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Abstract

Long-term load forecasts are important for planning the development of the elec-

tric power infrastructure. We present a methodology for simulating ensembles of

daily long-term load forecasts for Brazil under climate change scenarios. For certain

applications, it is important to choose an ensemble approach in order to estimate

the (conditional) probability distribution of the load. High temporal resolution is

necessary in order to preserve key features of the electricity demand that are par-

ticularly important in the face of increasing penetration of intermittent renewable

power generation.
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1 Introduction

The electric power sector in Brazil is particularly exposed to weather risk, since hydroelec-

tric power generation accounts for about 80% of total power generation (U.S. Energy In-

formation Administration, 2013) and the electricity consumption for cooling purposes

is significant and growing rapidly. The Brazilian electric power sector will therefore be

particularly severely impacted by the changes that are expected to occur in the Earth’s

climatic system over the next few decades (Intergovernmental Panel on Climate Change,

2013).

In this study, we create electric load simulations with high temporal resolution for

the distant future. Such simulations can be useful for studying the properties of the

electric load under a variety of future conditions, and are essential for the purposes of

long-term generation capacity planning, especially in the presence of an increasing share

of intermittent renewable power generation. We will use the approach to characterise

the likely impacts of climate change on the distribution of the system load of the electric

system in Brazil, which will be compared to results from other studies.

The connection between weather and consumption of electric power is well established,

and weather variables have been extensively used for forecasting electricity demand for

many decades already. Dryar (1944) noted that electric system load was influenced by

weather conditions and radio programs of “unusual interest”. In the following decades,

the use of weather variables for short-term load forecasting gained popularity and became

important in the day-to-day operations of the power system and in production scheduling

(Gillies et al., 1956; Davies, 1959; Clair and Einwechter, 1961; Heinemann et al., 1966;

Matthewman and Nicholson, 1968a,b; Lijesen and Arvanitidis, 1970). Edwin and Elsayed

(1980) showed how the errors of short-term load forecasts affected the operating costs and

that higher accuracy of load forecasts could lead to more cost-efficient operation of the

electric power system. Although primarily used in the daily operations of utilities, the

relationship between weather conditions and electric system load also started receiving

more attention in the context of long-term load forecasting and system planning (Stanton

et al., 1969; Davey et al., 1973; Clayton et al., 1973; Asbury, 1975; Thompson, 1976; Rao
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and Singh, 1980; Kandil et al., 1981).

In the following period, timeseries methods with integrated weather variables grad-

ually became common for short-term load forecasting, as they were able to account for

inertia in the load response and complex serial correlation in the load (Christiaanse, 1971;

Gupta and Yamada, 1972; Keyhani and Daniels, 1976; Keyhani and Rad, 1978; Phi et al.,

1978; Abou-Hussien et al., 1981; Nakamura and Miyano, 1983; Bolzern and Fronza, 1986;

Vemuri et al., 1986; Costin et al., 1987; Campo and Ruiz, 1987; Matthews et al., 1988).

Barakat and Eissa (1989) studied the dynamic properties of electricity demand in a fast

growing utility, and used a logistic model to represent a trend component with a satu-

ration point. Timeseries approaches were also adapted to longer-term load forecasting,

where the importance economic and demographic factors was also recognised and included

(Uri, 1977, 1978a,b, 1979; Cardelli et al., 1980).

As personal computers became more widespread, they naturally became very popular

in the field of load forecasting, and eventually became deeply integrated into the daily

power system operations (Takenawa et al., 1980; Lajda and Reichert, 1981; Keyhani and

Miri, 1983; Laing and Metcalfe, 1986; Jabbour et al., 1988; Wen and Jiang, 1988; Rahman

and Baba, 1989). Multiple linear regression was originally the most common method, but

with the increased availability of computational power, researchers started exploring the

application of machine learning techniques to load forecasting (Shu-Ti, 1981; Nemeth

and Nagy, 1981; Lajda, 1981; Dehdashti et al., 1982; Rahman and Bhatnagar, 1988;

Lebby, 1990; Chen et al., 1991). Machine learning techniques, particularly neural networks

applied to short-term load forecasting, gained tremendous popularity for load forecasting

purposes in the following period. Bansal and Pandey (2005) performed a more thorough

review of 265 papers on the topic, and research in this area has remained very active

since the review was written. Although machine learning techniques usually perform well

within the range of their training sample, they have been applied much less frequently

to the problem of long-term load forecasting due to concerns that they may be poor

for extrapolation. However, severeal studies have successfully applied machine learning

techniques to long-term load forecasting (Kermanshahi, 1998; Kermanshahi and Iwamiya,
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2002; Dalvand et al., 2008; Xia et al., 2010; Adam et al., 2011). In addition to neural

networks, researchers have also applied many other machine learning techniques to the

problem, such as Kalman filters, data mining techniques, fuzzy logic, self-organizing maps

and support vector machines (Al-Hamadi and Soliman, 2004; Liuzhang and Lin, 2004;

Wang et al., 2005; Bao et al., 2005; Fan et al., 2005; Al-Hamadi and Soliman, 2006;

Pan et al., 2007; ul Asar and Amjad, 2008; Chang-chun and Min, 2008; Guo, 2009).

Decomposition techniques, primarily based on wavelet theory and Fourier transforms,

have also been widely applied to load forecasting (Kim et al., 2000; Zheng et al., 2000;

Yu, 2000; Degaudenzi and Arizmendi, 2000; Huang and Yang, 2001; Zhang et al., 2007;

Zheng et al., 2008; Truong et al., 2008; Bashir and El-Hawary, 2009; Kelo and Dudul,

2010; Chauhan and Hanmandlu, 2010; Pandey et al., 2010; Bahrami et al., 2014).

A number of studies have focused on predicting the load for “special events”, such

as holidays, unusual weather patterns or extraordinary political events, for which the

statistical models have traditionally performed badly due to low number of observations

on which they can be calibrated (Lambert-Torres et al., 1991; Liu et al., 1992; Moharari

and Debs, 1993; Park et al., 1993; Rahman et al., 1993; Srinivasan et al., 1995; Song

et al., 2002; Yong, 2003; Ding et al., 2005; Qza et al., 2005; Li et al., 2006; Hor et al.,

2008; Quansheng et al., 2009; Li and Gao, 2011; Akdemir and Çetinkaya, 2012; Wi et al.,

2012; Li et al., 2013; Raza et al., 2014). In a particularly curious study, Yu et al. (2007)

shows that text mining and sentiment analysis of news articles can be used to improve

energy demand forecasts during abnormal events.

Some research has also been dedicated to distributions of load forecasts rather than

simple point forecasts, mainly in order to more clearly understand the uncertainty of

the forecasts, the effect of uncertainty in the parameters on the forecasts and the conse-

quences of uncertainty in the forecasts (Adams et al., 1991; Mumford et al., 1991; Belzer

and Kellogg, 1993; Ranaweera et al., 1995; Miyake et al., 1995; Ranaweera et al., 1996;

Charytoniuk and Niebrzydowski, 1998; Douglas et al., 1998a,b; Charytoniuk et al., 1999;

Zhengling and Kongyuan, 2002; Taylor and Buizza, 2002, 2003; Teisberg et al., 2005;

Yang et al., 2007; Chaoyun and Ran, 2007; Hor et al., 2008; Hong et al., 2010; Fay and
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Ringwood, 2010; Ziser et al., 2012; Zhang et al., 2013; Abdel-Karim et al., 2014).

