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Abstract: In many arid and semi-arid regions whether or not to use

desalinated water has long been a non-issue and policy debates are focused

on the timing and extent of the desalination activities. We offer a model to

analyze how water scarcity and demand structure, on the one hand, and cost

reduction via R&D activities, on the other hand, affect the desirable

development of desalination technologies and the optimal time profiles of

fresh and desalinated water suppliesrhe optimal R&D policy is found to

follow a Non-Standard Most Rapid Approach Path (NSMRAP): The state of

desalination technology—the accumulated knowledge from R&D

activities—should approach a prespecified target process as rapidly as

possible and proceed along it forever. The NSMRAP property enables a

complete characterization of a comprehensive water policy in terms of a

simple and tractable set of rules.

'Department of Agricultural Economics and Management, The Hebrew University of Jerusalem, P.O. Box 12,

Rehovot, 76100, Israel (tsur@agri.huji.ac.i1) and Department of Applied Economics, University of Minnesota,

1994 Buford Avenue, St. Paul, MN 55108, USA (ytsur@deptagecon.umn.edu)

b Center for Energy and Environmental Physics, The Jacob Blaustein Institute for Desert Research, Ben Gurion

University of the Negev, Sede Boker Campus, 84990, Israel and Department of Industrial Engineering and

Management, Ben Gurion University of the Negev, Beer Sheva, 84105, Israel (amos@bgumail.bgu.ac.i1)



1. Introduction

Population and economic growth worldwide have lead to exploitation of natural

resources beyond nature's reproduction capacity. While obvious for nonrenewable resources,

such as mineral deposits, this phenomenon has been noticeable also for renewable resources,

as forest areas, fishing grounds, wildlife populations and fresh water stocks (aquifers, lakes,

rivers) have begun to diminish. This raises the sustainability question of whether growth can

be supported in the long run by the natural stock on which it is based. If not, sustainability

requires finding substitutes for those resources that are bound to be depleted. Two prominent

examples are fossil energy and fresh water. The first is a nonrenewable resource for which

solar energy has been proposed as a backstop substitute; the second is a renewable resource

with desalinated seawater as a backstop resource.

The development of backstop technologies requires R&D investments, which itself

consumes resources and takes time to bear fruits. The sustainability issue therefore involves a

delicate balance between (a) the temporal exploitation of the primary resources on the one

hand, and (b) the proper scheduling of R&D investment to have a backstop resource ready in

time to substitute the primary resource. In this paper we formulate the optimal policy rules

for the exploitation of fresh water (the primary resource) and the development of desalinated

technologies (the backstop resource).

In many arid and semi-arid regions whether or not to use desalinated water has long

been a non-issue and policy debates are focused on the timing and extent of the desalination

activities. At stake here is not subsistence water (this relatively small quantity can often be

supplied from local fresh sources), but rather water used as input of agricultural, industrial

and environmental production, for which the usual economic considerations apply. Currently

desalinated water is expensive (ranging between $0.8/m3 to $1.0/m3, 1992 prices, Lithwick et
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al., 1998), hence attracts only small demand. However the various technologies considered,

such as distillation, Reverse Osmosis and Electrodialysis (Spiegler and Laird, 1980), or the

recently proposed Water Towers (Zaslavsky, 1997), leave a large room for cost reducion,

pending appropriate investment in R&D.

As noted above, R&D activities take time before they accumulate via learning

processes to advance the state of technology and reduce desalination cost. Hence, policies

that consider transition to desalinated water must include the time profile of R&D in

desalination technologies as a principal decision variable. This work offers such a

framework, drawing heavily on Tsur and Zemel (1998b), who analyzed the development of

solar technologies as a substitute for fossil energy. The main difference stems from the fact

that fresh water stocks are typically renewable, whereas fossil fuel deposits are not. The

presence of recharge processes changes the specification of the optimal policy in a number of

ways, particularly in that it allows the stock to be depleted during the process and refill at a

later date when technological progress reduces the cost of desalination. With a nonrenewable

resource, this option is, of course, not available. Nevertheless, the underlying structure of the

solutions for both cases is otherwise similar.

We show that the optimal desalination R&D process admits a nonstandard Most

Rapid Approach Path (MRAP) (Spence and Starrett, 1975), in that the state of desalination

technology (the net accumulation of learning from R&D) approaches as rapidly as possible a

pre-specified root process (rather than a stationary state) and proceeds along it thereafter.

The parameters of the optimal policy are tuned so as to ensure that the transition from fresh to

desalinated water supply takes place in a continuous manner, avoiding sudden cuts in fresh

water supply rates that must follow premature depletion of the fresh water stock. These

observations justify substantial early engagement in desalination R&D programs that should

precede future shortage of fresh water supply.
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The next section sets up the problem and defines the set of feasible water policies.

Section 3 characterizes the optimal policy, focusing attention on the R&D aspects and

avoiding formal proofs. Section 4 considers non-stationary water demand (due, say, to

population growth). Section 5 concludes, and the appendix presents the technical derivations.

2. Water policy formulation

The economy under consideration can derive water from two sources: a renewable

fresh water stock of finite size, and desalinated seawater. The use of the latter source is

practically limited only by its cost. The cost of fresh water supply does not change over time.

The cost of desalination can be reduced as a result of technological progress due to R&D.

Demand

The derived demand for water at each point of time, D(p), is a decreasing function of

the price of waterp. The inverse demand, .D-1 (q), represents the price along the demand

curve corresponding to any rate of water supply q (Figure 1). The case of a non-stationary

demand D(p,t) is discussed in Section 4.

Conventional supply offresh water

Let C(e) represent the instantaneous cost of conventional fresh water supply

(pumping, conveyance) at the rate q` (for simplicity, a single source is considered). We

assume that C(e) is increasing and strictly convex, hence the marginal cost

Mae) dC(e)Ide increases with the supply rate.

The fresh water stock at time t, .X1, evolves over time according to

dX , I dt = R(X,)— q;. (1)

where R(X) — X) is the fresh water rate of replenishment, which vanishes when the

stock is at full capacity, i.e. when X = . Integrating (1) gives



X = X + (X0 — — qice-w—)ds
(2)

Supply of desalinated water

The unit cost of desalination is assumed independent of the supply rate of desalinated

water qs, but depends on the state of desalination technology, which we call knowledge and

denote by K. Given Kt, the desalination technology at time t admits constant returns to scale

and can be characterized by the unit (or marginal) cost function M3(K) which decreases with

knowledge. The latter, in turn, accumulates due to the learning associated with the R&D

investments I„ t, that had taken place up to time t.

