

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search http://ageconsearch.umn.edu aesearch@umn.edu

Papers downloaded from **AgEcon Search** may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

2	Resilient Provision of Ecosystem Services from Agricultural Landscapes: Tradeoffs
3	Involving Means and Variances of Water Quality Improvements
4	ABSTRACT
5 6 7 8 9 10 11 12	We assess the tradeoffs and synergies involved in reducing agriculture-generated nutrient loads with different levels of resilience. We optimize the selection of least-cost patterns of agricultural conservation practices for both the expected performance of the conservation actions and its variance. Securing nutrient loads with a higher level of resilience is costly, with marginal costs of resilience generally declining with lower loads. We find that the main tradeoff dimension is between cost of conservation investments and ecosystem service objectives, as opposed to pronounced mean-variance or between- nutrient objectives tradeoffs. We find relative synergies in agricultural conservation investments aimed at nutrient reductions.
13 14 15	Keywords: agricultural conservation practices, agricultural nonpoint-source pollution, ecosystem services tradeoffs; multiobjective optimization; evolutionary algorithms, safety-first; resilience
16	JEL Codes: Q25, C63
17	Suggested running head: Resilient Provision of Water Quality from Agriculture
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	Sergey Raboyagov (corresponding aution), Associate Professor School of Environmental and Forest Sciences, Box 352100, University of Washington, Seattle WA 98195-2100 Tel: 515-451-7218 Fax: 206-685-0790 E-mail: rabotyag@uw.edu Adriana Valcu Postdoctoral Research Associate Center for Agricultural and Rural Development Department of Economics Iowa State University, Ames, IA Catherine L. Kling Director and Charles F. Curtiss Distinguished Professor Center for Agricultural and Rural Development Department of Economics Iowa State University, Ames, IA

Acknowledgments

- This research was funded in part from support received from the National Science Foundation's
- Water, Sustainability, and Climate program joint with National Institute of Food and Agriculture
- (#NSF-WSC 1209402 and WNZ-A71219) and two awards from the National Institute of Food
- and Agriculture (#2014-51130-22494 and 2011-68002-30190).
- We thank Todd Campbell, Phil Gassman, and Yongjie Ji for technical assistance and helpful
- suggestions. All errors remain our sole responsibility.

62 Resilient Provision of Ecosystem Services from Agricultural Landscapes: Tradeoffs

63 Involving Means and Variances of Water Quality Improvements

64 Longer abstract

Many ecosystem services are rival and important tradeoffs exist in their production process, 65 while some jointness in production (synergies) are also postulated to exist. We assess the 66 strength of tradeoffs and synergies involved in reducing agriculture-generated watershed nutrient 67 loads with different levels of resilience. We define resilience as the simulated probability of 68 attaining the desired level of nutrient load. We spatially optimize the selection of least-cost 69 70 patterns of agricultural conservation practices or both the expected performance of the conservation actions and its variance. The modeling framework is applied to the Boone River 71 Watershed in Iowa. The empirical results confirm that securing nutrient loads with a higher level 72 of resilience is costly. However, the marginal cost is not necessarily increasing: focusing on 73 74 larger nutrient reductions allows one to obtain resilience at a smaller additional cost than if one is seeking only modest nutrient reductions. In our model, this is due to the ability of perennial 75 76 grassland to buffer against exogenous shocks and to drastically reduce variability in nutrient 77 loads. In extending the model to two nutrients, nitrogen and phosphorus, we find that the main tradeoff dimension is between cost of conservation investments and ecosystem service 78 objectives, as opposed to pronounced mean-variance tradeoffs or strong tradeoffs between the 79 two nutrient objectives. While some meaningful tradeoffs exist between nutrient objectives, our 80 findings highlight the presence of relative synergies in agricultural conservation investments 81 aimed at nutrient reductions. However, while *relative* synergies exist, controlling risk of nutrient 82 loads is once again shown to have high opportunity costs, and resilience comes at a significant 83 premium. 84

In recent years, the concept of ecosystem services and natural capital has garnered significant 85 86 attention from the research, policy, and conservation community (see, e.g., Heal and Small 87 (2002), Boyd and Banzhaf (2007), Polasky and Segerson (2009), Barbier (2015), and a Special Feature in the Proceedings of National Academy of Sciences devoted to the topic). For 88 intensively managed agriculture-dominated landscapes, there can be both complementarities and 89 competition between ecosystem services including the provisioning services of food, feed, fuel, 90 and clean water, the regulating service of waste processing (provided by streams), and the 91 cultural ecosystem services tied to the presence of wildlife for hunting or recreation. The 92 diminution of ecosystem services related to environmental externalities is, of course, a generally 93 expected outcome of a market system. Given the signals provided by agricultural markets, it is 94 95 not surprising that the agricultural system heavily favors production of private ecosystem services (food, feed, and fuel) (Lichtenberg 2002, p. 1254). The US Midwest, for example, has 96 the highest rates of crop growth in the world, to the point that agriculture affects regional climate 97 98 (Mueller et al. 2015). At the same time, heavy reliance on fertilizer use, has caused some scientists to suggest that humanity has exceeded its "safe operating space" with respect to 99 nutrient fluxes (Steffen et al. 2015). 100

The recognition of these issues has led to extensive agri-environmental policy efforts in the US and elsewhere as well as a literature identifying approaches for incorporating ecological objectives in policy (Lichtenberg 2002; Lankoski and Ollikainen 2003, Bateman et al. 2013). While these efforts have found some success, most scientific assessments of environmental impacts of U.S. agriculture indicate many remaining concerns including fish and wildlife habitat (USDA-CEAP, Wildlife National Assessment 2015), air pollution (Mueller and Mendelsohn 2011), nutrient pollution (US EPA 2015), and other environmental endpoints.

Elucidating the nature of tradeoffs between different ecosystem services requires 108 109 understanding natural system processes and evaluating counterfactual scenarios to determine where tradeoffs exist, where synergies occur (e.g., Karp et al. 2015), and how other ecosystem 110 services can be improved at the lowest sacrifice to marketed agricultural goods. Understanding 111 tradeoffs or potential synergies¹ requires two things. First is the quantifiable understanding of the 112 underlying ecosystem service production process and of the economic inputs that go into their 113 production.² The ecological production functions themselves, however, are often poorly 114 understood, may exhibit complex nonlinear dynamics with thresholds (e.g., Carpenter et al. 115 2015; Barbier et al. 2008), or, even in the best case of relatively small scientific uncertainty, may 116 be represented by computer simulation programs that do not correspond to traditional economics 117 118 understanding of a production function (e.g., Heal and Small 2002).

While tradeoffs in ecosystem services may be unavoidable, it is desirable to limit 119 120 consideration to those that are on a Pareto-efficient frontier. This is particularly important when considering the exact magnitudes (marginal costs or marginal rates of product transformation) of 121 tradeoffs between ecosystem services. Yet another dimension to the question of tradeoffs 122 123 between different classes of ecosystem services is uncertainty in the provision of a particular joint product from an ecosystem. In addition to having different opportunity costs of private 124 goods, alternative ecosystem service bundle can differ in terms of the risk associated with their 125 provision. That is, some conservation investments may consistently yield a given bundle of 126 ecosystem services while others may on average a higher level of services, but with a wider 127

¹ Heal et al. (2001) called the presence of synergies a "conservation umbrella."

² See Heal and Small (2002) for an interesting distinction between economic and non-economic inputs into the ecosystem services production function. Economic inputs have opportunity costs, while others, like sunlight needed for agricultural production, while essential, are non-economic In our application, economic inputs include foregoing crop production entirely and planting perennial grass or bringing machinery, expertise, and labor inputs for the adoption of "working land" conservation practices.

variability of provision over time. The mean-variance tradeoff for a particular cost ofconservation investment may be relevant in choosing across services.

Consideration of tradeoffs between mean and variance of provision of services is 130 consistent with the literature on resilience in ecosystem service provision. The notion of 131 132 resilience is nuanced and complex, but for this work we adopt a definition similar to one used in Gren (2010) —namely, the reliability of ecosystem service provision under exogenous shocks, 133 specifically weather risk.³ In this paper, we explore tradeoffs for the expected provision level and 134 for different levels of reliability (specified as simulated probability of attaining the desired 135 provision level) for the case of a single non-market ecosystem service, and then expand the 136 notion of tradeoffs to multiple dimensions of aquatic ecosystem services, where we focus on the 137 joint probability of meeting desired ecological targets.⁴ To do so, we adopt a multiobjective 138 optimization approach with the objectives specified as means and standard deviations of desired 139 ecosystem outputs. For this application, we focus on a heavily agricultural watershed in Iowa and 140 use nutrient loads as inputs into aquatic ecosystem services. This approach can will be relevant to 141 any situation where the connection between human actions on the landscape and ecosystem 142 services is characterized by a complex relationship involving nonlinearities, nonconvexities and 143 nonseparabilities (for example, conservation network design as in Parkhurst and Shogren 2008). 144

145

(http://water.epa.gov/lawsregs/lawsguidance/cwa/tmdl/TMDL-ch3.cfm)

³ Social preference for reliability of goal attainment is reflected in the required "margin of safety" in the TMDL regulations, requiring either to explicitly reduce allowable pollutant loads in a watershed based on modeled uncertainty or to employ conservative modeling assumptions

⁴ However, as Heal and Small (2002) point out "We are powerfully ignorant about the technology that produces ecosystem services." While true, ignorance should not be a reason to explore the implications of existing levels of understanding of some dimensions of ecosystem services production process, embodied, in our case, in the ecohydrologic model. See Kling (2011) for a call to action while acknowledging the deep uncertainties involved and importance of learning and adaptive management.