Another modeling approach that has grown increasingly popular – in particular in

the context of so-called smart grids – is attempting to create the load forecast bottom-

up by modeling the end-use of the consumers (Noureddine et al., 1992; Bartels et al.,

1992; Wu and Wong, 1993; Pratt et al., 1993; Harris and Liu, 1993; Rastogi and Roulet,

1994; Levi, 1994; Yan, 1998; Tao and Shen, 2006; Frąckowiak and Tomczykowski, 2007;

Tiedemann, 2008; Beccali et al., 2008; Ali et al., 2011; Penya et al., 2011; Mao et al., 2011;

Peng and Wei, 2011; Nejat and Mohsenian-Rad, 2012; Shen et al., 2012; Marinescu et al.,

2013; Bacher et al., 2013; Sun et al., 2013; Hovgaard et al., 2013; Palchak et al., 2013;

Bagnasco et al., 2014; Powell et al., 2014; Sandels et al., 2014; Horowitz et al., 2014; Lü

et al., 2015). Some recent studies have also discussed how the proliferation of smart grid

or microgrid technologies may influence consumer behaviour (Schachter and Mancarella,

2014; Jin et al., 2014; Mirowski et al., 2014).

Recognising that low-quality inputs can be detrimental to the forecast accuracy, some

researchers focused on improving the accuracy of the inputs to the load forecasts. Khotan-

zad et al. (1996) and Seerig and Sagerschnig (2009) discuss how to upsample weather data

in order to improve high-resolution load forecasts. Savelieva et al. (2000) have treated the

problem of missing weather data and varying economic conditions. Challa et al. (2005)

and Cao et al. (2012) discuss how to incorporate real-time weather data in the forecasthing

process, and Jiao et al. (2012) discusses strategies for constructing training samples for

support vector machines with the purpose of forecasting electric system loads.

In the context of load forecasting, one year is often considered “long-term”. McSharry

et al. (2005) and Pezzulli et al. (2006) created forecasts using simulated weather. Mi-

rasgedis et al. (2006) and Apadula et al. (2012) built long-term models for Greece and

Italy, respectively, using multiple linear regression. Hyndman and Fan (2010) created

a long-term forecast for Australia, developing a very interesting resampling approach

to generate simulated weather paths. Pielow et al. (2012) built long- and short-term

models for USA, explicitly considering short-run price elasticities. Hong et al. (2014b)

made long-term probabilistic forecasts with hourly information. De Felice et al. (2015)
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discussed the use of seasonal climate forecasts for medium-term electricity demand fore-

casting. Although one year forecasts may be sufficient for many operational tasks, such

as production scheduling, it is insufficient capacity expansion planning – in particular at

the time horizon in which climate change becomes important, several decades.

Since electricity demand is affected by weather conditions, it will naturally be in-

fluenced by changing climatic conditions. Mideksa and Kallbekken (2010) performed a

review of the literature on the impacts of climate change on the electricity market, not-

ing that most of the reviewed studies predict a net increase in electricity demand due

higher temperatures and more use of air conditioning and further that more research

was needed on the demand-side impacts in Latin America. Schaeffer et al. (2012) also

summarise a number studies on the impact of climate change on energy demand. Further-

more, Zachariadis (2010) and Zachariadis and Hadjinicolaou (2014) studied the impacts

of climate change on electricity use on Cyprus. Kaufmann et al. (2013) note that utilising

hourly temperature and a flexible cut-off point for calculating heating degrees allows for

improving the accuracy of models for electricity consumption.

In the specific case of Brazil, most of the published studies ignore the effects of weather

on electric system load. Zebulum et al. (1995) and Carpinteiro et al. (2004) studied the

use of neural networks for short- and medium-term load forecasting, respectively, for small

regions of Brazil, although no weather data included. Several studies estimate the price-

and income-elasticity of electricity in Brazil, and demonstrate how this may be used

to forecast electricity demand, but do not consider the influence of weather conditions

(Andrade and Lobão, 1997; Schmidt and Lima, 2004; Mattos and Lima, 2005; Camargo,

2007). Further studies have experimented with load forecasting based on various time-

series methods for various regions of Brazil, but again weather conditions have not been

included in the analysis (Soares and Souza, 2006; Soares and Medeiros, 2008; Castro and

Montini, 2010; Neto et al., 2006; Viana and Silva, 2014). Siqueira et al. (2006) and Irffi

et al. (2009) made forecasts for the North-East region of Brazil, but fail to take weather

conditions into account. Campos (2008) studied several techniques for long-term load

forecasting for the state of Minas Gerais, but did not consider weather conditions. On
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the other hand, Schaeffer et al. (2008) conducted a comprehensive study of the impacts

of climate change on the Brazilian electric energy sector, including long-term electricity

demand projections. Caldas and Santos (2012) developed a simple multiple regression

model for forecasting long-term residential consumption in the city of Petrolina, which

included temperature. Migon and Alves (2013) experimented with a multivariate dy-

namic regression model on the hourly electricity loads of the Brazilian South-East region,

considering trends, calendar effects, short-term dynamics and non-linear cooling effects.

Using a dynamic panel approach, dos Anjos Rodrigues et al. (2014) also used weather

variables to show that climate change is likely to cause a significant increase in residential

electricity consumption in Brazil in the long term.

The strategic planning and expansion of the Brazilian electricity supply infrastructure

is largely guided by the research conducted by Empresa de Pesquisa Energética (EPE).

Some of the main reports created by EPE include an annual ten-year expansion plan

(EPE-PDE, 2014), and an occasional longer-term plan – the latest of which is currently

under development and will treat the period until 2050 (EPE-PNE, 2014). These reports

are instrumental to the development of the Brazilian electricity supply infrastructure and

naturally contain demand projections.

However, in the context of climate change, a somewhat longer planning horizon is

required. The IPCC generally develops scenarios whose span reaches up to year 2100

and forecasts the most severe weather effects to occur beyond year 2050 (Intergovern-

mental Panel on Climate Change, 2013). Therefore, a time horizon up to about year

2100 appears more adequate for analysing climate risk. Traditionally, the reports pub-

lished by EPE have also not excplicitly treated climate uncertainty, although the climate

uncertainty and weather risk are of great interest the context of climate change.

This study will make several important contributions. Firstly, our research will con-

tribute to the understanding of how weather conditions affect electricity demand in Brazil,

which has received little attention in the existing literature. Secondly, realistic long-term

load simulations with high temporal resolution for Brazil do not appear to have been

created before, and are essential for long-term system planning. Thirdly, we will provide
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a desperately needed updated assessment of the impacts of climate change on electricity

demand in Brazil, using the latest available results and data. And finally, the chosen

approach will enable us to discuss the probability distribution of the forecasts for electric

system load, in contrast to the existing literature which only provides point forecasts.

Ferreira et al. (2015) calls for more research on the stochastic modelling of the Brazilian

Electric Power Sector, and this study provides a probabilistic long-term electricity demand

forecast through simulation.