The balance between the rate of R&D investment, 4, and the rate at which existing

knowledge is lost or becomes obsolete due to aging or new discoveries determines the rate of

knowledge accumulation

k d1( I dt = — 5K

where the knowledge level K is measured in monetary units and the constant 5 is a

knowledge depreciation parameter. Integrating (3), we obtain

K, = firer-1)dr+ K0e-61 .
0

(3)

(4)

Social benefit

The surplus to water users (excluding the water bill, which is just a transfer from

consumers to suppliers) generated by q.= qc+qs is given by the area below the (inverse)

demand curve to the left of q: G(q) = (z)dz . The cost of supplying qc-Fqs is
0

C(qc) + M(KI)e. The net consumer and supplier surplus generated by q qs is therefore

G(qc-f-qi) — [C(e) + Al.,(1(i)e]. Subtracting the R&D cost, the instantaneous net social benefit

•
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at time t is given by

G(qtc+qts) — C(qtc)— Ms(Kr)qts — It • (5)

Water policy

A water policy consists of three control (flow) and two state processes. The flow

processes are qt̀  (supply rate of fresh water), qts (supply rate of desalinated water) and It

(R&D investment rate). The state variables are Xt (stock of fresh water) and Kt (desalination

knowledge). A policy F = {q , q;, 0} determines the evolution of the state variables via

(1-4) and gives rise to the instantaneous net benefit (5). The optimal policy is the solution to

03

V(Xo, K0) = Max r .1.[G(q` + q:)—C(q;)— —

(6)
subject to (1), (3), q , q 0, 05_ , X 0 and X0, Ko given.

In (6), r is the time rate of discount and I is an exogenous bound on the affordable R&D

effort which implies, in view of (3), the upper bound IT = I / 5 on desalination knowledge.

3. Optimal policy characterization

The optimal policy F' = fqr,qr ,I:It 0) and the associated state processes Xt and

Kt' are characterized in two steps. First, the supply rates qtc* and qr are specified conditional

on the state of Kt and on the scarcity rent of the fresh water stock. In the second step, the

optimal R&D policy (investment and knowledge processes) and the fresh water scarcity rent

process are determined. The supply rates are determined in much the same way as they

would in a static situation, by equating supply and demand, where the dynamics enter through

the effects of fresh water scarcity on the marginal costs of fresh water supply. The optimal

R&D policy, it turns out, admits a non-standard Most Rapid Approach Path (MRAP) (Spence

and Starrett, (1975)). This property enables a complete characterization of the optimal water

policy, as presented below. The technical derivation is relegated to the appendix.
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Step 1: Fresh and desalinated water supplies

The optimal supply rule states that, at each point of time, an additional unit of water is

to be supplied from the cheapest available source. The marginal cost of fresh water supply

consists of the direct supply cost Mc(e)( dC(qc)I dq`) plus the scarcity rent At (also known

as user cost or shadow price) associated with the remaining stock of fresh water. The optimal

supply rule requires that fresh water is supplied up to the rate a satisfying

Mc(a) +2= M(K) (7)

and desalination plants supply the residual demand (see Figure 1). Since a negative supply is

not permitted, a is defined as a(K,A) = Max fAci (M(K) — 2), 0).

Given K and 2, the marginal cost of water supply is specified as

M (q K, 2) {
M c(q) + A, if q a(K, 2.)

M .,(K) otherwise

and total supply is given by the rate q(K,A) at which supply and demand intersect, i.e.,

q(K,A) = {qi M(q1K,2) =

(8)

(9)

(see Figure 1). If Ms(K) > (q(K,X)), desalination is too expensive, q(K,A.) < a(K,A) and the

entire demand is provided by fresh water. While our general formulation permits the analysis

of this case, (which is relevant for locations where fresh water abundance leaves no room for •

desalination), we consider situations in which some degree of desalination is worthwhile.

Therefore, we assume that M(K) = (q(K,O)) for all relevant knowledge levels. Thus,

given Kt and At, qc = a(K,A) and desalination plants generate the residual demand:

(fresh water) qc(Kt,Xt) = a(Kt,24) (1 Oa)

(desalination) qs(Kt,kt) = D(Ms(Kt)) — qc(Kt,24) • (1 Ob)

Figure 1

A difficulty with implementing (10) may arise if the fresh water stock is empty and
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qc() exceeds R(0). Fortunately, this situation cannot occur under the optimal policy.

This is so because the optimal processes Kt. and At. are so chosen that at the time of

depletion, and while the fresh water stock is empty thereafter, it is not desirable to supply

fresh water beyond the recharge rate R(0). This property is derived in the appendix as

Claim 1 (continuity of fresh water supply at depletion): If it is optimal to deplete the fresh

water stock, the following conditions hold at the optimal depletion time 7*:

• M s(c) = M (R(0)) + 2.. (11)

and

fqC* (1c*,2*,)e-(71. -1) dt = + (x0 — 7)e-cr .
0

(12)

Equation (11) implies that at the depletion time the optimal fresh water supply rate equals the

(empty stock) replenishment rate R(0) and will not undergo a discontinuous change.

Equation (12) is just a restatement of the depletion event at time T*, i.e. that X = 0 (cf. 2).

Step 2: The optimal R&D policy (It* and Kt*) and fresh water scarcity rent (At)

We show now that the optimal R&D policy follows a nonstandard Most Rapid Approach

Path (NSMRAP). A standard MRAP is defined by the K-process that approaches as rapidly

as possible some prespecified steady state level and remains there forever. To formulate such

a policy, let Kr denote the K-process initiated at K0 and driven by the R&D policy that

invests at the maximal rate I, =1. Recalling (4),

K,' = (1— e-(9)E Koe""9 . (13)

The standard MRAP initiated below the steady state level k is given by Kt = Min{Kr ,k }.

A nonstandard MRAP (NSMRAP) involves, rather than a fix steady state, a

prespecified target K-process. Initiated below the target process, the NSMRAP begins as Ktm,
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but if Kr crosses the target process before the latter arrives at its own steady state k, then the

NSMRAP switches to the target process and cruises along it to K. A NSMRAP, therefore, is

specified in terms of Kr and some target K-process such that the most rapid approach is to

the target process rather than to a target steady state. Of course, if the target process settles at

its steady state k before being reached by Kr, the NSMRAP reduces to the standard MRAP.

