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Abstract:

Will nitrogen soil testing improve groundwater quality enough to decrease the demand for direct
regulation? This question is addressed using a dynamic simulation model of irrigated agriculture
in eastern Oregon. Results indicate that soil testing reduces applied nitrogen, increases farm

profits and improves groundwater quality, but not enough to avoid regulation.
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The Role of Soil Test Information in Reducing Groundwater Pollution

Soil tests provide information concerning the amount of nitrogen and other macro
and micro nutrients in soil available for crop consumption. Thisinformation is valuable
to producers who want to eliminating excess fertilizer and reduce crop production costs.
An external consequence of eliminating excess fertilizer is reduced leaching of nutrients
and improved groundwater quality. In agricultural regions where groundwater quality
problems have been identified, producers may be able to avoid environmental regulation
by taking advantage of information that reduces leaching of nutrients and improves
groundwater quality.

Past studies have shown that soil test information can be valuable to producers.
However, these studies tend to focus on cost savings and only mention the potential for
improved groundwater quality (Adamset. a., 1983; Babcock and Blackmer, 1992;
Babcock et. al., 1996; Fuglie and Bosch, 1995; Musser et. a., 1995; Wu et. al., 1996).
These studies indicate that soil testing can reduce nitrogen fertilizer applications 15 to 41
percent while increasing per acre return 20 to 50 dollars, depending upon location and
crop.

Musser et. al. acknowledge that the effect of a soil test on excess nitrogen isonly
an indicator of environmental performance. To measure actual environmental
performance requires linking farm level input decisions with ambient levels of an

environmental contaminant. Because of the difficulty involved in linking nitrogen input
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decisions to groundwater nitrate concentration, no previous study has quantified changes
in groundwater quality as aresult of utilizing soil tests. While Babcock and Blackmer
make no effort to measure the value of changes in nitrate contamination of groundwater,
they do pose the following question which is the crux of this present investigation.
Specificaly, isit possible that voluntary adoption of soil testing will lower nitrogen
applications sufficiently to decrease the demand for direct regulation?

The purpose of this paper is to assess the impact of soil testing on ambient
groundwater quality as well as producer profit. The empirical focusisan irrigated
agricultural region in eastern Oregon. Soil testing is assessed using a spatially distributed,
dynamic simulation model which links economic behavior with the physical processes

that determine groundwater quality.

The Study Region, Groundwater Concernsand the Use of Soil Tests

The empirical focus of the study is an irrigated agricultural region in east, central
Oregon. The study region is high desert; annual precipitation ranges from 5 to 16 inches,
with an average of 10 inches. Irrigation is required for crop production and surface (flood)
irrigation is the principal method of application. The study region encompasses 32 square
miles (in Maheur county), of which 17,860 acres (28) square milesis farmed.

Many crops (including fruit, vegetable and seed crops) are grown here. However,
in this investigation, we focus on the five maor cropsin terms of acreage; soft white
spring wheat, onions, potatoes, sugar beets and hay (a composite of meadow hay and

afafa). These five crops represent approximately 72 percent of the crop acreage in the



county and 54 percent of total crop salesin 1992 (MCES, 1992). Onions, potatoes and
sugar beets have alarge impact on the county economy in terms of jobs created by
processing, handling and field labor. Onions are the most valuable cash crop in the study
area (6 percent of the acreage and 25 percent of crop salesin 1992).

Between August of 1988 and April of 1990, 199 wells in the shallow aquifers
were sampled. In this sampling, 32 percent of the wells were found to have nitrate levels
which exceed the federal standard of 10 parts per million (ppm or mg/l) for municipal
water supplies. Because of the groundwater quality problemsidentified here, the areawas
designated by the Oregon State Department of Environmental Quality (ODEQ) asa
Groundwater Management Area (GMA).

Asaresult, a groundwater management committee was formed and several years
of extensive data collection and analyses of the geo-hydrology of the region followed.
This data was used to develop an action plan to improve groundwater quality. The action
plan relies on voluntary approaches, but if these are not successful then (unstated)
mandatory actions will be considered. Specifically, aregulatory approach will be
considered if thereis not evidence that nitrate levels will reach 7 ppm by July 1, 2000.

