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The efficient transportation of elementary and high school students within the United States has 

long been of interest to academics and practitioners alike.  Research in the field has closely 

followed the development of solution techniques to general network routing problems by 

appropriately altering these models and the associated algorithms to address the subtleties of a 

particular bus routing problem.  In this paper, a mathematical model that accommodates many of 

the sources and impacts of uncertainty is presented.  Due to the impact of time windows on 

routing, traditional solution heuristics are unsuitable.  However, a number of regular stochastic 

events that arise in the design and operation of pupil transportation are discussed and general 

solution outlines are presented. 
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The efficient transportation of elementary and high school students within the United States has 

long been of interest to academics and practitioners alike.  Research in the field has closely 

followed the development of solution techniques to general network routing problems by 

appropriately altering these models and the associated algorithms to address the subtleties of a 

particular bus routing problem.  Absent; however, is the impact of random events on system 

operation despite the fact that the generalized problem, referred to as the Stochastic Vehicle 

Routing Problem (SVRP), has received much attention in the literature.  The SVRP has practical 

value where in many cases the application of heuristic solutions to the Vehicle Routing Problem 

(VRP) fare quite poorly when certain events occur.  In the case of school transportation this 

might include fluctuations in student ridership, travel time, travel cost, and vehicle reliability. 

 

SOURCES OF UNCERTAINTY IN SCHOOL TRANSPORTATION 

While uncertainty is often ignored in both the literature and application of vehicle routing 

problems, its impacts are very real and oftentimes quite significant.  Research in the field saw 

great progress in the 1980’s and 1990’s primarily through theoretical papers such as those by 

Bertsimas (1,2)  and Jaillet (3,4,5), which are summarized along with other contributions by 

Gendreau, Laporte, and Seguin (6).  These papers focus specifically the optimal routing of 

vehicles when demand and customer presence is stochastic.  Though research in the area 

continues, the theoretical rigor of the problems and computation demands of algorithms make 

complex problems very difficult if not impossible to solve.   

This may explain why the literature on school bus routing has adapted other modern 

solution techniques such as simulated annealing (7), and tabu search(8), while ignoring the 

impact of  uncertainty.  It does clearly not result from the school transportation problem having 
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relatively less uncertainty or importance than other fields.  In fact, as uncertainty often affects the 

level of service provided to pupils and the political ramifications that may result, the problem is 

certainly relevant. 

As stated previously, the traditional stochastic vehicle routing problem literature focuses 

on the changing presence of customers and their level of demand.  Parallel to this in the context 

of pupil transportation is realized ridership on a particular day.  This could be alternatively stated 

as how many students, if any, are to be picked up or dropped off at a particular stop.  Students 

may have irregular riding patterns due to reasons such as illness, weather, vacation, alternative 

transportation, truancy, student relocation, or behavioral problems.  Many of these causes, 

though stochastic, may affect a large number of students similarly resulting in the individual 

realizations not being independent.  This would be the case, for example, if a contagious disease 

affected attendance or if warm weather resulted in a large number of students deciding to walk to 

school rather than ride. 

Though not part of the traditional stochastic vehicle routing problem, the cost to travel 

certain paths, which may be temporal or financial, may vary over time.  Events such as the 

unexpected change in the cost of fuel or oil, the weather, or road conditions may affect the 

optimal solution to the problem, by changing the routes followed by a school district’s vehicles.  

Some occurrences could be presumed to proportionally affect all routes evenly, as might be the 

case if fuel costs rose.  On the other hand, construction on a particular street or highway might 

only have a local effect. 

The final concern is that of vehicle reliability.  Though built for hundreds of thousands of 

miles of service, vehicles often become inoperable and require the vehicle to be pulled from 

service for a considerable period of time for repair. Another possibility is that a breakdown 
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occurs while in a vehicle is in transit, a situation demanding that a substitute vehicle be readily 

available to complete the route.  Situations like these are not uncommon and in areas where 

fleets have been aging they occur at increasing rates.  In the next section, a generalized 

mathematical model representing the school transportation problem with uncertainty is 

presented. 

 

MATHEMATICAL MODEL 

There are many possible sources of uncertainty in the school transportation problem, a single 

flexible model that adequately accounts for each random event would likely be large and 

cumbersome.  In most cases, many of these stochastic events are extremely rare or have such a 

small impact that when they do occur they may be ignored.  As few systems exist in the absence 

of uncertainty, a deterministic model can be viewed as an extreme case where either no 

uncertainty exists or is ignored altogether.  Before the mathematical model is presented a 

generalized school transportation system is described. 