146 **Resilience in ecosystem services provision**

The concept of resilience has been used extensively by many disciplines, each approaching the 147 concept from somewhat different perspectives and providing different definitions. We refer the 148 reader to Longstaff et al.'s (2013) typology and to translate the concept among different 149 150 disciplines. Intuitively, the notion of resilience deals with the ability of a system to perform desired functions under most, if not all, possible external shocks. Within their typology, we adopt 151 the definition referred to as Type I resilience: the capacity of a system "to rebound and recover." 152 153 Simply put, we seek to spatially optimize the selection of agricultural conservation practices which optimize both the expected performance of the conservation actions and their variance 154 (Shortle and Horan (2013) suggest a similar approach). Longstaff et al's (2013) typology 155 distinguishes approaches to resilience based on level of complexity (low/reductionist approach to 156 high/holism/emergent properties) of the studied system as well as based on degree of normativity 157 (on the scale from descriptive/positive to normative). Our work fits in the low complexity/low 158 normativity category, as our studied system deals with quantifiable uncertainty (risk) and 159 employs a deterministic, reductionist approach to quantifying the costs and ecosystem service 160 outputs of evaluated scenarios.⁵ This definition of resilience can be equivalently thought of as 161 the reliability of meeting ecosystem service provision targets. 162

⁵ Were we to adopt a specific form for an economic damage function associated with ecosystem service degradation, our work would align with type II resilience definition of Longstaff et al. (2013), and would involve objectives of net benefit optimization (see Polasky and Segerson (2009) and Shortle and Horan (2013) for discussion of the relationship between outcomes obtained under physically defined goals and economically efficient outcomes).

practices) being combined, over the relevant spatial and temporal scale, to produce a $k \times k$ 167 1 vector of monetized benefits/costs and nonmonetized final ecosystem services, and $\boldsymbol{\varepsilon}$ 168 representing exogenous factors (e.g., non-economic inputs into production of ecosystem services 169 such as rainfall, solar radiation, soil quality, as well as exogenous economic factors such as 170 commodity prices or government policy) treated as random. One of the components of the output 171 vector serves to monetize the choices made with respect to human actions \boldsymbol{x} in the form of net 172 173 social benefits. Depending on the availability of data and models, this can range from a full accounting of net social benefits measuring welfare impacts of marketed ecosystem services and 174 non-market values of some non-market ecosystem services to simply measuring estimated 175 engineering costs associated with \boldsymbol{x} . With this resilience measure, it is assumed that decision-176 makers can specify a set of desirable performance targets \overline{S} . Appropriately scaling outputs so that 177 they are all desirable, the problem of resilience can be written as max $P(S(x; \varepsilon) \ge \overline{S})$, that is, the 178 179 most resilient set of actions are those that maximize the probability of meeting a desired level of monetized and non-monetized ecosystem services. 180 This is a version of Roy's (1952) safety-first criterion.⁶ Safety-first approaches have 181 found numerous applications in many fields, including agricultural and environmental 182 economics. Of many past efforts, examples include Paris (1979), Beavis and Walker (1983), 183 184 Lichtenberg and Zilberman (1988), McSweenv and Shortle (1990), Bigman (1996), Willis and Whittlesey (1998), Horan and Shortle (2011), Eloffson (2003), Gren (2008), Kampas and White 185

186 (2003), Rabotyagov (2010). As highlighted by Shortle and Horan (2013), the Total Maximum

187 Daily Load rules adopts safety-first approach through the requirement of a "margin of safety"

⁶ More broadly, this kind of formulation can be described as a P-model of Chance-Constrained Programming (CCP) of Charnes and Cooper (1959), and CCP can be described as a class of anticipative (non-adaptive) stochastic programming approaches (Poojari and Varghese 2008)

constraint on the allowable watershed pollution loads. Another example is that the government of
Canada was at one point explicitly favoring climate change policy requiring 95% certainty in
agricultural carbon sequestration credits (Rabotyagov 2010).

In many applications, the tradeoffs embedded in resilience can be appropriately 191 192 formulated by minimizing the (non-stochastic) cost of achieving a single stochastic ecosystem service objective with a given probability. The resilience objective is typically written as a 193 constraint $P(S_i(\mathbf{x}; \mathbf{\varepsilon}) \ge \overline{S_i}) \ge \alpha$, where α is level of resilience (or reliability) of the system. 194 Rewriting the probabilistic constraint in a deterministic form can be accomplished when the 195 distribution of the random term is known. In this case, a deterministic constraint involving the 196 critical value of the standardized distribution of S_i , the controlled mean and variance of 197 ecosystem service provision can be written as $E_{\varepsilon}(S_i(\mathbf{x})) + F_z^{-1}(1-\alpha)Var(S_i(\mathbf{x}))^{0.5} \ge \bar{S}_i$. 198 For high desired levels of confidence α (so that $F_z^{-1}(1-\alpha) < 0$), the term $(F_z^{-1}(1-\alpha)) < 0$ 199 α)*Var* $(S_i(\mathbf{x}))^{0.5}$) has the standard interpretation of a "margin of safety" or of an "uncertainty 200 201 discount". Tradeoffs between costs and the resilience of providing non-monetized ecosystem services are then seen by increasing cost of attaining higher reliability. This is a standard finding, 202 although the costs of resilience have varied from single-digit percentage uncertainty discounts 203 204 for soil carbon sequestration (Rabotyagov 2010), to almost doubling the costs of pollution reduction when required confidence in pollution reduction goes from 50 to 90-95% (Bÿstrom, 205 Andersson, Gren (2000); Elofsson (2003)) to finding a seven-fold increase in costs of controlling 206 207 N runoff (McSweeny and Shortle, 1990). Resilience is costly, but the exact tradeoffs involved in achieving higher resilience depends on the particular situation.⁷ 208

⁷ An obvious source of affecting costs of resilience lies with the choice of the critical value $F_z^{-1}(1 - \alpha)$. Under uncertainty about the form of the controlled distribution, one can purchase resilience with respect to distributional

209 The simple case of no uncertainty in the opportunity costs of ecosystem services 210 provision allows for a particularly convenient inversion of the probability statement and for dealing with "resilient" levels of provision. If x is costly, the constraint will be binding and 211 $E_{\varepsilon}(S_i(\boldsymbol{x}^*)) + F_z^{-1}(1-\alpha)Var(S_i(\boldsymbol{x}^*))^{0.5} = \bar{S}_i$ represents the α -quantile of the controlled 212 provision distribution (also sometimes referred to as a claimable amount (Kurkalova 2005)) and 213 \boldsymbol{x}^* denotes choices leading to resilient provision. When multiple objectives are brought under the 214 joint probabilistic constraint, such an inversion from joint probabilities to unique quantiles is no 215 longer possible, except for the case of statistically independent objectives, where the jointly α^n -216 217 resilient set is constructed of individual (marginal) α -resilient provision levels. Instead, combinations of individual provision levels which jointly produce the desired α -level resilience 218 will be required. This is akin to confidence ellipses encountered in joint significance testing of 219 regression parameters (for the introduction to the issues encountered in joint chance constraints, 220 221 see Bawa (1973), Prekopa (1970), Willis and Whittlesey (1998) for an applied agricultural economics example or Hong, Yang, and Zhang (2011) for the modern operations research 222 perspective). In short, a simple interpretation of results as producing unique "resilient" \bar{S}_i , \bar{S}_k no 223 224 longer applies.

Fortunately, if we ask "what is the joint resilience associated with a particular solution xand specified objectives, \overline{S} ?", the answer, expressed as a joint probability, is easy to understand (if not necessarily compute). Namely, the probability is $P(x) = \int I[S(x; \varepsilon) \ge \overline{S}] dF(\varepsilon)$. In some simpler cases, where a single stochastic objective is encountered, and a particular distribution for the random factor (e.g., normal) is assumed, the probability can be retrieved from existing tables.

uncertainty by relying on the Chebyschev Inequality (e.g., Gren (2010)). This, however, appears unnecessarily conservative for most practical applications.

In other cases of intermediate difficulty, in which a low-dimension economic-ecological 230 production process may be assumed to be linear and separable $(S(x; \varepsilon) \equiv s(\varepsilon)'x)$, analytical 231 expressions can be constructed (e.g., (Kampas and White 2003). However, even for a single 232 dimension of ecosystem service output, where the production process may take place over K233 locations, and where multiple actions (I) are available in \mathbf{x} , construction of (conditional on \mathbf{x}) 234 variance to arrive at the standardized ecosystem output involves estimating $\frac{KJ(KJ-1)}{2}$ terms of the 235 variance-covariance matrix, which would account for all the spatial and action-related 236 covariances. This is a common problem that arises in risk management, and analytical techniques 237 such as copula estimation exist to aid researchers and decision-makers (Cherubini, Luciano, and 238 239 Vecchiato, 2004).

Gren (2010) considered several abatement actions and the implied abatement correlations 240 across actions in estimating the resilience value of wetlands for nutrient reduction; however, her 241 analysis did not incorporate spatial correlations, while Kampas and White (2003) have shown 242 that ignoring correlations introduces larger bias in probabilistic constraints than incorrect 243 distribution specification. Rabotyagov (2010) considered two agricultural conservation actions as 244 well as spatial correlation for soil carbon sequestration. However, the introduction of multiple 245 dimensions as well as distributional assumptions needed to make probability statements further 246 247 complicate the issue. For instance, Kampas and Adamidis (2005) pointed out that under lognormality assumption of pollution reduction from a single action, the sum of reductions does not 248 follow the log-normal distribution as Gren, Destouni, and Tempone (2002) assumed. 249

When, in addition, the natural science knowledge suggests that important dimensions of
 S(x; ε) are nonlinear and nonseparable (e.g., examples provided in Carpenter et al. 2015),
 obtaining analytical expressions for the overall resilience value becomes much more difficult.

