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Resilient Provision of Ecosystem Services from Agricultural Landscapes: Tradeoffs 62 

Involving Means and Variances of Water Quality Improvements 63 

Longer abstract 64 

Many ecosystem services are rival and important tradeoffs exist in their production process, 65 

while some jointness in production (synergies) are also postulated to exist. We assess the 66 

strength of tradeoffs and synergies involved in reducing agriculture-generated watershed nutrient 67 

loads with different levels of resilience. We define resilience as the simulated probability of 68 

attaining the desired level of nutrient load. We spatially optimize the selection of least-cost 69 

patterns of agricultural conservation practices or both the expected performance of the 70 

conservation actions and its variance. The modeling framework is applied to the Boone River 71 

Watershed in Iowa. The empirical results confirm that securing nutrient loads with a higher level 72 

of resilience is costly. However, the marginal cost is not necessarily increasing: focusing on 73 

larger nutrient reductions allows one to obtain resilience at a smaller additional cost than if one is 74 

seeking only modest nutrient reductions. In our model, this is due to the ability of perennial 75 

grassland to buffer against exogenous shocks and to drastically reduce variability in nutrient 76 

loads. In extending the model to two nutrients, nitrogen and phosphorus, we find that the main 77 

tradeoff dimension is between cost of conservation investments and ecosystem service 78 

objectives, as opposed to pronounced mean-variance tradeoffs or strong tradeoffs between the 79 

two nutrient objectives. While some meaningful tradeoffs exist between nutrient objectives, our 80 

findings highlight the presence of relative synergies in agricultural conservation investments 81 

aimed at nutrient reductions. However, while relative synergies exist, controlling risk of nutrient 82 

loads is once again shown to have high opportunity costs, and resilience comes at a significant 83 

premium. 84 
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In recent years, the concept of ecosystem services and natural capital has garnered significant 85 

attention from the research, policy, and conservation community (see, e.g., Heal and Small 86 

(2002), Boyd and Banzhaf (2007), Polasky and Segerson (2009), Barbier (2015), and a Special 87 

Feature in the Proceedings of National Academy of Sciences devoted to the topic). For 88 

intensively managed agriculture-dominated landscapes, there can be both complementarities and 89 

competition between ecosystem services including the provisioning services of food, feed, fuel, 90 

and clean water, the regulating service of waste processing (provided by streams), and the 91 

cultural ecosystem services tied to the presence of wildlife for hunting or recreation. The 92 

diminution of ecosystem services related to environmental externalities is, of course, a generally 93 

expected outcome of a market system. Given the signals provided by agricultural markets, it is 94 

not surprising that the agricultural system heavily favors production of private ecosystem 95 

services (food, feed, and fuel) (Lichtenberg 2002, p. 1254). The US Midwest, for example, has 96 

the highest rates of crop growth in the world, to the point that agriculture affects regional climate 97 

(Mueller et al. 2015). At the same time, heavy reliance on fertilizer use, has caused some 98 

scientists to suggest that humanity has exceeded its “safe operating space” with respect to 99 

nutrient fluxes (Steffen et al. 2015).  100 

 The recognition of these issues has led to extensive agri-environmental policy efforts in 101 

the US and elsewhere as well as a literature identifying approaches for incorporating ecological 102 

objectives in policy (Lichtenberg 2002; Lankoski and Ollikainen 2003, Bateman et al. 2013). 103 

While these efforts have found some success, most scientific assessments of environmental 104 

impacts of U.S. agriculture indicate many remaining concerns including fish and wildlife habitat 105 

(USDA-CEAP, Wildlife National Assessment 2015), air pollution (Mueller and Mendelsohn 106 

2011), nutrient pollution (US EPA 2015), and other environmental endpoints.  107 
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 Elucidating the nature of tradeoffs between different ecosystem services requires 108 

understanding natural system processes and evaluating counterfactual scenarios to determine 109 

where tradeoffs exist, where synergies occur (e.g., Karp et al. 2015), and how other ecosystem 110 

services can be improved at the lowest sacrifice to marketed agricultural goods. Understanding 111 

tradeoffs or potential synergies1 requires two things. First is the quantifiable understanding of the 112 

underlying ecosystem service production process and of the economic inputs that go into their 113 

production.2 The ecological production functions themselves, however, are often poorly 114 

understood, may exhibit complex nonlinear dynamics with thresholds (e.g., Carpenter et al. 115 

2015; Barbier et al. 2008), or, even in the best case of relatively small scientific uncertainty, may 116 

be represented by computer simulation programs that do not correspond to traditional economics 117 

understanding of a production function (e.g., Heal and Small 2002).  118 

While tradeoffs in ecosystem services may be unavoidable, it is desirable to limit 119 

consideration to those that are on a Pareto-efficient frontier.  This is particularly important when 120 

considering the exact magnitudes (marginal costs or marginal rates of product transformation) of 121 

tradeoffs between ecosystem services.  Yet another dimension to the question of tradeoffs 122 

between different classes of ecosystem services is uncertainty in the provision of a particular 123 

joint product from an ecosystem. In addition to having different opportunity costs of private 124 

goods, alternative ecosystem service bundle can differ in terms of the risk associated with their 125 

provision. That is, some conservation investments may consistently yield a given bundle of 126 

ecosystem services while others may on average a higher level of services, but with a wider 127 

                                                           
1 Heal et al. (2001) called the presence of synergies a “conservation umbrella.” 
2 See Heal and Small (2002) for an interesting distinction between economic and non-economic inputs into the 
ecosystem services production function. Economic inputs have opportunity costs, while others, like sunlight needed 
for agricultural production, while essential, are non-economic In our application, economic inputs include foregoing 
crop production entirely and planting perennial grass or bringing machinery, expertise, and labor inputs for the 
adoption of “working land” conservation practices.    
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variability of provision over time. The mean-variance tradeoff for a particular cost of 128 

conservation investment may be relevant in choosing across services.   129 

Consideration of tradeoffs between mean and variance of provision of services is 130 

consistent with the literature on resilience in ecosystem service provision. The notion of 131 

resilience is nuanced and complex, but for this work we adopt a definition similar to one used in 132 

Gren (2010)  —namely, the reliability of ecosystem service provision under exogenous shocks, 133 

specifically weather risk.3 In this paper, we explore tradeoffs for the expected provision level and 134 

for different levels of reliability (specified as simulated probability of attaining the desired 135 

provision level) for the case of a single non-market ecosystem service, and then expand the 136 

notion of tradeoffs to multiple dimensions of aquatic ecosystem services, where we focus on the 137 

joint probability of meeting desired ecological targets.4 To do so, we adopt a multiobjective 138 

optimization approach with the objectives specified as means and standard deviations of desired 139 

ecosystem outputs. For this application, we focus on a heavily agricultural watershed in Iowa and 140 

use nutrient loads as inputs into aquatic ecosystem services. This approach can will be relevant to 141 

any situation where the connection between human actions on the landscape and ecosystem 142 

services is characterized by a complex relationship involving nonlinearities, nonconvexities and 143 

nonseparabilities (for example, conservation network design as in Parkhurst and Shogren 2008).  144 

 145 

                                                           
3 Social preference for reliability of goal attainment is reflected in the required “margin of safety” in the TMDL 
regulations, requiring either to explicitly reduce allowable pollutant loads in a watershed based on modeled 
uncertainty or to employ conservative modeling assumptions 
(http://water.epa.gov/lawsregs/lawsguidance/cwa/tmdl/TMDL-ch3.cfm ) 
4 However, as Heal and Small (2002) point out “We are powerfully ignorant about the technology that produces 
ecosystem services.” While true, ignorance should not be a reason to explore the implications of existing levels of 
understanding of some dimensions of ecosystem services production process, embodied, in our case, in the 
ecohydrologic model. See Kling (2011) for a call to action while acknowledging the deep uncertainties involved and 
importance of learning and adaptive management.  
. 

http://water.epa.gov/lawsregs/lawsguidance/cwa/tmdl/TMDL-ch3.cfm
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Resilience in ecosystem services provision 146 

The concept of resilience has been used extensively by many disciplines, each approaching the 147 

concept from somewhat different perspectives and providing different definitions. We refer the 148 

reader to Longstaff et al.’s (2013) typology and to translate the concept among different 149 

disciplines. Intuitively, the notion of resilience deals with the ability of a system to perform 150 

desired functions under most, if not all, possible external shocks. Within their typology, we adopt 151 

the definition referred to as Type I resilience: the capacity of a system “to rebound and recover.” 152 

Simply put, we seek to spatially optimize the selection of agricultural conservation practices 153 

which optimize both the expected performance of the conservation actions and their variance 154 

(Shortle and Horan (2013) suggest a similar approach). Longstaff et al’s (2013) typology 155 

distinguishes approaches to resilience based on level of complexity (low/reductionist approach to 156 

high/holism/emergent properties) of the studied system as well as based on degree of normativity 157 

(on the scale from descriptive/positive to normative). Our work fits in the low complexity/low 158 

normativity category, as our studied system deals with quantifiable uncertainty (risk) and 159 

employs a deterministic, reductionist approach to quantifying the costs and ecosystem service 160 

outputs of evaluated scenarios.5 This definition of resilience can be equivalently thought of as 161 

the reliability of meeting ecosystem service provision targets.   162 

Next, we briefly sketch a simple model to aid in conceptual framing of our work. 163 