This paper is structured as follows: the following section discusses and justifies the

selection and treatment of input variables, the appropriate data sources and applicable

calibration methods for building the load model. Section 3 presents the methodology

framework, whereas section 4 present the load model and the results of calibrating the

model on historical data, and compares some of the fitted model parameters with results

from earlier studies. Section 5 presents the approach that will be used for performing load

simulations for the future, as well as results and insights gained from performing these

simulations. Finally, section 6 briefly summarises the main findings of this study.

2 Data Description and Analysis

2.1 Electricity Demand

Daily aggregated electricity demand on the Brazilian Interconnected Power System (SIN)

is available from the Electric System National Operator (ONS), as far back as August

3, 2005 (ONS, 2015). Although data with a higher temporal resolution – say, hourly or

half-hourly resolution – would have been preferable, only daily data is available to the

public. In the ten years of daily aggregated electricity demand data between August 3,

2005 and August 2, 2015, there are only two missing observations. Figure 1 shows a graph

of the daily load data.

Although there is some power generation and consumption which occurs outside of the

interconnected grid, the SIN accounts for an overwhelming share of Brazilian electricity

demand. Only 1.7% of electricity demand occurs outside this grid, mainly small isolated
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Figure 1: Daily Aggregated Load of the Brazilian Interconnected Power System (SIN)
Source: Brazilian Independent System Operator (ONS, 2015)

systems in the Amazon region. Our study therefore only considers the electricity demand

served by the SIN.

In principle, there may be some advantages to separating the demand between various

sectors and modelling them individually, since for example the residential, commercial and

industrial sectors can have very different demand patterns. In some cases, it might also

be interesting to divide even further, for example distinguish between various industries

(steel and pulp, for example) or different classes of residential customers (for example

based on income). We do not, however, have access to daily data at this level of detail.

Essentially, this means that our modelling approach will be in large part a top-down

approach where we focus on aggregate behaviour, rather than a bottom-up approach

where one would concentrate on smaller units. Although daily demand data is available

for four geographically separated subsystems of the SIN, our main focus remains on the

daily total demand of the system. It might be possible to improve on our results by

modelling each geographical region separately, although our approach – simply modelling

the aggregate – hopefully benefits somewhat from the law of large numbers.
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2.2 Weather Data

The main purpose of this study is to determine the behaviour of electricity demand under

changing climatic conditions. Therefore, it is important that we first and foremost consider

the impact of weather variables on the electricity demand.

The Integrated Surface Database (ISD) from the National Oceanic and Atmospheric

Administration (NOAA) contains quality-controlled weather observations from 490 weather

stations on Brazilian territory (NOAA, 2015). However, only 28 of these weather stations

have less than 10% missing hourly observations in the ten-year period between August 3,

2005 and August 2, 2015. We initially focus on this subset of weather stations.

For simplicity, we consider only the temperature rather than a wider set of weather

variables. Although humidity, cloud coverage and wind most likely also affect electricity

demand, temperature is generally considered to be by far the most important single

weather variable.

Since the temperature observations contain missing values, we replace the missing

values with artificial values imputed by the procedure described by Josse and Husson

(2011). The temperature observations contain few missing values in addition to a sub-

stantial amount of both temporal and geographical regularity, which is why we believe

that a PCA-based imputation method is well suited for our purposes.

We assume that when average daily temperature (that is, daily maximum temperature

plus daily minimum temperature, divided by two) is below a certain base temperature,

TH , then electricity demand increases for heating purposes. When the temperature is

above a certain base temperature, TC , electricity demand increases for cooling purposes,

and when the temperature is above an even higher base temperature TCA, then electricity

demand for cooling purposes increases at a higher rate. Altogether, this means that we

estimate a piecewise linear temperature response curve with knots at TH , TC and TCA, and

which is flat between TH and TC . The base temperatures are chosen by simply scanning

over the base temperatures and selecting the base temperatures that minimise an out-of-

model error measure, that is, we selected the base temperatures that appeared to provide

the best forecasting performance. This procedure lead to a base temperature for heating
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at 18◦C, a base temperature for cooling at 25◦C, and a base temperature for accelerated

cooling at 28◦C. Each of these three base temperatures will give rise to a linear term in

the model.

In order to select a smaller subset of stations with the highest impact on electricity

demand, we employ a variation of the procedure suggested by Hong et al. (2015) for

selecting weather stations. The framework proposed by Hong et al. (2015) first ranks in-

dividual weather stations based on a goodness-of-fit measure when including each station

individually in a simple model, then selects a composite weather variable containing the

highest ranking weather stations such that a given model error measure is minimised. We

depart slightly from the proposed framework by avoiding the construction of a composite

weather variable and instead including all the highest ranking weather variables individ-

ually in the model. This procedure results in a selection of 18 weather terms pertaining

to 13 different weather stations.

For the selected weather variables, autoregressive and lagged terms are also included in

order to account for inertia (that is, serial correlation) and accumulative weather effects,

as discussed by Li et al. (2009). By scanning over various lagged and autoregressive terms

and calculating out-of-model error measures, we chose to include the 9-day moving average

of the weather variables (average of ten days earlier up until and including yesterday) and

the value of yesterday’s weather variable.

Since this can give rise to a large number of weather-related variables in the model, we

also perform a backwards stepwise regression at the end using the Bayesian Information

Criterion to select a more parsimonious model (Hyndman and Athanasopoulos, 2014).

After this pruning, only nine weather variables from eight weather stations is included in

the model: heating degree days from a single weather station (number of degrees below

18◦C), accelerated cooling degree days from a single weather station (number of degrees

above 28◦C), and regular cooling degree days from seven weather stations (number of

degrees above 25◦C).

Figure 2 shows the location of the final eight weather stations used in the model,

plotted on a population density map of Brazil. Despite the appearance of being some-
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Figure 2: Population density and selected weather stations
Source: Own elaboration, NASA Socioeconomic Data and Applications Center (NASA-
SEDAC, 2015)

what unbalanced, the resulting selection of weather stations appears reasonable: a larger

number of weather stations were selected in the south of the country where population

density is much higher, the seasonal weather variations are much greater, and the pop-

ulation in general is more affluent. These three reasons would contribute to making the

electricity demand in the southern part of Brazil more sensitive to weather, and would

explain why the selection procedure would choose a greater number of weather stations

from the southern parts of the country.

2.3 Demographic and Economic Data

Electricity demand is known to be influenced by demographic conditions, such as the

size and structure of the population, and economic factors, such as industrial production.

Since the economic and demographic conditions can change substantially in the period

in consideration, it is important to explicitly include such factors in the analysis. Our
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Figure 3: Quarterly GDP in 1995 prices, seasonally unadjusted
Source: The Brazilian Institute of Geography and Statistics (IBGE, 2015)

efforts are, however, restricted by the availability of data: not only with respect to the

historical information available for calibrating a model, but also with respect to forecasts

for the main drivers. It makes little sense to calibrate a model using factors for which we

will not be able to obtain credible forecasts for the period of interest. We therefore only

consider the population number and the gross domestic product, variables whose impact

on energy demand are relatively well understood and for which scenarios can be obtained

with relative ease.

