

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

ECONOMIC ASPECTS OF•FISHERIES MANAGEMENT -
THE NORTHERN INSHORE LOBSTER FISHERY,
Contract No.: $\mathrm{N}-043-30-72$
By James Wilson Maine University of Ma

File Manuscript No. 177

$$
\text { October } 1973
$$

Beonomic Ispacts of Fisheries Maragement -
 The Northern Inshore Lobster Fishery,

Contract No.: N-043-30-72

James A. Matson, Project Director (brono, hane u4473

Sibmitted to:
Notona Hane Fiehorios Service
Region 3
Fetoman zeindirg
I. mm 5 stcot
Gicureser, inassachectes 01930

Table of Contents

Page
I. Introduction 1
II. Socio-conomic Policy and Uncertainty About 7 the Rate of Depletion
III. The Relationship Between Curment Fishing Effort 13 and Futuze Catch
IV. Bio-Socio-Economic Heterocmeicy 27
V. Jmplications of Uncertainty 30
VI. Hechodology 34
VII. Hamagenent Alternatives 38
Appendix A The States of Socio-cconomic Data on A1
The Hane Inshore Jubster Fishery
Appendix B. Ten fltomative Mangenent Schenes for BI
The Tasiore forthern dobster Pishery
Appendix C. Open-mbed Questiomaire Conducted inC1Spring of 1973

I. Introduction

The purpose of this study is to devise and evaluate alternative management proposals for the inshore lobstor fishery in the State of Maine. The reason for undertaling the suly in the first place was the fear that rising levels of fishing effort are leading to depletion of the lobster resource and the consequon imporishent of the fishernan and rural conmunities dependerit upon the fishery. The biological extinction of the lobster is: apparently not a problem given its fecundity and the available or permissible technology of havest.

 Iong ruge accombing of the costs and benefits (define in the broadest: possible sense) which would be expected to result frem each of the proposed policy amouches. The procedure is relatively strajght forward and reasonable provided the costs and benefits of each policy alternative are measurable in comparable units (which inplies, of course, that the results of policy actions are predictable). Furthermere, the procedure is reasonable if it is closoly tied to realistic manarment policy possibilitics. Given the legal status of the fishery in the State of Maine (i.e. the preminome of the fogislature), an evaluavive study of this sort is of reasonable value only if the alternatives it considers are in some sense within the houndarics of political possibility.Necdless to say these two criteria of reasonaboness are difficult to achicue. Staying within the realm of political possinility is especially
djfficult in a situation of political flux such as that which characterized the industry this past yoar. To stay within the realm of political possibility we have maintainod as close contact as possible with the opinions of the lobstomen, their associations and concerned stace legislators. From that point on, julgment of political possibilitics are merely that jurgents.

With respect to the predictability and measurenent of the costs and benfits of policy alternatives, we have found that the state of lnowlecge of the various aspects of the fishery is not sufficient to conduct a reasonable cost-benofit analysis of altomative manement policios for the fishery. The reasons for this are somwat complex but may be sumarized by stating thice questions which are of uftmate importance to a cost-benefit appoach. We do not focl Dhe meners to these questions exist in a fom which is
 antyois. The thee questions and their importance to the evaluation of policy altomatives aro:

1) At whet rate is the comercial fishery apmochang the point of dephetion? This mey be restated in the policy oriented fom: How chicloy must our poing measures be implanted? From the point of vien of social policy this question is very inportant becase the tingng of policy masures is cractal to the incidence and mamitule of social costs and verefits.
2) That is the rolationship betwon chancs in (current) fishing offort and chances in the (futme) harvestable biomass? In other words, a calculation of the social costs and benefits $0:$ any particular policy must be mode in torms of "rent do we gan tomorow by giving un sometheg tolay?"
3) What will be the distribution of costs and benefits among the current and potential direct and indirect participants in the fishery? In other words, hor will the pie be divilod? The importance of this question for social policy relates primarily to questions of political feasibility and also to matters of social equity (e.g., will limited entry of one sort or another have en especially harsh impact on a group of current or future participants who have fow other economic alcernatives?). Needless to say matters of this sort are inextricably bound up in value julgements. *

Faced with the difficulty of obtaining reasonabiy confident quantitative answers to these questions we chose to abandon the traditional cost-benefit cvoluative procedires and instead substituted an ovaluative procedure which emphasizes the ability of any particular policy to be flexible and adantive.
 policy initiatives is precise mough to be able to dmose a definitive policy at this point jn time. Rather the interaction and consequences of various econonic and biological policics will probably have to be learned as experience with the active manargent of the fishery acomulates. Consecuently we have tended to place a premiun on policy or stratery altematives which promote the accumation of this experience and which provide for the ability to respont and adapt to the lessons learned from this oxporionce. Addicionally since leaning can often be an expensive process we have attonpted to consider the likely costs of Icming, valuing highest, of course, those policy. a] tomatives which pronise to minijize these costs.

[^0]By and large we feel that this methodological approach to the problem of fishories management has a much vider applicability than is suggested by this study. In general cmacial questions relating to the dynamics of fish populations and the junact of alterations in the level of fishing effort (either in tems of total gear and labor input, or in terms of alteration of gear design or legal size requirments) are only woll understood at the cheoretical level. As a practical matior data linitations, especially, tend to shroud our real vorld application of our theoretical lnovledge in a cloud of mocertainty. As a consequence, policy making decisions often take on an wavoidably probabilistic character.

We have found that persons concemed with fisheries policy are fully aware of this nature of their charge and are, in general, wanfortable with jes implications. Furthomme, policy makng discussions ampear to be
 certainty imherent in the maragoment moblem. By and large there sems to be a concensus that the most reasonable course of action at any particular monont is to pursue policies wich appear to be optimal in the light of amittelly imenfect monlodge and to push aload as quickly as possible on scientific research mose relevant to policy mattors.

The findings of thjes study do not constitute a fundamental chablenge to this concensus. Rather tho essonse of the study is that the thrust of the concensus is correct, but in need of further articulation and, especially, the delineation of specifje poljey altomatives. In tems of further articulating the conconsus, we sumest that it would be most useful to berin considering the social and econonic onviromont of the fisheman as a tightly interrated part of the total biology of the fishory. Essontially, this mens the explicit concomtunlization of the fishoman a predator
and the consequent inclusion in fishory analyses of the factors which influence the "effective pobulation" of the predator/fisherman. In the past, human populations appear to have attained a stable relationship with their natural enviroment. There is consjderable anthropological evidence that the role of culture vas, in major part, to provide a means of internalized population control and a set of rules of behavior comatible with man's ccolorical niche.*

Unfortunately the biological nature of man and culture is a forgotten aspect of fisheries policy. This is unfortunate because the explicit consideration of the biological nature of the fishernan population and culture would appear to make available to fisheries management a whole range of policy alternatives not now actively consicered. that we mean by this is that it should be possible to devise and apply institutions (equilibriua niche of the fisheman population. The example of animal predator populations and hman hunting and gathering societies suggests that intcmalizel population controls are mechanisms for achieving ecological equilibrim evon in the absence of articulated knowledge of the natural enviroment. Since current fisheries managenent problens are completely circunscribed by the uncertainty of our biological lnowledge, we suggest that policies designcd to intemalize fisherman population (total effort) controls are likely to be a useful, and perhans powerful, addition to fishories policy altomstives.

[^1]In the paper which follows sections II-IV expand upon the importance of answering the three questions cited above and the apparent reasons why the questions cannot be answerd with sufficient certainty for the purposes of cost-benefit evaluation. Section V discusses the implication of uncertainty for managenent strategy and suggests appropriate socio-economic evaluation criteria. Section VI is a bricf over view of the methodology of the study and Section VII contains the evaluation of individual management alternatives.
II. Socio-economic Policy and Uncertainty About the Rate of Depletion

At this time there does not appear to be sufficient lnowledge of the fishery to allow us to state with certainty the time frame for policy initiatives. We do not lnow whether the urgency of the problem is such that we must attempt to avoid a comercial diaster two or ten years from now. This causes extreme uncertainty with respect to the social and economic aspects of management policy. For example, if the fishery is slowly approaching the point of depletion, then relatively low cost social policies
 effort are likely to be optimal. On the other hand, if the fishery is rather quickly approaching the level of effective effort consistent with a state of depletion, then optimal policies will be those which virtually terminate entry in the short run and bring about an artificially high rate of attrition of persons already in the fishery and reductions in the effective effort of those who renain. In other words, the period of time over which policies are, or have to be, implomented will to a large extent determine the magnitude of social costs and benefits associated with management of the fishery. For this reason, a reasonably sure time frame is crucial to the choice of optinal social policies. Unfortunately the state of our knowledge of the fishery does not permit the precise, confidence laden time estimates which would be so desirable.

This lack of lnowledge cannot be explained other than by noting that the lobster is a very difficult creature to study. The stock-progeny relationships of the lobster apear to be central to the question of the rate of depletion of the comercial fislecry. Beverton and Holt present a graph showing the relationship betveen the number of eggs and recruits under several hypothetical population dynanics which is of some value in illustrating the problem of determining the rate of depletion.* The essential elements of the graph are produce there as fig. II. 1.

Curve (a) in the graph illustrates recruitment which is virtually independent of the number of eggs except at very small numbers of eggs (i.e., density dependence at the pre-recruit stage). For the sake of illustration assume that curve (a) is representative of the lobster population dynanic and that the number of enes is pronortionel to the number of mature females in the stock which in turn is nogatively related to the rate of exploitation. Then, given a continunsly rising rate of exploitation, historical experience in the fishery should exhihit relatively constant recruitment (and catch) and then a sudden and drastic dectine once a certain critical rate of exploitation is reached. In other words, this particular ponulation dyanac is one wich might afford little or no warning of an imminent collapse of the fishery. (A lack of warning, in the lobster is quite possible since sampling of the vre-recruit population is apparently very difficult except for the period one year or so inmeriately lefore recrui.tment.)

Another characteristic of this population dynanic whic! is very important for nolicy purposes is that, at rates of exploitation lorer than

[^2]

Egg Production
that associated with collapse, management induced changes in the level of fishing effort will have little or no effect on recruitment and, therefore, future harvests.

From the economist's point of viev, this characteristic of this population dynamic reduces the econonic problem of the fishery to essentially short rum questions - so-called mesh size questions (i.e. minimu size) and extcrnal production effects result from crowding (such as those which give rise to arguments positing imnediate cost: savings from trap limits). The question of finding a long run optimum level of fishing effort in order to maximize sustainable economic yeild is essentially irrelevant.

Obviously if curve (a) is representative of the lobster population dynamic, it would be of great value to the fishery manager to lnow the aproximate location of the fishery on the curve. Are exploitation rates currently so high that we are about to witness a sudden and drastic collapse or do current exploitation rates put the fishery well to the right of the collapse point, in which case the fishery managers do not have much worry for the immediate future or, for that matter, much ability to enhance future harvests through current action? The point is that we do not lnow (1) whether this population dynamic characterizos the lobster and (2) if it does, we do not lnow where we are relative to the collanse point. Obviously both bjological and economic policy for the fishery would be improved if this situation were known with groater certainty.

Curve (c) in Fig. II. 1. represents an altemative popiation dynamic with very different inpiications for fishery management. In this case recruitant is more clesely tiec to the numer of eargs produced by the mature stock. If the lobster population were characterized by this dynamic the historical record should show a strong nesative relationship between the rate of exploitation of nature stocls and subsequent recruitnent. In
other words, progressively greater exploitation rates should lead to progressively smaller harvests. From the manarer's perspective this is a particularly comfortable situation since it is not one which will produce a sudden collapse. The manager and f rtici, tos in the fishery receive adequate warning of the results of their actions (i.e., fishing activity) and are, therefore, more capable of planning a rational response. 'Mat's more this population dynamic is one in which management decisions affecting. the rate of exploitation can produce beneficial effects on future harvests.

Thus this parcicular population dynamic, curve (c), contrasts sharply with the population dynanic characterized by curve (a). The contrast is very pronounced in terms of the time available for manarerial response, which, as pointed out previously, has great significance for appropriate social and economic policy. Additionally the two population dynanaics present strong contrasts in terns of the relationship between the rate of exploitation and recruitment.

Still another possible population dynamic is illustrated in Fig. II. 2. In this case recruitment is affected by density dependent factors in both the pre and post-recruit populations. This is the population dynamic specified in the widely used Schaefer model* and give rise to the notion that some optimum level of harvesting can be chosen which will maximize either the long run biological or economic return frome from the fishery. In other words, this particular dynamic describes an intimate and continuous relationship between the level of fis'ring effort and the rate of recruitment into the harvestable popislation. This concrasts sharply with the population dynamics represented by curves (a) and (c) in Fig. II. 1. where there is,

[^3]first of all, no long run optimum level of effort implied (in both (a) and (c)) and, secondly, no scrong relationship between effort and recruitment (in (a)).

In sunmary, the choice of appropriate socio-economic policy for the lobster fishery must be made on the basis of firm lnowledge of the population dynamics which govern the lobster. Incertainty with respect to population dynamics means uncertainty with respect to appropriate socio-economic policy, especially in the area of timing of policy.

Fig. II. 2.

Egg Production
III. The Kelationship Retwoen Gurrent Fishing Effort and Future Catch An adequate, or realistic, measure of effort is necessary for the determination of the impact of fishing on the size and characteristics of the fished population. From the practical management point of view, it is essential to know whether or not and to what extent current reductions in fishing effort will have future pay-offs in terms of larger harvests. .. An answer to a question such as this is dependent upon the manager's knowledge of the lobster population dynanic and his ability to gauge the impact on the characteristics and size of catch caused by fishing effort reductions (increases) resulting from his decisions. The uncertainty introduced into the manager's decision maling process by the lack of fim knowledge regarding the lobster population dynmic is compounded by the lack of a reliable measure of fishing effort.

Several methods have been suggested tor moasuring tisinng eifori in the lobster fishery, The most obvious measure is number of traps. Trap days is another method,* and a third, suggested by Thomas, is catch in numbers per trap-itaul-set-over-day (THSOD). *: Tis latter alternative has
*The scle reliable source of trap-tays is contained in a survey of 131 lobstermen conducted by A. H. iuq. This data is sumarized in "A Study of the Sccio-Econeaic linpact of Cnanges in the Harvesting Labor Force in the Maine Iobster Incustry," in Ocean Fisiemy Memacoment: Discussions and researcin, A.A. Sokoloski (edition), (fon iechrical noport IVIFS CIFC-371, Seattle, 1973) pp. 159-173.
:AJanes Thomas, fn Analysis of the Commercinl Lobster (Hamarus Americanus) Fishing A1cng the Coast of daine, Avar i966 Throunh December 1970 (NOA Tecmical Repurt NiFS SSiN-667) pp. 37-42.
clear advantages in that i.t more clearly reflects the working time of bait, the escape characteristics of the trap and the fisherman's time on the water, in effect, the actual working time of a trap. Infortunately, data on THSOD are very limited, very expensive and in terms of the period over which it is available (1966-1971) of little value in determining the relationship between effort and future catch. The same data problems occur with trap days.