253 However, as in simulation-aided econometric estimation, simulation approximation to the 254 probability or other expected functions of interest such as the mean or the variance remains available. One issue that arises in this context is computational cost associated with evaluating 255 $S(\mathbf{x}; \boldsymbol{\varepsilon})$ many times. For example, we could build the objective of resilience directly into the 256 multiobjective tradeoff analysis (see Rabotyagov, Jha, and Campbell 2010) but instead we 257 choose to opt to formulate the objectives in terms of means and standard deviations. Resilience 258 is a property associated with a particular choice of actions to affect the provision of a vector of 259 260 desirable outputs. Basic theory and empirical work to date suggest that resilience is costly. Resilience of the type we study is closely related to the variance in the desired output. To explore 261 the potential tradeoffs among cost and proxies for aquatic ecosystem services, as well as evaluate 262 263 potential synergies or tradeoffs associated with resilience, we choose to simultaneously optimize for the cost of economic inputs, and the mean and the variance of non-market ecosystem outputs. 264 Further, we use bootstrap methods for a computationally fast way to provide resilience 265 assessment of the optimized solutions. 266

267 **Tradeoff Development**

An efficient tradeoff frontier in the production of ecosystem services emerges when all Pareto-improvements have been exhausted: no single objective can be improved upon without sacrifice in terms of other objective(s). Some of the objectives may be formulated as resilience objectives. The classic example is tracing out the efficient mean-variance frontier of a stock portfolio. For multiple objectives when the economic-ecological production function can be explicitly written exact multiobjective optimization can generate tradeoffs across different ecosystem services (see Polasky et al. (2008) and Toth and McDill (2009)). In the case that

275 $S(x; \varepsilon)$ function is cannot be written in a compact mathematical form but is represented by a 276 computer simulation program, simulation-optimization methods can be used.

Multiobjective evolutionary algorithms are capable of dealing with potential non-convexities 277 in optimization and can use simulation model output to (approximately) develop multiple-278 279 objective Pareto-efficient sets in a single optimization run. Deb (2001) is the classic introduction 280 to evolutionary algorithms. Nicklow et al. (2010) and Maier et al. (2015) discuss some recent applications focused on water resources, and Kennedy et al (2008) and Porto et al (2014) provide 281 282 terrestrial ecosystem management examples. Herman et al. (2014) explore tradeoff generation under deep uncertainty. Recent examples for tradeoff development using multiobjective 283 evolutionary algorithms in agriculturally dominated ecosystems include Gramig et al. (2013), 284 285 Bostian et al. (2015), Ahmadi et al. (2013), Rabotyagov et al. (2014) and Chichakly et al. (2013) 286 who incorporate measures of resilience to anticipated climate change.

We consider a model of joint economic-ecological production process, where the human actions considered are "working land" agricultural conservation practices largely consistent with the prevailing crop system and "land retirement" of establishing perennial grass cover on cropland. These actions represent economic inputs into the production of (proxies for) freshwater and coastal aquatic ecosystem services associated with reducing nutrient fluxes, namely ambient Nitrogen (N) and Phosphorus (P) loads.

Scientific consensus exists on the fact that human activity has altered both the nitrogen
and phosphorus cycles (Millenium Ecosystem Assessment, 2005, Ch. 12), with some beneficial
(increased crop production), and some deleterious (eutrophication) effects on ecosystem services.
The exact targets for nutrient loads and concentrations are an active area of research and
policymaking (Evans-White et al., (2013), Heiskary and Bouchard (2015), US EPA, 2015
http://cfpub.epa.gov/wqsits/nnc-development/) but it is well understood that excess nutrient

loads negatively impact many ecosystem services from freshwater systems. We take as a starting
point that it is desirable to reduce N and P and elucidate the tradeoffs involved in controlling the
mean and standard deviation of nutrient pollution.

302 Conceptual Model

Our notation is similar to the notation used by Rabotyagov, Valcu, and Kling (2014). 303 304 There are K decision-making units ("fields") in the watershed, each field being characterized by 305 a unique combination of physical characteristics (soil, slope) and location in the watershed. The ambient water quality is monitored both in stream and at the outlet of the watershed. Let $r_i =$ 306 $r_i(\mathbf{x_i}, \xi) \forall i = 1, ..., K$ be the i^{th} field emissions given the actions taken at field level, where \mathbf{x}_i 307 represents the $I \times 1$ vector of actions implemented at each field, and ξ represents the stochastic 308 309 weather factor. The set of actions consists of baseline activity and a set of working land conservation practices and land retirement. 310

To connect farm-level conservation actions to outcomes of interest, we need a specific version of the ecological production function. In our application, this function is represented by a water quality production function, $W(\mathbf{r}(\mathbf{x}, \boldsymbol{\xi}))$ that is the result of the complex spatial interactions between the edge-of-field emissions leaving the fields, and which is represented by a ecohydrologic simulation model.⁸ Given the stochastic nature of the weather factor, we are interested in finding the least-cost spatial combinations **x** that reduce expected values of nutrient pollution as well as its standard deviation. Using optimization results, we construct a measure of

⁸ As Lichtenberg (2002) explains: "... there is not a simple monotonic relationship between emissions at the level of an individual field and impacts on environmental quality at the ambient scale with which policy is actually concerned. Fate and transport are typically non-linear and depend on space and time in complex ways, making extrapolation of field-level emissions to ambient pollutant concentrations quite complex". We refer the reader to Lichtenberg (2013), Shortle and Horan (2013) for reviews of these and other issues associated with nonpoint source pollution from agriculture, as well as to Rabotyagov et al (2014) for an attempt to simplify the 'ecological production' process. Uncertainty in the model structure itself is not considered in this article, although we recognize this as likely important for both better science and policy-relevance (see Herman et al. 2014).

resilience defined as the probability of achieving a particular target, and analyze the tradeoff
between costs and different levels of resilience. We start by considering the case of a single
nutrient pollutant (a proxy for diminished aquatic ecosystem services upstream and downstream)
and then move to the case of two pollutants.
A single pollutant case
We begin by solving the multi-objective problem that simultaneously minimizes
$$Min_{\mathbf{x}} [C(\mathbf{x}), E_T[N(\mathbf{x})], Var[N(\mathbf{x})]^{0.5}]$$
 (1)
where \mathbf{x} represents a $KJ \times 1$ vector representing a particular placement of conservation practices,
 $W(\mathbf{r}(\mathbf{x},\xi)) \equiv N(\mathbf{x})$ represents the simulated, over simulation period of length T , vector of
annual nitrogen loads, $E_T[N(\mathbf{x})]$ is the mean nitrogen loads over the historical simulation
period, $Var[N(\mathbf{x})]^{0.5}$ is the standard deviation, and $C(\mathbf{x})$ is the (deterministic) estimated cost of
that particular combinations of conservation investments (economic inputs into aquatic
ecosystem service production) in the watershed.
The solution vector \mathbf{x}^* defines the Pareto-efficient set (P_f) , where each element is
represented by a unique combination of cost, expected nutrient load and the standard deviation of
loads:
 $P_f(\mathbf{x}^*) = \{C(\mathbf{x}^*), E_T[N(\mathbf{x}^*)], Var[N(\mathbf{x}^*)]^{0.5} \ [\nexists \mathbf{x} \neq \mathbf{x}^*, P_f(\mathbf{x}) > P_f(\mathbf{x}^*)\}$ (2)
That is, a pattern of conservation investments defines the Pareto-efficient frontier if there is no
other conservation action pattern which is a Pareto-improvement (\succ) in the cost-mean-standard

deviation space. The Pareto-efficient frontier defines the set of optimal tradeoffs; for example,

the lower envelope of the set with respect to mean N and conservation action costs gives the

equivalent of the total abatement cost curve for expected nutrient pollution. It also offers

valuable information on the possible mean-variance tradeoffs, where, for a given cost, a tradeoff 340 341 between expected ecosystem service performance and its standard deviation could be seen. 342 However, we cannot directly infer how much would it cost to achieve a particular level of nitrogen loads under different levels of resilience, where by resilience, we understand the 343 probability of achieving that target in any given year. However, for the single stochastic 344 objective, it is straightforward to "collapse" the three-dimensional Pareto-frontier into a set of 345 "resilient tradeoffs" between cost and resilient provision of an ecosystem service. Doing so 346 involves appropriately constructing the deterministic equivalent to the resilience objective using 347 the mean, standard deviation, and the critical value of the controlled distribution of the stochastic 348 objective. 349

350 Finding resilient solutions involves solving a chance- constrained optimization problem:

351
$$Min_{\mathbf{x}} C(\mathbf{x}) \text{ s. t. } \Pr\{N_{t}(\mathbf{x}) \le N\} \ge \alpha \quad \forall t = 1, ..., T$$
 (3)

where \overline{N} is the target level of N loads, and α the desired level of resilience measured as the probability of achieving the target.

We use the Pareto-frontier $P_f(\mathbf{x}^*)$ and employ two approaches to approximate solutions to the above problem, approaches that we identify as "normal" and "non-parametric". Under both approaches, we transform equation (3) using its deterministic counterpart as:

357
$$Min_{\mathbf{x}} C(\mathbf{x}) s.t. E_T \{ N(\mathbf{x}) \} + \phi^{\alpha} Var(N(\mathbf{x}))_T^{0.5} \le \overline{N}$$
(4)

358 where ϕ^{α} is the critical value of the standardized distribution of $N(\mathbf{x})$.

Note that a solution to the chance-constrained problem (3) must be a member of the Pareto frontier in the cost-mean-standard deviation space: $\hat{\mathbf{x}} \subset \mathbf{x}^*$. The converse is not true: that is, a particular solution from a multiobjective optimization program need not be optimal for a 362 chance-constraint program. Appendix 1 in supplemental materials provides the demonstration of363 this point.

Under the normal approach, we assume the standardized distribution of pollution load follows a normal distribution and use $\phi^{\alpha} = \Phi^{-1}(\alpha)$, the standard normal critical value that depends on α (1.64 for $\alpha = 0.95$). Under the normality assumption, we consider α – *resilient* pollution loads to be $E_T \{N(\hat{\mathbf{x}})\} + \Phi^{-1}(\alpha) Var(N(\hat{\mathbf{x}}))_T^{0.5}$ and can focus on the results in terms of tradeoffs between cost and resilient nitrogen loads.