Suppose one possesses a quantified joint ecological-economic production function 164 

𝑆𝑆(𝒙𝒙; 𝜺𝜺): ℝ𝒎𝒎 → ℝ𝒌𝒌, where 𝒙𝒙 is an 𝑚𝑚 × 1 vector of controllable economic inputs into the 165 

production of ecosystem services (e.g., land, machinery, labor, fertilizer input, conservation 166 

                                                           
5 Were we to adopt a specific form for an economic damage function associated with ecosystem service degradation, 
our work would align with type II resilience definition of Longstaff et al. (2013), and would involve objectives of 
net benefit optimization (see Polasky and Segerson (2009) and Shortle and Horan (2013) for discussion of the 
relationship between outcomes obtained under physically defined goals and economically efficient outcomes).   
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practices) being combined, over the relevant spatial and temporal scale, to produce a 𝑘𝑘 ×167 

1 vector of monetized benefits/costs and nonmonetized final ecosystem services, and 𝜺𝜺 168 

representing exogenous factors (e.g., non-economic inputs into production of ecosystem services 169 

such as rainfall, solar radiation, soil quality, as well as exogenous economic factors such as 170 

commodity prices or government policy) treated as random. One of the components of the output 171 

vector serves to monetize the choices made with respect to human actions 𝒙𝒙 in the form of net 172 

social benefits. Depending on the availability of data and models, this can range from a full 173 

accounting of net social benefits measuring welfare impacts of marketed ecosystem services and 174 

non-market values of some non-market ecosystem services to simply measuring estimated 175 

engineering costs associated with 𝒙𝒙. With this resilience measure, it is assumed that decision-176 

makers can specify a set of desirable performance targets 𝑆𝑆̅. Appropriately scaling outputs so that 177 

they are all desirable, the problem of resilience can be written as max
𝒙𝒙

𝑃𝑃(𝑆𝑆(𝒙𝒙; 𝜺𝜺) ≥ 𝑆𝑆̅), that is, the 178 

most resilient set of actions are those that maximize the probability of meeting a desired level of 179 

monetized and non-monetized ecosystem services.  180 

This is a version of Roy’s (1952) safety-first criterion.6  Safety-first approaches have 181 

found numerous applications in many fields, including agricultural and environmental 182 

economics. Of many past efforts, examples include Paris (1979), Beavis and Walker (1983), 183 

Lichtenberg and Zilberman (1988), McSweeny and Shortle (1990), Bigman (1996), Willis and 184 

Whittlesey (1998), Horan and Shortle (2011), Eloffson (2003), Gren (2008), Kampas and White 185 

(2003), Rabotyagov (2010). As highlighted by Shortle and Horan (2013), the Total Maximum 186 

Daily Load rules adopts safety-first approach through the requirement of a “margin of safety” 187 

                                                           
6 More broadly, this kind of formulation can be described as a P-model of Chance-Constrained Programming (CCP) 
of Charnes and Cooper (1959), and CCP can be described as a class of anticipative (non-adaptive) stochastic 
programming approaches (Poojari and Varghese 2008)  
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constraint on the allowable watershed pollution loads. Another example is that the government of 188 

Canada was at one point explicitly favoring climate change policy requiring 95% certainty in 189 

agricultural carbon sequestration credits (Rabotyagov 2010).    190 

 In many applications, the tradeoffs embedded in resilience can be appropriately 191 

formulated by minimizing the (non-stochastic) cost of achieving a single stochastic ecosystem 192 

service objective with a given probability. The resilience objective is typically written as a 193 

constraint 𝑃𝑃(𝑆𝑆𝑖𝑖(𝒙𝒙; 𝜺𝜺) ≥ 𝑆𝑆𝚤𝚤�) ≥ 𝛼𝛼, where 𝛼𝛼 is level of resilience (or reliability) of the system.  194 

Rewriting the probabilistic constraint in a deterministic form can be accomplished when the 195 

distribution of the random term is known. In this case, a deterministic constraint involving the 196 

critical value of the standardized distribution of 𝑆𝑆𝑖𝑖, the controlled mean and variance of 197 

ecosystem service provision can be written as 𝐸𝐸𝜀𝜀�𝑆𝑆𝑖𝑖(𝒙𝒙)� + 𝐹𝐹𝑧𝑧−1(1 − 𝛼𝛼)𝑉𝑉𝑉𝑉𝑉𝑉�𝑆𝑆𝑖𝑖(𝒙𝒙)�
0.5

≥ 𝑆𝑆𝑖̅𝑖. 198 

For high desired levels of confidence 𝛼𝛼 (so that 𝐹𝐹𝑧𝑧−1(1 − 𝛼𝛼) < 0), the term (𝐹𝐹𝑧𝑧−1(1 −199 

𝛼𝛼)𝑉𝑉𝑉𝑉𝑉𝑉�𝑆𝑆𝑖𝑖(𝒙𝒙)�
0.5

) has the standard interpretation of a “margin of safety” or of an “uncertainty 200 

discount”. Tradeoffs between costs and the resilience of providing non-monetized ecosystem 201 

services are then seen by increasing cost of attaining higher reliability. This is a standard finding, 202 

although the costs of resilience have varied from single-digit percentage uncertainty discounts 203 

for soil carbon sequestration (Rabotyagov 2010), to almost doubling the costs of pollution 204 

reduction when required confidence in pollution reduction goes from 50 to 90-95% (Bÿstrom, 205 

Andersson, Gren (2000); Elofsson (2003)) to finding a seven-fold increase in costs of controlling 206 

N runoff (McSweeny and Shortle, 1990). Resilience is costly, but the exact tradeoffs involved in 207 

achieving higher resilience depends on the particular situation.7 208 

                                                           
7 An obvious source of affecting costs of resilience lies with the choice of the critical value 𝐹𝐹𝑧𝑧−1(1 − 𝛼𝛼). Under 
uncertainty about the form of the controlled distribution, one can purchase resilience with respect to distributional 
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 The simple case of no uncertainty in the opportunity costs of ecosystem services 209 

provision allows for a particularly convenient inversion of the probability statement and for 210 

dealing with “resilient” levels of provision. If 𝒙𝒙 is costly, the constraint will be binding and 211 

𝐸𝐸𝜀𝜀�𝑆𝑆𝑖𝑖(𝒙𝒙∗)� + 𝐹𝐹𝑧𝑧−1(1 − 𝛼𝛼)𝑉𝑉𝑎𝑎𝑎𝑎�𝑆𝑆𝑖𝑖(𝒙𝒙∗)�
0.5

= 𝑆𝑆𝑖̅𝑖 represents the 𝛼𝛼-quantile of the controlled 212 

provision distribution (also sometimes referred to as a claimable amount (Kurkalova 2005)) and 213 

𝒙𝒙∗ denotes choices leading to resilient provision. When multiple objectives are brought under the 214 

joint probabilistic constraint, such an inversion from joint probabilities to unique quantiles is no 215 

longer possible, except for the case of statistically independent objectives, where the jointly 𝛼𝛼𝑛𝑛-216 

resilient set is constructed of individual (marginal) 𝛼𝛼-resilient provision levels. Instead, 217 

combinations of individual provision levels which jointly produce the desired 𝛼𝛼-level resilience 218 

will be required. This is akin to confidence ellipses encountered in joint significance testing of 219 

regression parameters (for the introduction to the issues encountered in joint chance constraints, 220 

see Bawa (1973), Prekopa (1970), Willis and Whittlesey (1998) for an applied agricultural 221 

economics example or Hong, Yang, and Zhang (2011) for the modern operations research 222 

perspective). In short, a simple interpretation of results as producing unique “resilient” 𝑆𝑆𝑖̅𝑖, 𝑆𝑆𝑘̅𝑘 no 223 

longer applies.  224 

 Fortunately, if we ask “what is the joint resilience associated with a particular solution 𝒙𝒙 225 

and specified objectives, 𝑆𝑆̅?”, the answer, expressed as a joint probability, is easy to understand 226 

(if not necessarily compute). Namely, the probability is 𝑃𝑃(𝒙𝒙) = ∫ 𝐼𝐼[𝑆𝑆(𝒙𝒙; 𝜺𝜺) ≥ 𝑆𝑆̅]𝑑𝑑𝑑𝑑(𝜀𝜀). In some 227 

simpler cases, where a single stochastic objective is encountered, and a particular distribution for 228 

the random factor (e.g., normal) is assumed, the probability can be retrieved from existing tables. 229 

                                                           
uncertainty by relying on the Chebyschev Inequality (e.g., Gren (2010)). This, however, appears unnecessarily 
conservative for most practical applications.  