Estimates of trap numbers are easily available from the laine lepartment of Sea and Shore Fisheries, but are a poor measure of effort for several reasons:
(a) Traps are only one input to the harvesting process. As such traps may be substituted for other inputs (bait, depth finders, skill, radar ete) and nther inmota mav be substithted for traps in order to achicve the same cutjut. For example, interviews conducted this year have left us with the very strong impression that the trarle-off between skj. 11 and trap numbers is quite marled. Younger men as a group tend to set out more traps and get less return (in pounds/trap) than older mon.
(b) The relationship letween trap nurbers and effort is likely to be less and less marked as the density of trops and the mmber of traps per boat increases. This is likely to be the case because as the number of traps increases, hauls per trap decrease. Additionally, as crowding becomes more pronounced a lareer number of traps are used to mark or defend territory and are placed at depths rhere current catchability is low but future catchability (because of chanses in water temperature) is expected to be better, again for reasons of laying clain to a particular piece of bottom. In short, beyond a certain level or density of traps, productivity of additional tras falls off rapilly (i.e. the
marginal contribution to catch approaches zero) and the effective use, or effort, applied to the traps falls off also.
(c) Finally, trap numbers do not take into account the seasonality of usage which may be associated with different methods of fishing. For example, lobstermen in York County, laine tend to keep four. strings of gear each rigged for a different depth and each used only at a particular tine of the year. In this particular case, trap numbers overstate trap use by about four tines. A similar overstatement of effort will occur as overfishing tends to compress the effective season.

These characteristics of trap use lead to situations in which large changes in the number of traps have little or no effect on the total catch. For example, Canadian experience with a 35 percent reduction in trap numbers shows a statistically insignificant change in total catch.* This does not mean that trap limitacions cannot be veneficiai to a risilery. Under conditions of a very low density of traps, reductions in the number of traps will undoubtedly reduce total catch with presumably beneficial effects on the harvested population. Under conditions normally observed in the fishery, however, the impact of a trap limit is likely to have very small or no effects on the harvest; nevertheless, it is that very fact which is indicative of over-capitalization and the consequent beneficial reductions in average harvesting costs and increases in fishermen's average net income which can be realized by trap limits. In other words, under most circumstances trap limits are justifiable on economic, but not biological, grounds.

[^4]The lack of an alequate measure of effort and the uncertainty of our lnowleतge of lobster population dyamics combine to create a rather hazardous environment for modeling the fishery. For example, recently BELL has constructed a bio-economic model of the fishery in which he uses trap numbers as a measure of fishing effort.* For several reasons in addition to the use of trap numbers as a measure of effort the model is an unconvincing analysis of the fishery, especially of the relationship between current effort and future catch which is so important for manarement purposes.

One of the most unconvincing aspects of this bio-economical model is the biological side. Using a Schaefer model which assumes density depentent mortality at both the pre- and post-recruit stages of life, Rell further assumes an instantaneous adjustment of the bionass to changes in fishing effort. Though this latter assumption might be annropriate for fast breeding species, it is out of place in a fishery where harvesting is size and/or age specific and where age at maturity is six or seven years. The assumption implies that if fishing mortality of legal size lobsters increases, natural mortailiy of sub-legal lobsters increases proportionately.

A more appropriate assumption would postulate a six or seven year lag in the adjustment of the biomass, i.e., a lagged cdjustment corresnonding to average age at harvesting/maturity. The difficulty with taking this approach is that the results are subject to differing internretations depending upon the population dymanic specified for the lobster, i.e.,

[^5]density or ron-density dependent. Both a non-density dependent population (curve (c) Fig. II. 1) and a Schaefer type population (Fig. II.2.) should show a strong relationship between past (6 or 7 years previous) effective effort and current catch rate. In a pre-recurit density dependent population (curve (a) Fig. II.1) no such relationship should be observable. Using catch six or seven years provious as an appropriate measure of effective effort the following equations were estimated using data from 1950-1909.
(1) $\frac{Q_{t}}{E_{t}}=\underset{(3.33) *}{49.78}-\underset{(0.00000057) *}{0.0000070} Q_{t}-6+2.01{ }^{\circ}{ }^{\circ} F_{t}-6$ $R^{2}=0.63 \quad \mathrm{~F}=7.62 \quad \mathrm{D}-\vdots=1.82$
(2) $\frac{Q_{t}}{E_{t}}=1.33-0.0000016 \quad Q_{t}-7+1.45{ }^{\circ} F_{t}-7$
$$
\mathrm{R}^{2}=0.68 \quad \mathrm{~F}=9.54 \quad \mathrm{D}-\mathrm{W}=2.13
$$
 t and ${ }^{\circ} \mathrm{F}_{\mathrm{t}}$ is average annual sea water temperature (neasured at Bocthoay). ${ }^{\circ} \mathrm{F}_{\mathrm{t}}$ is introduced in the equation as a correction for srivironmental change.

The results of estinating both equations suggests that the strength of the statistical relatienship is almost entirely attributable to the effect of sea water temperature. One could not accept the hypothesjis that previous catch had a statistically signifjcant impact on current catch rates. These results would appear to be roughly consistent with the idea that the population dynanic of the fishery is characterized by pre-recruit density dependent mortality and non-density dependent mortality in the post-recruit population. However, one should be very cautious about placing much faith in this interpretation primarily because

[^6]the hypothesis which is being tested is essentially very weak.
For example, the hypothesis tested by Rell is nearly ilentical to that tested above except that Bell does not take into account the prerecruit part of the lobster life span. Nevertheless, with a pre-recruit density dependent population, a sufficient explanatory model reduces to the relatively simple proposition that with a constant (or nearly so depending, on exogenous environmental factors) number of recruited lonsters an increase in the number of traps will lead to a declining average yield per trap. This hypothesized relationship for a pre-recruit density dependent population is identical to the hypothesis tested by Bell even though Bell implicitly assumes a pre- and post-recruit density dependent population.* Therefore, one would have to conclude that since the hypothesis which Bell chose to test his model is very weak (in the sense that it is incapable of discriminating between alternatuve plausible morels with asternative implied optinal policy, his statistical results, though impressive, offer no practical or reliable guide to the fishery management authority. Clcarly, more information on population dynamics is required before a confident explanacion of current effort/future catch relationships can be established.

Further compounding the difficulty of learning the relationship between current effort and future catch is the statistical problem of

[^7]attempting to correct for a possibly large number of environmental factors, each acting independently on the size and characteristics of the lobster population. Sea water temperature is generally used by most statistical studies of the fishery as a proxy for the net inpact of tine various posisible environmental changes, or is simply described as by far the most important enviromental variable:* The problem with taking this approach is that the various interpretations suggested for the role of temperacure appear to be in conflict and, if each suggestion is treated seriously, only serve to further cloud our understanding of the effort/catch relationship. Wow and Bell suggest that temperature affects growth rates and by the use of an unlageed value for temperature imply that this effect is imnediate on the exploited population. Flosers and Saila, on the other hand : nctulato the greatroct effect of temneratame is to be found in larval mortality rates. It is also plausible to suggest that temperature exerts a cumulative effect over the entire pre-secruit phase of life. ihatever the correct specification, however, those three explanations share the conviction that the use of the tempenature variable merely is a statistical means for accounting for environmental variations.

On, the other hand, a fourth suggested intcrepretation of the role of temperature creates grave doubts about the correctness of treating temperature as a purely enviromental variable. Finomas has done work which shows that temperature is related to weather and water conditions

[^8]and thereby to the number of hoat days exerted in the fishery. In other words, by this interpretation tomerature merely becomes another moans for describing the level of fishing effort in the fishery.*

It is quite possible, of course, that temperature has all these suggested effects on the fishery; however, if it does it is an inappropriate variable for use as a correction for purely environmental factors.

In sum, if we use either Bell's model or similar alternatives incorporating biologically determined lags as a basis for describing the relationship between current effort and future catch, then the best modeling that can probably be done with the data still leaves us with a great deal of quancitative meertainty with respect to this relationship.

This uncertainty may be underscoren by reference to a rather puzzling aspect of the fishery. lfost observers of this fishery will agree that the intensity of fishing effort per unit of suitable bottom appears to be much greater in the western part of the State, especialiy Casco Bay, than it does in the more easterly reaches of the State. One would expect that these differences in intensity of effort would produce statistically discemable differences in catch characteristics. In fact, the length frequency distribution of the catch sampled by the faino nepartment of Sea and Shore Fishories exhibits no such difference. ** What does this mean? Several explanations are plausible, but the fact that there are several, eacl with a differort appropriate inplied policy, merely emphasizes the uncertainty we have discussed ahove.

[^9]For example, (1) this puzzling attribute of the fishery appears to be consistent with a pre-recruit density depen!ent population dynamic. In other words, it could be argued that in both areas of the State exploitation rates, though very different, have not yet reacher the point where egt, production has fallen below the point consistent with "collapse". Thus recruitment is relatively constant and similar length frequency distributions for the catch should be expected.
(2) Alternatively, it could be argued that regardless of the appropriate population dynanic seeding is not area specific. That is, since the dispersal of larva by wind and currents during the surface feeding stages is likely to be extensive, it is possible that intensely fished areas like Casco Bay are not self-sufficient in egr production but must rely upon less intensely fished areas for their supply of larva and
 lead to similar length frequency distributions.
(3) Still another plausible explanation is that all inshore areas in the State are not self-sufficient in larvae production and must rely on larvae produced off-shore to assure adequate recruitment. Similar length frequency distributions are also consistent with this explanation.

A11 three of these possible explanations of the puzzle are plausible and each hos its advocates and detractors. But, rore importantly, each explanation implies very different appropriate policies. For example, if
(1) pre-recruit density dependence vere to resolve the puzzle, appropriate policy would be to do little or nothing, assuring at a minimum that exploitation rates did not reach a level consistent with "collapse'. If
(2) Casco Bay alone was deficient in larvae production imediate policy initiatives should be directed at that area; longer rance policies should
be directed at preventing a rise in exploitation rates elsewhere. If
(3) the entire inshore area was deficient in larvae production, then care and preservation of off-shore stocks and/or attempts to reduce all inshore exploitation rates would be appropriate pelicy. Unfortunately, at this point in time we do not appear to have the data canable of resolving the puzzle in favor of one of these three - or some other plausible explanation. In other words, the choice of appropriate policy at this juncture is a very rishy undertaking.

From the practical management point of viev, uncertainty with respect to current effort/future catch relationships means that estimation of the costs and benefits of management induced changes in the level of fishing effort can only be maile in vague, non-quantifialle, terms. That is, (T) tho offort on fiture catrh of chanoes in the level of effort dedencis upon the population dynamic which characterizes the lobster. We are not certain what the dynamic is and therefore, are not certain ahout which of several possible policies is appropriate. (2) If the future catch is affected by the level of fishing effort,* lack of an adequate measure of effort means that confident estimates of required changes in the level of effort cannot be made, though it ray be possible to stipulate an appropriate direction of change in effort.

From the management point of vien, choice of optimal strateries is altered significantly by this state of our knowledge. Insteal of heing able to impose a laown optimm level of effort, the management authority is in a position of having to learn where that optirum is.

[^10]Policy affecting the size of the future harvestable biomass is not limited to manipulation of the level of effort. In the lobster fishery the most prominent alternative policy sugeested by biologists is the minimum legal carapace requirement, specifically the current proposal to raise the legal minimon to $31 / 2^{\prime \prime}$ by five $1 / 16^{\prime \prime}$ annual increments.

For the purpose of economic analysis, such policy initiatives are most conveniently treated as exogenous constraints. In other words, the economist must accept the biologist's estimate of the impact of the policy on future catch and then determine the net economic impact of the policy.

As we understand the $31 / 2^{\prime \prime}$ proposal there are three possible benefits:
(1) The primary benefit usually cited for the policy is a prefirter 18% inrreace in lander weioht once a new equilibrium is reached. This is the short run mesh effect referred to previously.
(2) A second, and much less certain benefit, is the possibility that the greater number of mature females assured by the policy will lead to greater numbers of future recruits into the harvestable size class. This would seem to imply that the predicted increase in landed weight would be greater than 18% if any increase in the number of recruits was actually realized.
(3) A third benefit is the use of the policy as a hedre against the possibility of a sudden collapse of the fishery.
For the economist there is one major question posed by the $31 / 2^{\prime \prime}$ proposal: What will be the net income effect for the fishery and the men
in the fishery? This question really has two sides: (1) What will be the net revenue effect, and (2) what will be the effect on cost: of production?

With respect to revenue effects, consumer reactions to higher unit prices (i.e. for a lobster dinner) will determine whether or not the $31 / 2^{\prime \prime}$ proposal will produce a net revenue benefit or loss. Currently the price per pound of lobster in urban wholesale markets varies by size, with premim prices attacher to lobsters in the weight range associated with the $3 \cdot 1 / 2^{\text {i }}$ plus carapace length. The question that needs to be answered is: how low will the price for lobsters in this weight class fall as a result of the $31 / 2^{\prime \prime}$ policy? If the fall in price is more than off-set by the expected increase in landed weight then revenue effects will be positive, otherwise they will be negative. Infortunately, this question cannot be answered without a detajiled market analysis.

With respect to the effects of the $31 / 2^{\prime \prime}$ policy on the costs of production, it is clear that unless the $31 / 2^{\prime \prime}$ measure produces long tem positive effects on the number of recruits, the impact on costs of production will be ninimal or non-existant. This means, that the overcapitalization which characterizes the fishery will not be affected in any way by the $31 / 2^{11}$ policy. Hence, the policy does not assure the commercial success of the fishery unless it is combined in some way with effort limitations. In effect, managernent of the fishery does not seem to be faced with the option of choosing either a minimu size policy or a control on effort policy - a combination of both policy approaches may be necessary.