The Brazilian Institute of Geography and Statistics (IBGE) provides both historical

GDP figures and population numbers. We use the quarterly GDP figures (that is, not

seasonally adjusted), and copy the quarterly value to each day in the quarter (IBGE,

2015). For the population numbers, we choose to use projected population numbers rather

than numbers directly from the censuses, since the numbers from the censuses appear to

contain numerous statistical artifacts (IBGE, 2013). The projected population numbers

estimate the Brazilian population on the first day of each month, and we obtain a value for

every day simply by linear interpolation. The GDP figures and the projected population

number are shown in figures 3 and 4, respectively.
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Figure 4: Projected population numbers (IBGE, 2013)
Source: The Brazilian Institute of Geography and Statistics (IBGE, 2015)

2.4 Calendar Effects

The pattern of electricity demand changes between weekdays, holidays and throughout

the year. Since we are interested in constructing daily resolution forecasts, we must take

into account recurring factors that affect the electricity demand on specific days. We

include these so-called calendar effects mainly as dummy variables in the model. We

include a dummy variable for each day of the week, for major national and regional

holidays, and for bridge days. In some cases, we also include a number of dummies that

distinguish between whether a holiday occurs on a weekday or during the weekend, since

a holiday that occurs on a weekday usually impacts demand differently than a holiday

that occurs during a weekend. Table 1 shows an overview of the dummy variables used

to capture calendar effects that remained after pruning the model using a backwards

stepwise regression procedure employing the Bayesian Information Criterion to select a

parsimonious set of predictors.

In addition to dummies for capturing weather variables, we include the number of

daylight hours per day in the model. The number of daylight hours presumably affects

electricity demand by directly affecting usage of electrical lighting, but may also capture

15



Table 1: Dummy variables used for capturing calendar effects

Conditions Comment
Monday, Saturday, Sunday Day-of-the-week effects

Fixed dates
January 1 New Year’s Day
January 2 Knock-on effects from New Year’s Day
First week of January Knock-on-effects from earlier holidays
April 21 Tiradente’s Day
May 1 Labour Day
May 2 Knock-on effects from Labour Day
September 7 Independence Day
September 8 Knock-on effects from Independence Day
October 12 Our Lady of Aparecida
November 2 All Soul’s Day
November 15 Republic Day
November 16 Knock-on effects from Republic Day
December 23 Two days before Christmas
December 24 Christmas Eve
December 25 Christmas Day
December 31 New Year’s Eve

Fixed dates combined conditions
January 1 and Sunday Moderates the New Year’s Day effect if it falls

on a Sunday
April 20 and Monday Bridge day for Tiradente’s Day
April 21 and weekend Moderates the effect of Tiradente’s Day if it

falls on a weekend
May 1 and weekend Moderates the effect of Labour Day if it falls

on a weekend
July 9 and not Sunday São Paulo State Day, although the effect is

indistinguishable when it falls on a Sunday
September 6 and Monday Bridge day for Independence Day
September 7 and weekend Moderates the effect of Independence Day

when it falls on a weekend
October 11 and Monday Bridge day for Our Lady of Aparecida
October 12 and weekend Moderates the effect of Our Lady of Aparecida

when it falls on a weekend
November 1 and Monday Bridge day for All Soul’s Day
November 2 and weekend Moderates the effect of All Soul’s Day when

it falls on a weekend
November 15 and weekend Moderates the effect of Republic Day when it

falls on a weekend
November 20 and weekday Zumbi dos Palmares Day

Moving Dates
Saturday-Tuesday before Ash Wednesday Carneval
Ash Wednesday Religious holiday
Good Friday Religious holiday
Easter Sunday Religious holiday
Corpus Christi Religious holiday
Friday after Corpus Christi Bridge day for Corpus Christi

Source: Own elaboration
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Figure 5: Location of the cities whose number of daylight hours were considered in the
model
Source: Own elaboration

more profound influences in daylight variations and changes in the diurnal routine of

consumers over the year, as well as having some correlation with electricity demand for

heating and cooling purposes. Since Brazil is a very large country, latitudinally speaking,

there are large regional differences in how the number of daylight hours varies over the

year: there is hardly any seasonal variation in daylight hours close to the equator in the

north, whereas the extreme south experiences significant change in the number of daylight

hours over the year. Therefore, we initially include the number of daylight hours from

four locations, relatively evenly spread throughout the latitudinal extent of the country:

Porto Alegre, São Paulo, Salvador and Fortaleza. The location of these cities is shown in

figure 5.
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2.5 Special events

Special rare or irregular events can also affect electricity consumption. Although it would

be difficult to obtain forecasts for these events in the remote future, it is necessary to

include known historical events for the calibration of the model. When creating forecasts

with the model, there is some comfort in knowing that these types of events normally

infrequent. In this respect, in our demand model we include a dummy variable to mark

the weekdays on which the Brazilian national team played matches in the FIFA World

Cups in 2006, 2010 and 2014.

2.6 Error Term

The error of the model is likely to contain residual amounts of serial correlation. We

model the error term as an ARMA process, and use a Ljung-Box test to show that the

residuals from the ARMA process are uncorrelated. Modelling the error term thusly will

help us create probabilistic forecasts that recreate the serial correlation characteristics of

the original series during the simulation step.

2.7 Intentionally Omitted Drivers

Electricity demand is affected by a greater number of factors than those mentioned until

now. Although the following factors have not been included in the model for practical

reasons, they have not been forgotten.

Technological change, for instance, is an important determinant of electricity demand.

However, new technology may both increase and decrease electricity demand through

creating new ways of using electricity or replacing current uses of electricity. Also the

proliferation of important existing technologies, such as air conditioning, is something

that could have been explicitly included in the model, especially considering that many

technologies in Brazil are far from their saturation point. Some of these developments,

however, are somewhat accounted for by including the GDP.

Intermittent renewable electricity generation, such as solar or wind power, is frequently

modelled as “negative demand”, since electricity from these sources could substitute elec-
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tricity from the national grid with local sources of electricity. Although this might in-

crease in importance in the future, we do not include this in the model. Although these

are weather-dependent, thus apparently of great interest in this study, we consider these

as sources of supply in this context, rather than sources of “negative demand”.

Perhaps the most ominous omission is the price of electricity. Firstly, however, several

studies on the household sector in Brazil assert that at least price elasticity in that partic-

ular sector is low, much lower than income elasticity (Andrade and Lobão, 1997; Schmidt

and Lima, 2004; Mattos and Lima, 2005). Secondly, demand is a crucial component to

price formation, which means that it would be necessary to forecast demand in order to

forecast price, but we would also need a price forecast to construct a demand forecast.

As such, this would lead to a circular problem, or at best a simultaneous problem, which

is beyond the scope of this study.

These factors have been omitted partially in an effort to keep the assumptions neces-

sary for simulation step as simple as possible: including even a small number of additional

factors can dramatically increase the number of possible scenarios that need to be con-

sidered, as well as create consistency problems, since creating scenarios that accurately

reflect the appropriate conditional probabilities can be exceptionally complicated. In

many cases, there is also little current or historical information to base forecasts of the

factors on.

The factors that have been omitted are also presumably of lower importance than

the variables already included. If the selection of predictors already included provides

sufficiently pleasing results, there is little incentive to complicate the model further. At

best, including these factors would provide marginal benefits in return for a substantial

increase in complexity, typically showing diminishing returns in response to the effort.

3 Methodology Framework

The methodology follows the same three basic steps as Hyndman and Fan (2010): first a

statistical demand model is calibrated using the available historical data described above,

then the demand model is used to forecast future demand by combining temperature and
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residual simulation with future assumed demographic and economic scenarios, and finally

the results and the forecasting performance will be evaluated critically.