369 *Non-parametric approach*

370 An alternative approach is to employ non-parametric bootstrap methods (Efron (1979)), 371 and define the resilience pollution loads in terms of the bootstrapped quantiles. Since our data 372 (nitrogen loads simulated over a period of time) is serially dependent, we employ the block 373 stationary bootstrap method (Politis and Romano (1992), (1994)). Under this approach, 374 observations are re-sampled in blocks of random length, with the length of the block being 375 determined by a geometric distribution. The block re-sampling (observations are drawn consecutively) preserves the lag dependence in the original data. The bootstrapped data is 376 377 stationary if the block length is determined using a geometric distribution. Additionally, the 378 block bootstrap works well under very weak conditions on the dependency structure of the original data. 379

For any efficient combination of conservation practices (\mathbf{x}^*) that is part of the Pareto frontier $P_f(\mathbf{x}^*)$, we take the model-simulated $T \times 1$ vector of nitrogen values $N(\mathbf{x}^*)$ to construct a non-parametric distribution using a stationary bootstrapping approach using blocks of unequal length. To obtain tradeoffs involving α – *resilient* nitrogen loads, we compute, for each bootstrap replicate series, the sample α -quantile and average the results over many bootstrap

replications. The interpretation of the new α – *resilient* Pareto frontier is similar to the previous one, each solution representing a non-dominated combination of cost and α – *resilient* nitrogen loads that correspond to a given level of resilience, α . The magnitude of the differences between the normal and non-parametric approaches is an empirical question.

389 Multiple pollutants: A case of nitrogen and phosphorus

We also consider developing tradeoffs which involve the means and the variances of multiple ecological objectives. In this case, we modify the multiobjective minimization problem to include the means and standard deviations of two nutrient pollutants, nitrogen and phosphorus:⁹

394
$$Min_{\mathbf{x}}[C(\mathbf{x}), E_{T}[N(\mathbf{x})], Var[N(\mathbf{x})]^{0.5}, E_{T}[P(\mathbf{x})], Var[P(\mathbf{x})]^{0.5}]$$
 (5)

where **x** represents a particular placement of conservation practices, $N(\mathbf{x})$, $P(\mathbf{x})$, the vectors of nitrogen and phosphorus loads of length *T*, *E*[.] is the expected water quality outcome measured as (historical) sample mean of nitrogen and phosphorus, $Var[N(\mathbf{x})]^{0.5}$ and $Var[P(\mathbf{x})]^{0.5}$ are respective standard deviations, and $C(\mathbf{x})$ is the estimated annual cost of the particular combination of conservation investments in the watershed. Similarly to the univariate case, the solution is represented by a Pareto set, P_f^{NP} , where

401 each element represent a non-dominant combination of cost, mean and standard deviation values

- 402 for nitrogen and phosphorus emissions associated with a spatial combination of conservation
- 403 practices. As discussed above, it is more intuitive to consider actual tradeoffs between mean and

⁹ If the objective were to be specified as minimizing the variance, for example, the sum, or a linear index of two nutrients, the covariance term would enter into problem specification. Alternatively, the resilience objective specified as a joint probability could be simulated within the optimization loop (as in Poojari and Varghese (2008)). We leave those extensions to future work.

404 variance control or to characterize a particular solution in terms of a probability (resilience value)405 of meeting a specified target.

In order to characterize joint resilience implied by the solutions in the Pareto-frontier, we 406 rely on the nonparametric bootstrap, now using two dimensions. Resilience is defined as the joint 407 simulated probability of achieving both N and P targets. Similarly to the univariate stationary 408 bootstrapping, we use the vectors of simulated nitrogen and phosphorus loads to generate 409 bootstrap replicates using blocks of unequal length. The stationary bootstrapping procedure 410 involves using both vectors simultaneously, thus preserving the correlation between controlled 411 loads of N and P. That is, given a particular joint target $(\overline{N}, \overline{P})$, we can construct characterize the 412 413 tradeoff frontier in terms of cost, mean nitrogen, mean phosphorus and simulated joint resilience of achieving the specified target. The resilience level is estimated as the simulated probability, 414 415 $p(\mathbf{x}_i)$:

416
$$p(\mathbf{x}_i) = \sum_{r=1}^{M} \{\sum_{t=1}^{T} I(N(\mathbf{x})_{rt} \le \overline{N}, P(\mathbf{x})_{rt} \le \overline{P})/T\} / M$$
 (6)

417 where *T* is the length of the model simulation, \mathbf{x}_i is the particular pattern of conservation 418 investments evaluated and M is the number of bootstrap repetitions.

To approximate the solution sets for the multiobjective problems (1) and (5), we use a simulation-optimization framework using Soil and Water Assessment Tool (SWAT) as the simulation model and a modification of the Strength Pareto Evolutionary Algorithm 2 (SPEA2) (Zitzler, Laumans, and Thiele, 2002) as the multiobjective optimization heuristic, as described by Rabotyagov et al. (2010). The simulation-optimization framework simultaneously minimizes the cost, the 20-year means (T = 20) and standard deviations of annual N for the single pollutant

425	case and N and P loads for the two pollutant case. ¹⁰ The solutions are sets of Pareto-
426	nondominated watershed configurations P_f and P_f^{NP} . To assess convergence, we use a
427	consolidation ratio proposed by Goel and Stander (2010) and used by Rabotyagov et al. (2014).
428	SWAT is designed to run watershed simulations based on a wide range of inputs: weather
429	data, soil characteristic, plant growth and crop rotations, nutrient management, nutrient transport
430	and transformation, land use and management practices. The model can be used to estimate the
431	changes in nutrient emission in response to the land changes associated with alternative
432	conservation practice, crop choices, and rotation alternatives. The model was developed by the
433	U.S Department of Agriculture and has been used in a wide range of applications (Arnold et al.
434	(1998); Arnold and Fohrer (2005); and Gassman et al. (2008)).
435	
436	Empirical Application: The Boone River Watershed
437	Our empirical results focus on The Boone River Watershed (BRW). The BRW is a
438	typical agricultural watershed in central Iowa with more than 90% of its area dedicated to corn
439	and soybean production. The watershed's tributaries offer habitat to the Topeka shiner, a
440	federally listed endangered species, and to other fish and mussel species. Additionally, the
441	watershed tributaries feed the Des Moines River, a major water source for the biggest
442	metropolitan area in Iowa. The lower part of the watershed is used for recreation activities.
443	Given the extent of the agricultural activities, high levels of agriculture-contributed
111	nitrogen phosphorus and sediment loads contribute to the water quality impairments Δ

¹⁰ The resulting relatively small sample size used to construct the model-simulated mean and the standard deviation is one of the limitations of the study, and can introduce imprecision in resilience estimates. To the extent that mean and standard deviation estimates are not biased, we try to improve precision by bootstrapping optimized series.

successful calibration for the current Boone River Watershed SWAT baseline was obtained by 445 446 using monthly streamflow nutrient data and incorporating earlier calibration efforts (Gassman, (2008)).¹¹ The set of conservation practices selected for achieving the nutrient reduction 447 includes working land practices: cover crop, no-till, the combination of cover crops and no-till, 448 and land retirement. Typically, cover crops are grown during late fall and early spring. In the 449 Midwest, where there are no markets for cover crops, cover crops are promoted for their direct 450 environmental benefits (recycle nutrient and prevent nutrients leaching) and indirect economic 451 benefits (improve soil health by preventing soil erosion). Cover crops are effective in reducing 452 both nitrogen and phosphorus losses. No-till is a type of tillage where no more than 30% of the 453 crop residue is removed. No-till is effective in reducing erosion and phosphorus runoff. Land 454 455 retirement involves taking land out of production and the establishment of perennial grasses.

The costs estimates for conservation practices used in this study are drawn from several 456 sources: no-till at \$6 per acre (Iowa State Extension budgets), cover crops at \$35 per acre (Iowa 457 Nutrient Reduction Strategy), \$41 per acre for the combination of no-till and cover crops, and 458 \$254 per acre, the average cash rental rate for the BRW (Iowa State Extension cash rental rates 459 460 estimates) as the cost of land retirement. The cost of conservation practices is additional to the cost of baseline activities, considered to be zero in this application. 461

Results and discussion 462

463

The simulation framework allows us to evaluate counterfactual watershed-based scenarios in terms of estimated costs of conservation practices and their implications for mean 464

¹¹ The present SWAT simulations are being performed with an updated SWAT version 2012 code (SWAT2012, Release 6150 that contains corrected algorithms that more correctly simulate movement of nitrate through subsurface tile lines as well as numerous other enhancements that were not present in the SWAT2005 code.

and variance of corresponding nutrient loads over a 20-year period (1993-2013). We estimate the 465 466 Pareto- efficient frontiers for a single pollutant (N) and multiple pollutants (N and P). We offer a short analysis of the mean-variance tradeoffs and how these tradeoffs relate to the choice of the 467 conservation actions. Next, we analyze the trade-offs between achieving a pollution target with a 468 given resilience level and the estimated cost of conservation actions. The set of resilience values 469 (α) ranges from 50 percent to 95 percent in increments of 5 percent, as well as 99 percent. 470 Nutrient pollution targets are chosen to be equivalent to a range of percent reductions from the 471 472 historical baseline emissions.