We now introduce the target process corresponding to the optimal R&D policy. We refer to it

as the root process for a reason soon to become obvious.

Define

L(K,A) —MAK)e(K,A) — (r+b). (14)

This function (which is a generalization of the evolution function used to determine steady

states of infinite-horizon dynamic problems by Tsur and Zemel (1996, 1998a)) can be viewed

as the derivative (with respect to K) of the utility to be maximized by the optimal R&D

process (see the appendix). Thus, we seek the root K(X) of L(K,A), i.e., the solution of

1,(K(2),2) =0, in the region MOO = {KI awc,xyalc<o} in which L(K,A) decreases in K.

Using (10), we see that qs does non-decreasing in Recalling that MAK) <0, we find that

K(2) is non-decreasing and bounded above by the root of the limit function

—MAK)D(Ms(K)) — (r+5), corresponding to a vanishing fresh water supply rate (e.g., when A,

is very large).

K(A.t) is the root process corresponding to the scarcity rent process At and bears a simple

economic interpretation. Increasing knowledge by the infinitesimal amount dK reduces the

cost of desalination by —MAK)e(KAdK but incurs a cost of (r+8)dK due to interest payment

on the investment and the increased depreciation. The root K(X) represents the balance

between these conflicting effects. To rule out corner solutions, we assume that the evolution

function possesses a unique root in 93(2), and that K0 <K(2) < IT for all X.
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Initiated at K0 < K(0), the NSMRAP with respect to K(21) is Kt = Min {Ktm,K(A-1)}

associated with the following R&D investment process:

if K, < K(2,)

K'(2,)2, + 5K(2,) if K, = K(2,)
(15)

Implicit in (15) is the assumption that I is large enough to allow Kt to cruise along K(2), i.e.,

the NSMRAP is feasible, which we assume to hold for the optimal At*. We can now

formulate the MRAP property:

Claim 2: Given the optimal scarcity rent process At*, the optimal R&D policy is a NSMRAP

with respect to the root process K(2).

We turn now to determine the optimal fresh-water scarcity process At*. Prior to

depletion, the scarcity process is of the form At* = .10*e(r+4)I (see appendix), thus we need only

determine the nonnegative parameter A0. To this end, the following notational convention is

introduced: a" symbol above a state K indicates a root of the evolution function with some

specification of the supply rates; the superscript 0 signifies evaluation at 20 = 0; the

superscript R signifies evaluation with q` = R(0).

Let k° = K(0) be the root of L(K,0), i.e., — ko )qs( ko ,0) = (r+ This level is the

lower bound of the non-decreasing function K(2). Let Ir. = Ads-1(WR(0))) be the critical

knowledge level above which the fresh water stock becomes inessential: K Ir. implies

Mc(e) M(K) M(Ir) = Mc(R(0)), hence qc R(0) for all nonnegative A,. Using (13), we

find that the MRAP Kr passes through the states k° and Ir. at the dates

11 —T° = —log[( g — KC)/(IC — k°)] and T" = —log[( K — K0) /(17 — K")] respectively.

For any nonnegative date T define
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Q(T) fqc " dt -.17(er —1)
0

(16)

where qc(Ktin,0) is the (not necessarily feasible) fresh water supply rate defined in (10a). It

follows from (2) that if Q(T) exceeds the initial stock X0 at some date T, then XT < 0 and

e(Ktin,0) is not feasible up to T. We can now state (see proof in the appendix):

Claim 3: .1.0* =0 if and only i {k° Ir. and X0 Q(r)}, in which case k is the optimal

knowledge steady state level, and the optimal R&D policy is the standard MRAP

Kt* = Min{Kr,k° } .

Claim 3 appeals to economic intuition. A steady state above the critical level

implies a fresh water supply rate below R(0) and corresponds to a non depleted stock and a

vanishing scarcity rent. The latter implies that the root process is fixed at its lowest level k°,

which must be approached as rapidly as possible. It only remains to ensure that the initial

fresh water stock is large enough to support this policy all the way to k°. When X0 Q(r),

this is indeed the case, since for t> r, while Kr > K', the stock will surely not be depleted.

The situation is somewhat more involved when k° K' but X0 < Q(r). The former

condition favors, as explained above, vanishing scarcity rent and a nonempty stock. Yet, the

latter condition implies that the initial fresh water stock cannot support e(Kr,0): somewhere

along the way, before K' is reached, the stock must be depleted. If the scarcity rent were

zero, this would imply that qc undergoes a discontinuous drop to R(0) at the depletion date,

violating Claim 1; hence, initially At* must be positive.

The reasoning underlying the characterization of this situation is as follows (a formal

proof is presented in the appendix). Since depletion must take place, the initial scarcity rent

must be positive and it should be chosen, together with the depletion date T, so that depletion

and the rate equality q` = R(0) occur simultaneously, in accordance with Claim 1. On the
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•
depletion date, K. < Kcr , for otherwise AT. in (11) cannot be positive. The post depletion

period, therefore, divides into two sub-periods: (T.,r] and (7,00]. In the first sub period,

the optimal process Kt* follows Kr from K. to Kcf, while the fresh water stock is empty and

q` is restricted to R(0). The scarcity rent A.t* = Ms(Kr) — Mc(R(0)) (c.f. 7), decreases in time

during this period, reflecting the decreasing value of fresh water as desalination knowledge

accumulates. On the closing date rr of this sub period, Kr = Kci. and M(K') = Mc(R(0)),

the fresh water stock becomes inessential and At* vanishes from that time on.

If k° > Ka', then during 7' < t 5_ 7°, the optimal process continues to follow Km

towards k°, further reducing the price of desalinated water. Consequently, the fresh water

supply rate qtc falls short of R(0) and the fresh water stock gradually fills up again. If

k° = K', the system enters the steady state Kcr at rr with an empty fresh water stock. (This

is a singular case in which both the stock and the scarcity rent vanish.) We summarize the

above in

Claim 4: When k° Kcr and X0 < Q(r), then Kt* = Min {Ktm , k° } and the time evolution of

the optimal scarcity rent process At* is divided into three stages: (i) an initial exponential

increase At* = Aose(r+4)̀  until depletion with 20. (> 0) and (<7) defined implicitly by

(11)-(12); (ii) a decreasing scarcity rent period during Ts t rr, with an empty fresh water

stock and Xt* = M5(Km) — Mc(R(0)); (iii) a vanishing scarcity rent period with kts =0 for

t 7-, during which the fresh water stock refills if k° > K' or remains empty if k° =

The unique feature characterizing this case, namely the non-monotonic behavior of the

. fresh water stock and the scarcity rent processes, is traced to the renewable nature of the fresh

water resource. Indeed, a related study of a nonrenewable resource (Tsur and Zemel, 1998b)

yields only non-decreasing scarcity rents. Also note that although the root process is non
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monotonic, the knowledge process does not follow it but reduces to the standard MRAP.