Perhaps the riost valuate aspect of the $31 / 2^{\text {in }}$ policy from the point of vien of this study, is its possible use as a herlge against
the risk of a sulden and disastrous depletion of the resource. An explanation of this beneficial aspect of the policy is most easily accomplished by reference again to Fig. II. 1. Beverton and Holt suggest that curve (a), which exhibits a strong pre-recruit density dependent effect, is a very common occurance amonf marine fish populations and, of course, it is a highly probable occurance in the lo'ster population. The predominant characteristic of such a strongly density dependent population is the existance of a sudden decline in recruitment once a certain critical minimum level of egg production is reached. Given the long period of time before declines in recruitment are discerniblè (i.e. four or five years) and a correspondingly long perior before renedial policies will have an impact on the commercial fishery, avoidance of sudden depletion or collapse is a policy objective which ought to have a high priority in the lobster fishery for both biological and economic reasons.:

Viewing the $31 / 2^{\prime \prime}$ proposal in this light, however, raises the question of whether that particular measure is appropriate, or in some sense optional, for avoiding the possibility of collapse. The $31 / 2^{\prime \prime}$ proposal appears to have been conceived in terms of increases in landed weight and possible increases in recruitment. (point 1 and 2 above). As such it might very well be the case that some other measure, greater or less than $31 / 2^{\prime \prime}$, might be more appropriate for hedging against the

[^11]possibility of collapse. In practical terms this line of reasoning suggests that if it is felt or estimated that the current $33 / 16^{\prime \prime}$ minimum is not sufficient to assure a minimum critical level of egg production, marginal increments in the minimum size should be viewed as acceptable to fisheries policy makers.

IV. Bio-Socio-Economic Heterogeneity

In addition to uncertainty with respect to population dynamics and effort/biomass relationships, those who manage the fishery must also take into account the extreme heterogeneity of biological, social, and economic conditions governing harvesting along the laine coast. From the point of view of policy making, this heterogeneity is important for both efficiency and equity reasons. As a conmon property resource the lobster fishery has provided economic opportunity in a rural setting where few alternatives are available. Men engage in the fishery with differing capital resources. Approximately 2500 operate what might be termed standard lobster boats. But there are probably an equal number of men who operate from skiffs and dories, with fewer than 200 traps. Geography also plays a role. Fishermen based on the upper reaches of many deep bays are eftectively limited to a tour to five month season because of water temperature (rhich limits the period during which they might trap and also frequently ices their anchorages) and because of the territoriality practiced by men in the fishery (which effectively excludes men "up the bay" from trapping in the more open and deeper water "down the bay"). (See Appendix A.)

Some areas along the coast, because of tradition or faverable location provide easier opportunity for alterna*ive fishery occupations-principally dxagging and clamning. In still others, customs accords either a greater or lesser ease of entry into tie lobster fishery. with the expected results in terms of over-fising. For example, the Casco Bay area, which is in the most urbanized part of the state is also the area where tradition governing entrance into the fishery seems to
have broken down the most. ${ }^{*}$ As a consequence, the Casco Bay area exhibits the most extreme symptoms of over-fishing. Further to the east, in the more rural Hancock and Washington counties, traditional barriers to entry seem to be more effective and the fishery appears to be in not nearly as much trouble.

Partial evidence of the heterogeneity which characterizes the fishery is contained in Huq's and Acheson's findings. Huq's data are especially revealing in terms of the broad range of characteristics of men in the fishery (i.e., income, trap days, inves'ment, full time/part time, etc.). A random sample we conducted in the summer of 1972 using Huq's questionnaire revealed similar wide variations. (See Appendix A for a comparison of fluq's data with that of the random sample.)

Acheson shows the variations in territoriality that rake place, and in
 with the extent of over-fishing. Surveys we have undertaken in early 1973 also reveal a broad range of fishing techniques, slills and conditions. The importance of this heterogeneity is that for many practical purposes the fishery must be treated as if it were many fisheries. Management schenes which propose property rights of one sort or anothicr based upon grandfather clauses, equipnent limitations, closed seasons, equipment redesigns or any other traditional means for limiting effort are likely to be inadvertently discriminatory and

[^12]inefficient in their inpact. Thouch it is unlikely that any scheme could avoid discrimination and inefficiency altogether, the heterogeneity of situations of the coast means that a significant group of fishermen is likely to raise strong political opposition to almost any management scheme. In most cases of straight-forward management schemes based upon "optimal" or typical methods and conditions of harvesting, much of this opposition is likely to be well founded for any single plan is likely to be less than optimal for many areas along the coast and, quite reasonably, will be perceived as such by certain groups of fishermen.: *

[^13]
V. Irplications of Incertainty

Pational management of the lobster fishery must take into account the interdependent biological, social, and economic aspects of the fishery. But as in any complex, interdependent system, uncertainty with regard to one aspect of the systen yields uncertainty with regard to the whole system. Thus, the uncertainty of our knowledge regarding population dynanics, effort/biomass relationships, and the heterogeneity of social and economic conditions governing harvesting, translates the management problem for the fishery into primarily a problem of isolating. and dealing with these particular areas of uncertainty. Fron a practical point of view, this uncertainty requires that management decisions based upon deterministic modeling of the fishery be treated with a great deal
 flexibiljty, and learning on the part of the management authority be preferred. In effect, any management approach must be capable of securing the long-run adaptation of the fishery to its environment. It would not be wise, at this juncture, to attempt to impose an "equilibrium solution ${ }^{\prime \prime}$ on the fishery, given our inability to arlequately describe that equilibrium.

Evaluation Criteria

The uncertainties described above require that the evaluation of alternative management schemes be geared prinarily to their ability to secure the long-run adaptation of the fishery to its environment. On a sccondary level evaluation of proposed schemes must be made with respect to their knom or expected irpact on the biological, economic, and social aspects of the fishery. Thourh it may be questioned why secondary consideration is given to the biological, social, and economic
impacts, the necessity for this ordering is very clear: Without firm knowledge of population dynamics and effort/biomass relationships, it is impossible to state the long-run benefits and costs of management alternatives.

Primary Evaluation Criteria:

1. Flexibility with respect to biological and economic and social knowledge and conditions:

Since biological data on the fishery are lacking, any management scheme must contain elements which allow for changes in strategy as new or more complete lnowledge of the fishery is developed. Similarly, as active management of the fishery proceeds a clearer perception of the social and economic irpacts of management will emerge, and any management
 change in these factors.

2. Costs of learning

Management flexibility and adaptability are desirable attributes of fishery policy to the citcar that such flexibility is constrained by the potential costs of learning. All other things equal, the lower the costs of learning the more preferred is the policy or strategy. Secondary Evaluation Criteria:

The lobster fishery is the backbone of the Naine fishery, but it is only one of several econonic fisheries. ien and equipment are transferable to other fisheries. As opportunities in the lobster fishery vary so will the level of fishing effort expended within the fishery itself and in cther fishories. Therefore the effect of reguiation of the lobster fishery should be weighed in toms of its impact on these other fisheries.
4. Positive impact on the economic return to the harvestable biomass:

As pointed cut prevjously, it is entirely possible that there is little or no relationship between fishing effort and the biomass of the fished population. Under these conditions and given no change in legally harvestable size, effort limitations must be justified entirely on economic grounds. Nevertheless, alterations in legal size linits can affect the size of the hamrestable biomass and the economic return to the harvest. Similarly equipment limjtations and/or design requirements can affect the costs of harvesting and mortality rates of the fished population.
5. Enforcealinity:

Costs of enforcenent mast be consiadered for each proposal. Adidi-
 may be necessary to consciousiy create the conditions of wide-spread belief in the efficiency of new rules and regulations, thus easing, enforcement problems.
6. Ability to deal with widely difforentiated harvesting and secio-cemnonic conditions:

Given the wide variation in the situations of individual fishemen and the peculiar charactenistics of the fishory in paricular areas, a managenent scheme must be abie to allow for widely varying models, conditions and tine of harvest if it is to be efficient and equitable.

Farticular social and economic criteria apropriate to the evaluation of each plan are:
a) What particulan groun or groups of fishomen are lisely to be either cxcludad froin the fishoy or forech to rehuce thejr cxpenditure of effective effort?
b) In the case of excluded persons, can their alternative economic cpportunities be assessed: That is the likely mannitude of social and private costs resulting from their exclusion?
c) What are the short and long-run benerits to the fishery resulting from exclusion?
d) With respect to persons who remain in the fishery, what are the likeiy impacts of effort reduction? Short term income? Long tem?
e) With respect to plans for limited entry, what criteria are propcsed for allocation of entry positions? How can they be assessed in tems of efficiency and equity?
f) With respect to the impact on fishing comunities, what is the like1v imnart of exclusions and short-teme effort reduction? Long-term benefits to the fishery?
7. Political possibilities

VI. Nethodolosy

In the early stages of the project, a list of ten alternative management schemes which had been p:oposed for the fishery or which, in the light of experience in other fisheries, seemed appropriate for the fishery was composed. (See Appendix B) This list was submitted to National Marine Fisheries Service, Gloucester Regional Office and to the Maine Department of Sea and Shore Fisheries. In addition a reworded but similar list composed of only five plans was show and explained to 48 lobstermen along the coast. On the basis of reaction from these three groups, the list of schemes was reduced to a set of three alternatives. These three alternatives ropresented what these tiree groups appeared to consider reasonable or feasible modes of action for the management of the fishery.

At this poinc tine major eiements of tacin un litese shitute wote combined into a single scheme (see Appendix C) which was then show and explained to 376 lobstermen. The purpose of this procedure was several fold:

1) Wuch of the carlier socio-economic data collected by Huq and Hasey was inappropriate to cortain key provisions in some of the proposed alternatives, e.g. the requirements that x percent of gross income be derived from the fishery in order to qualify for a comorcial license.
2) We intended to get a "feol" for the clinnte of acceptability associated with the elements of each of the three proposed alternatives.
3) We intended to use the surveying procesare as a means for more fully educating ourselves about the problems of the fishery as perceived by the lobstermen.
4) An unintended, but positive result of the surveying was that the fishermen therselves were odhcated to a certain extent about the necessity for managerent and the linds of alternatives which appeared feasible. This became apparent to us over the course of the year as various forms of proposals we had circulated surfaced in newspaper letters, and hearings and bills of comnittees of the "aine Legislature.

From our own point of view we learned as a rsenlt of this process that the quality and articulation of fisherman response depended crucially upon the manner in which managenent proposals were presented. Specifically, in our early efforts we tended to present broad outlines, almost theoretical proposels. Fisherman resconse was generally inarticulate and uncompehending. As the year wont by we became more specific using actual legisiative documents. Fisherman response suddenly became articulate and precise. "e concluled that either we had become much more adept at communicating with the fisherman or that the fisherman respond much more positively to specjfic rather than general proposals.

Manageinent Scheme Componerts

The number of individual management scheme components which have been sugcested for the fishery and the possible combinations by which they might be incorporated into management schemes is very large. In the course of this study, we found it necessary to catagorize component alternatives according to varying philosophies of fisheries management. There appear to be three broadly distinguishable philosophies in the approach to fisheries managonent:
Type I: lanagement apprcaches dosigned to eliminate the common property and unlimited entry charactoristics of the fishery which are often ciecd
as the root of the overcishing problem. Suggested management schene components which fall in this category are:

1. Freeze the number of licenses.
2. Freeze the number of licenses and make available only to "commercial" fishermen.
3. Limited numiber of transferable (sellable) licenses.
4. Special licenses, with special restrictions: comercial, apprentice, retiree, etc.
5. Decentralized (i.e. local) management "councils" with locality specific licensing.
6. Closed seasoǹs.
7. Trap day or numicer limitations.
8. Centralized "strong" management authority (regional, Federal, or

9. Establish apprentice programs to serve as a partial barrier to entry.
10. Dajly curfews to disćourage "moonlighters." Type II: Management approaches which emphasize the use of taxes or subsidies as a corrective to overfishing. Typical scheme components falling in this category are:
11. A special excise tax on lobsters.
12. A tax on traps.
13. A tax on boats.
14. A tax proportional to catch or income.
15. Increased license feos.
16. Subsidics as componsation for lowered fishing cffort.

Type IIT: Management approaches which are primarily a compilation of good (and bad) consenvation piuctices. Schome components of this type which have been suggested aro:

1. Raise the legal minimu carapace size to 3-1/2" (1a. females only).
2. Abolish legal maxinum size (2a. males only).
3. Re-designed traps to allow "shorts" to escape.
4. Discontinue 'V'-notching.
5. Remove un-buoyed traps from bottom, or require traps with "self-destructing" characteristics.
6. Enhance lobsters' environment with artificial reefs, etc.
7. Bounties on preeators.
8. Begin hatcheries or research on hatcheries.
9. Innrmi aracerye.
10. Eliminate hamfui pollution.
11. Discontinue plugging.
12. Quotas on total catch, or per license.
13. Wake license dependent upon the marking and release of 25 mature, but unezged female lobsters.
14. 'Increased enforcement authority for coastal wardens.

The actual schones which were choson for cvaluation were derived from two primary sources:

1) Theoretical requiroments translated into what was felt to bc a reasomable managenent framework by members of the project.
2) Legislative pronosals which apneared before the 106 th Paine Legislature.

In addition to the theoretical criteria mentioned on page 31, we felt that it would also be valuable to assess each schome in tems of its likely acceptability to men in the fishery.
VII. MANAGE TETT AJTERNATIVES

Management Alternctive \#1

A. Licensing

1. Create several classes of licenses
a. Conmercial licenses - transferable, linited initially to a nuaber equal to the number of current fulltine lobstemen.
b. Apprentice license - combined with an apprentice procram designed primarily with an eye to reinforcing traditional barriers to entry, e.g. kinship and community ties.
c. Retirenent license - non-transferable, available to men over 60.
d. Sport and student licenses - limited in number and with trap linits.
 program, i.e. give management authority the right to use license fee receipts to purchase and retire and chereby reduce the number of commercial licenses.
B. Raise legal minimua carapace length to $3-1 / 2^{\prime \prime}$.
C. Establish a trap limit of 600 for entirc coast.

Discussjon
The primary attribute of this scheme is that the license buy-back progran allows the managenent authority to alter the level of fishing effort (provided effort is correlated with license numbers) if it sees a need t.o do so. Given the voluntary nature of license sales, moreover, its authority is essentially limited to carrot and not stick methods. In other words, if the management body sees a noed to reduce effort, it is empowersd to puisue this goal by offerirg to purchase outstanding, com-
mercial licenses. If there are no or few license holders willing to accopt the purchase price offored by the manement body, that body must assume that license inlders place a higher asset value on the license (and, therefore, the fishery) than does the management authority itself. The authority has no recourse but to raise its offered price until sufficient mubers of license holders respond with an offer to scl1. Furthermore, if the managenent authority can accurately record the price of private license sales, it should be oble to note trends which register the expectations of the fishermen themselves.