473 Single pollutant case: Nitrogen, Mean-Variance Tradeoffs

474 The results of the multi-objective optimization defined by equation (1) can be visually depicted by a three dimensional scatterplot (P_f) , where each point on the frontier represents the least cost 475 watershed configuration that achieves a given expected value of N loads and has the lowest 476 standard deviation (see Figure A2 in the supplementary material). Figure 1 depicts the extent of 477 478 the mean-variance tradeoffs from the frontier. Specifically 1(a) shows a fairly linear positive 479 relationship between the mean and the standard deviation of N loads, as standard deviations increase with the means. Additionally, the analysis of mean-coefficient of variation (ratio of 480 standard deviation to the mean) plot (Figure 1(b)) shows three patterns: a steep increasing trend 481 for the low range nitrogen emissions (below three thousand tons) where the standard deviation 482 increases at a faster rate than the mean, followed by a smoother declining pattern where the 483 standard deviation increases at a slower rate than the mean. For larger loads (above 4.5 thousand 484 tons), the ratio of standard deviation to mean settles around 0.5. These patterns can be explained 485 486 by the distribution of the conservation practices selected by the algorithm (see supplementary material Figure A3). 487

Next, we quantify the cost to achieve a particular level of nitrogen loads under different 488 levels of resilience. More explicitly, for any level of resilience α , we construct resilient Pareto 489 frontiers, where each Pareto frontier can be viewed as the total cost curve where the 490 corresponding nitrogen emissions are achieved with probability α . As previously described, we 491 use two approaches (normal and non-parametric) to construct the resilient Pareto frontiers that 492 corresponds to different resilience levels. The "normal" approach assumes that the standard 493 normal critical values are used to weigh the standard deviations, while the non-parametric 494 approach uses stationary bootstrap to simulate the quantiles. Simulated nutrient load series pass 495 stationarity tests, and we use 10,000 bootstrap replications with mean block length of 5. The new 496 497 Pareto frontiers transform the mean nitrogen values of the original Pareto frontier into α resilient levels while keeping the costs and the watershed configurations unchanged. 498

499 Figures 2 depicts the α resilient Pareto frontiers for four levels of resilience: median (50), 75, 90, and 99 given the two approaches, as well as the mean-cost tradeoff. The horizontal axis 500 depicts the resilient loads, and the vertical axis shows annual costs. Notice that under the normal 501 502 approach (left panel), the corresponding levels of resilience for mean and median are identical, while under the non-parametric approach the two tradeoff frontiers are different, the 503 bootstrapped mean curve being entirely above the median (right panel). Under the both 504 505 approaches, the Pareto frontiers move further away from the left corner as the resilience levels increase. For any cost level (consider a horizontal line), the resilient level of N loads increases as 506 we move from one frontier to another. This shows us how much resilience can be achieved under 507 a given budget. Likewise, for any level of resilient N loads, the cost increases as we move from 508 one frontier to another. The distance between two consecutive frontiers represents how much it 509 510 would cost to make the same level of N load more resilient. (Pairwise comparisons between the two distributions are provided in the supplementary material). 511

Each cost-resilient curve corresponds to a resilient N target expressed as a percentage reduction from the baseline. As expected, more stringent targets (higher percentage reductions, lower loads) cost more and the costs of achieving a given target increases with the resilience level. For less stringent targets, the costs-resilience curves are convex, with a non-convexity patterns for more stringent targets. For example, when the target is set to 70 percent reductions, the cost is flat once a high level of resilience (80) is achieved.

518 *Resilience-Marginal Cost Curves*

Another way to analyze the resilience-cost trade-off is to answer the question how much would it 519 520 cost to achieve an additional level of resilience. We focus our analysis on three levels of 521 reductions: low (20 percent), average (the Iowa Nutrient Reduction Strategy 45 percent), and high (70 percent reductions). For each of the three targets, Figure 3 summarizes the cost curves 522 for securing the targets at an additional resilience level. These curves can be interpreted as the 523 524 marginal cost of resilience. Although the marginal cost curves have a similar shape, their 525 magnitudes differ across the two approaches. The marginal cost curve when the target is low (20 526 percent reductions) is almost flat for resilience levels lower than 80. However, for higher resilience, the marginal costs display a sharp increase, with the increase being sharper under 527 normal approach. The marginal cost curve for the intermediate target displays more than one 528 pattern. Under the normal approach, marginal costs are increasing for lower resilience, linear for 529 moderate resilience, and again increasing for higher resilience levels. However, the patterns are 530 531 different under the non-parametric approach: linear for lower levels, increasing for moderate levels, decreasing and linear for higher levels of resilience. The marginal costs for the most 532 stringent target are increasing for lower levels, decreasing for moderate levels, and linear for 533 higher resilience level. The diversity of patterns across targets and resilience levels can be 534

explained by the distribution of the conservation practices (these are provided in Table A1 of
supplementary materials). The costs of achieving resilient loads corresponding to 45 percent
reductions (3.39 thousand tons) range from 13 to 87 million over the considered resilience levels.
Similarly to McSweeny and Shortle (1990), we find that to control a single-year N load with 99
percent resilience is almost 7 times costlier than controlling N with median resilience

540 *Resilient N loads for different cost (budget) levels*

The α resilient Pareto frontiers can also provide insight into the different load levels that can be secured under different levels of resilience when we impose a limit on total costs (iso-cost curves). Figure 4 can be used to see how much resilience can be obtained under a given budget. Next, we present the results for four cost (budget) levels: 10, 20, 50, and 100 million. For each budget level, we construct iso-cost curves showing the tradeoffs between resilience and different levels of attainable loads.

Figure 4 shows that the iso-costs are convex shaped, showing that when considering cost constant, higher levels of resilience translate in higher levels of emissions, or alternatively lower emission level have lower resilience levels. The empirical findings also show that the size of these tradeoffs decrease as the total costs increase, as the iso-cost curves corresponding to lower total cost have steeper slopes. For any of the chosen cost and any resilience levels, fewer emissions (more reductions) can be claimed under the non-parametric approach (Figure 4 right vs. left panel). Also, the slopes of the non-parametric iso-cost curves are smoother.

554 *Multiple targets: nitrogen and phosphorus*

Next, we present the simulation results for the case when two pollutants (N and P) are jointly
targeted. We approximate the Pareto-frontier for 5 objectives: cost and means and standard

deviations of N and P. Pareto-frontier we obtain is valuable in that can show the nature oftradeoffs along different values of N and P as well as corresponding variability and cost.

Visualizing tradeoffs across more than two dimensions is challenging, and pairwise 559 projections of the Pareto-frontier could be most helpful to see a particular scope of synergies or 560 561 tradeoffs. Visualizing across 5 dimensions is possible; however, interpretation can be challenging. To aid this process, we present a radar (spider) plot in all 5 dimensions. Specific 562 solutions of interest (a few at a time) can be analyzed as well. Consider the left panel of Figure 563 564 5, and the mean N (mean P) and Cost axes. The non-convex shape of the plot between those axes says that there are no solutions in the Pareto-frontier which simultaneously have high cost and 565 high mean N (and P) loads (and compensating for those with smaller values on other axes). This 566 suggests a strong tradeoff existing between mean nutrient loads and cost. A convex shape with 567 respect to other axes *does not* mean that tradeoffs do not exist among the remaining pairs of 568 objectives, but that there *exist* efficient solutions which exhibit synergies (co-movement) along 569 those dimensions. For example, as we see subsequently (Figure 6), tradeoffs between N and P 570 control exist, but synergies are also present (pairwise comparison of mean N and P on the right 571 572 panel of figure 5). A presence of at least some synergies is also apparent by considering pairwise tradeoffs between means and standard deviations (consistent with a limited nature of mean-573 variance tradeoff for N explored above). Whereas, as can be seen from the nature of the tradeoffs 574 between costs and standard deviations (shown on the right panel of Figure 5 for the case of 575 standard deviation of P—N results are similar), there are no synergies between cost and risk, and 576 we see strong tradeoffs consistent with the notion that resilience is always costly. However, we 577 do not see strong tradeoffs between means or standard deviations of nutrient reduction 578 objectives. Of course, this finding may not generalize to other contexts. 579

Next, we make the connection to resilience. Note that, unlike in a single stochastic objective case, we can no longer claim that a solution to a chance-constrained formulation has to be a member of the Pareto-frontier. For the case of separate resilience objectives, where each pollutant has be controlled in a resilient fashion that is still the case (using the same logic as above). That is, single pollutant resilient levels can be obtained in exactly the same way we proceeded above with N. Because of that reason, we do not present single-pollutant resilience tradeoffs.

However, if one is interested in the joint constraint of the type: $Pr\{N_t(\mathbf{x}) \leq \overline{N}, P_t(\mathbf{x}) \leq N\}$ 587 $\overline{P} \ge \alpha \quad \forall t = 1, ..., T$, we cannot be assured of joint resilience optimality of solutions obtained 588 by the multiobjective program, as the algorithm does not directly simulate joint probability 589 which is a function of variances and the covariance between N and P. To assume cost-joint 590 resilience efficiency for specific \overline{N} and \overline{P} targets, one could formulate a two-objective 591 592 evolutionary optimization program involving cost and simulated probability of joint goal 593 attainment (akin to Poojari and Varghese (2008) or Rabotyagov, Jha, and Campbell (2010)). 594 Despite the possibility that the solutions in the Pareto frontier may not be optimally resilient for joint nutrient targets, we can still provide ex-post assessment of the solutions in terms of joint 595 resilience. To do so, we again rely on (now joint) non-parametric bootstrap approach, using 596 10,000 replicates and computing the simulated resilience using (6). 597

A three dimension illustration of these tradeoffs when the targets are set equal to 45 percent reductions for both N and P (equation 9) is presented in the supplemental material (Figure A6). Each element on this frontier (a 3-dimensional projection of the 5-dimensional Pareto-frontier P_f^{NP}) is assessed for a resilience (probability) level of achieving this joint target. As for the single pollutant case: securing higher level of resilience demands higher costs. We

present the lower envelopes of the plot in Figure 6. Figure 7 depicts the marginal costs of 603 604 achieving additional levels of resilience for the three specified targets, while Table A2 (contained 605 in supplementary details) describes in detail the total and marginal costs as well as the distribution of conservation practices. For example, the least cost way to achieve 45 percent 606 reductions with 70 percent resilience is higher than the least cost to achieve the same level of 607 reductions with 75 percent resilience (Figure 6). The negative marginal costs are unexpected but 608 we interpret them as the inefficiencies embedded in the spikes, and, should one focus on a 609 specific set of N and P reductions with a resilience objective, we expect those to disappear. With 610 those caveats in mind, we provide a broad assessment of joint resilience implied by the 5-611 dimensional Pareto-frontier. 612

Overall, the costs of achieving the joint target are higher than in the case of a single pollutant and range from 22.3 to 107.4 million. This is to be expected as a joint probability is going to be smaller than a marginal one. The distribution of the conservation practice is different, with more land retirement being used more extensively at any resilience level. The spatial placement of the conservation practices associated with these solutions is provided in the supplemental materials.