11 
 

In other cases of intermediate difficulty, in which a low-dimension economic-ecological 230 

production process may be assumed to be linear and separable (𝑆𝑆(𝒙𝒙; 𝜺𝜺) ≡ 𝒔𝒔(𝜺𝜺)′𝒙𝒙), analytical 231 

expressions can be constructed (e.g., (Kampas and White 2003). However, even for a single 232 

dimension of ecosystem service output, where the production process may take place over 𝐾𝐾 233 

locations, and where multiple actions (𝐽𝐽) are available in 𝒙𝒙, construction of (conditional on 𝒙𝒙 ) 234 

variance to arrive at the standardized ecosystem output involves estimating 𝐾𝐾𝐾𝐾(𝐾𝐾𝐾𝐾−1)
2

 terms of the 235 

variance-covariance matrix, which would account for all the spatial and action-related 236 

covariances. This is a common problem that arises in risk management, and analytical techniques 237 

such as copula estimation exist to aid researchers and decision-makers (Cherubini, Luciano, and 238 

Vecchiato, 2004).  239 

Gren (2010) considered several abatement actions and the implied abatement correlations 240 

across actions in estimating the resilience value of wetlands for nutrient reduction; however, her 241 

analysis did not incorporate spatial correlations, while Kampas and White (2003) have shown 242 

that ignoring correlations introduces larger bias in probabilistic constraints than incorrect 243 

distribution specification. Rabotyagov (2010) considered two agricultural conservation actions as 244 

well as spatial correlation for soil carbon sequestration. However, the introduction of multiple 245 

dimensions as well as distributional assumptions needed to make probability statements further 246 

complicate the issue. For instance, Kampas and Adamidis (2005) pointed out that under log-247 

normality assumption of pollution reduction from a single action, the sum of reductions does not 248 

follow the log-normal distribution as Gren, Destouni, and Tempone (2002) assumed.  249 

When, in addition, the natural science knowledge suggests that important dimensions of 250 

𝑆𝑆(𝒙𝒙; 𝜺𝜺) are nonlinear and nonseparable (e.g., examples provided in Carpenter et al. 2015), 251 

obtaining analytical expressions for the overall resilience value becomes much more difficult. 252 
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However, as in simulation-aided econometric estimation, simulation approximation to the 253 

probability or other expected functions of interest such as the mean or the variance remains 254 

available. One issue that arises in this context is computational cost associated with evaluating 255 

𝑆𝑆(𝒙𝒙; 𝜺𝜺) many times. For example, we could build the objective of resilience directly into the 256 

multiobjective tradeoff analysis (see Rabotyagov, Jha, and Campbell 2010) but instead we 257 

choose to opt to formulate the objectives in terms of means and standard deviations.  Resilience 258 

is a property associated with a particular choice of actions to affect the provision of a vector of 259 

desirable outputs. Basic theory and empirical work to date suggest that resilience is costly. 260 

Resilience of the type we study is closely related to the variance in the desired output. To explore 261 

the potential tradeoffs among cost and proxies for aquatic ecosystem services, as well as evaluate 262 

potential synergies or tradeoffs associated with resilience, we choose to simultaneously optimize 263 

for the cost of economic inputs, and the mean and the variance of non-market ecosystem outputs. 264 

Further, we use bootstrap methods for a computationally fast way to provide resilience 265 

assessment of the optimized solutions.  266 

Tradeoff Development  267 

An efficient tradeoff frontier in the production of ecosystem services emerges when all 268 

Pareto-improvements have been exhausted: no single objective can be improved upon without 269 

sacrifice in terms of other objective(s). Some of the objectives may be formulated as resilience 270 

objectives. The classic example is tracing out the efficient mean-variance frontier of a stock 271 

portfolio. For multiple objectives when the economic-ecological production function can be 272 

explicitly written exact multiobjective optimization can generate tradeoffs across different 273 

ecosystem services (see Polasky et al. (2008) and Toth and McDill (2009)). In the case that 274 
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𝑆𝑆(𝒙𝒙; 𝜺𝜺) function is cannot be written in a compact mathematical form but is represented by a 275 

computer simulation program, simulation-optimization methods can be used.   276 

Multiobjective evolutionary algorithms are capable of dealing with potential non-convexities 277 

in optimization and can use simulation model output to (approximately) develop multiple-278 

objective Pareto-efficient sets in a single optimization run.  Deb (2001) is the classic introduction 279 

to evolutionary algorithms. Nicklow et al. (2010) and Maier et al. (2015) discuss some recent 280 

applications focused on water resources, and Kennedy et al (2008) and Porto et al (2014) provide 281 

terrestrial ecosystem management examples. Herman et al. (2014) explore tradeoff generation 282 

under deep uncertainty. Recent examples for tradeoff development using multiobjective 283 

evolutionary algorithms in agriculturally dominated ecosystems include Gramig et al. (2013), 284 

Bostian et al. (2015), Ahmadi et al. (2013), Rabotyagov et al. (2014) and Chichakly et al. (2013) 285 

who incorporate measures of resilience to anticipated climate change. 286 

We consider a model of joint economic-ecological production process, where the human 287 

actions considered are “working land” agricultural conservation practices largely consistent with 288 

the prevailing crop system and “land retirement” of establishing perennial grass cover on 289 

cropland. These actions represent economic inputs into the production of (proxies for) freshwater 290 

and coastal aquatic ecosystem services associated with reducing nutrient fluxes, namely ambient 291 

Nitrogen (N) and Phosphorus (P) loads.  292 

Scientific consensus exists on the fact that human activity has altered both the nitrogen 293 

and phosphorus cycles (Millenium Ecosystem Assessment, 2005, Ch. 12), with some beneficial 294 

(increased crop production), and some deleterious (eutrophication) effects on ecosystem services. 295 

The exact targets for nutrient loads and concentrations are an active area of research and 296 

policymaking (Evans-White et al., (2013), Heiskary and Bouchard (2015), US EPA, 2015 297 

http://cfpub.epa.gov/wqsits/nnc-development/ ) but it is well understood that excess nutrient 298 

http://cfpub.epa.gov/wqsits/nnc-development/
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loads negatively impact many ecosystem services from freshwater systems. We take as a starting 299 

point that it is desirable to reduce N and P and elucidate the tradeoffs involved in controlling the 300 

mean and standard deviation of nutrient pollution. 301 

Conceptual Model   302 

 Our notation is similar to the notation used by Rabotyagov, Valcu, and Kling (2014). 303 

There are 𝐾𝐾 decision-making units (“fields”) in the watershed, each field being characterized by 304 

a unique combination of physical characteristics (soil, slope) and location in the watershed. The 305 

ambient water quality is monitored both in stream and at the outlet of the watershed. Let 𝑟𝑟𝑖𝑖 =306 

𝑟𝑟𝑖𝑖(𝐱𝐱𝐢𝐢, 𝜉𝜉) ∀ 𝑖𝑖 = 1, … ,𝐾𝐾 be the 𝑖𝑖𝑡𝑡ℎ field emissions given the actions taken at field level, where 𝐱𝐱𝑖𝑖 307 

represents the 𝐽𝐽 × 1 vector of actions implemented at each field, and 𝜉𝜉 represents the stochastic 308 

weather factor. The set of actions consists of baseline activity and a set of working land 309 

conservation practices and land retirement.    310 

To connect farm-level conservation actions to outcomes of interest, we need a specific 311 

version of the ecological production function. In our application, this function is represented by a 312 

water quality production function, W(𝐫𝐫(𝐱𝐱, 𝛏𝛏)) that is the result of the complex spatial interactions 313 

between the edge-of-field emissions leaving the fields, and which is represented by an 314 

ecohydrologic simulation model.8 Given the stochastic nature of the weather factor, we are 315 

interested in finding the least-cost spatial combinations 𝐱𝐱 that reduce expected values of nutrient 316 

pollution as well as its standard deviation. Using optimization results, we construct a measure of 317 

                                                           
8 As Lichtenberg (2002) explains: “… there is not a simple monotonic relationship between emissions at the level of 
an individual field and impacts on environmental quality at the ambient scale with which policy is actually 
concerned. Fate and transport are typically non-linear and depend on space and time in complex ways, making 
extrapolation of field-level emissions to ambient pollutant concentrations quite complex”. We refer the reader to 
Lichtenberg (2013), Shortle and Horan (2013) for reviews of these and other issues associated with nonpoint source 
pollution from agriculture, as well as to Rabotyagov et al (2014) for an attempt to simplify the ‘ecological 
production’ process. Uncertainty in the model structure itself is not considered in this article, although we recognize 
this as likely important for both better science and policy-relevance (see Herman et al. 2014). 
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resilience defined as the probability of achieving a particular target, and analyze the tradeoff 318 

between costs and different levels of resilience. We start by considering the case of a single 319 

nutrient pollutant (a proxy for diminished aquatic ecosystem services upstream and downstream) 320 

and then move to the case of two pollutants. 321 

A single pollutant case 322 

We begin by solving the multi-objective problem that simultaneously minimizes 323 

 𝑀𝑀𝑖𝑖𝑖𝑖𝐱𝐱 [ 𝐶𝐶(𝐱𝐱 ), 𝐸𝐸𝑇𝑇[𝑁𝑁(𝐱𝐱 )] ,𝑉𝑉𝑉𝑉𝑟𝑟[𝑁𝑁(𝐱𝐱)]0.5]                                                                                 (1) 324 

where 𝐱𝐱 represents a 𝐾𝐾𝐾𝐾 × 1 vector representing a particular placement of conservation practices, 325 

