2)
(1522)£(30x6)or 60£20 £30£ 04

£ (5x 6) ¢4

80 #£ 30 £

(20x0) £ (10x 8) £
180 = $380,

A quick

check shows that this solution mests the recuirements of {B) and (C) above.

(D)

Consump-

tion -%

not chosen as a part of the baslc solutlon.

explained in nonmathematical terms by use of an analogy.

Prod‘:vg:tion
wP;._ =10
= 15
Py 2 45
Z Py= ?UJJ.O@

A second requirement that must be met concerns the cells which are
This requirement ls best

Imagine the

matrix above (D) as a pond of water and sach x, 3 or cell vhich is one of

the seven in the solution as a stepping stons on which one couid stand

without getting wet.

Suppose zlso the pond was of a sufficiently small

size so that one could easlly walk fxom cne steppiﬁg stone te ancther. 4%

once it iz evident that it would be pessible to walk from Xy in the upper

right or northeast corner of the matrix to xhl in the lower left or south-

wesh corner of the matrix without getting wet.

It is also pertinent teo

require that in making this jourmey one would never walk diasgonally



(norﬁhwesfg southwest, northeast, or southeast) in direction but always
either north, south, east; or west, In this particular case; one would
walk only soubh and wesh.

The combination of seven cells in matriz (D) constitutes a yalid
base if and only if it is possible to accomplish a check for gach s 3
or cell that is pol s stepping stona, Since seven of the 16 cslis are
stepping stones; it is necessary to check the remalning nire which are
not; namely, X1y, Xjg, Fyg0 Noys X2ze Tgye Xypo Fyys and x),. To check
& cell, move directly east or west in the same row as the csll that is
being checked untll a stepping-stone cell ig found. Then, if it is
pessible to move alternately north or south and then east or west te
stepping~stone cells until a stepping otuns is reached that is in the
same column as the cell originally being checked, the test for that

particular cell is completed. For examplé to check cell in the

&Y
matrix (D), the first move is to X0 (which is in the game row), thence
south to x,,, west to X395 south %o X339 west. to R320 south to X, 2 and
west to %pq where the check is complete because X is in the gggg‘
golumn as the ecell being checked, Xyyo Ié is important to note that
it is not necessary to move to an adjacent 2tepping-stone cell with
each move, It is only necessary that a stepping-stone cell be uzed at
the cornsrs or when one is moving from g row %0 a colum or vice versa.
It is "legal” to skip over cells to reach a stepplng stone at a somer.
These skipped cells can be either other stepping-stons cells or empty
cells, |

Finally, then, tihe following paths of movement would constitute a

£inal check as to the validity of the bass irn matrix (D)g



Cell to be checked Movemeni path of cheel
Ty = =y b xy, o %23 to x33 to z32 Yo w2 e xyy
‘e = X %o myy e Xpy 0 Zyg o Ayp
B3 = Xy te xy to xyy
(E) ¥y = Xpy to x33 T xgp Vo Xz te
Xgp = Xpgy Lo Eya %o %3
gy, = Egp te xp Yo xy
By, = Rg3te Xy to xgy
T3 = Eyp o x3a to K33
By, = Eyp Yo X9z %o xg3 10 gy to 3y,
In each case, the first stepping-stone cell listed i in the sams row
2% the one being checked and the last stepping-stons cell listed in the
movexent path is in the same golumn as the cell being checksd, There is
only one possible movement path which will give these results. In a
large matrix, the path is not always immedistely evident as in this
simple case,
To illustrate that there is another combination of seven cells which

constitute 2 basic sclubtion, the following matrix is showns

R H O §
€y 10

A B U R
& 15
(F) n , ;
I i ] :
O] 30
i £l i& o N
13 45

30 25 25 20 | 100
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First, compare this matrix with {D) ss regards total cost. In {(F)

 abovo, total cost 48 (10 x 0) £ (15 2 0) £ (25 x 0) £ (5 x &) £ (20 x 6) £
(iﬁ x 2) £ (15 x 0) which totals ¥16C, Tuis 18 $220 less than the cost of
(D)o Therefore s 1f this solution is a valid basey, it is s much better cne

to start witho

Chack:
Seil Lo be checked Movemenf path of chedls

Ha Xy to Xy to myy
3 Ty Yo Ty o Xy, Yo Xy, Lo Xge
14 '- xp o wyy o Xy,
=0 # Foa to xyp To Xy,