619 **Conclusions and caveats**

Many ecosystem services are rival and important tradeoffs exist in their production process. Understanding the nature of these tradeoffs requires: (*a*)defining a quantifiable measure of the underlying ecosystem production process and of the economic inputs that go into this productions functions, and (*b*) exploring alternative resource allocation decisions to identify, if only approximately, Pareto-efficient ways of producing different ecosystem services. Uncertainty in the provision of a particular ecosystem service adds another dimension to the

nature of these tradeoffs, where different ecosystem services differ both in terms of the expected
outcomes and in terms of risks. Closely related to uncertainty is the notion of resilience, and the
cost of providing the ecosystem service under different levels of desired resilience.

We focus on understanding and quantifying the tradeoffs for the case of proxies for 629 630 aquatic ecosystem services in the landscapes dominated by agricultural activity. Particularly, we focus on controlling the flux of agricultural nutrients (N and P) as means to improve the 631 upstream and downstream water quality. Economic inputs into water quality production are a set 632 of conservation practices that can be implemented on agricultural landscapes for controlling the 633 flux of nutrients, while the (intermediate) ecological production function is an ecohydrologic 634 635 simulation model relating human actions to changes in nutrient loads. By integrating a heuristic global optimization with a ecohydrologic model we meet the conditions of having science-based 636 representation of the water quality production function $(W_t(\mathbf{r}(\mathbf{x}, \boldsymbol{\xi}_t)))$ and its dependence on the 637 exogenous stochastic weather factors and of having the ability to produce an approximate Pareto-638 frontier that accounts for multiple tradeoff dimensions. 639

We quantify the tradeoffs involved in achieving different levels of nutrient loads with different levels of resilience where resilience is defined as the probability of attaining the desired level of nutrient load. We spatially optimize the selection of least-cost patterns of agricultural conservation practices or both the expected performance of the conservation actions and its variance. We analyze the tradeoffs for a single nutrient (ecosystem service), and then expand our analysis to include multiple nutrients (multiple ecosystem services).

We apply our modeling framework to the Boone River Watershed in Iowa. The empirical results confirm expectations and are consistent with previous studies: securing nutrient loads with higher level of resilience is costly. However, the marginal cost is not necessarily increasing:

that is, focusing on larger nutrient reductions allows one to obtain resilience at a smaller 649 650 additional cost than if one is seeking only modest nutrient reductions. In our application, this is 651 due to the ability of perennial grassland to buffer against exogenous shocks and to drastically reduce variability in nutrient loads (as shown before, e.g., in Rabotyagov, Jha, and Campbell 652 2010). Furthermore, the main tradeoff dimension is between cost of conservation investments 653 and ecosystem service objectives, as opposed to pronounced mean-variance tradeoffs or strong 654 tradeoffs between the two nutrient objectives. While some meaningful tradeoffs exist between 655 nutrient objectives, our findings highlight the presence of relative synergies in agricultural 656 conservation investments aimed at nutrient reductions. However, while relative synergies exist, 657 controlling risk of nutrient loads has high opportunity costs, and resilience comes at a significant 658 premium.¹² 659

Among many caveats, we point out that our optimization algorithm was not exactly 660 tailored to the optimal joint resilience question, but instead focused on providing an overall 661 picture of feasible tradeoffs. Additional limitations associated with uncertainty in model 662 structure, the simplicity of economic cost representation, and the level of spatial resolution of the 663 ecohydrologic model present ample opportunities for future research. However, we hope to show 664 the utility and the promise of the general approach which integrates scientific understanding of 665 complex systems with the practical need to see how production of non-market ecosystem 666 services can be accomplished at the lowest possible sacrifice of economic inputs. 667

¹² We note recent research by Carpenter et al. (2015) who provide examples where, in nonlinear systems, reducing high-frequency variance can lead to an increase in low-frequency variance, thereby undermining the resilience objective. We constructed spectrum plots of controlled variance of nutrients and we see a decrease in variance at all spectra with an increase in conservation investment cost.

(b) Mean-Coefficient of Variation

677 (right))

Figure 5. Pareto Optimal Frontier: Cost, Means (N, P), Standard deviation (N, P)

- /10

Figure 6 Cost of Achieving Resilience When Target is Equal to 45 percent Reductions for Both

729 Figure 7 Marginal Costs of Joint Resilience

737 **References**

- Ahmadi, M., Arabi, M., Hoag, D. L., & Engel, B. A. 2013. A Mixed Discrete-Continuous
- 739 Variable Multiobjective Genetic Algorithm for Targeted Implementation of Nonpoint Source
- 740 Pollution Control Practices. *Water Resources Research* 49(12): 8344-8356.
- 741 Arnold, J.G., R.Srinivasan, R.S., Muttiah, and J.R.Williams. 1998. Largeareahydrologic modeling
- and assessment part I: model development. Journal of the American Water Resources
- 743 *Association* 34(1): 73–89.
- Arnold, J. G. and N. Fohrer. 2005. SWAT2000: current capabilities and research opportunities in
- applied watershed modelling. *Hydrological processes*, *19*(3), 563-572.
- 746 Barbier, E. B., Koch, E. W., Silliman, B. R., Hacker, S. D., Wolanski, E., Primavera, J., ... &
- 747 Reed, D. J. 2008. Coastal Ecosystem-Based Management with Nonlinear Ecological Functions
- 748 and Values. *Science* 319(861): 321-323.
- 749 Bateman, I., A. R. Harwood, G. M. Mace, R.T. Watson, D.J. Abson, B.Andrews, A. Binner et al.
- 750 2013."Bringing Ecosystem Services into Economic Decision-making: Land Use in the United
- 751 Kingdom." *Science* 341(6141): 45-50.
- 752 Bawa, V. S. 1973. On Chance Constrained Programming Problems with Joint
- 753 Constraints. *Management Science 19*(11): 1326-1331.
- 754 Beavis, B., and M. Walker. 1983. Achieving Environmental Standards with Stochastic
- 755 Discharges. Journal of Environmental Economics and Management 10(2):103-111.
- 756 Bigman, D. 1996. Safety-first Criteria and their Measures of Risk. American Journal of
- 757 *Agricultural Economics* 78(1): 225-235.

- 758 Bostian, M., G. Whittaker, B. Barnhart, R. Färe, and S. Grosskopf. 2015. Valuing Water Quality
- 759 Tradeoffs at Different Spatial Scales: An Integrated Approach using Bilevel Optimization. *Water*
- 760 *Resources and Economics* 11:1-12.
- 761 Boyd J., and S. Banzhaf. 2007. What are Ecosystem Services? The Need for Standardized
- 762 Environmental Accounting Units. *Ecological Economics* 63(2-3):616–626.
- 763 Byström, O., H. Andersson, and M. Gren. 2000. Economic Criteria for using Wetlands as
- 764 Nitrogen Sinks under Uncertainty. *Ecological Economics*, *35*(1): 35-45.
- 765 Carpenter, S., R., Brock, W. A., Folke, C., van Nes, E. H., and M. Scheffer. 2015. Allowing
- Variance May Enlarge the Safe Operating Space for Exploited Ecosystems. *Proceedings of the*
- 767 *National Academy of Sciences* (11): 800-804.
- Charnes, A., and W.W. Cooper, W. W.1959. Chance-constrained programming. *Management science*, 6(1), 73-79.
- 770 Cherubini, U., E. Luciano, and W.Vecchiato. 2004. *Copula Methods in Finance*. John Wiley &771 Sons.
- 772 Chichakly, K. J., W.B. Bowden, and M.J. Eppstein. 2013. Minimization of Cost, Sediment Load,
- and Sensitivity to Climate Change in a Watershed Management Application. *Environmental*
- 774 *Modelling & Software* (50):158-168.
- Deb, K. 2001. Multi-objective optimization using evolutionary algorithms (Vol. 16). John Wiley& Sons.
- Elofsson, K. 2003. Cost-effective Reductions of Stochastic Agricultural Loads to the Baltic
- **778** Sea. *Ecological Economics*, 47(1):13-31.
- Efron, B. 1979. Bootstrap methods: another look at the jackknife. *The annals of Statistics*, 1-26.
- 780 Evans-White, M. A., B.E. Haggard, and J.T. Scott. 2013. A Review of Stream Nutrient Criteria
- 781 Development in the United States. *Journal of Environmental Quality*, *42*(4):1002-1014.

- 782 Gramig, B. M., C. J. Reeling, R. Cibin, and I. Chaubey. 2013. Environmental and Economic
- 783 Trade-offs in a Watershed when Using Corn Stover for Bioenergy. *Environmental Science* &
- 784 *Technology*, 47(4): 1784-1791.
- 785 Gren, M. 2010. Resilience Value of Constructed Coastal Wetlands for Combating
- Eutrophication. Ocean & Coastal Management, 53(7): 358-365.
- 787 Gren, M. 2008. Adaptation and Mitigation Strategies for Controlling Stochastic Water Pollution:
- An Application to the Baltic Sea. *Ecological Economics* 66(2): 337-347.
- 789 Gren, M., G. Destouni, and R. Tempone. 2002. Cost Effective Policies for Alternative
- 790 Distributions of Stochastic Water Pollution. Journal of Environmental Management, 66(2): 145-
- 157.Gassman, P. W. 2008. A simulation assessment of the Boone River watershed: Baseline
- 792 *calibration/validation results and issues, and future research needs.* ProQuest
- 793 Goel, T. and N. Stander .2010. A non-dominance-based online stopping criterion for multi-
- objective evolutionary algorithms. *International Journal for Numerical Methods in Engineering*,
 84(6), 661-684.
- Heal, G., G. C. Daily, P.R. Ehrlich, J.Salzman, C.Boggs, J.Hellman, and T. Ricketts. 2001
- Protecting Natural Capital Through Ecosystem Service Districts. *Stanford Environmental Law Journal*, 20, 333.
- Heal, G. M. and A. A. Small. 2002. Agriculture and Ecosystem Services. *Handbook of*
- 800 Agricultural economics (2):1341.
- 801
- Herman, J. D., H.B. Zeff, P.M. Reed, and G.W. Characklis. 2014. Beyond Optimality:
- 803 Multistakeholder Robustness Tradeoffs for Regional Water Portfolio Planning under Deep
- 804 Uncertainty. *Water Resources Research 50*(10): 7692-7713.