W�𝐫𝐫(𝐱𝐱, 𝛏𝛏)� ≡  𝑁𝑁(𝐱𝐱) represents the simulated, over simulation period of length 𝑇𝑇, vector of 326 

annual nitrogen loads,  𝐸𝐸𝑇𝑇[𝑁𝑁(𝐱𝐱 )]  is the mean nitrogen loads over the historical simulation 327 

period,  𝑉𝑉𝑉𝑉𝑟𝑟[𝑁𝑁(𝐱𝐱)]0.5  is the standard deviation, and 𝐶𝐶(𝐱𝐱 ) is the (deterministic) estimated cost of 328 

that particular combinations of conservation investments (economic inputs into aquatic 329 

ecosystem service production) in the watershed. 330 

The solution vector 𝐱𝐱∗ defines the Pareto-efficient set (𝑃𝑃𝑓𝑓), where each element is 331 

represented by a unique combination of cost, expected nutrient load and the standard deviation of 332 

loads: 333 

 𝑃𝑃𝑓𝑓(𝐱𝐱∗) = �𝐶𝐶(𝐱𝐱∗),𝐸𝐸𝑇𝑇[𝑁𝑁(𝐱𝐱∗)] ,𝑉𝑉𝑉𝑉𝑟𝑟[𝑁𝑁(𝐱𝐱∗)]0.5  �∄ 𝐱𝐱 ≠ 𝐱𝐱∗,𝑃𝑃𝑓𝑓(𝐱𝐱) ≻ 𝑃𝑃𝑓𝑓(𝐱𝐱∗) �                              (2) 334 

That is, a pattern of conservation investments defines the Pareto-efficient frontier if there is no 335 

other conservation action pattern which is a Pareto-improvement (≻) in the cost-mean-standard 336 

deviation space. The Pareto-efficient frontier defines the set of optimal tradeoffs; for example, 337 

the lower envelope of the set with respect to mean N and conservation action costs gives the 338 

equivalent of the total abatement cost curve for expected nutrient pollution. It also offers 339 
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valuable information on the possible mean-variance tradeoffs, where, for a given cost, a tradeoff 340 

between expected ecosystem service performance and its standard deviation could be seen. 341 

However, we cannot directly infer how much would it cost to achieve a particular level of 342 

nitrogen loads under different levels of resilience, where by resilience, we understand the 343 

probability of achieving that target in any given year. However, for the single stochastic 344 

objective, it is straightforward to “collapse” the three-dimensional Pareto-frontier into a set of 345 

“resilient tradeoffs” between cost and resilient provision of an ecosystem service. Doing so 346 

involves appropriately constructing the deterministic equivalent to the resilience objective using 347 

the mean, standard deviation, and the critical value of the controlled distribution of the stochastic 348 

objective.  349 

Finding resilient solutions involves solving a chance- constrained optimization problem: 350 

𝑀𝑀𝑖𝑖𝑖𝑖𝐱𝐱 𝐶𝐶(𝐱𝐱 )  𝑠𝑠. 𝑡𝑡.  Pr {Nt(𝐱𝐱) ≤ 𝑁𝑁} ≥ 𝛼𝛼   ∀𝑡𝑡 = 1, … ,𝑇𝑇                                                                  (3)                                          351 

where 𝑁𝑁 is the target level of N loads, and 𝛼𝛼 the desired level of resilience measured as the 352 

probability of achieving the target.   353 

We use the Pareto-frontier 𝑃𝑃𝑓𝑓(𝐱𝐱∗) and employ two approaches to approximate solutions 354 

to the above problem, approaches that we identify as “normal” and “non-parametric”.  Under 355 

both approaches, we transform equation (3) using its deterministic counterpart as: 356 

𝑀𝑀𝑖𝑖𝑖𝑖𝐱𝐱 𝐶𝐶(𝐱𝐱 ) 𝑠𝑠. 𝑡𝑡.   𝐸𝐸𝑇𝑇 {N(𝐱𝐱)} + 𝜙𝜙𝛼𝛼𝑉𝑉𝑉𝑉𝑟𝑟(𝑁𝑁(𝐱𝐱))𝑇𝑇0.5 ≤  𝑁𝑁                                                               (4) 357 

where  𝜙𝜙𝛼𝛼 is the critical value of the standardized distribution of 𝑁𝑁(𝐱𝐱).  358 

Note that a solution to the chance-constrained problem (3) must be a member of the 359 

Pareto frontier in the cost-mean-standard deviation space: 𝐱𝐱� ⊂ 𝐱𝐱∗. The converse is not true: that 360 

is, a particular solution from a multiobjective optimization program need not be optimal for a 361 
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chance-constraint program. Appendix 1 in supplemental materials provides the demonstration of 362 

this point. 363 

Under the normal approach, we assume the standardized distribution of pollution load 364 

follows a normal distribution and use 𝜙𝜙𝛼𝛼 = Φ−1(𝛼𝛼), the standard normal critical value that 365 

depends on 𝛼𝛼 (1.64 for 𝛼𝛼 = 0.95). Under the normality assumption, we consider 𝛼𝛼 −366 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 pollution loads to be 𝐸𝐸𝑇𝑇 {N(𝐱𝐱�)} + Φ−1(𝛼𝛼)𝑉𝑉𝑉𝑉𝑟𝑟(𝑁𝑁(𝐱𝐱�))𝑇𝑇0.5 and can focus on the results 367 

in terms of tradeoffs between cost and resilient nitrogen loads.  368 

Non-parametric approach 369 

An alternative approach is to employ non-parametric bootstrap methods (Efron (1979)), 370 

and define the resilience pollution loads in terms of the bootstrapped quantiles. Since our data 371 

(nitrogen loads simulated over a period of time) is serially dependent, we employ the block 372 

stationary bootstrap method (Politis and Romano (1992), (1994)). Under this approach, 373 

observations are re-sampled in blocks of random length, with the length of the block being 374 

determined by a geometric distribution. The block re-sampling (observations are drawn 375 

consecutively) preserves the lag dependence in the original data. The bootstrapped data is 376 

stationary if the block length is determined using a geometric distribution. Additionally, the 377 

block bootstrap works well under very weak conditions on the dependency structure of the 378 

original data. 379 

For any efficient combination of conservation practices (𝐱𝐱∗) that is part of the Pareto 380 

frontier 𝑃𝑃𝑓𝑓(𝐱𝐱∗), we take the model-simulated 𝑇𝑇 × 1 vector of nitrogen values 𝑁𝑁(𝐱𝐱∗) to construct 381 

a non-parametric distribution using a stationary bootstrapping approach using blocks of unequal 382 

length. To obtain tradeoffs involving 𝛼𝛼 − 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 nitrogen loads, we compute, for each 383 

bootstrap replicate series, the sample 𝛼𝛼-quantile and average the results over many bootstrap 384 
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replications.  The interpretation of the new 𝛼𝛼 − 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 Pareto frontier is similar to the 385 

previous one, each solution representing a non-dominated combination of cost and 𝛼𝛼 − 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 386 

nitrogen loads that correspond to a given level of resilience, 𝛼𝛼. The magnitude of the differences 387 

between the normal and non-parametric approaches is an empirical question. 388 

Multiple pollutants: A case of nitrogen and phosphorus 389 

We also consider developing tradeoffs which involve the means and the variances of 390 

multiple ecological objectives. In this case, we modify the multiobjective minimization problem 391 

to include the means and standard deviations of two nutrient pollutants, nitrogen and 392 

phosphorus:9 393 

 𝑀𝑀𝑖𝑖𝑖𝑖𝐱𝐱 [ 𝐶𝐶(𝐱𝐱 ), 𝐸𝐸𝑇𝑇[𝑁𝑁(𝐱𝐱 )] ,𝑉𝑉𝑉𝑉𝑟𝑟[𝑁𝑁(𝐱𝐱)]0.5,𝐸𝐸𝑇𝑇[𝑃𝑃(𝐱𝐱 )] ,𝑉𝑉𝑉𝑉𝑟𝑟[𝑃𝑃(𝐱𝐱)]0.5]                                          (5) 394 

where 𝐱𝐱 represents a particular placement of conservation practices, 𝑁𝑁(𝐱𝐱 ), 𝑃𝑃(𝐱𝐱 ), the vectors of 395 

nitrogen and phosphorus loads of length T,  𝐸𝐸[. ] is the expected water quality outcome measured 396 

as (historical) sample mean of nitrogen and phosphorus, 𝑉𝑉𝑉𝑉𝑟𝑟[𝑁𝑁(𝐱𝐱)]0.5  and 𝑉𝑉𝑉𝑉𝑟𝑟[𝑃𝑃(𝐱𝐱)]0.5 are 397 

respective standard deviations, and 𝐶𝐶(𝐱𝐱 )is the estimated annual cost of the particular 398 

combination of conservation investments in the watershed. 399 

Similarly to the univariate case, the solution is represented by a Pareto set, 𝑃𝑃𝑓𝑓𝑁𝑁𝑁𝑁, where 400 

each element represent a non-dominant combination of cost, mean and standard deviation values 401 

for nitrogen and phosphorus emissions associated with a spatial combination of conservation 402 

practices. As discussed above, it is more intuitive to consider actual tradeoffs between mean and 403 