We turn now to the case k° < IC. Claim 3 requires a positive scarcity rent,

suggesting that the fresh stock must be depleted. The continuity condition on the depletion

date (Claim 1) requires the fresh water supply rate to equal the replenishment rate R(0) on that

date. It turns out (see the appendix) that during the post depletion period the fresh water

supply remains at the rate R(0), so that the fresh water stock remains empty and the

desalinated water supply rate equals D(Ms(K))—R(0). Accordingly, define

LR (K)= d :.(K)[D(M 3.(K))— R(0)]—(r + 8) (17)

and let IACR be the root of LR. It is verified in the appendix that kR E (K°, K") (see also

Figure 2) and that this root is the steady state of the optimal K-process.

Figure 2

Let AR = M.,(KR)— Mc(R(0)) be the scarcity rent consistent with fresh water supply

rate of R(0) and K— kR . Clearly, kR <K" implies 2R> 0 (since Mc(R(0))= Ads(e) and Ads

1
is decreasing). Let TR = — ogRE K0)417— kR)] denote the date Kr passes through kR .

Further, let A."(; = e-(r+74 and 27 4,e(r+0, Thus, K(2R) K(AR) kR KR and the

processes K(Atin) and Kr intersect at the date TR. Since the root process is assumed to be

slower than Kr, the two processes can cross only once. It follows that 2 /10"7 implies that

K(.10efr+°`) Kr for all t.TR, while if 20 < in the two processes cross prior to TR.

The optimal K-process, by virtue of Claim 2, is of the form Kt*= MinfICr ,K()11)).

One possibility is that Kr lags behind K(At*) prior to the date 71? and the optimal process is a

standard MRAP to KR. The alternative is that Kr overtakes the root process at an earlier

date, and the optimal K-process is a NSMRAP, evolving along with the root process during

its final stage. Whether the optimal process is a standard or nonstandard MRAP (i.e., whether
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Aos Aom or /10* < Aom) depends on the initial fresh water stock in the following way:

Let qc(Ktm, )tin) be the (not necessarily feasible) fresh water supply rate corresponding

to the knowledge and scarcity rent processes Kr and Atin (as specified in 10a) and set

Qin = f qc ( Kr , dt — — 1) . If V" > Xo, then q` (Kr , Atm) is not feasible since

according to (2), it yields a negative fresh water stock prior to T. The optimal rate qc* would

therefore have to be smaller and this can be achieved by setting 43* > /101", implying that

Kr 5_ wr)<K(At*) for t TI? and Kt* = Min{Kr,kR } . A similar argument reveals that

Qm < xo entails Ao* <)m  so that Kr crosses K(Ate) at some date prior to TR, giving rise to a

NSMRAP policy. We summarize the above in

Claim 5: (i) When k° < rr and Cr XO, then Kt* = Min{Kr,kR } is a simple MRAP to

kR and X0* (>. A.,r) is determined together with the depletion date T* (5_ TR) by (11)-(12).

(ii) When k° < 1C1 and gn < Xo, then Kt* follows a NSMRAP to KR. The parameters /10*,

T* and r< TR (where r is the time Kr overtakes the root process) are obtained by solving

(11)-(12) and r — log[( 17 — 1(0)1(k- — K(A.: MIS = 0 .

A detailed proof of Claim 5 is given in the appendix. We only note here that in case (i)

depletion occurs at or before the entry to steady state, whereas in the latter scenario involving

the NSMRAP, the fresh water stock is depleted exactly at the steady state entrance date, so

that K.T. = KR. In this case depletion occurs after TR, because the root process, which is

slower than Kim, arrives at the steady state kR at a later date. This delay is designed to take

advantage of the large initial fresh water stock. So long as this relatively cheap resource can

be exploited above the recharge rate, it does not pay to arrive too early at the knowledge

steady state, which is optimal only when fresh water supply is restricted to the recharge rate.
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The optimal water policy

We close with a summary of the optimal policy:

(i) If k° Ir., then the optimal R&D policy is a standard MRAP to £°, i.e.,

Kt* = Min {Kt' , k° } . If, in addition, X0 Q(r), then the fresh water stock is not scarce, i.e.,

At* = 0 and the stock will never be depleted, whereas Xo < gri) gives rise to the following

scarcity rent process: (a) At* = 2osefr' for 0 where A.0* (>0) and 7' are determined

by (11)-(12); (b)Xts = Ms(Kr) — Mc(R(0)) for and (c) Xt* = 0 for t> r. The

steady state fresh water stock is positive.

(ii) If k° < Ir. and Qtrn _>_Xo, then the optimal R&D policy is a standard MRAP to kR , i.e.,

Kt* = Min{Ktni , kR } and At* = X.0*efr+°` for t and At* = MS(K) - M(R(0)) for t> Ts , where

/10* is determined together with the depletion date 7 by (11)-(12). Depletion will occur no

later than the entrance date to the steady state k'.

(iii) If k° < and V" <X0, then the optimal R&D policy is a NSMRAP to kR and the

optimal scarcity process is At* = Xò e(14-4)! for t < 71* and remains at the level 2.0*efr+4)7.*

thereafter. The parameters Ao*, T and the transition date r < TR are obtained by solving

(11)-(12) and r — log[(TC — K0)/(K! — K(4))]/ = 0 . Depletion of the fresh water stock and

entrance to the steady state occur simultaneously.

(iv) Given Kt* and At*, the optimal time profiles of fresh and desalinated water supply rates

are specified in (10).