@ %23 %oz to X3 to Xy, b0 X3, to x5
Eas, EFap o x5 0 Ry
Xy By, X0l te .
%52 Z31, to xy, to x,

Kkg = EM& to ng to Kac_;

This ecompletes the check and establishes the basic solution as valid;
Thus, it iz a "legsl" starting point from which to work towards the opti-
mal. It should be noted that the value of inspection meniioned previous-
Iy would lead one to use matrix (F) as s basic solution instead of matrix
(o)

The next procsss involves the somputation of the marginal row aed
column velues which will be desgignated by a lower case letters g% op

upft,  Thess fit inte the matrix in the following manner:



(1)

8y, *ﬁ}f Pi

X1 3 1

To compute thess marginal velues {r and &), only stepping-stons celle
ars used, In (H) above, those % j“:s which were stepping stones in (F) are
circled. One velue can be assigned and can be either an "r" or a ¥ef
value. The value assigned can be of any megnitude, however to ease
somputations, it is most advantsgesous to assign a zero. While the zere
might be assignsed to any r or ¢ value, hers it will be assigned te

rl_q To compute the remsining marginal values, for each x

il | E
stepping=stone cell; » £ ¢ is made equal to t” (transportation rate),

hat ig a

Since the ‘&zi 3 values are known and we hawe already as.signed the value

zere to Ty, the rest can be computed in the following ordeg:



(1)

2,

3o

é.

?l’

The completed matrix including these marginal valuss is shown bslow (I).

(e3)
{w)
{e,)
{rg)
(sy,)
(ry)

(@3)

It rq sg Sy, must equal *&;21 then 8y = &1

g = =02
IE wy, # 8 = tg&@ then ¥y, - tgbl = B1p

Ty = 6-0:§

By, o

or

By 226324
If vy £ 6y = toge then ®y = bop = 6
(=4) = &
If v 4 S, = ¥y, then o, = ‘5% =’~?g@2

e = 062§

If #y f o = by, then rg = %y, - @&;9
By _ 7= (=6) =30

if rq 4 6y = bag0 then eq = %33 - F3,

3 =0 =102 =10

or

oF

or

s

0 ~ -10 -6 %
e 2 2 ©

0 10
& 2 © 2

k (15) 15
B E T

10 @5) (5) 30

% i I% 7 )
c | ® | ® @ |

30 25 25

20 100




Now we are rsady to make the noxt approximation and datermine how
muech it will reduce coat. The merginal walues were computed by use of
the transportation rates in stepping-stone cells by making the two
corresponding marginal values squal to the rats. Howavefg if a chescit
is made for the asmstepping-stone cells, various answers result. For
example, 1f for x, we add ry cég the answer is a —, which is less
than the transportation rate, plus two {tlz)o For Xya0 T £ ey is &
# (<10) or =4 which is less than a plus four (%,3}. For the cells

which are not stepping stones the results ares

Fors ®yp -~ 1wy ¢ 6y = 04 (=h) = <% which is & 2 (&),)

Zg -~ T iey =0£(-A0)E20 " ° £ & (ta3q)

wmy - wfe =0A(b)sb © ° < 6 ()

oy Py fey =bh £0 =4 B D2 (&g 2

{(J) Rog = ¥y 7 63 = £ (<106 = £ 6 ({533)
sy - F2ie ;A%(cé)éaz w2 ()

X3y - wyie =040 10 " " D4 (ty)

X2 - Pgfey =104 (t)zb * " = 6 (tg5)

Xy = Spfeg T64(-10)Z =k " " L&)

In (J) above, it is important to note that for all cells except
Xy and Eayo the » %'a value is elwaye less than or equal. to the tig

value of the cell being checked. If 211 of the cells in {J)} had checked

out to be less than or aqual to the E‘; valus of the cell being chacked,
i

then our first approximation would have been optimum and no further
epproximation would be necessary. However, since xj and gy did not
check, further reductions in cost can be mede, The introdustion of

sither of the cells as stepping stones and the slimination of an existing

ene would decrease cost.
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Since only cne csll can be changed at a tims, 2 cholce must be made
as to which will be brought iz es a elopping stome, To choose the one
that will bring us the greatsst reduction in coéts a check ie made to
ses for which cell the value is greater when the calculation r £ ¢ = &5-3
is made, For Xgy, the value is (4 £ 0~ 2) or 2; for xqy 1t 1s (10 40 <d)
or 6, Therefors the cholce is the latter, Xgy- -