                                                           
9 If the objective were to be specified as minimizing the variance, for example, the sum, or a linear index of two 
nutrients, the covariance term would enter into problem specification. Alternatively, the resilience objective 
specified as a joint probability could be simulated within the optimization loop (as in Poojari and Varghese (2008)). 
We leave those extensions to future work.  
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variance control or to characterize a particular solution in terms of a probability (resilience value) 404 

of meeting a specified target.  405 

In order to characterize joint resilience implied by the solutions in the Pareto-frontier, we 406 

rely on the nonparametric bootstrap, now using two dimensions. Resilience is defined as the joint 407 

simulated probability of achieving both N and P targets. Similarly to the univariate stationary 408 

bootstrapping, we use the vectors of simulated nitrogen and phosphorus loads to generate 409 

bootstrap replicates using blocks of unequal length. The stationary bootstrapping procedure 410 

involves using both vectors simultaneously, thus preserving the correlation between controlled 411 

loads of N and P. That is, given a particular joint target (𝑁𝑁�,𝑃𝑃�), we can construct characterize the 412 

tradeoff frontier in terms of cost, mean nitrogen, mean phosphorus and simulated joint resilience 413 

of achieving the specified target. The resilience level is estimated as the simulated probability, 414 

𝑝𝑝(𝐱𝐱𝒊𝒊): 415 

𝑝𝑝(𝐱𝐱𝒊𝒊) = ∑ {∑ 𝐼𝐼(𝑁𝑁(𝐱𝐱)𝑟𝑟𝑟𝑟 ≤ 𝑁𝑁�𝑇𝑇
𝑡𝑡=1 ,𝑃𝑃(𝐱𝐱)𝑟𝑟𝑟𝑟 ≤ 𝑃𝑃�)/𝑇𝑇}𝑀𝑀

𝑟𝑟=1 /𝑀𝑀                                                            (6) 416 

where T is the length of the model simulation, 𝐱𝐱𝒊𝒊 is the particular pattern of conservation 417 

investments evaluated and M is the number of bootstrap repetitions.  418 

   To approximate the solution sets for the multiobjective problems (1) and (5), we use a 419 

simulation-optimization framework using Soil and Water Assessment Tool (SWAT) as the 420 

simulation model and a modification of the Strength Pareto Evolutionary Algorithm 2 (SPEA2) 421 

(Zitzler, Laumans, and Thiele, 2002) as the multiobjective optimization heuristic, as described by 422 

Rabotyagov et al. (2010). The simulation-optimization framework simultaneously minimizes the 423 

cost, the 20-year means (𝑇𝑇 = 20) and standard deviations of annual N for the single pollutant 424 
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case and N and P loads for the two pollutant case.10 The solutions are sets of Pareto-425 

nondominated watershed configurations 𝑃𝑃𝑓𝑓 and 𝑃𝑃𝑓𝑓𝑁𝑁𝑁𝑁. To assess convergence, we use a 426 

consolidation ratio proposed by Goel and Stander (2010) and used by Rabotyagov et al. (2014). 427 

  SWAT is designed to run watershed simulations based on a wide range of inputs: weather 428 

data, soil characteristic, plant growth and crop rotations, nutrient management, nutrient transport 429 

and transformation, land use and management practices. The model can be used to estimate the 430 

changes in nutrient emission in response to the land changes associated with alternative 431 

conservation practice, crop choices, and rotation alternatives. The model was developed by the 432 

U.S Department of Agriculture and has been used in a wide range of applications (Arnold et al. 433 

(1998); Arnold and Fohrer (2005); and Gassman et al. (2008)). 434 

 435 

Empirical Application: The Boone River Watershed 436 

Our empirical results focus on The Boone River Watershed (BRW). The BRW is a 437 

typical agricultural watershed in central Iowa with more than 90% of its area dedicated to corn 438 

and soybean production. The watershed’s tributaries offer habitat to the Topeka shiner, a 439 

federally listed endangered species, and to other fish and mussel species. Additionally, the 440 

watershed tributaries feed the Des Moines River, a major water source for the biggest 441 

metropolitan area in Iowa. The lower part of the watershed is used for recreation activities.  442 

Given the extent of the agricultural activities, high levels of agriculture-contributed 443 

nitrogen, phosphorus and sediment loads contribute to the water quality impairments.  A 444 

                                                           
10 The resulting relatively small sample size used to construct the model-simulated mean and the standard 
deviation is one of the limitations of the study, and can introduce imprecision in resilience estimates. To the extent 
that mean and standard deviation estimates are not biased, we try to improve precision by bootstrapping 
optimized series.  
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successful calibration for the current Boone River Watershed SWAT baseline was obtained by 445 

using monthly streamflow nutrient data and incorporating earlier calibration efforts (Gassman, 446 

(2008)).11  The set of conservation practices selected for achieving the nutrient reduction 447 

includes working land practices: cover crop, no-till, the combination of cover crops and no-till, 448 

and land retirement. Typically, cover crops are grown during late fall and early spring. In the 449 

Midwest, where there are no markets for cover crops, cover crops are promoted for their direct 450 

environmental benefits (recycle nutrient and prevent nutrients leaching) and indirect economic 451 

benefits (improve soil health by preventing soil erosion). Cover crops are effective in reducing 452 

both nitrogen and phosphorus losses. No-till is a type of tillage where no more than 30% of the 453 

crop residue is removed. No-till is effective in reducing erosion and phosphorus runoff. Land 454 

retirement involves taking land out of production and the establishment of perennial grasses. 455 

The costs estimates for conservation practices used in this study are drawn from several 456 

sources: no-till at $6 per acre (Iowa State Extension budgets), cover crops at $35 per acre (Iowa 457 

Nutrient Reduction Strategy), $41 per acre for the combination of no-till and cover crops, and 458 

$254 per acre, the average cash rental rate for the BRW (Iowa State Extension cash rental rates 459 

estimates) as the cost of land retirement. The cost of conservation practices is additional to the 460 

cost of baseline activities, considered to be zero in this application. 461 

Results and discussion 462 

The simulation framework allows us to evaluate counterfactual watershed-based 463 

scenarios in terms of estimated costs of conservation practices and their implications for mean 464 

                                                           
11 The present SWAT simulations are being performed with an updated SWAT version 2012 code (SWAT2012, 
Release 6150 that contains corrected algorithms that more correctly simulate movement of nitrate through 
subsurface tile lines as well as numerous other enhancements that were not present in the SWAT2005 code. 
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and variance of corresponding nutrient loads over a 20-year period (1993-2013). We estimate the 465 

Pareto- efficient  frontiers for a single pollutant (N) and multiple pollutants (N and P). We offer a 466 

short analysis of the mean-variance tradeoffs and how these tradeoffs relate to the choice of the 467 

conservation actions. Next, we analyze the trade-offs between achieving a pollution target with a 468 

given resilience level and the estimated cost of conservation actions. The set of resilience values 469 

(𝛼𝛼) ranges from 50 percent to 95 percent in increments of 5 percent, as well as 99 percent. 470 

Nutrient pollution targets are chosen to be equivalent to a range of percent reductions from the 471 

historical baseline emissions. 472 

Single pollutant case: Nitrogen, Mean-Variance Tradeoffs 473 

The results of the multi-objective optimization defined by equation (1) can be visually depicted 474 

by a three dimensional scatterplot ( 𝑃𝑃𝑓𝑓), where each point on the frontier represents the least cost 475 

watershed configuration that achieves a given expected value of N loads and has the lowest 476 

standard deviation (see Figure A2 in the supplementary material).  Figure 1 depicts the extent of 477 

the mean-variance tradeoffs from the frontier. Specifically 1(a) shows a fairly linear positive 478 

relationship between the mean and the standard deviation of N loads, as standard deviations 479 

increase with the means. Additionally, the analysis of mean-coefficient of variation (ratio of 480 

standard deviation to the mean) plot (Figure 1(b)) shows three patterns: a steep increasing trend 481 

for the low range nitrogen emissions (below three thousand tons) where the standard deviation 482 

increases at a faster rate than the mean, followed by a smoother declining pattern where the 483 

standard deviation increases at a slower rate than the mean. For larger loads (above 4.5 thousand 484 

tons), the ratio of standard deviation to mean settles around 0.5. These patterns can be explained 485 

by the distribution of the conservation practices selected by the algorithm (see supplementary 486 

material  Figure A3).  487 
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Next, we quantify the cost to achieve a particular level of nitrogen loads under different 488 

levels of resilience. More explicitly, for any level of resilience 𝛼𝛼, we construct resilient Pareto 489 

frontiers, where each Pareto frontier can be viewed as the total cost curve where the 490 

corresponding nitrogen emissions are achieved with probability 𝛼𝛼. As previously described, we 491 

use two approaches (normal and non-parametric) to construct the resilient Pareto frontiers that 492 

corresponds to different resilience levels. The “normal” approach assumes that the standard 493 

normal critical values are used to weigh the standard deviations, while the non-parametric 494 

approach uses stationary bootstrap to simulate the quantiles. Simulated nutrient load series pass 495 

stationarity tests, and we use 10,000 bootstrap replications with mean block length of 5. The new 496 

Pareto frontiers transform the mean nitrogen values of the original Pareto frontier into 𝛼𝛼 resilient 497 

levels while keeping the costs and the watershed configurations unchanged. 498 

Figures 2 depicts the 𝛼𝛼 resilient Pareto frontiers for four levels of resilience: median (50), 499 