Tsur and Zemel (1998b) derived similar properties for nonrenewable resources. The

knowledge steady states corresponding to the renewable and nonrenewable models differ,

however, because the steady state supply of the nonrenewable case is derived exclusively
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‘2.

from the backstop resource, whereas in the renewable case it can be derived from both

sources. The nonrenewable case, therefore, admits a unique steady state corresponding to the

upper bound of K(X.). In contrast, the present renewable situation yields lower knowledge

steady states because the lower equilibrium supply rates of desalinated water cannot justify

such high investment rates on R&D. Indeed, when k° ?_ rr, the optimal steady state

corresponds to the lower bound of K(X). This result is in accord with the economic intuition

that the irreversible nature of the depletion of a nonrenewable resource calls for higher

investments in the development of an alternative technology.

The time profiles of the primary resource stocks in both cases are also contrasted:

While the stock of a nonrenewable resource decreases monotonically, that of a renewable

resource may initially decrease to depletion and later on increase back, as technological

progress reduces exploitation of the primary resource below its maximal recharge rate.

4. Time-dependent demand

Water demand increases with time due to the rising standard of living and population

growth. This feature is described by allowing the demand D(p,t) to depend explicitly on time.

In this section we examine the effects on the optimal water policy caused by the explicit

time-dependence of water demand. We find that the NSMRAP nature of the optimal R&D

policy is preserved, although the associated root process is quite different. We present below

the main results; the derivations follow closely the analysis in the appendix and are omitted.

An increasing demand induces a corresponding time dependence on the optimal

supply rates, but the nature of the relation between these rates and the intersection points of

the supply and demand curves, as presented by equations (7)—(10) and Figure 1, remains

unaltered. When some desalinated water is desirable at the outset (i.e., when Ms(Ko) lies

below the intersection of A/(g) and D-1(q,0)), the fresh water supply rate eqc(421) remains as
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specified in (10a), but the desalination rate qs (K,A,t) = D(Ms(Kt),t) — qc (Kt,A.,) attains an

explicit time argument.

The continuity property of the fresh water supply rate at the depletion time, as

expressed by condition (11), remains valid. Thus, given the optimal knowledge and scarcity

rent processes, the determination of the optimal supply rates is essentially the same as in the

reference model for which demand is stable in time.

The modifications needed for the optimal knowledge process are subtler. We find that

the optimal knowledge process is again a NSMRAP but the associated root processes obtain

explicit time dependence. The root process K(2,t) is defined by the solution of

—MAK)e(K,X.,t) — (r+b) =0

and inherits the explicit time dependence from qs . The steady states k° and kR , which were

constant in the reference model, also depend on time because D(Ms(K),t) introduces a time

dependence to the evolution functions that define them. In contrast, the critical level

Ka. = ms-i04 ,c(R(0))) depends on the cost structure alone and is therefore unaffected by

incorporating time dependence to water demand.

With qs (K,A,t), K(2,t), k° (t) and KR(t) substituting their corresponding counterparts

of the reference case, the characterization of the optimal water policy follows that of the

reference model. The above substitutions, however, have some important consequences.

First, the relative location of the parameters K° (t) and Kc r, which plays a major role

in the classification of the reference model, now changes with time. Therefore, only if Ko (t)

exceeds Ka' early enough, and if the initial fresh stock is large enough, can we expect a

non-depletion (and zero scarcity) policy. Under such a policy, demand increases will be

exclusively met by cheap desalinated water.

Second, the sharp distinction made in the reference model between the standard MRAP
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(where R&D is carried out at the maximum feasible rate until the steady state is reached) and

the NSMRAF' (where the approach to the steady state includes a ride along the root process)

no longer holds. This is so because the steady state turns now into a process on its own, to be

followed by the optimal process at a reduced investment rate during the singular stage.

Nonetheless, the characteristic property of the optimal knowledge process in the

reference model—of a NSMRAP to the appropriate root process—follows directly from

Spence and Starrett's (1975) analysis and remains intact. The optimal knowledge policies

under stationary and non-stationary demands differ only inasmuch as the respective root

processes are different. We note, in this context, that although the non-stationary demand

does not permit the supply policy to settle at a steady state since the rate of desalinated water

supply has to meet the increasing demand, the bounded knowledge-process must eventually

settle at some stationary level. Knowledge will stabilize either at the level which cannot

contribute to further decreases in the cost of desalination (which must have some lower bound

that cannot be improved upon), or at the exogenous upper bound k, whichever comes first.

5. Closing Comments

Water scarcity can induce responses of various kinds. First, it might lead to conflicts

and competition among nations, regions or sectors (see, e.g., the collection of works edited by

Biswas, 1994, by Dinar and Loehrnan, 1995, and by Just and Netanyahu, 1998).

Alternatively, it can encourage steps towards more efficient use of water via improved

irrigation and distribution systems, quality-differentiated supplies and efficient pricing (see

. Tsur and Dinar, 1997, and works in Parker and Tsur, 1997). Finally, when the futility of the

first approach is recognized and the potential of the second approach is realized, one may turn

to the development of alternative sources, namely desalination technologies. This work is

concerned with the third approach, focusing attention on its intertemporal aspects, particularly
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on the optimal scheduling of the R&D activities.

In an earlier paper (Tsur and Zemel, 1998b), we have derived optimal rules for the

- development of solar technologies in light of the environmental costs of fossil energy and its

finite reserves. Both works consider the optimal development of backstop substitutes for a

limiting primary resource--fossil energy then, fresh water now. The difference between the

two stems from the fact that fresh water is typically renewable whereas fossil deposits are not.

The presence of recharge processes renders the scarcity of the primary resource less crucial,

but at the same time it changes the optimal policy quite substantially. For example, it is

possible in the present case that the fresh water stock will be first depleted and eventually

refill (fully or partly) as technological progress reduces the cost of desalination to the extent

that fresh water exploitation decreases below the recharge rate. Such behavior is, of course,

impossible for nonrenewable deposits. The time profile of the primary resource stock has far

reaching implications for the optimal R&D policy, since the latter depends crucially on the

scarcity (shadow) price of the former.

Sure enough, many regions around the Globe have all the water they need from local,

fresh sources. But the number of water-scarce regions is growing by the year and in many

desalinated seawater is (or will be) cheaper than fresh water conveyed from remote sources.

When desalination is (eventually) desirable, our analysis lends support to the view that its

development should be made well in advance times of water shortage.