The next step is to determine how X33 wé.s_ checked previously in (G).
Repeating the movement path for the check on Xgp, it shows: xg) to =,
to zuc The stepping-stone sells in this movement path are next assignsd

plus and minus alternately starting with plus, In this particular case,

X34 is assigned plus; X4, minus, and X;q, plus, Since the values in

these cells are 5, 15, and 20 respectively, they are thought of as £ 5
-15, and £ 20, Now, the value that 1s moved to the new stepping-stone
cell (x31) is the smallest plus value, or in this instance the 5 from
~o8ll %q;. Therefore, Xgy besomss a new stepping-stone cell and Xxj)

1s eliminated and now becomes a c¢ell that is not a stepping stone.
Then, in erder that the new metrix will mest the requirements of (B)
and (C), each of the other quantities in cells x;, and i, must be
adjusted, A rule %o follew is that for each square that was assigned
a2 plus value, the quantity moved (in this case 5) should bie subtracted
and for each cell assignsd a minus, the quantity moved should be added,

In this case, then, the quantity in x% becomes 20 and the quantity in

o 150

The reduction in total cest is computed by the formula, xy F ey = gy
timep amount moved (5). Thus 10 £ O - 4 times 5 = $30. Total cest of
the first approximation was $160, Since the cost was reduced $30, the
total cost has been reduced te $130.

The new matrix 1s as follows:



(&2

== s IS,
"“% @ “’iﬁ» “Ab =6 Pﬂ.
T ¥ N 4
9 E U &
0 10
I R R
4 €Ty 15
O N R
. 30
d | )
6 i5) ao L71 45
i, | 25 g 25 20 100

Total cost cheeks (1W0x0) L (W5 x0)£(25%x0) 4 (5xL)#(15x6)
(10x2) £(20x0)S0£040£20490£2070=gi30

o

From this point, operations already performed are merely repeated.
First, new marginal Tow and colunn values are computed. This is necessary
because they are computed with use of stepping-stone cells and in the new
approximation, one stepping stone msbeen eliminated and a new one added,
New margipal values arve shown in (K) above, |

If the process of {J) ebove is repeated, it is found that only for X0
iz the » £ ¢ value gx;eaﬁer than the transportation rate (4 £ 0 »2)e Again,
assigning alternste plus and minus values to the movement path {G)s Ty {15}
if pluss %, {10) is winus; and By (15) is plus. In this case, there are
two cells in the movement path that tie for being the smmallest plus valus
(%35 and x4, both are / 15). Either one can be eliminated. In %this case,

3'11‘1 is the bstter choice, This is because x., will be able to remain in

22



(L)

1y
22

After adjus@ing the movement path cells by 15, Xq has a value of 15,

the matrix and &,_. egnals zero.

¥59 has a value of zero; x5 has a value of 25; and Ty is eliminated, It
should be noted that the value zero in x5 18 a part of the matrix or con-
stitutes one of the seven cells in the solution., Although it means the
same with regard to movement of product as an empity cell, it is different
in thet it is a part of the matrix and a stepping stons,

At all times, the number of original stepping-stone celis in fhe baslie
solution (in this case, seven) must be retained, It is possible to remove
only one chosen cell (in this case, xhl) with each new approximation, Thus,
any other cells that beccme zero after the adjustuments on the movement
path are made, must remaln as a stepping=stone cell and part of the basiec
matrix,

To compute further reduction in costs ¥, # ey minus by bimes 15

L £0 <2z 15 = $30, Cost of second approximation ws $130; less $30 =
$100, cost of third approximation. The new matrix is in (L) below.