 The system consists of a network, students, vehicles, and schools.  The directed network, 

G, consists of a set N of n nodes which may be student homes, schools, or intersections, and a set 

A of m undirected arcs, which are the streets and roads traversed by vehicles transporting 

students to and from school.  Though important, it is assumed that students have been pre-

assigned to stops.  While this can be solved as part of a larger problem, it is often ignored, as it is 

here; due to the additional complexity and computational demands that result.  The system also 

includes a set S consisting of s students each of which are assigned a stop π(s), and school, σ(s), 

and occupy one unit of space in his or her assigned vehicle.  As stated in the previous section, 

realized ridership is a common source of uncertainty in school transportation. 
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 The mathematical representation of the problem is described as follows: 
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Before continuing, a brief review of probability space and the timing of decisions will be 

conducted to better understand the model at hand.  A probability space is a triple ( ), ,F PΩ  

where Ω is the set of all possible outcomes, F is the set of events, and P is the probability that an 

event will occur.  For example, let Ω represent the all possible combinations of temperature and 

precipitation for tomorrow.  If the event of importance is if the temperature is below freezing 

then one would consider all outcomes where the temperature was at or below freezing.  One 

would ignore if it was snowing or not.   

With respect to timing, at time 0, which in our case could be considered the time when 

initial routes and other long term decisions are made, a decision maker knows the probability of 

a given event occurring.  They will not know the actual outcome until the future at which time 

they may make changes to their plan, a process referred to in the literature as recourse.  This 

could be the morning following a surprise snow storm which might affect travel times, and 

routes to be serviced.   
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Returning now to the model, the objective of the model is to minimize the expected cost 

of traversing the bus routes as well as the cost of having vehicles available as described in 

equation (1).  It is assumed that both costs and routes traveled can be altered in the future so that 

their values are not known with certainty at the present.  In the notation used, both the cost and 

routes are a function of the outcome, ωt, in Ω, where the subscript t denotes the time.  The first 

term calculates the expected cost of fleet operations by summing across the expected cost of a 

vehicle traveling between nodes i and j across all arcs, and vehicles.  The second term in (1) 

calculates the availability cost of operating by summing across all vehicles, where it is assumed 

that these decisions are made and the associated costs incurred at time 0.  Constraints (2) and (3) 

ensure that each stop is visited once only once and that a vehicle that arrives at a given stop also 

leaves from it.  Stops have the flexibility of being added or removed in the future, so that 

unpopulated ones are avoided if they add to the cost of operation.  There are also capacity and 

ride time constraints (4,5).   

Availability of vehicles, accounted for in the second part of equation (1), is of importance 

as certain irregular events such as vehicles reaching capacity, running behind schedule, or 

breaking down may require replacements to satisfy the demands of the system.  These 

replacements may be in the form of additional vehicles that are not regularly used or 

alternatively the cost of a contract to have replacements available at short notice.  It may be the 

case that no event occurs such that replacement vehicles must be utilized.  This does not; 

however, eliminate the sunk cost ofhaving them available. 

It should be noted that the optimal value of the objective function is not guaranteed to be 

equal to the realized value.  In robust models that account for a great number of sources of 
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uncertainty or that provide precise financial calculations, equivalent values would likely be as 

much due to coincidence as to any objective factor.   

 

Time Windows 

The impact of time windows on the school transportation problem makes it much different than 

other stochastic vehicle routing problems.  Following the finalization of bus routes, pupils are 

notified of approximate pickup times. Currently, a large number of school districts send precise 

pickup times generated by commercial routing software to parents.   

As with public transit, a primary measure of level of service in pupil transportation is 

time spent waiting at a stop.  While buses will dwell to avoid passing a stop early, delays are 

regular occurrences.  Prolonged delays may put the students at increased danger due to continued 

exposure to the elements or corrupt individuals.  When delays are foreseen it may be possible to 

send out additional vehicles to maintain the integrity of the route or to contact parents to inform 

them of possible delays.  The latter; however, may require a great deal of time, especially in 

larger districts.  While such events are likely to occur at some point in time, they should be 

avoided due to the large political costs they demand. 

Outside the realm of school transportation, rerouting vehicles daily or in real-time might 

be feasible.  However, in this context dynamic programming such as that presented by Powell (7) 

would likely fail to meet the time window constraints.  It would also impose tremendous costs in 

most cases. The most pragmatic solution of addressing the importance of providing service 

within the window is to focus primarily on ensuring the availability of an adequate number of 

vehicles and drivers to service the routes.  
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System Breakdown 

Certain extreme circumstances may result in a breakdown of the system.  In the context of the 

stochastic school transportation problem, the system is assumed to breakdown when any student 

is not picked up or dropped off within the time window.   These events should be rare when there 

is an adequate solution to the transportation problem.   Steps should be taken; however, to 

establish policies that help mitigate such situations before they occur, based on prior experiences.  