For the person leaving the fishery, the program has the effect of providing the license sellor with an immediate, highly liquid asset which he can use for relocation, retraining, etc. This characteristic tends to make exit from the fishery mulh more attractive than it is currently.
arntery inten the fichery. on the nther hand: is rurtailed to a certain degree by the apprenticeshin program. We would suggest that such a program be set uj in such a way as to effectively limit entry to persons who have family or community ties with the fishery, i.e. legally establish the current informal barriers to entry. While such a procedure or suggestion would not bo vicwed as efficient or equitable in a nomnal industrial or com:ercial setting, in a fishery limited entry is generally conceded to yiclil more desirable results for both consuners and produccrs thana purely cometitive, whimited entry situation. An apprenticeship program, viewed in this light, becomes a convenient and relatively cquitable, device for discriminating anong potential entrants. The altonative is to discriminate entirely on the besis of the ability to purchase a license.

Additionally, an apprenticeship program may be necessary to a certain extent as a means for training new entrants. Though it is very difficult to document in any quancitative fasnion, a readily apparent characteristic of the fishery is the wide variations in the skills of the men, especially skills relating to trap placement and use. (Among other things, we would describe this skill as the ability to place traps in a particular threshold isothern. Catchability apparently varies to a great extent with water tenperatures, and water temperature at any particular place on the bottom is a function of depth, currents, recent weather, etc. Skilled men appear to be able to anticipate or respond quickly to temperature changes and place their traps accordingly. We are not sure whether their skill is generally articulated or is nerely the result of long experience. Whatever the case may be, however, the transmission of such knowledge
 skilled as older men in the fishery and as a consequence tend to pursue a strategy of substituting more and more traps for skill in order to increase their income. This is a perfectly rational strategy from the individual point of view, but under conditions of high exploitation rates it has the fotential of forcing a similar response from more skilled fishermen so that an uneconomic escalation of trap numbers may ensue.* This exact sequence of events appears to have taken place in Casco Bay where, gensraily, the fishermen with the largest numbers of traps tond to be relatively young and tond to be from families outsicle of the fishery.)

The intention of the 600 trap limit is two-foid: 1) To break the back of the trap escalation which has been occuring in the Casco Bay

[^14]area of the fishery (1200-1800 traps per boat are not uncommon) and 2) to put an upper limit on ary future escalations.

An interesting aspect of the intervieving we undertook in the Spring of 1973, is that the fishermen in Casco Bay are perfectly aware of the dilemma they are caught up in. None are willing to cut back unless all cut back because they realize that individual de-escalation will merely result in a decline in individual incone. On the other hand, almost all of the fishermen are aware that a cut back by all will result in about the same total catch per man but at greatly reduced costs per man.

Though Casco Bay comprises a relatively small part of the fishery, its problems are important because they appear to be merely a prelude to the problems of the rest of the fishery. We have clear indications from the area immediately to the cast of Casco Bay that similar trap escalations
 that large scale trap wars have been threatened in the Casco Bay area. Apparently, many fishermen view wholesale trap cuttings as the only alternative to legal trap limits and limited entry.

The limit of 600 traps suggested here should not be taken as the choice of a number which jis in some sense optimal for a boat in the fishery. in fact, the optimal nuaber for a boat with two men appears to be in the neighborhood of 450 to 550 traps depending upon whether travls are fished or not. Pather 600 appears to be a reasonable number which will not unduly interfere with tecimical efficiency and wich will effectivcly inhibit uneconomic trap escalations:

Cne rather important aspect of a tran limit is that in the longrun it is a meaningless policy uniess it is combined with sone fom of
limited entry. A trap limit without limited entry has the potential of leading to (1) the sane hich trap density (but with fewer traps per boat) as exists currently with no trap limije and virtusily unlimited entry,
(2) the same or higher costs per unit of output (probably higher because of the need for more boats and other fixed investment), and (3) lower net income for the fishery spread among a greater number of fishermen.

A compelling argument against trap limits relates to enforceability. Conversations with Canadian officials indicate rather high enforcement costs associated with trap limits. Canadian experience also suggests that one effect of a trap linit is to cause fishermen who had previously been fishing fewer traps then the (newly imposed) limit to increase their trap numbers to the limit. If this effect were to occur with a 600 trap
 traps in the eastern part of the State where trap numbers are currently well below the proposed linit.

The various rationales for the $31 / 2^{\prime \prime}$ limit have been discussed in section III above. It would be appropriate at this point, however, to explain some of the more comon objections yoicet aront the policy.

On the biological side one objection or uncertainty relates to the question of population dynamics. The argument is basically that the 18% estimated gain in landed weight is predicted on the assumption of a non-density depondent population dynamic. If this is not the case, the $3-1 / 2^{\prime \prime}$ limit wiil have the effect of altering the age distribution of the population and increasing natural mortality rates among sub-1egal
lobsters. This will reduce the number of young lobsters coning up the "pipe" which will also reduce the estimated gain in landed weight.

The same argument about the popalation dynanics could also be applied to the expected increase in future harvests. That is, in a population strongly characterized by density dependent mortality at the pre-recruit stage, an increase in the number of eggs produced could not be expected to result in increased recruitment.

On the economic side there are two aspects of the $3-1 / 2^{\prime \prime}$ minimum which raise doubts: 1) If all states and Canada move to the $3-1 / 2^{\prime \prime}$ minimum, the average retail price of a lobster dinner will rise, all other things equal, causing an off-setting decline in demand and price. Since the current wholesaie market price/lb. varies with size and it is not known what the elasticity of demand for larger average sized
 be stated.

Another economic fear, or objection, raised by lobstermen is the effect on the catch in the short-run (i.e., the five year period) while the legal nirimum is being raised. Rough estimates we have made, assuming a non-density dependent population, indicate that the net effect on landed weight will be negative for the first three years of the program and will then turn sharply upward. For a donsity-dependent population the negative imiact on landea weight will last longer and the upturn will be less mariced, if it occurs at all.

Though it is difficult to make a judgnent ahout the $3-1 / 2^{\prime \prime}$ minimum, it would be our guess that the net economic effect of the change would be positive but that the mannitude of the net benefit would be small.

The primary benefit of a bry-back approach to licensing would be the flexibility which it provizes to the management authority. The voluntary nature of the buy-back approach constrains the management authority, on the one hand, and assures that those persons leaving the fishery have at least assessed their own opportunities on-shore as greater than their opportunities in the fishery, on the other hand. This charactcristic of the program should tend to minimize the social costs of management flexibility and learning.

With respect to the compatibility of the proposal with other inshore fisheries, to the extent what entry in the lobster fishery is closed off potential entrants may mo:e into alternative fisheries. As a matter of practical concern, however, gear and boat constraints are likely to make
 On the other hand, if management based on this model is successful in stabilizing or improving the state of the lobster fishery in the long run, the potential (and current) pressures on other inshore fisheries exerted by lobstermen is likely to lessen.

With regard to the all important question of political feasibility we would have to conclude that the current prospects are very low. Fisherman reaction to a buy-back approach is generally favorable but only after a lengchy explanation and discussion of the attributes of such a program. General acceptance would only be possible after a long period of education by extension workers and trade journals. Alditionally, it should be noted that a proposal of limited entry of any sort wi.11 likely have very rough sledding in the legislature at least until the time comes when it is absolutely clear to all that the loss of the commercial fishery is imminent.

This alternative is virtually identical to the first except that it proposes division of the inshore fishery into relatively small management areas corresponding to the territorjal boundaries currently enforced by custon and convenience. A license would be valid for only one management area and active management of each area would be the responsibility of the local fishermen.

There are several reasons for suggesting a territorial approach to management of the fishery. The primary reason is to force accountability for the state of the fishery onto the shoulders of the fishemen. It was felt that territorialiay along with limited entry and salable licenses would create, in esect, group property rights and, therefore, the incentive to conserve the resource through grom management. The
 prenise that group management would be more feasible with relatively small numbers of individual fishemen involved in the decision-making process.

Secondly, small territories were suggested because, to a certain extent, this is a reflection of current practices along the coast. It would seem, then, that a program of accountability might be most easily implenented by capitalizing on existing practices. In fact, it should be mentioned that the territoriality which is found in the fishery and the barriers to entry which accomany territoiality (in some places barriers to entry are quite stiff, in others fairly relaxed), seen to have the limited effect of indicing an attitude of accoutability on the part of the fishermen. Also contributing to this attitude is the
fact that for most of the men in the fisinery alternative economic opportuities are very poor aid, thereforc, all bui a very few men are actively concemed with and take astims to conserve the resource to the extent that it is individually possille.

Thirdly, management of the fishery through small territories has the advantage of providing flexibility with respect to the differing biological and/or sccio-economic characteristics of the fishery. Hence, the adaptability of the fishery to its environment would be enhanced.

There are two primary objections to managenent based upon small territories: (1) Adninistrative problems involved in the initial definition of territorial boundaries are likely to be insuperable. One of the characteristics of tirritoriality as it currently exists is that boundaries are in a constant state of flux. Kinship and friondship ties
 permeable boundaries. Additionally, men from harbors in which the population of fishermen is growing (usually because entry is less restricted) tend to try to expand their territory at the expense of men from harbors where fisherman population growth is low or negative. Since, trap wars and other extra-legal means of enforcing territorial boundaries are resorted to only under great pressure, the result is often considerable boundary overlapping. Under these circunstances defining legal boundaries could become an administrative, anl probably legal, nightmare.
(2) Enforcenent problems could possibly be severe and expensive if the coastal wardens were continually forced to survey alledeed boundary infringenents. On the other hand, there are many extont cases of strict boundary lines which are apparently observed with little friction.

Overall, however, it would have to be concluded that, even though management through the mediun of small territories has nany positive aspects, administrative problems appear to be excessive. Te certainly feel, nevertheless, that serious consideration be given in the future to the gradual evolution of legalized territories, since territoriality does hold the promise of making the fishormen accountable for the quality of the resource.

Managoment. A1ternative \#3
Over the course of the yeer several of the ineas develoned on the project were incorporated into bills presented to the locth lane Legislature. The following management proposal is a bjll wiveh was put together by Rerresentative Lawrence Greenlaw of Stonineton who has consulted frecueritly with members of the project. The bill was defeated on its second reading in the House of Representatives.

AN ACT to Conserve, lanage, and Regulate the Lobster Fishery
Preamble. Whereas, the People of the Siate of faine are extremely proud of the reputation the State has as the largest lobster producing state; and

Whereas, the lobster has been an intricate part of what has made Maine famous and unique; and

Whereas, the lobster catch is of vital importance to the economy of coastal communities; and

Whereas, the pressures of overfishing have placed the continued existence of the lobster in question; and

Whereas, no proper conservation and management technioues have been introduced to protect these fisheries; and

Whereas, the demand for Maine lobster all over the world is increasing rapidly, thereby creating greater economic pressure to deplete the resource; now, therefore, be

Resolved: that we, the members of the 106th Legislature of the State of laine find and deelare the commercial business of lobster fishing to be of vital economic importance to the State and urge all appropriate actions to be taken forthwith to conserve, manage and regulate the lobster fishing

Be it enacted by the People of the State of Maine, as follows:

1. It is unlawful for any person to fish for, take or catch any lobster or crabs in any manner without having a current written license boat currently licensed as provided in this section, notwithstanding that the owner/operator of a currently licensed lobster and crab fishing boat may take a helper(s) without having them licensed. The operator of a boat may haul only traps licensed to that boat. The Commissioner shall be empowered to allow a boat to haul traps not licensed to it when circumstances prohibit the appropriately licensed boat from hauling its traps.
2. Conmercial lobster and crab fishing license designation; general scope. The license, designated as a lobster and crab fishing license, entitles the holder to operate a boat and traps to take lobsters and crabs when and where it is othervise lawful to take them. The applicant shall
specify on his application the rerjistration number of the motorboat from which he sha? fish as issual by the Pureau of liatercraft Registration and Safety or documentation number as issued by the United State Government.
3. In order to qualify for a coroncrcial lobster and crab fishing license, the applicant must submjt annually to the Comnissioner, Sea and Shore Fisheries, with his application written mroof that a minimum of 50% of the applicant's earned gross taxable income in the previous calendar year was derived solely from harvesting renewable marine resources. The Commissioner is directed to promulgate a regulation defining written proof. In unusual circumstances when an applicant fails to meet the above criteria, he may petition the Comissicner, Sea and Shore Fisheries, for an exception. When an applicant presents unusual circumstances for not earning
 to believe that failure to renew a comercial lobster and crab fishing license would create an undue and unfair economic hardship upon the applicant, the Commissioner with the advice and consent of the Sea and Shore Advisory Council moy issue a commercial lobster and crab fishing license in such a case.
4. It shatl be urywful for the operator of any boat, which is 1icensed as a commercial lobster ard crob fishing boat, to set, have in the water, or fish more than 600 trans at any time, regardless of where the traps are set.
5. Apprentice lobster and crob fishing 1icense designation; general scope. In order to provide controlled entry into the lobster industry and to insure continuation of prone: methods of lobsterinp and conservation, an apprenticeship program is hercby establishod. This promran will be open
to all persons 16 years and older. An apprentice must obtain consent of two commercial licensed master lobstemen who shall agree to oversee, direct, and teach sponsored apprentice for a period totaling 12 months. An apprentice may count toward the total requirement of his apprenticeship tenure a total of 6 months that he has lobstered under a student license. An apprentice may fulfill his apprenticeship by working as a stern man or fishing his own boat with traps. The license designated as an apprentice license entitles the holder to set, have in the water, or fish not more than 200 traps at a time regardless of where they are set. If an apprentice elects to serve as a stern man, this does not allow the boat to fish any additional traps other than those authorized under the appropriate license.
6. The only qualification for a commercial licensed master lobsterman is that he must have lobstered for 10 years before he may sponsor an apprentice. At the end of the apprenticeship, the apprentice shall obtain from the 2 commercial licensed master lobstermen who accepted responsibility for his apprenticeship training, write letters affirming their observation and recommending the apprentice for a commercial license. After June:1, 1975, successful completion of the apprenticeship program will be a prerequisite to application and holding of a commercial lobster and crab fishing license.
7. Student lobster and crab fishing license designation: general scope. Any person who is a full-time registered stueent at any accredited institution of learning, who meets the residency requirements as established in subsection 4 of this section, may apply to the Commissioner for a lobster and crab fishing license. The license designated as a student lice:se entitles the holder to set, have in the water, or fish not more than 100 traps at a time regardless of where traps are set.
8. Retirement lobster and crab fishing license desigration: general scope. Any person who holds a conmercial lobster and crab fishing license as established by subsection 2 of this section may amply to the Comissioner for a retirement license. Retirement licenses may be issued to a holder of a connercial lobster and crab fishing license after that person has attained the age of 55 years and who has held a commercial license or its equivalent for a minimum of 10 years. A retirement lobster and crab fishing 1icense entitles the holder to operate a boat engaged in lobster fishing as outlined in sulssection 2 of this section except that no person holding a retirement license shall set, have in the water, or fish more than 200 traps at a time.
9. Sport lobster and crab fishing 1icense designation; general scope. Any person who does not qualify for a commercial, apmrentice, student, or retirement license, but who meets the residency requirements as established in subsection 4 of this section, may apply to the Commissioner for a lobster and crab fishing license. The license designated as a sport license entitles the holder to set, have in the water, or fish no more than 25 traps.
10. License fees. The fees to license lobster and crab fishing boats in each category will be:
A. Comnercial license - $\$ 25.00$
B. Apprentice licerse - 25.00
C. Student license - 15.00
D. Retirement Iicense $\quad 10.00$
E. Sport license 25.00
11. Lobster Conservation Fund. All revenues received from 1obster and crab fishing license fees shall be allocated to the Lobster Conservation Fund, which does not lapsc. Fees so collected or allocated in any one year may be used in the same or any succceding year.
A. The Comissioner shall expend 40% of the money in the Lobster Conservation Fund for the purpose of propagation of lobsters and for purchasing seed lobsters from laine lobster pounds and female lobsters from Maine wholesale dealers and liberating said lobsters in Maine coastal waters.
B. 60% of the Lobster Conservation Fund shall be used by the coastal warden service for additional enforcement of lobster laws.