Long-term development programs are fraught with uncertainty. Examples include

uncertainty concerning the availability of the primary resource (due, e.g., to uncertain initial

stock or quality degrading processes) and future trends and fluctuations in demand. Tsur and

Zemel (1995) studied the effects of the first type of uncertainty on fresh water exploitation

policies. Extending this model to the present context (of exploitation and R&D policies), as

well as the consideration of other uncertain sources, remains a challenge for future research.
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APPENDIX: Derivation of the optimal policy

We present below the formal proofs of Claims 1-5 of Section 3, characterizing the

optimal supply rule and R&D policy.

Preliminaries: Let T denote the time at which the stock of fresh water is first

depleted. The optimization problem (6) is recast as

V (X 0, Ko) = Maxr. ei[G(q + q:)— C(q;')— M,(K,)q: — .1,]e" dt + e'V (0, KT) (Al)
0

subject to the same constraints. The current-value Hamiltonian for (Al) is of the form

Ht = G(qtc+qts) — C(qtc) — M3(K)q + 2t[R(X)— qtc] + Y(I-81C1),

where At and yt are the current-value costate variables corresponding to Xt and Kt,

respectively. Incorporating the Lagrange multipliers associated with the constraints on (lc
, qs

and It, the Lagrangian Z = Ht + atcqtc ats tits 4. aoit av ) is obtained.

Necessary conditions include (see Leonard and Long (1992); all variables are evaluated

at their optimal values):

(a) Maxqw {Z,} = D(q" + qts ` c=0 and D-1 (qt̀  + qts)—M(Kt)+ats =0, hence

M3(K) = Adc(e) + 2 (A2)

tc + ts = D(/13(1Q) (A3)

hold along the optimal plan whenever qc and qs are both positive and the corresponding
Lagrange multipliers vanish. This establishes the optimal supply rule (10).

(b) Maximizing the Lagrangian with respect to It reveals that It equals 0 or I whenever yt # 1.

Thus, It can undergo a discontinuity only at the singular value yt = 1.

.(c) A- r2 = — gH I 01.1' = g whenever X does not vanish, yielding At = 2e'.

(d) /VT= 0 is the transversality condition associated with XT 0, implying that 20 = 0 if the

fresh water stock is never empty.
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(e) YT= avo,KTyaK is the transversality condition associated with the free value of KT •

(f) HT= rV(0,KT) is the transversality condition associated with the free choice of T.

= limitr q; q:- qtcProof of Claim 1: Let be the limiting pre- and post

depletion supply rates of fresh water (the subscripts + and — denote the corresponding pre-

and post depletion limits of other quantities as well.) We need to show that

qf = q:. = R(0) . (A4)

This means that the fresh water stock will not be depleted before the marginal cost of fresh

water is high enough to exclude its supply above the natural recharge rate.

Since 7+ is the initial knowledge shadow price for the post depletion problem, it

follows that avo,KTyalc =7+ . Moreover, for the pre depletion problem, condition (e) above

reads y- TT = aRojcwalc. Thus, the costate variable yt evolves smoothly as the pre

depletion problem turns into the post depletion problem at the depletion time T. In view of

condition (b), the quantity it('yt-1) is also continuous on that date.

The Bellman equation for the post depletion value reads

rV (0, KT ) = G( D( M.,( KT )))

—Ads(KT)[D(Ms(KT))--q:j —C(q:)— I++ y +(I+ - HT)

where we have used again the fact that avo,KTyaK= .

The transversality condition (f), HT = rV(0,KT), where

H _ = G(D(Ad .,.(ICT))) — Mc(K7.)[D(M qf]

— C(q")— _ + y _(I _ SKr) + 2,_[R(0)— qf]

(A5)

(A6)

is compared with (A5), using the continuity of 7t and /t(yt-1) at t = T. We find that

C(qf ) — C(q:) — M .,(KT)(qc_ — qc+) + — R(0)) = 0, or

C(q.c. ) — C(q) — M .,(1(7.)(q: — q: ) — q:) + A_(g: — R(0)) =0, which reduces, using
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(A2), to C(q")— C(q:)— c(q")(qf —q) + 2_(q: — R(0)) = 0.

Now, to deplete the stock we require qf R(0) while following depletion q: R(0) .

Thus, we write C(q`)— C(q) = M c.(4-̀ )(q — q), where q: q`. , hence

[Ad c(, )— M c.(q )](qf — q:) = (R(0)— q:) ?_ 0. However, since Mc(qc) increases with qc ,

the left hand side cannot be positive, implying that these conditions must hold as equalities,

as (A4) states. Condition (11) follows from (A2) whereas (12) restates that XT.= 0 .

Proof of Claim 2: We first show that given the optimal scarcity rent A/s, the optimal R&D

policy (4*,Kts) can be obtained as the solution of the one-dimensional problem

(A7)
V(K0) = K0 + Max{,,) ..9(K„t)e-n dt

0

subject to k = I, - (51( , 5_1- and K0 given, where

9(K,t)=G(q` +qs )—C(q` )-2*,q` — Ms(K)qs —(r +8)K

and .7' = q` (K,A,:), qS= qs (K 2*) are given by the optimal supply rule. The integrand

a(K,t), denoted the equivalent utility, is independent of the control land its explicit time

dependence enters through the scarcity rent Ai* = 2.0*efr+4)i . Consider first

V(Ko ) = 1§(K„ I „t)e-n dt
0

(A8)

subject to the same constraints and supply rule as in (A7), where

§(IC,/,t) = G(q` + qs)— C(q")— 2,. qc — M .,(K)q' — L

It is verified that the necessary conditions corresponding to (A8) coincide with the necessary

conditions associated with It, K, and the costate variable yt of the original problem (6).

Following Spence and Starrett (1975), we use (3) to remove I from 9. Integrating the

resulting k term by parts, we obtain (A7).
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Differentiating & (K, 0 with respect to K, noting that (A2)-(A3) imply that the terms

involving aqc/aK and aqs/aK vanish, gives awl( = L(K,A) (c.f. (14)), and the unique root

K(2) maximizes &(K, t) at any time t. Now, the analysis of Spence and Starrett (1975) shows

that the MRAP to the maximum of the equivalent utility is the optimal process for this type of

problems, characterized by utilities which do not depend explicitly on the controls. Indeed,

the problem at hand is not autonomous due to the time dependence introduced by the scarcity

rent At*. However, these authors have established (see their footnote, p. 394), that the same

result applies when the MRAP process follows the root process rather than a stationary

maximum. Once the root process has been reached, S(K,t) must be maintained at its

maximum by tuning It so as to ensure that Kt = K(A.t), as specified in (15). 0

Two immediate corollaries follow:

Corollary 1: The optimal process Kt* cannot decrease.