75, 90, and 99 given the two approaches, as well as the mean-cost tradeoff. The horizontal axis 500 

depicts the resilient loads, and the vertical axis shows annual costs. Notice that under the normal 501 

approach (left panel), the corresponding levels of resilience for mean and median are identical, 502 

while under the non-parametric approach the two tradeoff frontiers are different, the 503 

bootstrapped mean curve being entirely above the median (right panel). Under the both 504 

approaches, the Pareto frontiers move further away from the left corner as the resilience levels 505 

increase. For any cost level (consider a horizontal line), the resilient level of N loads increases as 506 

we move from one frontier to another. This shows us how much resilience can be achieved under 507 

a given budget. Likewise, for any level of resilient N loads, the cost increases as we move from 508 

one frontier to another.  The distance between two consecutive frontiers represents how much it 509 

would cost to make the same level of N load more resilient. (Pairwise comparisons between the 510 

two distributions are provided in the supplementary material).  511 
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Each cost-resilient curve corresponds to a resilient N target expressed as a percentage 512 

reduction from the baseline. As expected, more stringent targets (higher percentage reductions, 513 

lower loads) cost more and the costs of achieving a given target increases with the resilience 514 

level. For less stringent targets, the costs-resilience curves are convex, with a non-convexity 515 

patterns for more stringent targets. For example, when the target is set to 70 percent reductions, 516 

the cost is flat once a high level of resilience (80) is achieved.  517 

Resilience-Marginal Cost Curves 518 

Another way to analyze the resilience-cost trade-off is to answer the question how much would it 519 

cost to achieve an additional level of resilience. We focus our analysis on three levels of 520 

reductions: low (20 percent), average (the Iowa Nutrient Reduction Strategy 45 percent), and 521 

high (70 percent reductions).  For each of the three targets, Figure 3 summarizes the cost curves 522 

for securing the targets at an additional resilience level. These curves can be interpreted as the 523 

marginal cost of resilience. Although the marginal cost curves have a similar shape, their 524 

magnitudes differ across the two approaches. The marginal cost curve when the target is low (20 525 

percent reductions) is almost flat for resilience levels lower than 80. However, for higher 526 

resilience, the marginal costs display a sharp increase, with the increase being sharper under 527 

normal approach. The marginal cost curve for the intermediate target displays more than one 528 

pattern. Under the normal approach, marginal costs are increasing for lower resilience, linear for 529 

moderate resilience, and again increasing for higher resilience levels.  However, the patterns are 530 

different under the non-parametric approach: linear for lower levels, increasing for moderate 531 

levels, decreasing and linear for higher levels of resilience. The marginal costs for the most 532 

stringent target are increasing for lower levels, decreasing for moderate levels, and linear for 533 

higher resilience level. The diversity of patterns across targets and resilience levels can be 534 
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explained by the distribution of the conservation practices (these are provided in Table A1 of 535 

supplementary materials). The costs of achieving resilient loads corresponding to 45 percent 536 

reductions (3.39 thousand tons) range from 13 to 87 million over the considered resilience levels. 537 

Similarly to McSweeny and Shortle (1990), we find that to control a single-year N load with 99 538 

percent resilience is almost 7 times costlier than controlling N with median resilience  539 

Resilient N loads for different cost (budget) levels 540 

The 𝛼𝛼 resilient Pareto frontiers can also provide insight into the different load levels that can be 541 

secured under different levels of resilience when we impose a limit on total costs (iso-cost 542 

curves).  Figure 4 can be used to see how much resilience can be obtained under a given budget. 543 

Next, we present the results for four cost (budget) levels: 10, 20, 50, and 100 million. For each 544 

budget level, we construct iso-cost curves showing the tradeoffs between resilience and different 545 

levels of attainable loads.  546 

Figure 4 shows that the iso-costs are convex shaped, showing that when considering cost 547 

constant, higher levels of resilience translate in higher levels of emissions, or alternatively lower 548 

emission level have lower resilience levels. The empirical findings also show that the size of 549 

these tradeoffs decrease as the total costs increase, as the iso-cost curves corresponding to lower 550 

total cost have steeper slopes. For any of the chosen cost and any resilience levels, fewer 551 

emissions (more reductions) can be claimed under the non-parametric approach (Figure 4 right 552 

vs. left panel). Also, the slopes of the non-parametric iso-cost curves are smoother. 553 

Multiple targets: nitrogen and phosphorus 554 

Next, we present the simulation results for the case when two pollutants (N and P) are jointly 555 

targeted. We approximate the Pareto-frontier for 5 objectives: cost and means and standard 556 
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deviations of N and P. Pareto-frontier we obtain is valuable in that can show the nature of 557 

tradeoffs along different values of N and P as well as corresponding variability and cost.  558 

 Visualizing tradeoffs across more than two dimensions is challenging, and pairwise 559 

projections of the Pareto-frontier could be most helpful to see a particular scope of synergies or 560 

tradeoffs. Visualizing across 5 dimensions is possible; however, interpretation can be 561 

challenging. To aid this process, we present a radar (spider) plot in all 5 dimensions. Specific 562 

solutions of interest (a few at a time) can be analyzed as well.  Consider the left panel of Figure 563 

5, and the mean N (mean P) and Cost axes. The non-convex shape of the plot between those axes 564 

says that there are no solutions in the Pareto-frontier which simultaneously have high cost and 565 

high mean N (and P) loads (and compensating for those with smaller values on other axes). This 566 

suggests a strong tradeoff existing between mean nutrient loads and cost. A convex shape with 567 

respect to other axes does not mean that tradeoffs do not exist among the remaining pairs of 568 

objectives, but that there exist efficient solutions which exhibit synergies (co-movement) along 569 

those dimensions. For example, as we see subsequently (Figure 6), tradeoffs between N and P 570 

control exist, but synergies are also present (pairwise comparison of mean N and P on the right 571 

panel of figure 5). A presence of at least some synergies is also apparent by considering pairwise 572 

tradeoffs between means and standard deviations (consistent with a limited nature of mean-573 

variance tradeoff for N explored above). Whereas, as can be seen from the nature of the tradeoffs 574 

between costs and standard deviations (shown on the right panel of Figure 5 for the case of 575 

standard deviation of P—N results are similar), there are no synergies between cost and risk, and 576 

we see strong tradeoffs consistent with the notion that resilience is always costly. However, we 577 

do not see strong tradeoffs between means or standard deviations of nutrient reduction 578 

objectives. Of course, this finding may not generalize to other contexts.   579 
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Next, we make the connection to resilience. Note that, unlike in a single stochastic 580 

objective case, we can no longer claim that a solution to a chance-constrained formulation has to 581 

be a member of the Pareto-frontier. For the case of separate resilience objectives, where each 582 

pollutant has be controlled in a resilient fashion that is still the case (using the same logic as 583 

above). That is, single pollutant resilient levels can be obtained in exactly the same way we 584 

proceeded above with N. Because of that reason, we do not present single-pollutant resilience 585 

tradeoffs.  586 

However, if one is interested in the joint constraint of the type: Pr{Nt(𝐱𝐱) ≤ 𝑁𝑁,𝑃𝑃𝑡𝑡(𝐱𝐱) ≤587 

𝑃𝑃} ≥ 𝛼𝛼   ∀𝑡𝑡 = 1, … ,𝑇𝑇 , we cannot be assured of joint resilience optimality of solutions obtained 588 

by the multiobjective program, as the algorithm does not directly simulate joint probability 589 

which is a function of variances and the covariance between N and P.  To assume cost-joint 590 

resilience efficiency for specific 𝑁𝑁 and 𝑃𝑃 targets, one could formulate a two-objective 591 

evolutionary optimization program involving cost and simulated probability of joint goal 592 

attainment (akin to Poojari and Varghese (2008) or Rabotyagov, Jha, and Campbell (2010)). 593 

Despite the possibility that the solutions in the Pareto frontier may not be optimally resilient for 594 

joint nutrient targets, we can still provide ex-post assessment of the solutions in terms of joint 595 

resilience. To do so, we again rely on (now joint) non-parametric bootstrap approach, using 596 

10,000 replicates and computing the simulated resilience using (6).  597 

A three dimension illustration of these tradeoffs when the targets are set equal to 45 598 

percent reductions for both N and P (equation 9) is presented in the supplemental material 599 

(Figure A6).  Each element on this frontier (a 3-dimensional projection of the 5-dimensional 600 

Pareto-frontier 𝑃𝑃𝑓𝑓𝑁𝑁𝑁𝑁) is assessed for a resilience (probability) level of achieving this joint target. 601 

As for the single pollutant case: securing higher level of resilience demands higher costs. We 602 
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present the lower envelopes of the plot in Figure 6.  Figure 7 depicts the marginal costs of 603 

achieving additional levels of resilience for the three specified targets, while Table A2 (contained 604 

in supplementary details) describes in detail the total and marginal costs as well as the 605 

distribution of conservation practices. For example, the least cost way to achieve 45 percent 606 

reductions with 70 percent resilience is higher than the least cost to achieve the same level of 607 

reductions with 75 percent resilience (Figure 6). The negative marginal costs are unexpected but 608 

we interpret them as the inefficiencies embedded in the spikes, and, should one focus on a 609 

specific set of N and P reductions with a resilience objective, we expect those to disappear. With 610 

those caveats in mind, we provide a broad assessment of joint resilience implied by the 5-611 

dimensional Pareto-frontier.  612 

Overall, the costs of achieving the joint target are higher than in the case of a single 613 

pollutant and range from 22.3 to 107.4 million. This is to be expected as a joint probability is 614 

going to be smaller than a marginal one. The distribution of the conservation practice is different, 615 

with more land retirement being used more extensively at any resilience level. The spatial 616 

placement of the conservation practices associated with these solutions is provided in the 617 

supplemental materials.  618 

Conclusions and caveats 619 

Many ecosystem services are rival and important tradeoffs exist in their production 620 

process. Understanding the nature of these tradeoffs requires: (a)defining a quantifiable measure 621 

of the underlying ecosystem production process and of the economic inputs that go into this 622 

productions functions, and (b) exploring alternative resource allocation decisions to identify, if 623 

only approximately, Pareto-efficient ways of producing different ecosystem services. 624 