12. License linlitation:

A. The number of commercial lobster and crab fishing licenses shall be limited to a number equal to the applicants who qualify in the first year this legislation becomes effective.
B. The number of apprentice lobster and crab fishing licenses shall be 1inited to 600.
 maximum number issued in the first year this legislation becomes law, whichever is lower.
D. There will be no license limitation on retirement lobster and crab fishing licenses.
E. The number of sport licenses will be limited to 1500 or the maximum number issued in the first year this legislation becomes law, whicherer is lower.
13. Marking of lobster traps.

It is unlawful for any person to set, raise or haul any pot or trap for any lobster or crab, or to cause the same to be done without having the buoy attached thereto plainly carved or branded with his lobster and crab fishing license number, and unless there is attached to the sill of the trap a metal tag containing the individual's lobster fishing license
number and the current license year of issue (e.g. 1974-1975) plainly embossed thercon. Sain lobster trap tags shall be issued by the Comnissioner, or his representative, with the individual's lobster fishing license when application for license is made. The number of tags issued will be equal to the number of traps that an applicant is allowed to set, have in the water, or fish under the appropriate license for which he has made application. The Commissioner with the advice and consent of the Sea and Shore Fisheries Advisory Council is empowered to issue additional tags when they decermine that an emergency situation exists.
15. Effective Date. This Act shall take effect on July I, 1974. Licenses will be renewable on July 1 of each succeeding year. The Commissioner is directed to evaluate this legislation from the point of view of implementation and enforcement and to make any appropriate recommendations to a Special Session of the 106th Legislature or to the 107th Legislature.

16. Statement of Fact

The purpose of this bill is reflected in the Title. If enacted this bill will establish a license classification system, a trap limit, a license ceiling, a provision for marking of lobster traps, and provides for an increase in license fees. It also changes the date for renewing licenses from January 1 to July 1.

DISCUSSICN

It should be noted that this proposed legislation bears a close resemblance to management alternative number one. There are important differences, however, which are primarily the result of a considerable political process. They are:
(1) The buy-back and salable license procedures of alternative number one are roplaced with a queing and annual qualification procedure
for allocacing a fixed number of licenses. That is, a person does not bry a iicouse, rather he has tiv possible means for obtaining a liccase: (a) he may go through the apprentice program and be placed on an (irmplied) list of persons eligible for a license or (b) if he has been engaged in the fishery he may present evirlence of having earned more than 50% of his gross income in the previous year which is sufficient evidence for a Iicense.

The primary reason for these changes is a strong feeling among the fishermen (and the legislators) that license allocation on the basis of ability to pay is in some sense inequitable. There may be a reaiistic fear of an ability to pay criteria since the fairness of that kind of criteria is dependent upon all persons havirg equai access io conial matheis. Eivan though a commercial license under alternative one would have a considerable asset value, there is some reason to doubt that conservative local banks would behave in such a way as to allow all qualified irdividuals equal access to capital. As such the gueing and anrual qualifications procedures described in Greenlaw's bill are a substitute for a market in licenses.
(2) The lack of a bay-back program effectively denies the management authority the power to alter the level of fishing effort. Therefore, the bill implicitly assumes that the fishing effort consistent with the number of licenses issued under its procedures is, in sone way, optinal. Another way of looking at this is that the bill wotld have the effect of freezing fishing effort at a level, probably just sligicly, bclow the current.

Though alternatives to effort adjustment through a buy-back type scheme are readily available, the committee handing the bill was apparently not willing to assign this power to the Commissioner of Sea and Shore Fisheries.
(3) The one-time license freeze suggested in alternative number one is replaced in this bill with a similar but annual procedure. That is, every year a fisherman must meet the 50% income qualification for a new license. If he foes not then he must give up his license to a person on the waiting list conposed of persons who have successfully completed tie apprentice program. In effect, the bill provides for no on-going property right in the fishery.

This aspect of the bill may be somewnat, though probably
 fishermen, though as noted earlier there are other on-going social and economic factors which do contribute to a conserving attitude.

Administrative problems are also likely to crop up with respect to the annual qualification procedures. One obvious problem is the definition of income, or lack of it, contained in the bill. Another is the administrative or private. costs which will be incurred by following the procedure.

Management Alternative \#4

A second bill presented to the 106th Maine Legislature by Senator
Paul Huber is repioduced below:
Be it enacted by the People of the State of laine, as follows:
Sec. 1 R.S., T. 12, 54404, sub- $54-A$, additional. Section 4404 of Title 12 of the REvised Statutes, as amended by section 2 of chapter 67 of the public laws of 1967, is further amended by adding a new subsection 4 to read as follows:

Vessel designation. An applicant for a lobster and crah fishing license shall designate on his application the number assigned by the Bureau of ivatercraft Registration and Safety to the vessel on board which he intends to exercise the privilege conferred by such license. The cominissioner shall enter such number so designated by the applicant on the license when issued. The commissioner shall not issue a lobster and crab fishing license to any applicant, if such applicant has designated in his application the number of a vessel which has already been entered on another license.

Sec. 2. R.S., T. 12 §4404, sub- 55 , amended. Subsection 5 of section 4404 of Titie 12 of the REvised Statutes is amended to read as follows:
 $\$ 100$ which the applicant shall enclose with his application.

Sec. 3. R.S., T. 12 §4404, sub-56, amended. The first parapraph of subsection 6 of section 4404 of Title 12 of the Revised Statutes is repealed and the following enacter in place thereof:

The license fees for lobstèr and crab fishing licenses shall be allocated to the Lobster Fund, as heretofore established.

Sec. 4. R.S., T. 12, 54404 , sub-56, ๆ A, amended. Paragraph A of subsection 6 of section 4404 of Title 12 of the Reviser Statutes is amended to read as follows:
A. The comissioner may expend any and all of the money in the Lobster Fund from tine to time for the purpose of propagation of lobsters, for research, protection and management of the lobster fisheries and for purchasing seed lobsters from laine lobster pounds and female lobsters from Maine wholesale lobster dealers and liberating said lobsters in Maine coastal waters.

Sec. 5. R.S., T. 12 , $54453-\mathrm{A}$, additional. Title 12 of the Pevised Statutes is amended by adding a new section 4453-A to read as follows:

§4453-A. Limitation

On and after Jamary 1, 1974 it shall be unlawful for any person holding a lobster and fishing license to fisil more than 600 lobster traps or pots.

Sec. 6. R.S., T. 12, $\{4453-\mathrm{B}$, additional. Title 12 of the Revised Statutes is amended by adding a new section 4453-3 to rearl as follows:

§4453-B. Marking of lobster traps

It is unlawful for any person to set, raise or haul any pot or trap for any lobster or crab, or to cause the sane to be done without having the buoy attached thereto plainly carved or brand-r with his lobster and crab fishing license number, and unless there is aitacher to the sill of the trap a metal tag containing the individual's Iobster fishing license number and the current license year of issue plainly embossed thereon. Said lobster trap tags shall be issued by the commissioner., or his representative, with the individual's lobster fishing license when appitcation for license is made.

Sec. 7. R.S., T. i2, 84467 , additional. Title 12 of the Revised Statutes is amended by adding a new section 4467 to read as follows:

No person shall fish for lobsters and crabs from any vessel other than the vessel whose nuber, assigned by the Bureau of vatercraft Registration and Sacety, appears on his lobster and crab fishing license. DISCUSSION

One provision of the bill especially bears discussion. This is the pronosed increase in the 1 icense fee from $\$ 10$ to $\$ 100$. The intent of this fee Encrease appears to be to provide a partial barrier to entry into the fishem. In intent it is comparable to the 50% of income from all fisheries criteria proposed in the Greenlaw bill (alternative \#3). The differences in the two approaches should be analyzed in terms of their differing social and economic impacts.

Both approaches will, in and of themselves, tend to have a marginal impact on entry.: Each of the approaches, hovever, will have an impact
*The apprentice program provisions in Greenlaw's bill will probioly have a much stronger inipact on limiting entry.
on a different group of men in the fishery.
Higher license fees vill tend to have the most del.aterious impact upon:

1) Sportfishermen
2) Students
3) Clanners and other men who tend to work as stern men or who fish in late summer from dories and skiffs, and
4) persons who hold licenses but do not actively participate in the fishery.

License fee increases will not sericusly hamper the entry of:
5) Full-time lobstormen
6) Most part-tine lobstermen, and
7) Rich sportfishermen.

Of the groups on this list, group 3, is the one which is likely to bear the greatest private burden of ilcense tee increases. This burclen may be borne in one of two ways. Either the fee increase will discourage their entry forcing them into their next best alternative or, more likely, the fee increase will merely be accepted as another fixed cost which must be paid in order to make a living. (Obviously as fees rise the possibility of the fomer rises.) Since most of the men in this group tond to be marginal to the economy as well as the fishery any discouragenent of entry which does take place is likely to limit economic opportunities for people with few alternatives. For groups 1, 2, and 4 the effect on entry is likely to be greater, but the social and private
costs are likely to be minimal. Grouns 5, 6, and 7 will undoubtedly accept the license fee increase as a fixed cost.

The impact of this approach in terms of decreases in fishing effort is likely to be very minimal. Using data from the Hua sample and the 1972 random sample and assuming, that, at the most, the fee increase would elininate all persons with 5000 or fower trap days, we estimate that the decline in harvest would be in the order of $2-3 \%$ all other things equal.

The 50% of income alternative (taken by itself) will tend to have the greatest deleterious impact upon:

1) part-timers with reasonably good onshore employnent
2) all sportfishermen
3) persons who hold licenses but cio not actively participate in int fisibuciy.
The 50% of income criteria will not seriously hamper the entry of:
4) full-time lobstermen
5) part-time lobstermen enployed in other fjsheries
6) part-time lobstermen with low income employment onshore, and
7) stuảents.

The greatest burden of this approach will be borne by men who actively participate in the fishery and who at the same time have good job and income cpportunities onshore. In certain areas of the State, especially the urban areas, there appears to be significant numbers of such men, truck drivors, teachers, salesmen, professionals, etc. Data from the Huq sample and the 1972 random sarple would 1 cad us to cstimate that $25-30 \%$ of the mon in the sample accounting for $9-12 \%$ of total catch
(trap days) would be eliminated by the 50% incone requirement. From the point of view of sccial costs, however, exclusion of this group is likely to cause feiv problems.

Management Alternative \#5
In the fall of 1973 a group of state legislators, fishermen and others with knowledge of the fishery began to work on the formulation of new legislation to be presented to the special session of the 106th Maine Legislature due to convene in January 1974. This effort resulted in a 28 page bill which is summarized below.
I. The bill proposes to crente four kinds of lobster and crab licenses each with different qualifications:
a. Class A -- a conmercial boat license, available to persons with 75% of their gross earned income from marine resources and one-third of that 75% (i.e. 25% of gross earned income) from the lobster fishery snecifically. Income qualifications apply to 1973 or to three (3) of the five (5) years inmediately before enactinent. Age limit of 16.

These qualifications need to be met one time only (Dec. 1974). After that a class A license may be bought and sold, willed, given as a gift, mortgaged, etc.
b. Class B -- a commercial boat license available to persons with 30% of their gross earned income from marine resources and one-third of that 30% (i.e. 10% of gross earned income) from the lobster fishery specifically.

These qualifications need to be met one time only (Dec. 1974). A class B license may not be bought or sold or transferred in any way. If the person who holds the license retires from the fishery the license is also retired.
c. Class C -- a sport fishing boat license limited to 1500 people each year and available on a first come, first served basis. Cnly the boat license holder may take lobsters on a class C boat.
d. Ciiass $ע$-- a license to take, required for all persons who actually take lobsters. For example, a class A or B license holder will also need a license to take (class D) but his helper or sternman will need only a license to take. A license to take is valid only when used on a licensed boat.
II. The bill proposes a license freeze:
a. Class A -- the number of licenses will never exceed approximately the number of persons who qualify in Dec. 1974.
U. Class $B:-$ the rimber of licenses will never exceed the number of persons who qualify in Dec. 1974. Additionally, since class B licenses may not be transferred, the number of class B licenses will gradually be reduced as a result of retirement, etc. After many years there will be no class' B licenses outstanding.
c. Class C -- the number is limited to 1500.
III. The bill proposes a trap limit with a trap tagging procedure:
a. Class $A=600$ traps in the water, 300 total tags for each license year and 1000 traps in possession.
b. Class $B=200$ traps in the water, 300 total tags for each license year and 300 traps in possession.
c. Class $C=25$ traps in the water, 30 total: tags for each license year and 25 traps in possession.
IV. The bill proposes a new license fee schedule:
a. Class Λ - $\$ 50.00$
b. Class B - $\$ 25.00$
c. Class C - $\$ 25.00$
d. License to take - $\$ 5.00$
V. The bill proposes a 'buy-back" program for Class A licenses:

The idea of a buy-back program is this: If, in the future, we find that there are too many fishermen for the fishery, the Commissioner of Marine Resources is authorized to purchase, at the going market price, and hold in appropriate number of Class A licenses. The Commissioner has no power to order a person to give-up his license. The only thing he can do is purchase a license from a person who voluntarily agrees to sell out.