Proof: Initiated below the root process, Kt* can only increase towards the root process but

not exceed it. Once on the root process, Kt* can decrease only if the latter decreases. This

cannot happen before the fresh water stock is depleted, since before depletion the scarcity rent

is either zero or increases exponentially, and K(X) increases with 2. For a period of vanishing

stock, with fresh water extraction at the recharge rate R(0), 2 may decrease (see below).

However, Kt* must differ from the root process during that period through which, according

to (A2), M.,(Kt*) = A MR(0)) 24, and a decrease in Xt implies that Kt* must increase. 0

Corollary 2: The optimal process Kt* must converge to a steady state.

The corollary follows from Corollary 1 and the fact that Kt* is bounded. 0

Proof of Claim 3: For convenience we repeat the notation introduced in the text:

k°= K(0) is the root of L(K,O) satisfying --M k° (KO ,0) = r+S.
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Kcr ms-1 ,c(R(0))); K> Ir. implies qc(K,X) <R(0) for any A.

K/n = (1— es-a )17 + K0e-̀9 is the standard MRAP initiated at Ko.

1 —
T' = —log[(K — K0)1(TC- Kcr)1 is the time when the process Kr passes through K..

Q(T)= fqc (Kr ,O)ecit — Cr —1) (if Q(7)>X0 then XT <0 and qc(Kr,O) is not feasible).

Suppose that /to = 0. Then, the root process reduces to the stationary point k° and,

according to Claim 2, Kt* = Min{ Kr, k° } and qc(Kt*,0) is the optimal fresh water supply.

If k° < IC then Kt* < Ie. and qc(Kt*,0) > R(0) at all times t. The stock will therefore be

depleted on a finite date, at which time qc must undergo a discontinuous drop to R(0),

violating Claim 1. Thus, k° Ir. and the optimal process must pass through IC . However,

if X0 < Q(T'), then qc(Kt*,0) is not feasible and the fresh water stock will be depleted prior to

Tcr, implying again a discontinuity in qc. Indeed, the second condition of Claim 3 is required

to ensure that the initial stock suffices to support qc(Kt*,0). Otherwise, a positive scarcity

rent is called for.

To see that the conditions of Claim 3 suffice, suppose that both k° Ka' and

X0 Q(r) hold. Then, X0 Q(7) for all T. (If X0 < Q(T) for T < 7', then Xo < Q(r)

since qc(Kr,0) > R(0) for Kr < IC, which holds for T < t < , violating the assumed

condition. Similarly, if Xo Q(T) holds at r it must hold for any T> r since

qc(K,O) <R(0) for K> IC'). Thus, the fresh water stock is never depleted using qc(Kr,0).

Now, assume that 20* > 0. Then Kt* Min{K , k° } since the root process always lies above

K° . But 'AKA decreases in both arguments, hence qc (Kt. ,A ts) qc(Kr,O) for all t < rr

and the fresh water stock is never depleted under the optimal policy qc(Ktt ,At*), violating the

transversality condition (d) XT/10 = 0. 0
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Proof of Claim 4: To verify that Kt = Min {Kr , k° } , note that K(A) ?_ k° for any

nonnegative 2. Claim 2, then, requires that Kt* must follow the Km at least up to K°. Since

A O rK Kc , the fresh water stock cannot vanish upon arrival at IC or thereafter (with a positive

A). Hence, the shadow price must vanish upon arrival at k°, implying that the root process

reduces to k° from that time on, hence Kt* = Min{Kr ,k }.

(1) From Claim 3 we know that 43* > 0, hence the fresh water stock must be depleted

at or before r (after 7, Kt* > Kcr and depletion cannot occur). The values of 2.0* and T*

must conform to Claim 1.

(ii) Following depletion, the fresh water supply rate is restricted to R(0). Equation

(A2), then, gives At* = Ms(Kt*) — Mc(R(0)) = Ads(Kt*) — MAK') as long as this quantity is not

negative, i.e., during the period T* t 7'. The supply mix is R(0) and D(M(Kt*)) — R(0)

for fresh and desalinated water, respectively.

(iii) At 7,Ktm=1<cr, the shadow price vanishes and the third phase begins. As

knowledge accumulates, Kt* Kcr, qc (Kt* ,0) decreases below R(0) and desalination makes up

the remaining demand. The fresh water stock fills up, eventually to enter a steady state at the

stock level X = - q' (k° ,0) /P. 0, equality holding only if k°= K. 0

We turn to the case k° < Kcr. This case involves a different steady state, namely the

root kR of LR(K) = —MAKAD(Ms(K))—R(0)]—(r+ 6), (cf. (17)). In terms of the root process,

this steady state can be written as kR = IC(A.R), where AR = Ms(kR)— Mc (R(0)) is shown in

Lemma 1 below to be positive. It is useful to distinguish between the date

1
TR = —log[(E — K0) -kR)] when the MRAP Kr passes through kR and the time

when the optimal process Kt* enters K": Ker, = k". Since no process can proceed faster
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than Kim, it must be that T*R > T.

We recall the benchmark scarcity rent 47 = "°T1 , the corresponding process

TR
Xtm = Xome (` and the benchmark quantity Qm = f q` (K ,'" ,2" )edt — (eTR —1) . The

0

proof of claim 5 is presented via a series of Lemmas:

Lemma 1: When k° < Ka', then kR E(k°,1r).

Proof: Suppose that kR ?_ K' , so that MA kR )5_ Ad.,(Kc')= mc(R(0)) and .qc(kR ,0) .5_ R(0).

Hence, qs(kR ,0) = D(Ads( K')) — gc(kR ,0) D(Ms(k )) — R(0) and, since Ms(K) is

decreasing, L(kR ,0) ?_ LR( kR ) = 0 = L( k° ,0), hence kR 5_ k° < IC, violating the

assumption that fc J<cr. Indeed, with kR <1<cr, we verify that

XI? Ads(kR )— Mc(R(0)) = Ms( kR )— Ads(lr)> 0. Moreover, the definition of XR implies

that qs(kR ,XR) = D(Ads( IC')) — R(0), hence both LR(K) and L(K,A.R) vanish at kR and

fcR = IC(A.R) > K(0) = fc° . The situation is depicted in Figure 2. 0

Lemma 2: When k° < Kcr, the optimal steady state is at X= 0, K= kR and = .