31

=
IS
&
&

0

Rl
=
=
53

‘

=
=
=)
=

B

f 10

& 1) 30

=
o
'.:FI
(=)
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Total cost checks' (10x0) £ (15x2) £(5x4) £ (0 x 6) £{(25x2) 4
(25x0) £(20x0)=0£30£20£0£50£04£0< $100,
New marginal values are shown in (L) above, In checking the empty
cells; it is found that in each case p # ¢ is equal to or less than the

transportation rate. Thus, the optimum solution has been reached,

Commente -

In solving a problem, care should be taken to aveid mistakes
that can be costly with regard to time, A mistake has been made if
any of the following oceure (1) more than one movement path can be
found in checking any celly (2) mors than one value can be computed
for any of the marginal values; (3) the formula (r £ ¢ - %u timas
amount moved) gives an amount for reducticn in cost such that when
subbracted from the total cost of the previous approximation it doss
not equal &_ %43 “@ijg () whenr £ ¢ = ty4 does not equal zero for
a stepping-stone cell; or (5) at any time when the following relation-
ships are violated: (a) the sum of zij“a in any row do not equal Pi

n .Y
or the sum of X;5's in any colum do not equal U@)" (b) Py = =U
i)

=1
n B
&7

Errers of types (1), (2), and (5) sbove are serious, The other

Qar
i

fbypes of errors will tend te wash out as succeeding approximations
ars made, However, for the final or optimal solution, all these checks
should be made.

The maximum transportation cost or a profit maximieing scheme can
be solved with this mcdel. To solwve for a meximum necessitates eli.mﬂ.na
ting cells for the spposite reason, For example, in (J) above, ealls
should be eliminated until the r £ ¢ value is always greater than op
equal to the ﬁ’i j value of the ¢ell being checked. Although 4% soems
absurd to compute a maximum cost of transportetion, in some instances

it might be valuable to know the range between the minimum and maximm

a6t~
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Fogtnotes

Purdue Journal Paper No. 10137, approved for publication August 8,
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The authors are especially indebted to their colleague at Purdue
University, A. Charnes, who has been instrumental in develcping

the method illustrated in this article, His helpful suggestions

on the manuscript are also appreciated, Acknowledgment is also

due Earl W, Kehrberg of the Dept, of Agriculiural Econoﬁicsb Purdus
University for his review of the manuseript and worthwhile suggestions.

This distinction between the '"general and "traunsportation=problem'

‘procedures is made explicitly by Alexander Henderson and Robert

Schlalfer, "Mathematical Programming-Better Information for Better
Decisicn Making", Harvard Businees Review, May<June, 1954, pp 94=100,
Ibido, po 98s

Henderson and Schlaifer, loc. glt., the authors illustrate some of
these working differences with actual problems.

T.Co Koopmans, "Optimum Utilization of the Transportation System®,
Econometrica, Vol. 17, Suppl. (July 1949) pp. 136-L6.

P.A, Samuelson, "Spatial Price Equilibrium and Linear Programming",
The American Economic Review, Vol. azg No., 3, Jume 1952, pp. 283-303,

George C. Judge, Competitive Position of the Commecticut Poultyy

Industry — A Spatial Equilibrium Model for Eggs, Storrs Agr.

Expt, Station Bulletin 318, University of Connecticut, January 19%6.
M.M. Snodgrass, "Linear Programming Approach to Optimum Resource lUse
in Dairying" unpublished Ph.D., Thesis, Purdue University, August 1956,
Reported to the authors in letter of Jume 27, 1955,

The authors found that a matvix 2L by 24 could be handled by hand

without too much difficulty, However, if the researcher has little idea
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13,

as to the general nature of the optimum solution, a 24 x 24 matrix
would be extremely time consuming to solve by hand,

L0, Heady, "Simplified Present.aﬂion and logical Aspecté of iineaz*
Programming Technique," Journal of Farm Economies, Dec., 1954 pp.
1035-1048 and J.M, Boles "linear Programmdng and Farm Management
Analysis', Journal of Farm Ecomomics, Febo, 1955 pp. 1=24o

General discussions of this procedure are outlined inm Henderson and
Schlaifer op. cito., pp 73=100 and Robert O, Ferguson "Linear Programm—
ing", American Machinist, Aoril 11, 1955 pp. 121=136.

FPor purposes of illustration, a mobrix of 4 x 4 will be formmlated
including all four states as both producing and consuming states,
Howsver, since {wo are surplus and two are deficlt states, a mabtrix
of 2 x 2 is all that would ke necessary to solve the problem

In larger matrices, the right choice made here may save considerable

time, It peys to scan the vow and column which pass through the cell

in question to see if a larger saving can be made by eliminating another

ecell, With the selection of the best choice, some of the other possi-

bilities may be eliminated.,