Une advantage of this procedure is that when conditions in the fishery are poor many men are (currently) forced out of business with little more than the shirt on their back and a lot of debts. Under the buy-back procedure a man who leaves the fishery gets a kind of nest egg which he can use to get started in a new profession or to pay off his debts. (It should be made clear, that when a man leaves the fishery he does not have to sell his class A license to the commissioner. He may sell or give his license to any-
 creased willingness on the part of banks to lend to fishermen.
ioney for the Comnissioner's buy-sack fund comes from license receipts. When the fund reaches $\$ 500,000$ all license fees and all interest earned by the buy-back fund goes to the lobster conservation fund.
VI. Other provisions:
a. The bill provides for replacement trap tags in case of extreme weather and other hardship conditions at the conmissioners discretion.
b. The bill prohibits corporate ownership of a license.
c. The bill stipulates that no person shall hold more than one boat license (A, B or C).
d. The bill provides for easy transfer of boat licenses from boat to boat (e.g., when a person buys a new boat).

Discussion

The reader will note that this proposed legislation is very similar to management alternative number one presented above. There are two primary differences, however:
(1) The addition of the class B, nontransferable license. The purpose of this license is two-fold: (a) it softens the social impact of limited entry by allowing a group of currently active part-timers (i.e. those with 30% of their income from marine resources) continued access to the fishery. (b) It prevents, however, the continued entrance of new part-timers. Thus the effect is to slowly reduce effort through attrition of class B licenses.
(2) The apprènticeship program of alternative one was eliminated because it was felt that such a program would not stand up to a constitutional challenge.

Appendix A

The Status of Socio-cconomic Data on the Maine Inshore Lobster Fishery

Prepared by: Dr. James Acheson Associate Professor of Anthrnnolnov
 Orono, Maine

HCAG:GAST REGION
federal minding
14 tam street
GLOUCESTER, MASSACHUSETTS OIS30

Contract No. \qquad

This Contract, entered into this
by the United States of America, hereinafter called the Government, represented by the Contracting Officer executing this contract, and

$$
\begin{aligned}
& \text { Frivariney of inion }
\end{aligned}
$$

hereinafter called the Contractor, witnesseth that the parties hereto do agree as follows:
ARTICIE I. STATEMTENT OF WORK The Contractor shall furnish the necessary persomet, facilities, materials for performance of the following work.

 ARJNCLE 2. COST The estimated cost to the Government for performance of this contract is muon. 0 .

AROICIE 3. PERIOD OF CONTRACT WORK shall be commenced PR e IF: 2% and shat be completed not later than

ARTTCLE 4. OVERFEAD RATE The provisional rate for overhead pursuant to Clause 4 of the General provisions shall be \qquad porecont.

ARTICIE 5. GENERAL PROVISIONS The attached "General Provisions", forms are incorporated herein and made a part of this contract. Sec addition to and amendments thereon as cited in Article 7 and 8 below.

ARTMCLE 6. ALTERATJONS The following changes were made in this contract before it was signed by the parties hereto:
$\frac{\text { ARTICLE } 7}{\text { Article } 5}$ is amended to include the following: Certification of Equal Employment (See attached Agreement). Price Certification (See attached Agreement). Certification of Nonsegregated Facilities (See attached Agreement).

ARTGCE 8. ANGDPMY TO GEDERAL PROVISIONS
Clause 12 is deleted and the attached Patent and Invention statement is substituted in lieu of.
Clause 19 is amended to read as per attached statement.
never.

 the fortunes.

$\therefore \quad A R T I C L E T$.

This contract is negotiated under 11 USC252C(5) of the Federal Property Administration Act of 1949 as amended.

IN WITNESS WHEREOF, the parties hereto have executed this contract as of the day and year first above written, .

THE UNITED STATES OF AMERICA

\qquad venom Proctor
('Jute)

There are basically three sets of socio-economic data available on the inshore lobster fishery in ilaine. Two of these sets of data were generated with the same data instrument: The first set of data was collected over a two year period (1970-71) by Dr. Abul Huq under contract to $N: F S$. This data set is composed of a sample of 131 lobstermen from four Maine communities -- Deals, Corea, Bath, and Phippsburg. The second set of data was collected in the summer of 1972 using the same questionnaire form devised by Huq. This sample is composed of 82 lobstermen chosen at random from the license files of the Maine Department of Sea and Shore fisheries. The third set of data was collected by Dr. James Acheson over a two year period (1972-73) and represents an in depth sample of 42 fall time lobsternen from the central coastal area of the State. We have attempted to assess the reliability of this combined data base by comparing the three sample sets.
I. Demographic data:

The quality of much of Huq's basic information is amazingly good -especially given the fact that he was carrying out a small pilot study and had no prior knowledge of the industry. Moreover, there is very little literature on the subject so that fug could scarcely rely on the work of others to guide his efforts. To be sure, we can see areas where Hug's data is suspect, but we are looking at the data having benefited by one year of further intensive research. In a very real sense, Hug's study is a pioneering effort at understanding a very complicated industry, and as such, certain critical aspects of the data show weaknesses under close scrutiny.

Very briefly, Huq's basic denographic data (e.g. age, marital status, children) appears to be representative of the coast as a whole; the same is true of his infomation on family relatjonships and occupations of other family members (Table 5, Table 10, Table 11, Table 12, Table 13, Table 14, Table 15, Table 16, and Table 20). For cur purposes it is particularly important to note the data Huq has collected on father's occupation (Table 20) and migration (Table 50 and 52) which demonstrate a strong attachment to the industry and to the local community.

The reliability of this aspect of tuq's daca is confirmed by virtually identical resuits obtained from the random sample undertaken in the sumner of 1972. It should be pointed out, however, that both these samples are based upon the same questionnaire form and therefore, biases introduced by the questionnaire itself would not be discernable. Nevertheless, both samples are in reasonable agreement with Acheson's data and furthermore, there is little reason to believe that the questionnaire itself would introduce significant biases to this demographic data.

Huq's and the 1970 sample data on boat equip:ent (Tables 24, 25, and'26) appear to be accurate and consistent. We did not collect nuch information via intensive interviewing concerning vocational training, expereince in other occupations, etc. (e.g. Tables 42, 43, 44, 45, 47, $48,49)$, but during the summer of 1972 the random sample of the entire coast picked up some adational information on these subjects. Again, as far as we can see, there are no major inadequacies in the buq or the 1972 sample data collected concerning these issues.

Investment, variable cost, and income data:
The most apparent problem with the liq and 1972 random sample data is in the area of income, investment, and variable costs. There are three reasons for being somewhat suspicious of this data: 1) the large statistical variability of both samples, especially with respect to the strength oc any relationships between income and/or investment and any measure of effort, 2) the large disparities which exist between the mean value of these variables in the fug and the 1972 random sample and the mean value of the same variables as obtained by Acheson, and 3) the reasonable grounds for believing that the survey techniques used with Hug's questionnaire would give rise to inaccurate responses to questions on income, investments, and costs.

Our estimate is that mean investment and income are far higher tam: Intr. data word indicate, and that this is certainly the case where the average full time lobstermen is concerned. Huq, for example, found only one man in his sample who valued his equiped boat at over $\$ 15,000$. At today's prices, a new boat rarely costs under $\$ 15,000$, and can cost as much as $\$ 30,000$ fully equipped. A purchased trap fully equipped with line, toggles, and buoy, etc., costs about $\$ 18$ to $\$ 20$ and the average full time iobstermen along the coast has in the neighborhood of 400 traps and individual ownership of up to 2200 traps has been reported. Thus, the average Iobsterman has at least $\$ 5000.00$ invested in lobster gear, and the gear investment of some men has been accurately appraised at over $\$ 22,000$. (Acheson) Yet in Table 34, only 5.3% of Hug's sample reported over $\$ 5000.00$ invested in fishing gear. In addition, Hug does not make any attempt to assess the value of docks, moorings,
fish houses, maintenance ecqujnment, bait storage equilment, lobster cars, etc. Along the Mane coast where land is currentily sciling for between $\$ 75.00$ and $\$ 50.00$ per front foot, a dock alone can easily cost $\$ 10,000$. Acheson has computed the assets of three "big" established lobstermen and in all three cases their investment in fishing tota!led over $\$ 45,000.00$.

In Table 39, Huq reports that only 11% of his sample reported a gross income of over $\$ 14,000$, and indicates that the averaze lobsterman grossed between $\$ 6,000$ and $\$ 3,000$. The 1972 sample indicates similar figures. Though both samples include large numbers of men who might be classified as part-tiners, the upper end of the distribution almost certainly gives a very poor picture of income to be earned by a full time lobsternan. Acheson's data on 28 full time lobstermen in the rid-coast region of Maine shows only 7 men who reported a gross income of under $\$ 14,000$ from the lobster fishery; the mean gross income was $\$ 18,701$ and cases of men grossing over $\$ 25,000$ are not at all rare.* Fully 12 of these men had a taxable income of over $\$ 16,000$.

There are several reasons for the discrepancy in figures. First, fuq's sample contained a laxge number of part time fishomen (especially in the Bath-Phippsburg area) whose income and investant in lobstering is naturally smaller. ifore inportant is the fact that questions about
"These income fizurcs wore obtained over a two year period from men with whom long standing relactonships had developal. These figures were double-checked by using income tax returns and catch records or both. These records were voluntered with the understanding they would be kept strictly confidential. A11 of these men come fron the mid-const region; all are considercd "good" or "top" fishermen. Scveral come frem the "closed" off-shore jislands in the Penobscot Bay arca.
income are very sensitive for several reasons. There is apparently regular and massive cheating on income taxes along the coast. The I.R.S. has found it worthwhile to set up firid offices in several coastal conmumities and go over the incone tax returns of a vast majority of the lobstermen in those commities. Iforeover, many men do not want others to lnow that they are catching lobsters. Anyone can see where you have your traps, but one never tells how much he is getting out of his traps for fear that others will put traps "on top of him" (fish in the same spot). In an effort not to invite unwanted competition, a lobsterman rarely tells anyone (save for perhaps a son) where he is catching lobsters and how much income he is making in the industry. This is a subject. where institutionalized lying is expected. Part and parcel of these attempts to keeping fishing success a secret is an act invoiving nid heat: $1 m$ clothes and niteous stories about poverty, trap looses, government harrassment, etc. In addition, se lnow from rather extensive experience we have had in the past year that neither lluq nor our own 1972 random sample used the best interviewers for the job. The interviewers were young (under 27), inexperienced in the lobster industry, and two were women. In an industry where there is definate age grading, extreme sex; segregetion, and a tradition of "putting on" outsiders, it is scarce wonder that the interviewers were mislead. that is anazing is the fact that much of their infomation appears to be of reasonably good quality.* Secondly, and equally important, is the fact that fluq's

[^15]choice of study sites did not allow him to really see the enormous diversity that exists in the Iobster industry. . Despite the fact that Corea and Beals are relatively isclated, while P:ippsburg is "in close proximity to sources of alternative job opportunities" (fuq: p 7) the social organization of these commities is very similar as regards to fishing. There are whole sets of commities along the Maine coast organized in quite different ways. These diversities in fishing traditions appear to have a very strong influence on lobster catches and incomes.

The 1972 random sample exhibits somerhat similar problems. For example, one of the areas of the coast which is of special interest because of its problens and the fact that it seems to presage trends for the industry is the Casco Bay area. By the luck of the draw the
 no data from this area. Another problem with the 1972 survey is the fact that there are so few observations on each particular area of the coast that it is difficult (impossible) to discern from the data the large variability of fishing income, practices, etc., attributable to location. (See section II of this appendix for a more complete discription of this variability.)

Finally, the incone and investment data in the luq sample and the 1072 random sample give rise to rather weak statistical relationships which, furthemore, are characterized by pronounced heteroscałasticity. Table 1, 2 and 3 smmarje the relationships between gross income, trap days per year, and investment in traps and equipmont for the various yoars and towns contained in the Huq and 1972 random sample data. The strange aspect of these resulits is that
in every case the R^{2} and " L " coefficient are statistically significant at the . 01 level but the constant term "a" is never significant. Upon examining the data, it is apparent that the frequency distribution of each variable is primarily bi-rodal, probably reflecting a split between part-timers on one hand and full-timers on the other. This characteristic of the data explains the high levels of significance accorded the " b ' s " and $\mathrm{R}^{2} \mathrm{~s}$ and also tend's to diminish the confidence one can place in the validity of the relationships. II. Social and Economic Diversity Along the Maine Coast

These problems with the data make us reluctant to place much confidence in their ability to adequately describe the large variation observed in the lobster industry. Winat follows is an attempt to decrrihe the heterngeneitv along the entire coast. which does not appear in liuq's sample or in our own 1972 randon sample.

Over the course of the past year, our researches have led us to the conclusion that there is an enomous amount of diversity in the Maine lobster industry. In fact, lobstering conmunities are organized in such different ways that one could almost make the case that they are involved jn different fisheries. For our purposes, it is critical to note that any management scheme enacted is apt to have a very different effect on these different areas.

Before we can discuss differences in coastal communities; three different parameters of lobster fishing must be discussed.

1. In order to go lobster fishing at all in Maine, one must be accofted by the men fishing out of one harbor; and once one has
been admitted to such a "'iarbor gang" one can only go fishing in the traditional ocean areas of that particular harbor. Violations of territorial rights are usually sanctioned by destruction of the offenders' lobstering gear. While these facts are true all. along the Waine coast, in some areas, which I call "open" areas, entry into a harbor gang is relatively easy, so that any long-tern resident of the area who does not violate important norms of the industry (e.g. moiesting other's gear, etc.) is allowed to fish in the traditional territory of that harbor. In such areas, chere is typically a good deal of boundary overlapping. That is, close to the hone harbor, the waters are fished by the men of that harbor, but further off shore men from two or more harbors fish together. By way of contrast, entry into the harbor
 these areas, boundary lines are known to the yarid and are sharply defended so that little or no "overlapping" occurs.