Proof: Assume that the fresh water steady state stock is not empty. The corresponding

scarcity rent must vanish, implying that fc° is the steady state knowledge level. But when

k° < K' the fresh water supply rate qc( k° ,0) exceeds R(0) and the finite stock must be

depleted. Thus, when k° < Ir. the steady state occurs with an empty stock and At* > 0. The

fresh water supply rate at the steady state must therefore equal R(0), implying, in view of

Claim 2, that kR is the knowledge steady state. Since kR = IC(X,R), it follows from Claim 2

again that A.R is the scarcity rent at the steady state. 0

Lemma 3: When R° <K', the optimal processes Kt* and 2t* enter their respective steady



26

states kR and AR at or after the fresh water stock depletion date, i.e., TaR Ts . During

0 t 5_ Ts , Als increases exponentially. If fR > f, then during Ts t 5_ Ts I? the scarcity

rent decreases back to its steady state level XR and the process K(A.t5) is non-monotonic.

Proof: Suppose Kt = kR at some t < 1'5 and recall that qtc R(0) prior to depletion. Then,

using (A2),mc(qtc)+ xt= Als(kR )= AW(0)) + X.R, implying that X < X.R. It follows that

K(X) <K(7) kR = Kt*. But the optimal knowledge cannot exceed the root process and we

conclude that kR cannot be entered prior to depletion, so that T5R and K. 5_ KR. Using

(11) we find Mc(R(0)) = KR) 5_ Ms( = Mc(R(0)) + tr. , hence 4. If the

strong inequality holds and T5R > Ts, the shadow price (and the corresponding root process)

must decrease after Ts until they reach kR and kR , respectively, at T*R.

By Claim 2, Kt* = Min {Kr,K(ilts)}. One possibility is that Kt"' lags behind K(2t*)

before kR is reached and the optimal process is a standard MRAP to kR . The alternative is

that Kr overtakes the root process at an earlier date, and the optimal K-process is a

NSMRAP, following the root process at its final stage. To identify the conditions under

which either of these cases hold, we need

Lemma 4: Suppose e< K. Then, (i) if T <TR then T5R = YR and Kt* follows the

standard MRAP to kR ; (ii) if T5> IR then T5R = T5 and Kt5 follows the NSMRAP before

arriving at kR ; (iii) if T =TR then T51? = Ts and Kt* follows the standard MRAP as in (i).

Proof: (i) Suppose Ts < TR Ts R . According to Lemma 3, the root process is

non-monotonic, exceeding kR at the depletion date and returning to it at T5R. If the optimal

process were to follow the root process before T5R, it must also be non-monotonic,

contradicting Corollary 1. Thus, Kt* = Kr all the way to kR
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(ii) Suppose T5 > T. Then T*R > Ti? and Kt5 departs from Km to follow K(X)

before arriving at k'. But the optimal process is monotonic, hence the root process must

also be monotonic, which according to Lemma 3 can occur only if T*I? = T.

(iii) Suppose T = TR but T*I? > T5. According to Lemma 3, the root process is

non-monotonic and cannot be followed by Kt*, which must therefore proceed with the

standard MRAP all the way to kR It follows that Kr and Kt5 reach kR on the same date,

contradicting our assumption that T*R > T. Thus, T*I? = T. = Ti? and Kt5 = Min{ kR ,Km}.

Whether or not Km overtakes K(25) depends on the initial scarcity rent 20, as K(21)

increases with At= 2.0e(1.4- . With the benchmark process Atm as defined above,

K(.17, ) = K(AR) = KR = and K(2m) meets Kr at t = 74?. The root process is assumed to

be slower than Km and the two processes cannot cross twice. It follows that for any Ao Aom,

K(A.oefr+)1)> Ktm for all t <74?, whereas if 20 < Aom the two processes must cross prior to TR.
In view of Claim 2, this observation implies

Lemma 5: Suppose k° < Kcr. (i) If /10* .?.. mthen Kt* = Ktm until 7R; (ii) if A.0* A0m then

Kt* = Kt for t r and Kt* = K(215) for t> r, where 0< r< 74? is the date Kr crosses K(215).

To establish which of the two cases in Lemma 5 applies, we need

Lemma 6: Suppose k° <K. Then 20* A.0m if and only if Xo •

Proof: Assume first that Om X0. This implies that under the (K7, /1" " ) policy the stock is

depleted before or at time TR. Suppose that A.D. <,m The process Kr is not slower than any

feasible policy hence Kt* 5_ Ktm for all t 7-R. Moreover, since qc (K, 2) decreases in both

arguments, qc (Kr , ) < .7" (K; , ) and the optimal policy yields T5 < TR . However,

according to Lemma 5, .10* <20m implies that the root process is adopted before TR, which
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entails, according to Lemma 4, T* >T,  contradicting our previous assumtion. Thus, Qm XO

implies Ao* 20m.

Suppose now that Ao* ?.. A.0m, hence the optimal policy is the standard MRAP Kt* = Km

until T. Thus, q' (K,'", q` (K,* , 2*,) and depletion under the optimal policy cannot

precede depletion under the (Kr,  An policy. From Lemma 4 we know that T* 74?, hence

depletion under the (Kr, An policy cannot occur later then TR, so that Qm X0. 0

Proof of Claim 5: (i) When K°< Kcr and Qin ?-X0, then according to Lemma 6, Ao* An".

Lemma 5, in turn, implies that Kt* = Min {Ktm , kR } is a simple MRAP to kR (ii) When

k° < Ir. and Qm <X0, then according to Lemma 6, 20 *< Aom. Lemma 5, in turn, implies that

Kt* follows a NSMRAP to kR .
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Figure 1: Right panel: Water supply and demand at time t, given Kt and Ai. The
area ABCD represents the sum of consumer and producer surpluses.
Left panel: Marginal cost of desalination as a function of knowledge.
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Figure 2: The evolution functions L(K,A) (Equation 14) and LR(K)

(Equation 17) vs. the knowledge level K when IC > k° . k° is
the root of L(K,0), Ir. is the critical knowledge level in which
M(K) = Mc(R(0)) and is also the intersection of LR(K) and

L(K,0). Both LR(K) and L(K,A.,R) vanish at kR
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