The statistical model of demand is constructed using multiple linear regression. Al-

though more complex approaches have been explored in the literature, such as machine

learning, Hong et al. (2014a) argue that multiple linear regression approaches often prove

superior to machine learning approaches, in addition to being considerably simpler to op-

erationalise. The resulting models are also more defensible, in the sense that the influence

of each factor is directly and explicitly quantified, which is not the case for most ma-

chine learning based approaches. The weather variables of the model are selected using a

slightly modified version of the approach developed by Hong et al. (2015). Final predictor

selection is performed by backwards stepwise regression, using the Bayesian Information

Criterion (BIC) in order to indicate a preference for parsimonious models (Hyndman and

Athanasopoulos, 2014).

Future demand scenarios are constructed through repeatedly creating point forecasts

with the calibrated model by applying it to simulated residuals, simulated future tem-

peratures, and assumed future economic and demographic scenarios. After choosing the

correct timeseries model for the residual, residual simulation can be performed by a simple

bootstrapping method. Future temperatures are provided by global circulation models

MIROC5 and HadGem3 that simulate the climate. However, the climate simulations do

not provide a sufficient number of weather scenarios for assessing the entire probability

distribution, and because of this we will apply a bootstrapping method to the climate

simulation results in order to generate a much greater number of realistic weather scenar-

ios. For assumed future values of demographic and economic drivers, we will use selected

scenarios from the Shared Socioeconomic Pathways (SSP) database (O’Neill et al., 2014a).

In the final step, the forecasting performance is evaluated and the forecasts are com-

pared to forecasts provided in the existing literature. An idea of the performance can be

obtained by checking the forecasting performance of the calibrated model on an out-of-

sample validation set, paying close attention to the differences between the ex-ante and

ex-post forecasts. We also compare results with electricity demand forecasts developed in
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other reports, such as the Brazilian official ten-year plan (EPE-PDE, 2014), the Brazil-

ian official long-term plan (EPE-PNE, 2014), and the demand projections developed by

Schaeffer et al. (2008).

4 Model Establishment

4.1 Model Description

The model of the daily electric system load takes the following form:

ln(Lt) =

p∑
i=1

αiHDD
TH
t,i +

q∑
i=1

βiCDD
TC
t,i +

r∑
i=1

γiCDD
TCA
t,i

+ θ1ln(POPt) + θ2ln(GDPt)

+
n∑

i=1

κiCALt,i

s∑
i=1

λiDHt,i

+ ηt

where

• Lt denotes the electric system load on day t;

• HDDTH
t,i denotes how many degrees below the base temperature TH the daily average

temperature (that is, daily maximum plus daily minimum divided by two) is at

weather station i ∈ {1, . . . , p} on day t;

• CDDTC
t,i denotes by how many degrees the daily average temperature at weather

station i ∈ {1, . . . , q} exceeds the base temperature TC on day t;

• CDDTCA
t,i denotes by how many degrees the daily average temperature at weather

station i ∈ {1, . . . , r} exceeds the base temperature TCA on day t;

• POPt denotes the estimated population on day t;

• GDPt denotes the gross domestic product in the quarter to which day t belongs;
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• CALt,i is a set of dummies marking calendar effects and the occurrence of special

events;

• DHt,i is the number of hours of daylight on day t at location i ∈ {1, . . . , s};

• ηt denotes the model error on day t, which can be serially correlated and is modelled

by an ARMA process.

The model is formulated in terms of the natural logarithm of demand, as such the

effects of weather and calendar dummies are multiplicative in this model. The demo-

graphic and economic variables, population and gross domestic product, also appear as

natural logarithms, so they are modelled as having a constant elasticity rather than a

constant marginal effect. In addition to being a reasonable modelling choice (a change

in the GDP of one percent increases the electricity demand by a determined percentage),

an advantage of this choice is that the elasticities can be easily compared to estimates of

elasticities found in the existing literature.

4.2 Variable Selection

The set of weather variables was chosen using a method similar to the one developed by

Hong et al. (2015). The final set of predictors were selected using backwards stepwise

regression (Hyndman and Athanasopoulos, 2014).

4.3 Model Fitting

We divided our sample into two parts: a training sample and a test sample. The model

parameters are calibrated using the training sample, and an ex-post forecast on the val-

idation sample gives an impression of how the model performs for forecasting purposes,

disconsidering uncertainty in the predictor variables.

The results of the model calibration are shown in appendix A. The mean absolute

percentage error (MAPE) of the training sample is 1.64%, whereas the MAPE of the

ex-post forecast (i.e. given the observed historical value of all the predictors) on the test

sample is 1.93%. To give an idea of the fit of the model and the forecasting performance,
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Figure 6: In-sample forecast, January 2014
Source: Own elaboration, Brazilian Independent System Operator (ONS, 2015)

figure 6 and 7 show an in-sample forecast for January 2014 and an ex-post out-of-sample

forecast for January 2015, respectively.

The estimated coefficient of the term ln(GDPt), θ2 = 0.475, corresponds to the income

elasticity of electricity demand. Earlier studies have estimated the income elasticity of

electricity demand for various sectors or geographical regions of Brazil, but no study has

reported the elasticity of the aggregate electricity demand. Even so, the value obtained

here conforms well to those found in earlier studies: Andrade and Lobão (1997) estimated

the income elasticity of the residential sector in Brazil at 0.2132, Schmidt and Lima (2004)

estimated the income elasticities of the residential, commercial and industrial sectors

to 0.539, 0.636 and 1.92, respectively, and Mattos and Lima (2005) placed the income

elasticity of the residential sector in Minas Gerais at 0.532. Although our estimated

income elasticity differs from earlier attempts, it appears to be well within reason despite

the radically different approach of the present study.
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Figure 7: Ex-post out-of-sample forecast, January 2015
Source: Own elaboration, Brazilian Independent System Operator (ONS, 2015)

5 Forecasting and Evaluation

5.1 Forecasting Procedure

Repeatedly calculate the daily load from January 1, 2016 through December 31, 2100,

using the calibrated model together with:

• Assumed values for population and GDP;

• Temperature data from weather simulations;

• Simulated residual from a SARIMA model calibrated on the residuals from the load

model.

Here we explain in greater detail how the different input variables are treated.

5.1.1 Assumed Population and GDP: Shared Socioeconomic Pathways

The Shared Socioeconomic Pathways are a set of five demographic and socioeconomc

scenarios developed to serve as a common starting point for climate change researchers

(Van Vuuren et al., 2014; O’Neill et al., 2014b). Each of the five scenarios is accompanied
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by a narrated storyline (O’Neill et al., 2012), and several teams of researchers have per-

formed simulations to quantify key economic and demographic variables for each of the

scenarios (IIASA, 2015).

For our work, we have selected three of the five scenarios:

SSP1: Global Sustainable Development

SSP2: Business As Usual

SSP5: Conventional Development/Economic Optimism

We have chosen to use the quantifications that have been created by the OECD and

are available in the SSP Database, since these are considered illustrative (IIASA, 2015).