From the point of view of management, two features of this distinction are critical. First, the "'closed areas" clearly constitute a case of "limited entry" into the lobstering industry. There are certain islands even in the "cpen" areas where not everyone is permitted to no lobster fishing. There is not a harbor along the coast where a "sumner person" (a non-member of the community originally from out-of-state) with another source of income can begin lobster fishing without meeting substantial resistance. In this regard, it should be noted that huq does not seem to be aware of the fact that he is dealing with an industry whose traditions make for a case of "limited entry." Instcad, he talks as if entry into the lobstering industry
were unlimited and that the only way to achieve a situation of "limited entry" is through some kind of managenent scheme and legislation. (Huq: p. 1)

Secondly, there is an enormous difference in both catches and incomes between "open" and "closed" areas. Acheson's sample, for example, shows a mean gross income of $\$ 23,700$ for men in "closed" areas and a mean gross income of $\$ 14,900$ for men in immediately adjacent, but "open" areas. The higher incomes of men in "closed" areas are not only the result of barriers to entry which reduce the number of lobstermen fishing in those areas, but are due to other factors as well. The lobstermen from Monhegan, for example, have agreed among themselves to fish only from January to June. This means they are fishing at the time of year when prices are relatively very high, and they are not fishing during the "shedding" season when fishing doubtlessly contributes to a high mortality rate in the "short" lobsters caught. Moreover, the men fishing in some other "closed" areas have agreed to a voluntary trap limit, which raises net income by lowering costs of equipment, bait, maintenance, etc.
2. In most parts of the coast of Maine, lobsters are caught by fishing "sincles" or "doubles," that is, by putting only one or two traps on a single line. In these areas, the average full-time lobsterman has about 400 traps, which he fishes along with a boat usually under 34 feet. However, in the area between Cape Elizabeth and Boothbay, fishing with trawls (multiple traps on a single line) is the rule. Trawl fishing is especially prevalent in the Casco Bay and Harpswell areas. In these arcas, it is not at all uicomon for men to fish up to 2000 traps which they tend with larger boats using a two man crev.
3. Going up the State from west to east, one goes from a very urban, industrialized and rapidly expanding area (e.g. Portland, Portsmouth) to areas which become increasingly rural, less populated and less industrialized as one approaches the Canadian border. Washington County, the eastern most county in the United States, has virtually no industry and by any measure is a pocket of rural poverty. The opportunities for employment differ markedly at different ends of the continuum. For our purposes, it is useful to classify the lobstering communities of line into five different types:
A. In the eastern part of the State (Storington to Lubed) the harbors are basically "open," with a good deal of boundary overlapping. All lobstering in this area is done by fishing "singles" or "doubles" using relatively small boats with one man crews. There are molntiventr fart linart-time fishermen' and those for men tend to fish certain whole seasons of the year, rather than fishing "after," as part-timers do in other parts of the State.
B. The islands of outer Penobscot Bay are all completed "closed," and the boundaries of their traditional territories are sharply delineated. In these large island areas men fish with "singles"' and "doubles." For the men who live on these islands year round, alternate employment opportunities are virtually nonexistent.
C. In the mid-coast region of the State--between Penobscot Bay and the Kennebec River--lobstering is done by fishing "singles;" the harbor gangs are all "open." Alternate economic opportunities are moderately good.
D. Between the Kemobec River and Cape Elizabeth, the harbor gangs are "open" and territories have extensive overlapping. In this
area, men typicolly fish trawls, and very large "gangs" of traps. The opportmities in other industries are very good.
E. Between "ituery, Hzine wid Cape Eljzabeth (the southern most portion) the harbors are reportedly "closed" in that harbor gangs maintain a strict control over fishing practices. Here men fish aggin with moderate numbers of traps arranged in "singles," "doubles," or "triples." Alternate economic opportunities are excellent.

The critical point is that the three towns huq chose as study sites all exhibit the "open" harbor syndrome. Foreover, in none of these areas is there travi fishing. Phippsburg is in the mid-coast region where alternate enployment opportunities are much better than Beals and Corea. But they are all very similar with regard to their traditimmat fiching nrareires

Had Huq picked a comminity with a great denl cf trawl fishing, his estinates on boat sizes, amount of lobstering gear, and equipment would certainly have been larger. In all probability, his estimates of Gross Income would have been larger as well. If he had picked a commmity in one of tho "cicsed" areas, in all probability, his estimatesiof investmerit, boat equipment, etc, would be higher, and certainly, his estimates of Geoss Income earned in lobstoring would be much higher.

In sumary, Thq's data can be criticized on the grounds that it gives a vory misleading picture of the economics of lobstering along the cntire coast. Jit may, hower, tell a great deal about certain aspects of lobstering in tise linitcd areas le did stuly.

Appendix D

Ten Alternative Management Schemes for the Inshore Northern Lobster Fishery

Our method of divisjing management schemes for the inshore Northern Lobster Fishery was to first categorize possible scheme components according to the general management approach implied by the component. We distinguish between three different management approaches:

Type $\overline{2}$: Management approaches designed to eliminate the common property and unlimited entry characteristics of tine fishery which we presume to be the root of the overfishing problem. Management scheme components which fall in this category are:

1. Freeze the number of licenses.
2. Freeze the number of licenses and make available only to "commercial" fishermen.
3. Limited number of transferable (fellable) licenses.
4. Special licenses, with special restrictions: commercial, apprentice, "retiree," etc.
 specific licensing.
5. Closed seasons.
6. Trap day or number limitations.
7. Centralized "strong" management authority (regional, Federal, or international).

Type I.: Vanagnant approaches which emphasize the use of taxes or subsidies as a corrective to overfishing. Scheme components falling in this category are:

1. A special excise tax on lobsters.
2. A tax on traps.
3. A tax on beats.
4. A tax proportional to catch or income.
5. Increased license fees.
6. Subsides as composition for Icwored fishing effort.

Type III: Mmagenent apmoedes which are primarily a compilation of good conservation practices. Scheme components of this type are:

1. Raise the legal minima size (la. females only).
2. Abolish legal maximum size (aa. males only).
3. Re-designed traps to allow "shorts' to escape.
4. Discontinue notching.
5. Remove un-bcuyed traps from bottom.
6. Enhance lobsters environment with artificial reefs, etc.
7. Bounties on predators.
8. Begin hatcheries or research on hatcheries.
9. Control dragging.
10. Eliminate harmful pollution.

11. Quotas on total catch.

Alternative lianagement Schemes
These scheme components (or slight variations of them) were then combined into possible mancsoment schemes. The possible number of schemes is very large. Necessarily then the ten schemes which are described below represent only one of many possible sets. Nevertheless we feel these ten schemes represent, not only a wide range of possibilities, but also a reasonably feasible set of general alternatives. SCHEME \#
a. Limit trees to 300 per boat, 400 if there is a regular helper.
b. Raise License fees to 200 .

Comment: This simple schene appears to have ride spread support among lobstemein who attenïtl speciai State Legislative Comnittee hearings held along the Maine coast in Scptemier, 1972 and for this rason it should be considered on any list of alternatives. The scheme appears to appeal to the lcobicernian's sense of a man's "fair share" in the common property and at the same time promises to force out of the fishery men who have other jobs. Mon with ocher jous are also viewed as taking rore than their "fair share." Serious questions about the scheme relate to the enforceability of provision (a), its ability to bring to a halt the current state of overfishing and its effects on "marginal" fishermen and men whose "other"' jobs ars very poor jobs.

SCHETE \# 2
a. Freeze the nunber of licenses at the current level and allow normal attrition to slowly reduce the amount of fishing effort.
 minimun use requirement.
c. Raise license fees to encourage withdrawals from the industry.
d. Wen biological infomation indicates the end of overfishing, match attritior rate with newly created licenses.
e. As an alternative to d., declare Iicenses transferable (sellable) when overfishing has ceased.

Coment: The primary purpose of such a schene would be to slowly cut back fishing effort so as to mininize transitional and dislocation costs. Then once a reascmajle approximation to MSY and/or MEY is achieved, to stabilize the fishery at that level by switching to a system with a fixed number of transferable licenses (i.e. lịcenses which give the holder property rights in the fishery.) If combincd with a trap linit: or individual quctas the scheme would correspond with lobstemen's ideas of "fair share." Serious cuestions relate to (a) the timeliness of the
reduction in fishing effori (e.c. could attrition be so slow and technological change or increases in effort among survivors be so fast that no reductions in fishing effort will take place?) and (b) the social effects on "marginal" and part-cime fishermen as with Schene \# 1.

SCHEME \# 3

a. Increase the legal minimu size $1 / 16^{\prime \prime}$ every year for eight years.
b. Repeal the legal maximum size.
c. Follow procedures in Scheme \# 2 at the same time.

Comment: Raising the legal minimum size in combination with
Scheme \# 2 might be one way to ensure adequate replenishment of the harvestable stock if fishing effort is not expected to decrease.

Simultaneous repeal of the maximun size limit is intended to provide alternative fishabie stocks to replace those placed off-limits by the
 oversized lobsters is adequate for this purpose is apparently unonown. Hence changes in legal sizes would seem to carry with them high risks of large transitional and dislocation costs. SCHEME \# 4
a. Create several classes of licenses

1. Conmercial licenses -- transferable, Jimj.ted in number, initially available only to "certifjed" full tine lobstermen, high fees.
2. Apprenticeship licenses -- non-transferable, available to men less than 25 ycars old for a periot not exceeding 4 or 5 years. Moderate fees.
3. Retirement licerses -- non-transferable, available to men over 60 who have been full tinc lobstermen. I.imited period, low fees.
b. Use commercial license fees to fund a (voluntary) license buy-vack program.
c. Combine with legal size changes as before.

Comment: The purpose of the apprenticeship licenses is to ensure a supply of skilled fishermen. Retirement licenses are a means for reducing economic dependency among retirees and also as a means to avoid forced and early retirement among older men with low productivity who may not be able to afford a high commercial license fee. Funding a buyback program with license fees is appropriate since survivors (license fee payers) benefit from reduced numbers of commercial fishermen.

SCHEME \# 5

a. Divide the inshore fishery into relatively small areas using as criteria (1) "natural"' fishing boundaries already established by lobstermen and (2) distinguishing environmental characteristics.
b. Establish three types of licenses as in Scheme \# 4.
c. License boats with a requirement that the boat be fished by the license holder.
d. Licenses valid for only one area.
e. Establish in each area a government (of council or town meeting type) of licensed commercial fishermen. Such governments should be responsible for the management and control of the fishery in their area, subject to certain minimum requirements (e.g. legal minimum size) determine त by appropriate State agencies or a regional Federal body established for 'this purpose.
f. Raise commercial license fees substantially with large majority of fees going to local councils, remainder to State or regional body.
g. Regional or State agency to determine the proportion of faces in each area to be set aside for license buyback (on the basis of indicators of the state of the fishery in each area). This gives regional or State agency power to indirectly raise or lower price of licenses in each area and, therefore, to affect the rate of "voluntary" retirement of licenses.
h. Regional or State agency to establish quasi-j!!dical hoard to mediate disputes between or within local management areas and to establish". an "extension service" to promote scientific knowledge and good management practices in each fishing area.

Comment: This scheme proposes the greatest departure from current practices. It is an attempt to institutionalize and formalize for each lobsterman his co-operative property rights in the fishery and at the same time to give lobstermen a means to control their "property." Ownership without the possibility of control is generally regarded as meaningless and may not lead to active pursuit of conservationist measures by all men in the fishery. On the other side of the coin, control of property also means the ability to destroy that property. Hence the proposal suggests a State or regional "regulatory" agency which could impose certain minimum requirements on each area in order to preclude "mining" of the fishery. Additionally creation of local management bodies is designed to provide regular and formal channels of communication for the regulatory agency and, especially for the "extension" service. The scheme also proposes the license freeze, high annual fees and transferability suggested in previous schemes. As before the rationale is to provide limited entry, a decline in fishing effort and relocation "allowances" i.e. the selling price of the license) for men leaving the fishery. Finally the scheme is designed to provide management which is flexible and responsive to varying enviormmental and "fishing" characteristics of each area along the coast. On the other hand, a serious question about the feasibility of the scheme relates broadly to the practicality of decentralized management bodies.
a. Impose one ci a combination of the following taxes:

1. A special excise tax on the consumption of lobsters, or
2. A tax on traps, or
3. A tax on boats, or
4. A tax proportional to each man's catch, or
5. Raise license fees.

Comment: These taxes follow the prescriptions of the classical school of economics. Their rationale is either to raise costs of production or to lower the prices received by lobstemen, which in the longrun will tend to "force" some men out of the fishery, thereby reducing catch and overfishing. the practicality of this plan depends upon the responsiveness of both consumers and lobstermen to changes in the prices which they pay and/or receive for lobsters (ic., the elasticity of
 sumption and/or output) both consumers and lobstemnen are to changes in price the more practical is the plan. Basic advantages seem to be ease of administration and reliance on the market mechanism. Work on schemes of this sort has been beguin by Bell, Fullenbaum and Carlson. SCHEME \# 7
a. 'Terminate all lobster fishing for a period of two years.
b. Subsidize lobstomen over the two year period in proportion to their reported average catch over the five year period prior to initiation.
c. At the end of the two year period initiate a manarement scheme on the lines of Schemes \# 1 to \# 6.

Comment: This is certainly a drastic approach though there are (inexact) parallels to be found in U. S. fam policy. Apparent problems equipnent currentiy in lebstering, the probable export of our overfishing problem to the Canadian provinces, the disruption in marketing channcls, the depressing effect on suprorting industrics and commuties, and the cost of the subsidy. On the other hand, the scheme would definitely accomplish an inmodiate recuction in fishing effort and in all probability a rather large increase in the stocl and poundare of harvestable lobsters would occur. A variant of this scheme which injoht mitigate some of the above problems might be a "partiol shutrown" with each comercial fishemen allocated a quota equal to, say, 50% of his previous average annual catch. Subsidies would then be based on the refuction in each man's estinated catch and/or income.

SCTEF \# 8
a. Retain present industry structure and regtation formis.
h . Dit ontire omnhasic on lefislative vassage of some of the

No conment at this time.