Producersin the study region who test their soils generally contract this work out
to private companies who specialize in soil sampling and testing. Soil tests cost $15 per
sample for nitrogen and $35 per sample for a complete nutrient profile which includes
nitrogen, phosphorous, potassium, soil organic material and miner nutrients. One sample
Is taken per field where a sample consists of numerous probes taken at random

throughout the field. The soil probes generally extract a core 1 foot in depth. An



exception is sugar beets where the first and second foot of soil is tested (the producer is
charged for two soil tests).

Soil testing isidentified in the Groundwater Management Action Plan asa
method for reducing groundwater nitrate concentration. Hence, there has been great effort
on the part of the local Extension Service to educate producers and to encourage them to
test their soils for nitrogen before applying fertilizer. Currently, 100% of the potato and
sugar beet fields in the study region are soil tested. Wheat and onion fields are also soil
tested, but at a much lower rate. Specifically, up to 10% of the wheat fields and 80% of
the onion fields are soil tested. Further improvement in groundwater quality is possible if
all fields were to be soil tested. In the analysis that follows, we assess whether voluntary
adoption of soil testing on al fields is profitable to producers and if groundwater quality

Isimproved.

A Simulation Model of Soil Testing

The affect that soil test information has on producer profit and groundwater
quality is measured utilizing a spatially distributed, dynamic simulation model linking the
economic and physical processes which determine groundwater quality. The integrated
model is acomposite of three sub-models (economic, soil water solute transport and
groundwater solute transport) where each sub-model represents one level in the nitrate
contamination process. In the economic sub-model, producers choose water and nitrogen
fertilizer application rates to maximize profits. Results from the economic sub-model

become input in the soil water solute transport sub-model which describes movement of



water and nitrogen through the unsaturated or vadose zone of soil. Results from the soil
water solute transport sub-model are input in the groundwater solute transport sub-model,
which tracks loading and movement of nitrates throughout the study aquifer. This model
Is an outgrowth of the extensive groundwater studies preformed in the area because of its
GMA status.

The integrated model is only summarized here with the greatest attention being
given to the economic sub-model (for greater detail see ****, 1996). With the help of
digitized USGS Soil Survey maps and other crop production maps, the study region is
broken into 40 acre units. The 40 acre unit was chosen to conform with the needs of the
groundwater solute transport sub-model. However, thisis not believed to overly
compromise the economic sub-model because average field size in the study region is 20
acres (Perry et. a., 1992). Using the soils maps, the soil type (subscript sin Equation 1)
and corresponding crop mix (rotation) of each 40 acre unit is known. While up to five
crops (wheat, onions, potatoes, sugar beets and hay; subscript ¢ in Equation 1) can be
grown in each unit (hence field sizes |less than 20 acres), constraints are imposed that
maintain the proper proportion of cropsin each soil zone. This requires that constant
returns to scale be assumed. Finally, al production units within a soil zone are treated as
identical, based on information from OSU agricultural extension personnel (L. Jensen,
personal communication, 1994).

In the economic sub-model, nitrogen input (n.,) and the crops to which this
nitrogen is applied (a,,) are chosen to maximize profit (or net farm income) on 40 acres

through time (Equation 1) subject to a series of production constraints (Equations 2
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through 4) and rotation or crop mix constraints that are not shown. In Equation 1, A* and
A9 are the co-state or shadow values for soil water and groundwater nitrates, ¢ and ¢

are the state or stock values for soil water and groundwater nitrates, P iscrop price, Q is
crop yield, gadj is an adjustment to crop yield, np is nitrogen fertilizer price, cfc
represents crop production fixed costs and r is the discount rate. In the production
constraints, the parameter "can" is the county average nitrogen fertilizer application rate,
cgrow isamatrix of 0 and 1 values that defines relevant crop-soil combinations and the
parameter nac is the number of acresin a production unit. Note that ¢ and ¢ are
functions of n ¢, and a_,, but are calculated in, respectively, the soil water and

groundwater solute transport sub-models.
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In Equation 1, Q(n.,) isthe crop yield-nitrogen response or production function.
While an important component of the economic sub-model, available experimental data

are, unfortunately, not adequate to estimate statistical nitrogen-yield relationships.