Since the SSP quantifications only provide data for one year each decade until year 2100,

we perform an exponential interpolation (that is, a linear interpolation in log-space) on

the population data to generate daily figures necessary for the model. We perform an

exponential interpolation on the GDP data to generate annual GDP figures, to which

we apply a simple seasonal profile in-line with historical observations (Q1: 23.98%, Q2:

24.91%, Q3: 25.70%, Q4: 25.40%). The population series based on the SSP is then

adjusted by a constant factor such that the population on the first of January 2015

matches the observed data, and the GDP series based on the SSP is similarly adjusted

by a constant factor such that it matches the observed GDP for 2014. Figure 8 shows

the resulting population of Brazil for the three chosen scenarios, and figure 9 shows the

annual GDP used in the three scenarios.

5.1.2 Weather Simulation

The IPCC has chosen four representative global climate pathways, called Representative

Concentration Pathways (RCP), each of which is largely defined by the level of radiative

forcing reached in year 2100: 2.6 W/m2, 4.5 W/m2, 6 W/m2 and 8 W/m2 (Van Vuuren

et al., 2011). These pathways have been selected in order to facilitate the comparison

between climate simulations performed by different researchers.
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Figure 8: Population of the Shared Socioeconomic Pathway scenarios
Source: The Brazilian Institute of Geography and Statistics (IBGE, 2013), International
Institute for Applied Systems Analysis (IIASA, 2015)
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Figure 9: GDP of the Shared Socioeconomic Pathway scenarios
Source: The Brazilian Institute of Geography and Statistics (IBGE, 2015), International
Institute for Applied Systems Analysis (IIASA, 2015)
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The National Aeronautics and Space Administration (NASA) has created global daily

downscaled climate projections for two of the RPCs, RCP4.5 and RCP8.5, using 21 dif-

ferent climate models (NASA-GDDP, 2015). With a spatial resolution of 0.25 degrees,

these projections are considered appropriate for climate change impact studies on local

and regional scales. From the NASA-GDDP dataset, we obtained the daily maximum and

minimum temperature projections for each weather station used in our calibrated model

from the MIROC5 global circulation model for the two available RCPs (Watanabe et al.,

2010).

This temperature data is then used to simulate a large number of weather paths, which

enables us to estimate the impact of weather uncertainty on the electricity demand. The

simulated weather paths are created using the following procedure:

1. A trend spline and a seasonal spline are fitted to the data for each variable from

each weather station, as illustrated for a single weather variable in figures 10 and

11;

2. A trend spline and a seasonal spline are fitted to the annual and daily standard

deviations of the detrended and deseasonalised temperature data for each variable

from each weather station, as illustrated for a single weather variable in figures 12

and 13;

3. A normalised, detrended and deseasonalised residual is created for each variable from

each weather station by subtracting the trend and seasonal splines, then dividing

by the trend and seasonal splines that were fitted to the standard deviation, as

illustrated for a single weather variable in figure 14;

4. The normalised residual is resampled (with replacement) in blocks containing a

random number of days between 180 and 545, and containing all weather variables.

This procedure is intended to capture trends in the weather variables, as well as preserve

the temporal and spatial correlation present in the dataset. The last step of the procedure

is repeated 500 times in order to generate 500 weather simulations for each of the two

selected RCPs. Figures 15 and 16 illustrate the results of this procedure for the maximum
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Figure 10: Maximum daily temperature from a single weather station (820980), and a
spline fitted to the data
Source: Own elaboration, National Aeronautics and Space Administration (NASA-
GDDP, 2015)
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Figure 11: Detrended maximum daily temperature from a single weather station
(820980) at fractions of the year, and a spline fitted to the data
Source: Own elaboration
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Figure 12: Standard deviation of the detrended and deseasonalised maximum daily
temperature from a single weather station (820980), and a spline fitted to the data
Source: Own elaboration
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Figure 13: Standard deviation of the detrended and deseasonalised maximum daily
temperature from a single weather station (820980) throughout the year, and a spline
fitted to the data
Source: Own elaboration
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Figure 14: Detrended, deseasonalised and normalised maximum daily temperature from
a single weather station (820980)
Source: Own elaboration

daily temperature of a single weather station, for RCP4.5 and RCP8.5 respectively. The

figures shows the mean annual temperature of the 500 simulations as a thick black line, and

the 25-75 and 10-90 percentiles of the temperature simulations as shaded areas, together

with the annual mean temperature in the original scenario as a dotted line.

The temperature simulations appear to reflect important characteristics of the orinial

scenario quite well: the mean of the simulations closely follows the overall trend of the

original scenario, and the percentiles of the simulations appear reasonable when compared

to the original. The block resampling step ensures that temporal and spatial correlation

is preserved.

5.1.3 Residual Simulation

In order to capture serial correlation that was not captured by the load model, we pair

each simulation of the weather variables with a simulation of the error term. The simula-

tion of the error term is created by calibrating a SARIMA model on the residual from the

load model in the calibration period August 2005 to August 2014. The lag structure is
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Figure 15: Annual mean of the daily maximum temperature of the weather scenarios,
based on the MIROC5 global circulation model run with the representative concentration
pathway 4.5
Source: Own elaboration, National Aeronautics and Space Administration (NASA-
GDDP, 2015)
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Figure 16: Annual mean of the daily maximum temperature of the weather scenarios,
based on the MIROC5 global circulation model run with the representative concentration
pathway 8.5
Source: Own elaboration, National Aeronautics and Space Administration (NASA-
GDDP, 2015)
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Figure 17: Autocorrelation Function values of the residuals of the SARIMA model
Source: Own elaboration

determined by the Akaika Criterion, which indicates that a SARIMA(3,1,4)(1,0,2)7 model

is appropriate. Figure 17 and 18 show the autocorrelation function and partial autocorre-

lation function calculated at different lags on the residuals of the SARIMA(3,1,4)(1,0,2)7

model. The plots indicate that the residual of this process behaves almost like white

noise, thus we are satisfied that this process is sufficiently well-suited for our purposes.

We generate 500 simulations using this process, each of which is paired with a simulation

of the weather variables.

5.2 Forecasting Results

We consider three main scenarios: SSP1 paired with RCP4.5, SSP2 paired with RCP4.5,

and SSP5 paired with RCP8.5. Although no official recommendations on the pairing of

RCPs and SSPs is currently available, the pairings of socioeconomic pathways and repre-

sentative concentration pathways used in this paper are considered to represent plausible

combinations, and have been suggested as possible reference scenarios (Van Vuuren et al.,

2014).

For each of the three scenarios, load forecasts from 2016 to 2100 were created by
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calculating the load model on the 500 weather simulations created for the respective RCP

and the assumed values for population and GDP given by the selected SSP, and then

adding a simulated error term. The distribution of the estimated annual demand for the

three scenarios are illustrated in figure 19, figure 20 and figure 21. A summary of the

distribution of estimated annual demand for key years is also given in table 2, and a

graphical comparison between the mean of the simulations for each of the three scenarios

is given in figure 22.

The first scenario, RCP4.5 paired with SSP1 as shown in figure 19, shows rising annual

electricity demand until approximately year 2060, which rapidly drops again by year 2100

to a level only slightly above today’s level. This trajectory clearly reflects the assumed low

population growth, combined with the relatively modest increase in GDP and temperature

over the period. The wide range between the percentiles of the distribution shows the

tremendous impact of weather uncertainties on the distribution.