SCHETE \# 9

a. Integrate the magement of the lobster, shrimp, scallop, and ciam industios.
Coment: These for fisheries are closely related in that transferability of fachors effor between the fisheries is accomplished with relative ease. For example in recent yoars bad prospacts in the winter lobster fishery seen to have caused large shifts to scalloping and shrimping. Such transferability of effort raises the spectre of overfishing of, say, shrim, being caused by "forced" reductions in lobstor
fishing effort. The implication is that related fisheries need integrated management. Evaluation of schemes along this line is obviously beyond the resources of this project; nevertheless, we present the idea for your comment.

SCHEIE \# 10
a. Do nothing.

Comment: Evaluation of all other schemes must take place in relation to this, the most politically likely of all schemes.

James Wilson, Director IAarine Resources Project Room 32C, S. Stevens Hall University of Maine Orono, Maine 04473

Appendix C

Open-ended questionnaire conducted in
Spring of 1973

The National larine Fisheries Service is interested in the social and econcmic impact of proposed lobster fishery management schemes. N:IF has also asked that proposed management schemes be revised in accordance with criticisms and suggestions made by lobstemen and other persons associated with the fishery. The proposal which is attached to this paper is a revised version of an earlier proposal. This revision took place as a result of conversations and interviews with about 50 Maine lobstermen. Now we are interested in your reactions and suggestions. The interviewer who gives you these papers will return to talk with you after you've had a chance to read and think about the proposal.
James Wilson
Dopatmat af cromanire
University of l'ame
Orono, Haine 04473
James Acheson
Department of Anthropology
University of Maine
Orono, Maine 04473

Management Proposal: February 1, 1973
There are five sperrate parts to this management scheme, typed in capital letters below:
I. CREATE SEVERAL CLASSES O LICENSES:
a. Commercial licenses--These licenses would initially be available only to "certified full time lobstermen". They would be limited in number and the annual license fee would be about $\$ 100.00$ to $\$ 150.00$.
b. Apprenticeship licenses--ifould be available to residents of Maine for a period rot exceeding 4 years. The license fee for an apprenticeship license would be low, but such men would be allowed to fish a very sail number of traps, (suggested trap limit 200 traps) and could not sell their license. Holders of the apprenticeship license could serve as stern man or helper for a "comerciai" or fuii-time ionsceman.
c. Retirement licenses--Available to men over 55 who have been "full-time" lobstemen. Pen with retirement licenses could not sell their license, would be allowed to fish only a small number of traps, (about 150), but would pay a low license fee.
Question: Tho would be classified as a "full-time" lobsternan when the plan goes into effect?
Answer: We suggest chat a full-time lobsteman be defined as either: a. a man who eared 60% of his income in three of the five previous years from lobster fishing or b : a man who earned 40% of his income firm lobstering and another: 30% from other fisheries, ie., scallop, shrimp, etc.

After the plan had gone into effect, a man could get a "commercial" license only by buying one from another lobster fisherman who was going out of business. Only men who had held an apprenticeship license for two years could buy a "commercial" license from another man.
II. LICENSE bOATS :ITTH A REQUire tant that the boat be fished by the LICENSE HOLDER.
III. USE COOREPCIAL LICENSE FEES TO FUND A VOLUTTARY LICENSE BUY-back PROGRAM.

The State would use license fees to establish a fund to buy back licenses. That is, when a man goes out of business as a "commercial" fisherman (e.g. dies, gets better job, gets a retirement license) he could either sell his comercial license to another man who wants to
 Commissioner of Sea and Shore Fisheries could buy up more licenses of men going out of the industry, and thereby reduce the number of fishermen. This would result in increased catches for those who remain. After the fishery improved, the Cormissioner could auction off licenses to the highest bidder if he so chooses.

This program would give the State the power to influence the number of lobstermen, and yet would not prevent nien who want to enter the industry from doing so. (If you want to become a lobsterman, you first get an apprentice license, and after two years buy a "commercial" licerse from a man going out of the industry.)
IV. ESTABLISH A MINLMM CAPAPACE LENGII OF 3-1/2 INCIES, AND ELTMINATE THE OVERSIZE TEASLED.

If we went to a $3-1 / 2$ inches miniman, any lobster about $1-1 / 4$ pounds would be legal. The measure camot be increased from 3-3/16 inches to 3-1/2 inches in one year without putting a lot of men out of tusiness. Any increase in the neasure must be done very gradually-1/16 inch each year for 5 years.

There are tivo arguments in favor of rajsing the minimum size to 3-1/2 inches. (1) ore females will reach maturity and egg before they are harvested, and (2) the majority of lobsters harvested will be one molit older and approximately 50% larger by weight. The smallest lobster hat would be harvested would weight about 1-1/4 pounds, and many more would be caught weighting $1-1 / 21$ bs. to $1-3 / 4$ lbs.--a range bringing a much higher price per pound.
V. ESTABLISH TPAP LIHITS II THEE ZONES.
A. Between Kittery and Cape Elizabeth--maximam of 300 traps.
B. Between Cape Elizabeth and Cape Newagen--maximun of 600 traps.
C. Between Cape Newagen and Eastport-maximum of 300 traps.

A trap limit is a good idea, but trap limits alone wisl not solve the problem. Men the Canadians inposed a trap limit they discovered the total catch did not decrease. The Canodian fishomen kept their best traps, and fished thom harder. However, trap losses and total trap costs declined greatly winch resulted in decreased costs to the fishoman and groater net incone:

The followjng statement contairs additional ideas on all five parts of the proposed lobster fisheries manasement scheme. It contains a lot of ideas. To understand it completely you must read it carefully and mull it over.

The purpose of changing licensing methods in several gold. In the first place it is designed to bring about a rather quick reduction in fishing effort by eliminating many part-time men who would not fit it whorthwhile to pay a license fee or who would not qualify for a license. Though it would be very difficult to predict how many men would be in this situation a rough estimete of the reduction in trap days brought about by this licensing policy would be in the order of 5 to 18 percent. This would have the effect of reducing the impact of raising the legal minimun. In other words, raising the legal mininum size will reduce catch in the first few years; however imposing the new license requirements will simultaneously reduce the number of men fishing. In addition to the part-timers who will leave the fishery as a result of the new licensing requirements, some men who qualify for the commercial license will choose to sell their licenses to tie buy-back program. For the men remaining in the fishery this will alsc soften the blow of raising the legal minimum size. The license buy-back program also had the effect of providing full-timers who choose to leave the fishery wich a relocation allowance or nest eag of sorts. This may be especially important to men near retirement or to men in areas where over-fishing has heen the greatest.

Additionally, the purpose of apprenticeship licenses is to insure a supply of skilled fishermen. Retirement licenses are a moans for reducing,
economic dependency among retirees and also a means to avoid forced and early retirement anong older men with low preductivity who may not be able to afford high comercial liconse fees. Funding a buy-back program with license fees is appropriate since survivors (license fee paycrs) benefit from reduced number of commercial fishermen.

An important point to note about the license buy-back program is that it is voluntary and to a certain extent self-remulating. What we mean by Self-regulating is this: Right now there is disagreement about whether there is over-fishing or just a terporary downturn. If over-fishing is the case, in fact, meny men will begin to feel the economic pinch. Some men will choose to sell their 1icenses as a result. This will reduce the number of men fishing and total fishing effort. In other words, 1obstermen thenselves will male the decision--through their own actions--about over-fishing. If we have only a temporary downturn few men will choose to sell their licenses and there will be Iittle reduction in fishing effort.

As far as the $3-1 / 2$ inches minimum size in concerned, since approximately 60% of the current harvest falls below the proposed $3-1 / 2$ inches. minimum size, implementation of this regulation should be approachei with great caution. Probably the most reasonable suggestion is to raise the legal minimum by $1 / 16$ inch each year for five years. If this is done the economic impact of raising the legal minimun size vill be mininized in two ways: (1) The reduction in the harvest each year will be in the vicinity of 12 to 14 percent (in numbers) rather than 60 porcent. (2) Many of the lobsters not harvested (i.e. that 12 to 14 percent) will molt, grow in weight by approxinately 50 percent and be haivested in the following ycar. This process will contitue for five years. ?aking very roush
cal.culations of the interaction of these two effects we estinate that in the first three years of the prigram the harvest by weight would fall 10 to 15 percent below the nomal which would be expecter for that year.: By the fourth yoar harvest by weight would be about normal and in the fifth year would be approximately 30 percent above the normal which would be opected for that year.

Shat we mean by "the nomal which would be expected for that ycar" is this: Each year the numer of lobsters which reach the current legal maniman size ($3-3 / 15{ }^{\prime \prime}$) varies according to the cnvironmental conditions which govemed thoir growth. We canot predict these variations. Hence the estimates mede here do not taike into accunt the yearly fluctuations in the nomber of 1 ousters reaning the $3-3 / 16^{\prime \prime}$ size.

Background (optional)

1. Name:
2. Harbor
3. Age
4. Years in fishery
5. Engages in other fisheries
a. scallop \qquad
b. shrimp \qquad
c. clam
d. other
6. \% income from other fisheries \qquad
7. Other employment \qquad . \% income \qquad -

Reactions:

1. $\mathrm{RE}: 3-1 / 2^{\prime \prime}$ by $1 / 16^{\prime \prime}$ increments

Favorable

a. Would increase landed weight \qquad .
b. Would increase egged females \qquad
c. Last increase dian't hurt \qquad
d. 1-1/4 to $1-1 / 2 \mathrm{lb}$. lobsters get premium prices \qquad -
e. Other

Unfavorable
f. Would reduce catch too much
 \qquad
g. Would price lobsters our of the market
h. Other

General impression

1. Does or does not comprehend 3-1/2" argument \qquad .
2. RE: Eliminate maximum size limit

Favorable
a. Woald allow development of offshore fishery in Maine \qquad -
b. Too few anyway \qquad \therefore
c. Other

Unfavorable
d. would destroy seed stock \qquad .
e. Other
3. RE: Licensing proposals

Favorable
a. Buy back is fair way to bring down number of licenses \qquad .
b. Criteria for commercial licenses seem fair \qquad $-$
c. Likes apprentice approach \qquad -
d. Likes retirement alternative \qquad -
e. Other comments

Unfavorab?e

f. Comercial license requirements too discrininatory \qquad against who, why \qquad ,why
g. Comarcial license requirements too iax
h. Doesn © like sellable licenses why
i. Loens't like recreaticnal license why
j. Doesn'tive aprentice approach why \qquad
k. License tees too Righ \qquad -

1. License fees too low \qquad -
m. Other corments
n. Suggested changes: \qquad
o. General conments: (e.g. understands buy-back etc.)

4. RE: Trap linits

Fayna

- a. Ticuld reduce costs
b. Wuild reduse overfisining \qquad -
c. Hovld be íairer \qquad -
d. Other

Unfaverater
e. Ginair \qquad , why \qquad -
f. would rectice net income \qquad , gross income \qquad -
g. Hovilun't stop over-fishing \qquad -
h. Unenforcable
i. Would cause hard feelings, spying, etc. \qquad -
j. Suggested changes:

[^0]: \# A more compete trontont of the imortance of these questions is contained in sections II, IIf, ä IV of this paper.

[^1]: *Interesting discussions of the anthropongial ovidonce relating to man's ablilty to find, or alnt to, his onviroment are containel in fichord Willincon's Bovety and Poress (Mvener, 1973) and Str Alexander CarrSamder's thembaron robion (ownal, 1922).

[^2]: *R.J.Li. Beverton and S. J. Whlt, on the Dynarics of Exploited Fish Population, (her lajesty's Statjonery Ofhee, 1957) p. St

[^3]: PBeverton minht, Ibid. nu. 55-61 and M.3. Schacfer "Some Considerations of Fopulation Dynames and Econonics in Relation to the "anarement of the Comercial Marine Fishercis', J. Fisheries Res. Deard Canada, XIV, No. 5 (September, 1957), pp. 669-81.

[^4]: *De:lolfe, Gordon, untitled maruscript in progress, dealing with the effect of trap limits at Miminegash, Prince Edward Island.

[^5]: * Frederick Bell, "Techolocical Extemalitios and Common Property Resources: An Enpirical Study of the 1 :S. Horthom Lonstor Fishery," J. of Pol. Economy Vol. 80, No. 1 (January/!obruary 19\%2) pi. 148-153.

[^6]: *Nubers in parentheses indicate standard errors.

[^7]: *The equation Bell tested is

 $$
 \frac{Q_{t}}{E_{t}}=a-b_{t}^{E}+c^{0} F_{t}
 $$

 where Q is catch, E is effort measured in trap numbers, ${ }^{\circ}{ }^{\circ} \mathrm{F}$ is temperature, t denotes time (in years) and a, b and c are constants. See Rell, op. cit. - age 151.

[^8]: *See Rell, op. cit. ; Robert Dow "Some Factors Influencing Maine Lobster Landings", Comercial Fisheries Rev. Vol. 23. No. 9, (1061) fp. 1-11; and Flowers and Soila "Tomberature Effects on the Inshone Lobster Fishery" Jomel of the Fisieries Research Board of Canada, Vol. 29, No. 8 (1.972) pip. 1221-1225.

[^9]: ${ }^{*}$ If this interpretation is correct then the sion estimated by Rell in his model is incorrect becuse temprature/effori shoud be nonatively related to biomass size.
 *:This data is jresented in Thomas, on. cit. pres 31; the manipulation of the data leatine to this conclusion was norformed by Thomas and remored in a personal comanication. During moparation of this manuscrint Sea and Fishories beane knom as the fenarment of barine Daw......

[^10]: *Future catch may not be related to current fishing effort in a pre-recrujit density dependent ropulation.

[^11]: *Rough calculations by James Thomas of the "aine ncpartment of Sea and Shore Fisheries indicate that current egr production may be at, or near, the critical point consistent with a sucden decline in recruitment.

[^12]: *In addition to urbanization, closure of Casco Bay during Vorld War II apparently incerrupted and considerably weakened any social structure which might have served as a barrier to entry.

[^13]: \%This is not to say that all political opposition to manarement proposals will be based on discriminatory aspects of proposed schemes. Undouttedly, proposals for substantial reluctions in effective effort will meet with wide-spread political opposition.

[^14]: *The constitutionality of an apprenticeship anproach probably depents on the ability to show the existance of danage to the public interest without the program.

[^15]: *In the past year, we have found that the best infomation can:e from interviewers who were older men with a lot of experience in lobstering. Such men are able to get the respect of the lobstemen, and less apt to be mislead. In fact, we feel so strongly abolt the quelity of work done by one older lobsteman in particular, that in the future we woild never hire enyone but an experienced lobsterman to interfiew other fishemen. This experience was not available to Professor Iluq when he chose intervievers for his pilot project.