Uncertainty in the provision of a particular ecosystem service adds another dimension to the 625 
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nature of these tradeoffs, where different ecosystem services differ both in terms of the expected 626 

outcomes and in terms of risks. Closely related to uncertainty is the notion of resilience, and the 627 

cost of providing the ecosystem service under different levels of desired resilience. 628 

We focus on understanding and quantifying the tradeoffs for the case of proxies for 629 

aquatic ecosystem services in the landscapes dominated by agricultural activity. Particularly, we 630 

focus on controlling the flux of agricultural nutrients (N and P) as means to improve the 631 

upstream and downstream water quality. Economic inputs into water quality production are a set 632 

of conservation practices that can be implemented on agricultural landscapes for controlling the 633 

flux of nutrients, while the (intermediate) ecological production function is an ecohydrologic 634 

simulation model relating human actions to changes in nutrient loads.  By integrating a heuristic 635 

global optimization with a ecohydrologic model we meet the conditions of having science-based 636 

representation of the water quality production function (Wt(𝐫𝐫(𝐱𝐱, 𝛏𝛏𝐭𝐭)) and its dependence on the 637 

exogenous stochastic weather factors and of having the ability to produce an approximate Pareto-638 

frontier that accounts for multiple tradeoff dimensions.  639 

We quantify the tradeoffs involved in achieving different levels of nutrient loads with 640 

different levels of resilience where resilience is defined as the probability of attaining the desired 641 

level of nutrient load. We spatially optimize the selection of least-cost patterns of agricultural 642 

conservation practices or both the expected performance of the conservation actions and its 643 

variance. We analyze the tradeoffs for a single nutrient (ecosystem service), and then expand our 644 

analysis to include multiple nutrients (multiple ecosystem services). 645 

We apply our modeling framework to the Boone River Watershed in Iowa. The empirical 646 

results confirm expectations and are consistent with previous studies: securing nutrient loads 647 

with higher level of resilience is costly. However, the marginal cost is not necessarily increasing: 648 
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that is, focusing on larger nutrient reductions allows one to obtain resilience at a smaller 649 

additional cost than if one is seeking only modest nutrient reductions. In our application, this is 650 

due to the ability of perennial grassland to buffer against exogenous shocks and to drastically 651 

reduce variability in nutrient loads (as shown before, e.g., in Rabotyagov, Jha, and Campbell 652 

2010). Furthermore, the main tradeoff dimension is between cost of conservation investments 653 

and ecosystem service objectives, as opposed to pronounced mean-variance tradeoffs or strong 654 

tradeoffs between the two nutrient objectives. While some meaningful tradeoffs exist between 655 

nutrient objectives, our findings highlight the presence of relative synergies in agricultural 656 

conservation investments aimed at nutrient reductions. However, while relative synergies exist, 657 

controlling risk of nutrient loads has high opportunity costs, and resilience comes at a significant 658 

premium.12  659 

Among many caveats, we point out that our optimization algorithm was not exactly 660 

tailored to the optimal joint resilience question, but instead focused on providing an overall 661 

picture of feasible tradeoffs. Additional limitations associated with uncertainty in model 662 

structure, the simplicity of economic cost representation, and the level of spatial resolution of the 663 

ecohydrologic model present ample opportunities for future research. However, we hope to show 664 

the utility and the promise of the general approach which integrates scientific understanding of 665 

complex systems with the practical need to see how production of non-market ecosystem 666 

services can be accomplished at the lowest possible sacrifice of economic inputs.  667 

 668 

                                                           
12 We note recent research by Carpenter et al. (2015) who provide examples where, in nonlinear systems, reducing 
high-frequency variance can lead to an increase in low-frequency variance, thereby undermining the resilience 
objective. We constructed spectrum plots of controlled variance of nutrients and we see a decrease in variance at all 
spectra with an increase in conservation investment cost.  
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   Figure 1 (a) Mean-Variance Trade-Offs                     (b) Mean-Coefficient of Variation 672 
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Figure 2: α Resilient Pareto Frontiers (Normal Approach (left), Non-parametric Approach 676 

(right)) 677 
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Figure 3 Marginal Costs of Additional Resilience for Different Resilient N Targets 680 
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Figure 4 Resilience: Iso-Cost Curves(Normal Approach: left, Non parametric approach right) 693 
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 705 

Figure 5. Pareto Optimal Frontier: Cost, Means (N, P), Standard deviation (N ,P) 706 
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Figure 6 Cost of Achieving Resilience When Target is Equal to 45 percent Reductions for Both 718 

N and P. 719 
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Figure 7 Marginal Costs of Joint Resilience 729 
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Appendix 1 920 

As noted in the text, a solution to the chance-constrained problem (3) must be a member of the Pareto 921 

frontier in the cost-mean-standard deviation space: 𝐱𝐱� ⊂ 𝐱𝐱∗. The converse is not true: that is, a particular 922 

solution from a multiobjective optimization program need not be optimal for a chance-constraint program. 923 

Obtaining a Pareto-frontier (and a mean-variance frontier) is, in principle, more general, and the specific 924 

weight placed on the standard deviation determines the point of “tangency” between the efficient frontier 925 

and the “𝛼𝛼-isoresilient” pollution load line of form 𝐸𝐸𝑇𝑇 {N(𝐱𝐱�)} + 𝜙𝜙𝛼𝛼𝑉𝑉𝑉𝑉𝑟𝑟(𝑁𝑁(𝐱𝐱�))𝑇𝑇
0.5 ≡ 𝑁𝑁(𝛼𝛼). Figure 1 926 

graphically depicts this point. For a particular weight 𝜙𝜙𝛼𝛼 placed on the standard deviation, point 𝐴𝐴 in the 927 

Pareto-frontier would be optimal, while point 𝐵𝐵 would appear to be suboptimal given 𝜙𝜙𝛼𝛼. However, for a 928 

different reliability requirement associated with a lower probability of reaching pollution reduction goal, 929 

point 𝐵𝐵 would be optimal. These considerations require us to “post-process” the simulated Pareto-frontier 930 

when they are collapsed to “resilient” pollution quantities to eliminate original members of the mean-931 

variance efficient frontiers which appear dominated given a specific distributional assumption or the 932 

desired level of resilience.  By construction, any nitrogen load level equal to 𝑁𝑁(𝛼𝛼) is achieved with 933 

probability 𝛼𝛼. 934 

 935 

 936 

 937 

 938 

 939 

 940 

 941 

 942 
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Figure A1: Pareto frontier and mean-variance minimums 943 
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Figure A2 The Pareto frontrier: Cost-Mean-Standard deviation 945 
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 950 

Figure A3: Distribution of Conservation Practices951 

 952 

Figure A3 shows the distribution of conservation practices across the entire set of Pareto-953 

efficient solutions expressed as the percentage of the number of decision-making units (“fields”)   954 

selected to a type of conservation practice.13 955 

We group cover crops, no-till and their combination into a single category labeled as 956 

“Working Land”. “Baseline” represents the case where no action is taken, and “Land 957 

Retirement” considers taking land out of agricultural production. As expected, lower levels of 958 

nutrient loads can be achieved by placing land in land retirement, and larger loads correspond to 959 

using “Working Land” conservation actions.  960 

                                                           
13 The decision-making unit in the analysis is an HRU, or a Hydrologic Response Unit (see Gassman, 2008).  
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The three groups each display an inflection point that corresponds approximatively to the 961 

same level of emissions. Hence, the steeper part in Figure 1(b) can be explained by the decline in 962 

the use of “Land Retirement”; the smoother decreasing part is explained by the decline in 963 

”Working Land”, while the relatively flat area is explained by the increase in the baseline. These 964 

trends suggest that land retirement leads to lower variation in N pollution and targets with higher 965 

resilience will require using it extensively (following Gren 2010, one can say that land retirement 966 

possesses “resilience value” with respect to nutrient reductions). Similar variation-reducing 967 

properties of simulating land retirement were reported in Rabotyagov, Jha, and Campbell (2010). 968 

The inflection point can be also explained by the limited effectiveness of the “working land” 969 

practices considered in reducing N and by the fact that “Land Retirement” is the most effective 970 

conservation practice. The inflection point corresponds to a low level of emissions (high level of 971 

targets), where steep increases in land retirement are needed to attain those expected reductions 972 

in N. 973 

 974 

  975 
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Figure A4 Comparison 𝛼𝛼-resilient Pareto Frontiers976 

 977 

Figure A5 Cost-Resilience Trade-offs 978 

 979 



53 
 

Figure A4 compares pairwise the resilient Pareto frontiers under the two approaches. The 980 

comparisons suggest that the non-parametric distribution has lighter tails than the normal 981 

distribution.  This difference suggests that for a very large resilience (99), the critical value for 982 

standard normal is too conservative relative to the corresponding bootstrapped quantile. Figure 983 