The second scenario, RCP4.5 paired with SSP2 as shown in figure 20, shows an increase

in annual electricity demand until year 2060, and a very slow decline from then until

year 2100. This is the population with the highest population growth and the lowest
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Table 2: The mean and quartiles of the estimated probability distribution of annual
electricity demand (TWh) for selected years in the three scenarios

Scenario Year Mean 1st Quartile 2nd Quartile
SSP1-RCP4.5 2020 626.19 606.32 642.12

2030 789.34 752.37 827.05
2040 939.92 876.11 995.58
2050 1036.97 952.03 1111.22
2060 1071.18 971.65 1160.23
2070 1028.56 928.95 1122.11
2080 936.04 833.80 1027.20
2090 799.39 698.15 880.53
2099 657.84 569.06 734.49

SSP2-RCP4.5 2020 634.80 614.68 650.96
2030 803.61 765.98 842.00
2040 939.72 875.90 995.35
2050 1038.44 953.39 1112.80
2060 1099.15 997.03 1190.53
2070 1109.56 1002.11 1210.47
2080 1087.29 968.53 1193.18
2090 1036.20 905.00 1141.36
2099 988.65 855.23 1103.90

SSP5-RCP8.5 2020 625.60 606.82 642.52
2030 808.86 771.40 847.31
2040 999.74 934.05 1058.49
2050 1134.25 1040.90 1215.05
2060 1200.14 1088.05 1298.01
2070 1181.04 1065.74 1282.36
2080 1105.18 986.24 1214.25
2090 973.55 851.78 1068.97
2099 826.43 712.22 924.20

Source: Own elaboration
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Figure 19: Annual electricity demand
Source: Own elaboration, Empresa de Pesquisa Energética (EPE-PDE, 2014, p. 41)
(EPE-PNE, 2014, p. 150)
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Figure 20: Annual electricity demand
Source: Own elaboration, Empresa de Pesquisa Energética (EPE-PDE, 2014, p. 41)
(EPE-PNE, 2014, p. 150)

GDP growth over the period, and these forces affect the demand in opposite directions,

although the final result is a relatively high electricity demand in year 2100 due to a large

population. Again, the wide range between the percentiles of the distribution shows that

the climatic risk to electricity demand is enormous.

The third scenario, RCP8.5 paired with SSP5 as shown in figure 21, also shows a strong

increase in annual electricity demand until year 2060, followed by a sharp decline. The

assumed GDP growth and temperature increase are both strong throughout the period,

and the decrease in electricity demand is therefore a result of declining population. The

range spanned by the percentiles shows again that the climatic risk to electricity demand

is considerable.

Figure 22 shows the mean annual electricity demand over all the simulations for all the

scenarios. The scenarios are almost indistinguishable until approximately year 2030. After
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Figure 21: Annual electricity demand
Source: Own elaboration, Empresa de Pesquisa Energética (EPE-PDE, 2014, p. 41)
(EPE-PNE, 2014, p. 150)
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year 2030, the electricity demand of the scenario based on RCP8.5 and SSP5 grows more

rapidly than the other two, which remain in-line with each other until about 2050. At

2050, the annual demand growth of the scenario based on RCP4.5 and SSP1 drops, and

from 2060 and onwards the annual demand rapidly decreases. The decrease in annual

demand for the scenario based on RCP4.5 and SSP2 is much more modest, and this

eventually ends up as the highest of the scenarios by year 2100.

In figures 19, 20 and 21, we also compare our results to the official Brazilian projections

found in the ten-year expansion plan PDE-2023 (EPE-PDE, 2014) and the long-term

projections from PNE-2050 (EPE-PNE, 2014). The official projections are well above

even our estimate 10% percentile. The annual electricity demand projections for the years

2040 and 2050 found in PNE-2050 are completely out of line with the projections created

by our framework. The aforementioned figures also show the demand projections for years

2030, 2080, 2090 and 2100 presented by Schaeffer et al. (2008). A quick comparison shows
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that the projections for year 2030 are significantly above all three scenarios considered

here. The projections for year 2080 for both the A2 and B2 scenarios are more or less

in line with all three of our scenarios, and their projections for years 2090 and 2100 are

quite close to our results for both the RCP4.5-SSP2 and RCP8.5-SSP5 scenarios. Their

projections for year 2090 and 2100 for both the A2 and B2 scenarios are considerably

above the results of our RCP4.5-SSP1 scenario.

5.3 Model Evaluation

The framework we have used to create electricity demand projections contains a few

critical limitations that must be taken into consideration.

Firstly, the procedure made no explicit allowance for structural and/or technological

change, for example widespread adoption of electrical vehicles or deployment of electricity

storage technology that would radically change the determinants of electricity demand.

Calibrating a model on a decade of historical data, then subsequently using the model

to make demand projections for the next 85 years, may seem like little more than a shot

in the dark to some and pure madness to others. We recognise this limitation, and even

though the next 85 years certainly will be very different from the last ten, we still believe

that the demand projections provide some guidance. It is a very brave assumption, but

every attempt to avoid it would perhaps be equally brave. In essence, all forecasts are

wrong, but they can still be useful.

Secondly, we did not allow for uncertainty in the GDP and population numbers. Al-

though this could be incorporated in principle, our main focus was on climatic risks and

therefore we concentrated on weather uncertainty.

Thirdly, we have also disregarded the uncertainty in the model parameters. That is,

the calibration of the model was considered to be absolutely accurate. This is unrealistic,

but again this assumption allowed us to focus on climate risk and weather uncertainty.

These shortcomings discussed here are clear, and although they are cause to be cau-

tious, they do not invalidate the results. Taking into consideration the radically different

framework in this study and the different datasets used during both calibration and fore-
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casting, it is comforting that our projections share some characteristics with the results

presented in the existing literature. All in all, the projections seem quite reasonable in

general.

6 Conclusion

We have provided electricity demand projections for Brazil for three climate change sce-

narios, with probability distributions illustrating the climatic risk that the electricity

demand is exposed to. We have improved on the existing literature in three important

ways: firstly, we have applied a probabilistic approach to Brazilian electricity demand

forecasting. Since forecasting is essentially a stochastic problem, this is very appropriate,

although no such approach appears to have been considered yet in the existing litera-

ture. Secondly, we provide updated demand projections for climate change scenarios in

light of the new climatic, demographic and macroeconomic simulations accompanying

the IPCC AR5 report, using the latest available data. This is important, because much

has happened since the last comprehensive electricity demand projections that explicitly

considered climate change scenarios were published in 2008. And finally, by creating the

electricity demand projections using a model for daily electricity demand, our framework

gives easy access to an unprecedented amount of detail about the Brazilian electricity de-

mand. Such a level of detail, for instance being able to retrieve the probability distribution

of the maximum daily demand of a year, can be very valuable for planning purposes.
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t test of coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.9902e+00 7.4830e+00 -0.3996 0.6894750