Furthermore, well established simulation models such as EPIC or CERES are not
available for onions, potatoes and sugar beets. To circumvent this difficulty, quadratic
production functions are assumed. This decision is based primarily on the fact that the
available data suggest that the relationship between crop yield and nitrogen input is
quadratic across all modeled crops.

Using county average nitrogen application rates (can) and county average crop
yields (cay) as proxies for profit maximizing input and output levels, the first and second
order terms (FOT and SOT) of a quadratic function can be determined. Specifically, by
specifying the production function as cay, . = FOT, can, - SOT,(can,,)* and first order
conditions for profit maximization as P(FOT . - 2 SOT . can, )qaid. - np = 0 both FOT
and SOT can be solved for all crops on all soil types. The county level data used here are
from the county in which the study region lies. Because mean values for crop yield and
nitrogen fertilizer input are used, these production functions will lie below the "true"
production function. However, these functions lie within the input requirement set for
their respective crop and, as such, are feasible although not necessarily the economically
or physically optimal level.

Given nitrate applications (n, ), the number of acres of each crop grown (a.,)
from the economic sub-model and irrigation information, the soil water solute transport
sub-model determines soil water and nitrogen leached. The soil water solute transport
sub-model is based on the Nitrogen Leaching Smulator (NLEACH) Version 3.0
simulation model developed and validated by the department of Bioresource Engineering,

Oregon State University (M. English, personal communication, 1995). NLEACH isa



one-dimensional model, or alternatively, a plug-flow model that is capable of
simultaneously modeling the movement of multiple nitrate-nitrogen pulsesin soil. The
NLEACH model preforms best on well drained, non-cracking soils under flood irrigation.
NLEACH calculates |eached nitrogen and soil water for each crop on each soil
type. Thisinformation is then used to determine the concentration (in ppm; ¢*) of nitrate
leached for each 40 acre unit. Using the groundwater module of the simulation model,
this nitrate is loaded into groundwater (c®"), diluted and transported throughout the study
region as groundwater flows toward the rivers bordering the region. Groundwater flow is
modeled utilizing the finite difference method (Wang and Anderson, 1982) and it is
assumed that only the mechanical process of groundwater flow (advection) isimportant.
Aninnovative aspect of this model isthat it is capable of predicting ambient
groundwater nitrate concentration throughout the aquifer and it directly links a producer’s
nitrogen input decision to spatial ambient groundwater nitrate concentration.
Furthermore, given the region'’s GMA status, the ODEQ has designated a number of
domestic and irrigation wells throughout the study region as monitoring wells, where
groundwater nitrate levels are measured on aregular basis. Hence, predicted base (or
starting point) groundwater nitrate concentration levels can be calibrated against observed

levels.

Results
Estimating the impact of soil test information on producer profit and groundwater

quality is accomplished in two steps. First, a base case set of results are established, given



the assumption that soil testing is not conducted on any field in the study region. Next,
the objective function is modified to capture how producers respond (with respect to their
nitrogen input decisions) to soil test information. Because this model is dynamic, changes
(reductions) in nitrogen input from soil testing is expected, in some future time period, to
result in anew (lower) steady state equilibrium for residual soil nitrogen and groundwater
nitrate concentration. At this new steady state equilibrium, test case results are recorded
and compared to the base case results to measure the impact of the soil test information.
Base level predictions of groundwater nitrate concentration are similar to observed
levels. Although the expressionsin the groundwater solute transport sub-model smooth
what in nature are widely varying concentration gradients, the model does a reasonable
job of predicting both the level and variation in groundwater nitrate concentration. In the
base case, differences between observed and predicted high concentrations at simulated
observation wells ranged from -6.2 to 4.32 ppm with a mean difference of -1.4 ppm.
Table 1 reports results from the base and test case model runs. In Table 1, annual
average per acre return is calculated by summing the ratio of total crop enterprise return
to total acres of that crop grown across the crops grown on the different soil types. Base
annual average return to producersin the region is $120 per acre. By crop, annual average
per acre return is $451 for onions, $171 for potatoes, $133 for sugar beets, $66 for wheat
and $38 for hay. These returns are in line with estimates reported in enterprise budgets
published by Oregon State University's Extension service. The per acre cost of crop
production averaged $706 in the base case and producers applied on average 139 pounds

of nitrogen per acre.
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Historically, recommended nitrogen application rates have been 284 pounds on
onions, 215 pounds on potatoes, 205 pounds on sugar beets and 136 pounds on whest.
Hence, an average per acre application of 139 poundsin the base caseisin line with
expectations. This application rate depends on what crops are grown and field size. These
nitrogen application rates are consistent with the quantities of irrigation water applied (48

inches per acre annually) and with the high value of onions, potatoes and sugar beets.