A5 summarizes the resilience - cost trade-offs for achieving the same level of resilient N loads. 984 

We define a set of eight nitrogen load targets (𝑁𝑁�,) each corresponding to reductions in the 985 

historical loads ranging from 10 percent to 70 percent. 986 

  987 
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Figure A6 Resilience-Nitrogen-Phosphorus Trade-offs  988 

 989 

 990 

A three dimension illustration of this tradeoffs when the targets are set equal to 45 991 

percent reductions for both N and P (equation 9) is presented in the supplemental material 992 

(Figure A6).  Each element on this frontier (a 3-dimensional projection of the 5-dimensional 993 

Pareto-frontier 𝑃𝑃𝑓𝑓𝑁𝑁𝑁𝑁) is assessed for a resilience (probability) level of achieving this joint target. 994 

As for the single pollutant case: securing higher level of resilience demands higher costs. 995 

Furthermore, the elements in the upper part of the curve (green colored) have the highest level of 996 

resilience (higher than 90 percent) but at the same time they have the highest total costs.  From 997 

Figure 10, one can see that for a particular interval of joint resilience, there is more than one 998 

solution on the frontier. Thus, it is likely, that for a particular level of simulated joint resilience, 999 

multiple solutions would be present (for example, both a solution which over-reduces N but just 1000 

reduces P to satisfy the desired P-resilience and a solution that just satisfies the criterion of joint 1001 

resilience would be present).  Figure A7 summarizes the results of this kind of phenomenon for 1002 
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ten levels of joint resilience. Note the similarity to considerations discussed in connection with 1003 

figure 1.  1004 

 1005 

 1006 

 1007 

 1008 

1009 
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Figure A7 Cost of Resilience under Joint Target 1010 

 1011 

Figure A7 depicts the cost curves associated with the set of joint resilient targets. As in the single 1012 

pollutant case, these curves are mostly increasing, although some of the cost curves for less 1013 

stringent targets cross the cost curves for more restrictive targets, although the overlaps take 1014 

place in the range of higher resilient levels. This behavior is a manifestation of inefficiencies 1015 

present in the overall tradeoff frontier when evaluated from a point of view of specific nutrient 1016 

reductions and their joint resilience. We conjecture that developing tailored algorithms 1017 

associated with each of the lines presented would a) restore the ranking of the curves and 1018 

eliminate the overlap and b) would eliminate the spikes in individual curves and therefore 1019 

negative marginal costs of additional resilience. 1020 

 1021 



57 
 

 1022 

 1023 

 1024 

Figure A8 Spatial Distribution of Conservation Practices in the Watershed.  1025 

A shown by our empirical findings, the distribution of conservation practices differs across 1026 

resilience level.  This implies that the spatial distribution will be very different. The next figures 1027 

show the spatial placement of conservation practices when the target is set to 45 percent 1028 

reductions and for three resilience levels: 50, 75, and 99. 1029 

Figure A8 depicts the spatial placement of the conservation practices in the watershed 1030 

when the target is set equal to 45 percent reductions for N only and for joint N and P  for three 1031 

resilience levels: 50,75, and 99. The watershed configurations reinforce the previous findings: 1032 

higher resilience levels require extensive use of land retirement, with more land retirement being 1033 

used when both N and P are targeted.  The non-parametric and normal watershed configurations 1034 

are very similar when resilience levels are 50 or 75. However, the normal 99 resilience 1035 

configuration has higher use of land retirement. This confirms the fact that the 99th quantile value 1036 

for the standard normal is too conservative relative to the non-parametric quantile. 1037 

 1038 
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𝛼𝛼 = 50 Non Parametric 

 

𝛼𝛼 = 75 Non Parametric 

 

𝛼𝛼 = 99 Non Parametric 

 

 

𝛼𝛼 = 50 Normal 

 

𝛼𝛼 = 75 Normal 

 

𝛼𝛼 = 99 Normal 

 

 

𝛼𝛼 = 50 N and P 

 

𝛼𝛼 = 75 N and P 

 

𝛼𝛼 = 99 N and P 
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Brown: Baseline; Orange: No-till; Blue: Cover Crops, Light Blue: Cover Crop and No-till, 1039 

Green: Land Retirement. The main color represents the dominant color at sub-basin level. The 1040 

pie charts represent percentage use for the entire set of practices14. 1041 

  1042 

                                                           
14 There are 2122 HRUs (K decision units). They are grouped in thirty sub-basins. 
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Table A1 Cost-Resilient Solutions; N reductions = 45% (target N=3.39 thousand tons N) 1043 

Resilience(𝛼𝛼, %) 

Cost 

(mil. 

$) 

Marginal 

Cost 

(mil. $) 

Working 

Land 

(%) 

Land 

Retirement 

(%) 

Baseline 

(%) 

Cost 

(mil. $) 

Marginal 

Cost 

(mil. $) 

Working 

Land 

(%) 

Land 

Retirement 

(%) 

Baseline 

(%) 

Non-parametric   Normal   

50 12.94 0.00 91.70 0.50 7.90 15.16 0.00 99.20 0.20 0.60 

55 14.47 1.52 99.20 0.20 0.60 17.08 1.92 98.30 1.00 0.80 

60 16.04 1.57 96.70 0.30 3.00 19.25 2.17 98.90 0.60 0.50 

65 17.61 1.57 97.90 0.20 1.90 28.36 9.11 89.80 9.50 0.80 

70 27.47 9.86 93.10 5.90 1.00 37.21 8.85 78.80 20.00 1.20 

75 42.40 14.93 75.50 23.20 1.20 46.89 9.68 71.40 28.00 0.60 

80 54.38 11.99 63.10 35.90 1.00 56.39 9.50 64.10 35.10 0.80 

85 62.06 7.68 54.40 44.60 0.90 65.27 8.88 54.90 44.20 0.90 

90 69.76 7.70 48.60 50.20 1.20 75.43 10.16 44.70 54.10 1.30 

95 77.54 7.78 41.20 57.80 0.90 88.93 13.50 31.50 67.60 0.90 

99 86.99 9.45 40.80 58.40 0.80 107.96 19.03 17.80 81.60 0.60 

 1044 

Table A1 describes in detail the cost-resilient solutions for achieving the three levels of 1045 

claimable nitrogen reductions for increments of about five percent increase in the resilience level 1046 

from 50 to 99 probability levels for the two approaches. Column 1 shows the resilience levels 𝛼𝛼; 1047 

and subsequent columns show the annual costs for achieving the required resilient loads for each 1048 

level of resilience (million $), the marginal cost of achieving each additional level of resilience 1049 

(million $). The following columns describe the distribution of the conservations practices: 1050 

working land, land retirement and baseline (percentages of total decision-making units). We 1051 

focus our analysis for case where the target is set equal to 45 percent reductions. . Resilience 1052 
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levels lower than 70 percent are characterized by high use of working land conservation practices 1053 

(higher than 93 percent). In order to secure higher levels of resilience more land is allocated to 1054 

land retirement, but the increase takes place at a decreasing rate. For example, the use of land 1055 

retirement increases from 5.9 percent (resilience level 70) to 23.2 percent (resilience level 75) ( 1056 

i.e. a total increase of 17 percent), but it takes only 6 additional percent to move for a resilience 1057 

level of 85 to 90.  1058 

Next, we compare the costs and distribution of the conservation practices when the target 1059 

is set at 45 percent reductions using normal approach with the ones described above. The total 1060 

costs under the normal approach are slightly higher than under the non-parametric approach 1061 

ranging from 15.94 to 107.96 million per year across different level of resilience. Lower levels of 1062 

resilience are achieved by using working land conservation on a large number of fields (higher 1063 

than 98 percent). Similarly, securing higher level of resilience requires putting more land in land 1064 

retirement, but the use of land retirement increases at an increasing rather than decreasing rate. 1065 

The increasing factor also explains the increasing trends in the marginal costs. Additionally, the 1066 

optimal resilient loads (𝑁𝑁(𝛼𝛼)) are a bit higher (less reductions) under the normal approach. 1067 

 1068 

  1069 
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Table A2 Cost of Joint Resilience, 45% Reduction Target in N and P (N=3.39 thousand tons, 1070 

P=0.09 thousand tons) 1071 

Resilience 

(𝛼𝛼, %) 

Cost 

(mil. $) 

Marginal Cost 

(mil. $) 

Working Land 

(%) 

Land Retirement 

(%) 

Baseline 

(%) 

50 22.39 0.00 97.64 1.23 1.13 

55 46.23 23.84 71.58 26.20 2.21 

60 57.18 10.95 62.16 36.66 1.18 

65 69.96 12.78 54.71 42.27 3.02 

70 81.67 11.72 37.23 59.38 3.39 

75 79.54 -2.13 44.16 55.75 0.09 

80 103.92 24.37 22.48 76.34 1.18 

85 104.99 1.07 21.54 77.43 1.04 

90 104.72 -0.27 23.61 75.59 0.80 

95 107.38 2.67 29.59 69.70 0.71 

 1072 

 1073 

 1074 

 1075 

 1076 

 1077 

 1078 
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 1079 

 1080 