- Heiskary, S. A., R.W. Bouchard Jr. 2015. Development of Eutrophication Criteria for Minnesota
- 806 Streams and Rivers using Multiple Lines of Evidence. *Freshwater Science*, *34*(2).
- 807 Hong, L. J., Y. Yang, and L. Zhang. 2011. Sequential Convex Approximations to Joint Chance
- 808 Constrained Programs: A Monte Carlo Approach. *Operations Research* 59(3): 617-630.
- Horan, R. D. and J.S. Shortle. 2011. Economic and Ecological Rules for Water Quality
- 810 Trading. *JAWRA Journal of the American Water Resources Association*, 47(1): 59-69.
- 811 Kampas, A. and B. White. 2003. Probabilistic Programming for Nitrate Pollution Control:
- 812 Comparing Different Probabilistic Constraint Approximations. *European Journal of Operational*
- 813 *Research*, *147*(1): 217-228.
- 814 Kampas, A. and K. Adamidis. 2005. Discussion of the paper "Cost Effective Policies for
- 815 Alternative Distributions of Stochastic Water Pollution" by Gren, Destouni and
- 816 Tempone. *Journal of Environmental Management*, 74(4): 383-388.
- 817 Karp, D. S., C.D. Mendenhall, E. Callaway, L.O. Frishkoff, P.M. Kareiva, P. R. Ehrlich, and
- 818 G.C. Daily. 2015. Confronting and Resolving Competing Values behind Conservation
- 819 Objectives. *Proceedings of the National Academy of Sciences*, *112*(35): 11132-11137.
- 820 Kennedy, M. C., E.D. Ford, P. Singleton, M. Finney, and J.K. Agee. 2008. Informed Multi-
- 821 Objective Decision-Making in Environmental Management using Pareto Optimality. *Journal of*
- 822 *Applied Ecology* 45(1): 181-192.
- 823
- 824 Kling, C. L. 2011. Economic Incentives to Improve Water Quality in Agricultural Landscapes:
- 825 Some New Variations on Old Ideas. American Journal of Agricultural Economics, 93(2): 297-
- 826 309

- 827 Kurkalova, L. A. 2005. Carbon Sequestration in Agricultural Soils: Discounting for
- 828 ncertainty. Canadian Journal of Agricultural Economics/Revue canadienne
- 829 *d'agroeconomie 53*(4): 375-384
- 830 Lankoski, J. and M. Ollikainen. 2003. Agri-environmental Externalities: A Framework for
- 831 Designing Targeted Policies. *European Review of Agricultural Economics 30*(1):51-75.
- Lichtenberg, E. 2002. Agriculture and the Environment. *Handbook of Agricultural*
- *Economics*, *2*: 1249-1313.
- Lichtenberg, E. and D. Zilberman. 1988. Efficient Regulation of Environmental Health
- Risks. *The Quarterly Journal of Economics* (89): 167-178.
- 836 Longstaff, P. H., T.G. Koslowski, and W. Geoghegan. 2013. Translating Resilience: A
- 837 Framework to Enhance Communication and Implementation. In *Symposium on Resilience*
- 838 *Engineering* (pp. 12-23).
- 839 Maier, H. R., Z. Kapelan, J. Kasprzyk, J. Kollat, L.S. Matott, M. C. Cunha, and P.M. Reed.
- 840 2014. Evolutionary Algorithms and other Metaheuristics in Water Resources: Current Status,
- 841 Research Challenges and Future Directions. *Environmental Modelling & Software*, 62:271-299.
- 842 McSweeny, W. T. and J.S. Shortle. 1990. Probabilistic Cost Effectiveness in Agricultural
- 843 Nonpoint Pollution Control. *Southern Journal of Agricultural Economics* 22(1): 95-104.
- 844 Mueller, N. D., E.E. Butler, K. A. McKinnon, A. Rhines, M. Tingley, N.M., Holbrook, and P.
- 845 Huybers. 2015. Cooling of US Midwest Summer Temperature Extremes from Cropland
- 846 Intensification. *Nature Climate Change*.
- 847 Muller, N. Z., R. Mendelsohn, and W. Nordhaus. 2011. Environmental Accounting for Pollution
- in the United States Economy. *The American Economic Review*, 1649-1675.
- 849 Nicklow, J., P. Reed, D. Savic, T. Dessalegne, L, Harrell, A. Chan-Hilton, M. Karamouz et al.
- 850 "State of the art for genetic algorithms and beyond in water resources planning and

- management." *Journal of Water Resources Planning and Management* 136, no. 4 (2009): 412432.
- 853 Paris, Q. 1979. Revenue and Cost Uncertainty, Generalized Mean-variance, and the linear
- complementarity problem. *American Journal of Agricultural Economics*, 61(2), 268-275.
- Parkhurst, G. M., and J.F. Shogren, J. F. 2007. Spatial Incentives to Coordinate Contiguous
- Habitat. *Ecological Economics*, 64(2): 344-355.
- 857 Polasky, S. and K. Segerson. 2009. Integrating Ecology and Economics in the Study of
- Ecosystem Services: Some Lessons Learned. *Annual Review of Resource Economics* 1: 409434.
- Polasky, S., E. Nelson J. Camm, B. Csuti, P. Fackler, E. Lonsdorf, and C. Tobalske. 2008.
- 861 Where to Put Things? Spatial Land Management to Sustain Biodiversity and Economic
- Returns *Biological Conservation 141*(6): 1505-1524.
- Politis, D. N. and J.P. Romano. 1992. A circular block-resampling procedure for stationary
- data. *Exploring the limits of bootstrap*, 263-270.
- 865 Politis, D. N. and J.P. Romano. 1994. The stationary bootstrap. Journal of the American
- 866 *Statistical association*, 89(428), 1303-1313.
- 867 Poojari, C. A., and Varghese, B. (2008). Genetic algorithm based technique for solving chance
- constrained problems. *European journal of operational research*,185(3), 1128-1154.
- 869 Porto, M. and O. Correia and P. Beja. 2014. Optimization of Landscape Services under
- 870 Uncoordinated Management by Multiple Landowners.
- 871 Prekopa, A. 1970. On Probabilistic Constrained Programming. In *Proceedings of the Princeton*
- 872 *Symposium on Mathematical Programming* (pp. 113-138). Princeton, NJ: Princeton University
- 873 Press.

- 874 Proceedings of the National Academy of Sciences,
- 875 <u>http://www.pnas.org/cgi/collection/nature_capital</u>
- 876 Rabotyagov, S. S. (2010). Ecosystem Services under Benefit and Cost Uncertainty: An
- Application to Soil Carbon Sequestration. *Land Economics* 86(4): 668-686.
- 878 Rabotyagov, S. S., M. Jha, and T.D. Campbell. 2010. Nonpoint-Source Pollution Reduction for
- an Iowa Watershed: An Application of Evolutionary Algorithms. *Canadian Journal of*
- 880 *Agricultural Economics/Revue canadienne d'agroeconomie*, 58(4): 411-431.
- Rabotyagov, S. S., T. D. Campbell, M. White, J.G. Arnold, J. Atwood, M. L.Norfleet, C.L. Kling
- et al. "Cost-effective targeting of conservation investments to reduce the northern Gulf of
- 883 Mexico hypoxic zone." *Proceedings of the National Academy of Sciences* 111, no. 52 (2014):
- 884 18530-18535.
- 885 Roy, A. D. 1952. Safety First and the Holding of Assets. *Econometrica* 431-449.
- 886 Shortle, J. and R.D. Horan. 2013. Policy Instruments for Water Quality Protection. Annu. Rev.
- 887 *Resour. Econ.*, 5(1): 111-138
- 888 Steffen, W., K. Richardson, J. Rockström, S.E. Cornell, I. Fetzer, E.M. Bennett, and S. Sorlin.
- 889 2015. Planetary Boundaries: Guiding Human Development on a Changing
- 890 Planet. *Science*, *347*(6223): 1259855.
- 891 Tóth, S. F. and M.E. McDill. 2009. Finding Efficient Harvest Schedules under Three Conflicting
- 892 Objectives. *Forest Science* 55(2): 117-131.
- USDA-CEAP, Wildlife National Assessment. 2015.
- 894 http://www.nrcs.usda.gov/wps/portal/nrcs/detailfull/national/technical/nra/ceap/na/?cid=nrcs143
- 895 <u>014151</u>

- US EPA, 2015 <u>http://www2.epa.gov/nutrientpollution</u>Willis, D. B. and N.K. Whittlesey. 1998.
- 897 The Effect of Stochastic Irrigation Demands and Surface Water Supplies on On-Farm Water
- 898 Management. *Journal of Agricultural and Resource Economics* 206-224.
- Zitzler, E., M. Laumanns, and L. Thiele. 2002. "Spea2: Improving the strength pareto
- 900 evolutionary algorithm for multiobjective optimization." *Evolutionary Methods for Design,*
- *Optimization, and Control* (2002): 95-100.

920 Appendix 1

As noted in the text, a solution to the chance-constrained problem (3) must be a member of the Pareto frontier in the cost-mean-standard deviation space: $\hat{\mathbf{x}} \subset \mathbf{x}^*$. The converse is not true: that is, a particular solution from a multiobjective optimization program need not be optimal for a chance-constraint program. Obtaining a Pareto-frontier (and a mean-variance frontier) is, in principle, more general, and the specific weight placed on the standard deviation determines the point of "tangency" between the efficient frontier and the " α -isoresilient" pollution load line of form $E_T \{N(\hat{\mathbf{x}})\} + \phi^{\alpha} Var(N(\hat{\mathbf{x}}))_T^{0.5} \equiv N(\alpha)$. Figure 1 graphically depicts this point. For a particular weight ϕ^{α} placed on the standard deviation, point A in the Pareto-frontier would be optimal, while point B would appear to be suboptimal given ϕ^{α} . However, for a different reliability requirement associated with a lower probability of reaching pollution reduction goal, point B would be optimal. These considerations require us to "post-process" the simulated Pareto-frontier when they are collapsed to "resilient" pollution quantities to eliminate original members of the mean-variance efficient frontiers which appear dominated given a specific distributional assumption or the desired level of resilience. By construction, any nitrogen load level equal to $N(\alpha)$ is achieved with probability α .