These steps should be part of the decision making process that occurs at time 0.  For example, 

certain events that present a high likelihood of breakdown and that can be foreseen may merit 

cancellation of transportation service. 

 

PROBLEMS AND SOLUTION TECHNIQUES 

When the impacts of time windows are taken into account, heuristic methods used to solve 

traditional stochastic vehicle routing problems are of no practical value.  However, at least three 

options exist to aid managers in their pre-school year routing and vehicle procurement process.  

These include routing under capacity vehicles, partitioning the school year, and partitioning 

routes.  Each technique has unique merits and alleviate the problem differently. 

    

Routing Under Capacity Vehicles 

A common method used to deal with volatility in ridership is to adjust the number of students 

assigned to stops or routes and thus vehicles.  While this may result in vehicles operating under 

capacity and increasing costs, when factoring the political toll of system breakdown it may be the 

best management alternative.  Returning to probability theory, this can be achieved by deciding 
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upon a tolerance, α, for the percentage of trips during which buses reaching capacity is 

acceptable, as expressed by equation (6).  Since exceeding capacity is not acceptable, additional 

vehicles will be required to complete the route.   

( )P s Capβ β α> ≤                 (6) 

 Though this technique has not been addressed in the literature, any attempts to properly 

solve the problem must maintain integer values of students.  For example, if the probability of 

any student be present at a particular stop is .95 one cannot have 4.5 out of five possible students 

present.  As a result of this requirement, the problem may best be addressed with Monte Carlo 

simulation.  Also of note is the standard size of buses in the United States.  Though they may be 

configured in a number of different ways, transportation managers may not be able to find buses 

with the precise number of seats that they desire.  This is even more obvious in areas with 

shallow vehicle markets or for those districts facing financial constraints. 

 

Partitioning the School Year 

Another method to address uncertainty is to partition the school year into disjoint periods.  This 

may be a practical alternative for school districts located in areas that experience inclement 

weather during discernable periods.  Each period can then be solved using traditional heuristic 

methods.  In parts of the United States that experience significant snowfall, buses could be 

routed differently for the early fall and late spring when the possibility of severe events is much 

less than during winter months.  One real world challenge to this approach might arise in 

attempting to procure additional vehicles for high demand periods or dispensing of surplus ones 
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during periods of low demand.  Consideration would also need to be given to the costs of 

determining the new routes and of notifying parents. 

 

Partitioning Routes 

When a bus reaches capacity while in route, it may be possible to send another to complete its 

tour within a time window.   The practical challenge to such a technique is that a transportation 

manager is often required to ‘balance’ the lengths of rides.  In the case of a dramatic increase in 

ridership on a given day, each route may have more students than seats on the vehicle assigned to 

it.  This would result in the need for vehicles and drivers equal in number to those already 

employed, a clearly illogical possibility.   

For the partitioning of routes to be an effective management tool, the initial routes must 

be designed with this feature in mind.   For school districts with single schools, this might be 

accomplished quite easily by quickly transporting students to the school upon reaching capacity 

and then picking up the other students located close to the school, a condition that can be 

stipulated when developing the routes.  For larger school districts, the staggering of school times 

may allow similar options. 

 

Registration and Ridership Fees 

A great deal of volatility in ridership could be managed by requiring registration of all riders 

before the school year begins when buses are routed and other one transportation management 

decisions are made.  Alternatively, students could be charged a bus fee which may have the 

effect of increasing interest in school transportation management, accountability for riders, while 

raising additional funds for the school district.  This fee would guarantee each student a seat on 



Ripplinger 13

the bus, perhaps only during certain parts of the school year.  The added income could be used to 

defray the cost of often empty seats or for vehicles that would only utilized during certain times 

of the year. 

 

SUMMARY 

Though uncertainty plays a strong role in the school transportation problem, the impacts of time 

constraints prevents the use or modification of existing methods to solve the problem.  Though 

techniques using methods from operations research are described here, the cost of developing 

and implementing them may be cost prohibitive.  For many school districts, the continuation of 

the status quo of either addressing the challenge of transporting students by routing students 

either by hand or by computer and then altering the deterministic results using subjective value 

judgments as to the actual operation of a system may be best. 
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