daylight_hours_pa -3.2164e+00 1.3053e+00 -2.4641 0.0137860 *

daylight_hours_sp 8.0754e+00 2.3586e+00 3.4238 0.0006252 ***

daylight_hours_sa -7.2021e+00 1.4636e+00 -4.9208 9.053e-07 ***

D_Mon -2.7672e-02 6.8651e-04 -40.3077 < 2.2e-16 ***

D_Sat -8.9385e-02 1.0246e-03 -87.2412 < 2.2e-16 ***

D_Sun -2.0298e-01 9.0462e-04 -224.3757 < 2.2e-16 ***

D_Jan01 -2.5794e-01 1.3363e-02 -19.3035 < 2.2e-16 ***

D_Jan02 -7.7532e-02 9.4730e-03 -8.1846 3.897e-16 ***

D_Apr21 -1.4522e-01 8.7693e-03 -16.5597 < 2.2e-16 ***

D_May01 -1.7870e-01 8.2543e-03 -21.6497 < 2.2e-16 ***

D_Jul09 -5.2531e-02 6.4678e-03 -8.1220 6.471e-16 ***

D_Sep07 -1.4756e-01 9.5850e-03 -15.3948 < 2.2e-16 ***

D_Oct12 -1.5613e-01 9.2497e-03 -16.8800 < 2.2e-16 ***

D_Nov02 -1.7726e-01 8.1625e-03 -21.7165 < 2.2e-16 ***

D_Nov15 -1.3064e-01 1.0719e-02 -12.1872 < 2.2e-16 ***

D_Nov20 -3.3166e-02 6.4912e-03 -5.1093 3.421e-07 ***

D_Dec23 -4.4558e-02 1.3079e-02 -3.4068 0.0006653 ***

D_Dec24 -1.6632e-01 8.4632e-03 -19.6519 < 2.2e-16 ***

D_Dec25 -2.8454e-01 1.4692e-02 -19.3667 < 2.2e-16 ***

D_Dec31 -8.0852e-02 1.3305e-02 -6.0769 1.369e-09 ***

D_Dec25Sun 1.8908e-01 2.2226e-02 8.5072 < 2.2e-16 ***

D_Dec24SatSun 1.0909e-01 2.1944e-02 4.9712 7.002e-07 ***

D_Jan01Sun 1.9088e-01 1.5722e-02 12.1406 < 2.2e-16 ***

D_ChristmasWeek -9.2825e-02 8.8881e-03 -10.4437 < 2.2e-16 ***
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D_Apr20Mon -9.4232e-02 6.2052e-03 -15.1858 < 2.2e-16 ***

D_Apr21SatSun 1.2173e-01 9.4486e-03 12.8831 < 2.2e-16 ***

D_May01SatSun 1.0173e-01 3.0693e-02 3.3143 0.0009289 ***

D_May02 -4.1787e-02 9.9591e-03 -4.1959 2.792e-05 ***

D_Sep06Mon -6.6169e-02 4.1756e-03 -15.8465 < 2.2e-16 ***

D_Sep07SatSun 1.1748e-01 2.4673e-02 4.7614 2.007e-06 ***

D_Sep08 -3.6633e-02 8.8685e-03 -4.1307 3.709e-05 ***

D_Oct11Mon -6.9830e-02 4.8233e-03 -14.4777 < 2.2e-16 ***

D_Oct12SatSun 1.2955e-01 3.2596e-02 3.9746 7.206e-05 ***

D_Nov01Mon -8.3570e-02 5.0037e-03 -16.7016 < 2.2e-16 ***

D_Nov02SatSun 1.5202e-01 3.1126e-02 4.8841 1.090e-06 ***

D_Nov15SatSun 9.0162e-02 1.5185e-02 5.9375 3.204e-09 ***

D_Nov16 -3.5443e-02 8.5976e-03 -4.1225 3.843e-05 ***

D_1stJanWeek -4.0138e-02 7.6555e-03 -5.2431 1.681e-07 ***

D_Carneval1 -1.6225e-01 6.4132e-03 -25.2994 < 2.2e-16 ***

D_Carneval2 -1.3515e-01 1.1346e-02 -11.9116 < 2.2e-16 ***

D_Carneval3 -2.9211e-02 5.2968e-03 -5.5148 3.769e-08 ***

D_Carneval4 -2.6619e-02 4.0956e-03 -6.4994 9.312e-11 ***

D_AshWednesday -5.7668e-02 5.5411e-03 -10.4072 < 2.2e-16 ***

D_GoodFriday -2.1129e-01 9.1480e-03 -23.0967 < 2.2e-16 ***

D_EasterSunday -2.8532e-02 6.8778e-03 -4.1484 3.435e-05 ***

D_CorpusChristi -1.1208e-01 4.3595e-03 -25.7093 < 2.2e-16 ***

D_CorpusChristiFri -4.9414e-02 6.7415e-03 -7.3298 2.903e-13 ***

D_WorldCup_Matches -4.1775e-02 6.4568e-03 -6.4698 1.130e-10 ***

logpib 4.7509e-01 9.6663e-02 4.9150 9.325e-07 ***

logpop 1.7086e+00 3.4013e-01 5.0235 5.350e-07 ***

C25.837460 5.8294e-04 6.5874e-05 8.8493 < 2.2e-16 ***

C28.837460 -5.5520e-04 1.4166e-04 -3.9192 9.068e-05 ***

C25.837800 3.1173e-04 1.1217e-04 2.7791 0.0054831 **
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C25.837680 3.3852e-04 1.1772e-04 2.8757 0.0040577 **

C25.838270 2.8912e-04 7.6326e-05 3.7880 0.0001547 ***

HDD.838400 -1.3928e-04 2.4900e-05 -5.5936 2.410e-08 ***

C25.839710 2.0234e-04 7.5715e-05 2.6723 0.0075703 **

C25.825790 1.4577e-04 7.9643e-05 1.8303 0.0673019 .

C25.832480 1.2992e-04 7.8748e-05 1.6498 0.0990745 .

L1.C25.837460 2.6669e-04 3.8030e-05 7.0126 2.840e-12 ***

L1.C25.837210 3.3283e-04 1.0832e-04 3.0725 0.0021405 **

L1.HDD.838400 -1.5552e-04 2.0663e-05 -7.5264 6.735e-14 ***

MA9.C25.837460 3.2237e-04 1.5410e-04 2.0920 0.0365167 *

MA9.C25.837800 2.0306e-03 7.5656e-04 2.6840 0.0073130 **

MA9.C25.837210 -8.6535e-04 5.8367e-04 -1.4826 0.1382791

MA9.C25.838270 9.9575e-04 2.5077e-04 3.9708 7.320e-05 ***

MA9.HDD.838400 -2.4583e-04 7.5619e-05 -3.2509 0.0011623 **

MA9.C25.839710 -7.9136e-04 3.9880e-04 -1.9843 0.0473028 *

MA9.C28.820980 -6.1332e-04 2.8309e-04 -2.1665 0.0303442 *

MA9.C25.825990 5.8429e-04 1.7966e-04 3.2521 0.0011573 **

MA9.C28.838270 -2.3624e-03 1.1997e-03 -1.9692 0.0490176 *

MA9.C28.839710 1.9521e-03 9.9293e-04 1.9660 0.0493883 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

66


	Introduction
	Data Description and Analysis
	Electricity Demand
	Weather Data
	Demographic and Economic Data
	Calendar Effects
	Special events
	Error Term
	Intentionally Omitted Drivers

	Methodology Framework
	Model Establishment
	Model Description
	Variable Selection
	Model Fitting

	Forecasting and Evaluation
	Forecasting Procedure
	Assumed Population and GDP: Shared Socioeconomic Pathways
	Weather Simulation
	Residual Simulation

	Forecasting Results
	Model Evaluation

	Conclusion
	Calibrated Model