951 Figure A3: Distribution of Conservation Practices

952

Figure A3 shows the distribution of conservation practices across the entire set of Paretoefficient solutions expressed as the percentage of the number of decision-making units ("fields") selected to a type of conservation practice.¹³

We group cover crops, no-till and their combination into a single category labeled as
"Working Land". "Baseline" represents the case where no action is taken, and "Land
Retirement" considers taking land out of agricultural production. As expected, lower levels of
nutrient loads can be achieved by placing land in land retirement, and larger loads correspond to
using "Working Land" conservation actions.

¹³ The decision-making unit in the analysis is an HRU, or a Hydrologic Response Unit (see Gassman, 2008).

961 The three groups each display an inflection point that corresponds approximatively to the 962 same level of emissions. Hence, the steeper part in Figure 1(b) can be explained by the decline in 963 the use of "Land Retirement"; the smoother decreasing part is explained by the decline in 964 "Working Land", while the relatively flat area is explained by the increase in the baseline. These 965 trends suggest that land retirement leads to lower variation in N pollution and targets with higher 966 resilience will require using it extensively (following Gren 2010, one can say that land retirement possesses "resilience value" with respect to nutrient reductions). Similar variation-reducing 967 properties of simulating land retirement were reported in Rabotyagov, Jha, and Campbell (2010). 968 969 The inflection point can be also explained by the limited effectiveness of the "working land" 970 practices considered in reducing N and by the fact that "Land Retirement" is the most effective 971 conservation practice. The inflection point corresponds to a low level of emissions (high level of targets), where steep increases in land retirement are needed to attain those expected reductions 972 973 in N.

974

Figure A4 Comparison α -resilient Pareto Frontiers

Figure A4 compares pairwise the resilient Pareto frontiers under the two approaches. The comparisons suggest that the non-parametric distribution has lighter tails than the normal distribution. This difference suggests that for a very large resilience (99), the critical value for standard normal is too conservative relative to the corresponding bootstrapped quantile. Figure A5 summarizes the resilience - cost trade-offs for achieving the same level of resilient N loads. We define a set of eight nitrogen load targets (\overline{N} ,) each corresponding to reductions in the historical loads ranging from 10 percent to 70 percent.

A three dimension illustration of this tradeoffs when the targets are set equal to 45 991 percent reductions for both N and P (equation 9) is presented in the supplemental material 992 (Figure A6). Each element on this frontier (a 3-dimensional projection of the 5-dimensional 993 Pareto-frontier P_f^{NP}) is assessed for a resilience (probability) level of achieving this joint target. 994 As for the single pollutant case: securing higher level of resilience demands higher costs. 995 996 Furthermore, the elements in the upper part of the curve (green colored) have the highest level of resilience (higher than 90 percent) but at the same time they have the highest total costs. From 997 998 Figure 10, one can see that for a particular interval of joint resilience, there is more than one 999 solution on the frontier. Thus, it is likely, that for a particular level of simulated joint resilience, 1000 multiple solutions would be present (for example, both a solution which over-reduces N but just 1001 reduces P to satisfy the desired P-resilience and a solution that just satisfies the criterion of joint 1002 resilience would be present). Figure A7 summarizes the results of this kind of phenomenon for

1003	ten levels of joint resilience. Note the similarity to considerations discussed in connection with
1004	figure 1.
1005	
1006	
1007	
1008	
1009	

1010 Figure A7 Cost of Resilience under Joint Target

1011

1012 Figure A7 depicts the cost curves associated with the set of joint resilient targets. As in the single 1013 pollutant case, these curves are mostly increasing, although some of the cost curves for less 1014 stringent targets cross the cost curves for more restrictive targets, although the overlaps take 1015 place in the range of higher resilient levels. This behavior is a manifestation of inefficiencies present in the overall tradeoff frontier when evaluated from a point of view of specific nutrient 1016 reductions and their joint resilience. We conjecture that developing tailored algorithms 1017 1018 associated with each of the lines presented would a) restore the ranking of the curves and 1019 eliminate the overlap and b) would eliminate the spikes in individual curves and therefore 1020 negative marginal costs of additional resilience.

1023

1024

1025	Figure A8 Spatial	Distribution of	Conservation	Practices in the	Watershed.
------	-------------------	-----------------	--------------	------------------	------------

1026 A shown by our empirical findings, the distribution of conservation practices differs across

1027 resilience level. This implies that the spatial distribution will be very different. The next figures

show the spatial placement of conservation practices when the target is set to 45 percent

1029 reductions and for three resilience levels: 50, 75, and 99.

Figure A8 depicts the spatial placement of the conservation practices in the watershed 1030 when the target is set equal to 45 percent reductions for N only and for joint N and P for three 1031 resilience levels: 50,75, and 99. The watershed configurations reinforce the previous findings: 1032 1033 higher resilience levels require extensive use of land retirement, with more land retirement being used when both N and P are targeted. The non-parametric and normal watershed configurations 1034 1035 are very similar when resilience levels are 50 or 75. However, the normal 99 resilience configuration has higher use of land retirement. This confirms the fact that the 99th quantile value 1036 1037 for the standard normal is too conservative relative to the non-parametric quantile.

1038

- 1039 Brown: Baseline; Orange: No-till; Blue: Cover Crops, Light Blue: Cover Crop and No-till,
- 1040 Green: Land Retirement. The main color represents the dominant color at sub-basin level. The
- 1041 pie charts represent percentage use for the entire set of practices 14 .

¹⁴ There are 2122 HRUs (*K* decision units). They are grouped in thirty sub-basins.

	Cost	Marginal	Working	Land	D 11	<u> </u>	Marginal	Working	Land	D !!
Resilience(α , %)	(mil.	Cost	Land	Retirement	Baseline	Cost	Cost	Land	Retirement	Baseline
	\$)	(mil. \$)	(%)	(%)	(%)	(mil. \$)	(mil. \$)	(%)	(%)	(%)
		Non-para	metric					Normal		
50	12.94	0.00	91.70	0.50	7.90	15.16	0.00	99.20	0.20	0.60
55	14.47	1.52	99.20	0.20	0.60	17.08	1.92	98.30	1.00	0.80
60	16.04	1.57	96.70	0.30	3.00	19.25	2.17	98.90	0.60	0.50
65	17.61	1.57	97.90	0.20	1.90	28.36	9.11	89.80	9.50	0.80
70	27.47	9.86	93.10	5.90	1.00	37.21	8.85	78.80	20.00	1.20
75	42.40	14.93	75.50	23.20	1.20	46.89	9.68	71.40	28.00	0.60
80	54.38	11.99	63.10	35.90	1.00	56.39	9.50	64.10	35.10	0.80
85	62.06	7.68	54.40	44.60	0.90	65.27	8.88	54.90	44.20	0.90
90	69.76	7.70	48.60	50.20	1.20	75.43	10.16	44.70	54.10	1.30
95	77.54	7.78	41.20	57.80	0.90	88.93	13.50	31.50	67.60	0.90
99	86.99	9.45	40.80	58.40	0.80	107.96	19.03	17.80	81.60	0.60

Table A1 describes in detail the cost-resilient solutions for achieving the three levels of 1045 1046 claimable nitrogen reductions for increments of about five percent increase in the resilience level 1047 from 50 to 99 probability levels for the two approaches. Column 1 shows the resilience levels α ; 1048 and subsequent columns show the annual costs for achieving the required resilient loads for each 1049 level of resilience (million \$), the marginal cost of achieving each additional level of resilience 1050 (million \$). The following columns describe the distribution of the conservations practices: 1051 working land, land retirement and baseline (percentages of total decision-making units). We focus our analysis for case where the target is set equal to 45 percent reductions. . Resilience 1052

levels lower than 70 percent are characterized by high use of working land conservation practices
(higher than 93 percent). In order to secure higher levels of resilience more land is allocated to
land retirement, but the increase takes place at a decreasing rate. For example, the use of land
retirement increases from 5.9 percent (resilience level 70) to 23.2 percent (resilience level 75) (
i.e. a total increase of 17 percent), but it takes only 6 additional percent to move for a resilience
level of 85 to 90.

Next, we compare the costs and distribution of the conservation practices when the target 1059 1060 is set at 45 percent reductions using normal approach with the ones described above. The total costs under the normal approach are slightly higher than under the non-parametric approach 1061 1062 ranging from 15.94 to 107.96 million per year across different level of resilience. Lower levels of 1063 resilience are achieved by using working land conservation on a large number of fields (higher than 98 percent). Similarly, securing higher level of resilience requires putting more land in land 1064 retirement, but the use of land retirement increases at an increasing rather than decreasing rate. 1065 The increasing factor also explains the increasing trends in the marginal costs. Additionally, the 1066 optimal resilient loads $(N(\alpha))$ are a bit higher (less reductions) under the normal approach. 1067

1068

 Resilience	Cost	Marginal Cost	Working Land	Land Retirement	Baseline
(α,%)	(mil. \$)	(mil. \$)	(%)	(%)	(%)
 50	22.39	0.00	97.64	1.23	1.13
55	46.23	23.84	71.58	26.20	2.21
60	57.18	10.95	62.16	36.66	1.18
65	69.96	12.78	54.71	42.27	3.02
70	81.67	11.72	37.23	59.38	3.39
75	79.54	-2.13	44.16	55.75	0.09
80	103.92	24.37	22.48	76.34	1.18
85	104.99	1.07	21.54	77.43	1.04
90	104.72	-0.27	23.61	75.59	0.80
95	107.38	2.67	29.59	69.70	0.71

1070 Table A2 Cost of Joint Resilience, 45% Reduction Target in N and P (N=3.39 thousand tons,

1071 P=0.09 thousand tons)