Table 1. Results of soil testing in the study region.

Base Case Test Case
No Soil Test Use Soil Test

Per Acre Return ($) 120.00 128.00
6.70°

Per Acre Cost ($) 706.00 698.00
-1.10°

Nitrogen Applied (Ib/Ac) 139.00 98.00
-29.20°

Highest Simulated Groundwater 36.90 29.30
Nitrate Concentration (ppm) -21.60°

a) Percentage change from the base.

Accounting for soil test information increased annual per acre producer return 7
percent from the base. Thisincrease in return was due to an $8.00 (1.1%) reduction in per
acretotal cost. Nitrogen applications were reduced on average 41 pounds per acre (29%).

By crop, nitrogen applied to wheat was reduced 43%, sugar beets 35%, potatoes 19% and



11

onions 10% from base levels. Since cost savings associate with reduced nitrogen
application exceeded the cost, soil tests resulted in lower per acre total cost.

The highest predicted groundwater nitrate concentration measured at a s mulated
observation well was 36.9 ppm. The high rather than a mean predicted concentration is
reported in Table 1 because compliance utilizing a mean concentration implies that some
individuals may still be consuming potentially harmful levels of nitrate (Lee et. al., 1993).
Soil testing all crop fields reduced the highest predicted groundwater nitrate concentration
at asimulated observation well site 8 ppm (22%). Hence, the results of Table 1 can be
summarized as follows. Sail testing allows producers to reduce nitrogen input sufficiently
to cover the cost of the soil test. This reduction in nitrogen input improves both per acre

producer return and groundwater quality.

Conclusions

Two conclusions are drawn from this investigation of soil test information. First,
as demonstrated in previous works, the use of soil tests improves per acre return.
However, the improvement in per acre return shown here is more modest relative to
earlier investigations ($8 rather than $20 to $50 per acre). Thisimprovement in per acre
return is the result of nitrogen input cost savings, which exceed the cost of the fertilizer
test.

The second conclusion is that soil testing all crop fields improves groundwater
quality beneath the study region. Hence the impact of soil testing in the study regionisan

$8increasein per acre return (from an $8 decrease in per acre cost) and an 8 ppm
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reduction in groundwater nitrate concentration. However, the more pertinent question is
whether this reduction in groundwater nitrate concentration is sufficient to decrease the
demand for direct regulation? The answer to this question, at least in the study region, is
no. While model results indicate that "voluntarily" soil testing all fields will reduce the
highest predicted groundwater nitrate concentration to 29.3 ppm, this concentration is still
substantially greater than the 7 ppm concentration desired by the Oregon Department of
Environmental Quality (the regulator in this case).

Soil testing all crop fields, while not solving the groundwater quality problem in
the region, isawin-win aternative. Soil testing improves groundwater quality while
improving farm profit. To meet the desired quality goal for the study region, additional
technol ogies need to be evaluated and applied, agricultural production practices changed
and (or) direct regulatory policies imposed. Additional technologies to be evaluated
would include, for example, changesin irrigation application methods. It is also possible
that the desired groundwater quality goal of 7 ppm is not obtainable (especialy if this
goal isto be achieved within the next few years) without great cost to producers.

The integrated assessment framework developed in thisinvestigation isa
comprehensive representation of a specific, complex problem, namely groundwater
nitrate contamination. Without a representation of nitrate transport, such as used here,
policy makers cannot evaluate the effect of technology change (for example, the use of a
soil test) on groundwater quality. The results of study apply to hydrological regionswith

similar soil characteristics and shallow aquifers that discharge to streams or rivers. Note,



however, that this model (and modeling approach) is transportable in the sense that

parameter values can be respecified for use in other regions of the U.S.
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