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Abstract 

Mediterranean agriculture is highly vulnerable to climate change. A crop production 
strategy that responds to climate change must address both adaptability and mitigation 
aspects, and should also contribute to decreasing the overall agricultural carbon 
footprint in the economy. Over the past decades, there have been concerted efforts to 
promote such strategy through application of conservation agriculture (CA). CA is a 
set of soil management practices that minimize the disruption of the soil's structure, 
composition and natural biodiversity. Despite high diversity in the types of crops 
grown, all forms of CA share 4 core principles. These include (i) maintenance of 
permanent or semi-permanent soil cover, (ii) direct seeding with minimum soil 
disturbance, (iii) regular crop rotations or sequences and (iv) integrated weed control. 
It also uses or promotes where possible or needed various management practices such 
as utilization of green manures/cover crops, integrated pest and disease management, 
use of well adapted, high yielding varieties and good quality seeds, efficient water 
management and controlled traffic over agricultural soils. The origins, inventions and 
evolution of CA principles and practices are embedded in North and South American 
farming societies who, out of necessity, had to respond to the severe erosion and land 
degradation problems and productivity declines on their agricultural soils due to 
“intensive” tillage-based production agriculture. CA is currently practiced on 117 
million hectares in all continents and all ecologies, including the dry Mediterranean 
environments. Presently, CA is advertised as a climate-smart agriculture permitting to 
(i) cope with drought and climate variability, (ii) invert erosion processes, (iii) 
mitigate greenhouse gas emissions, and (iv)  sustain food production and tackle food 
security. For Mediterranean environments, many researchers believe that agriculture 
has the potential of becoming a much larger sink for CO2, if CA principles are 
followed. In fact, the accumulated scientific and farmer’s evidences have shown that 
CA can successfully provide a range of unequivocal productivity, socio-economic and 
environmental co-benefits to the producers and the society at large. To achieve these 
benefits, CA needs heightened attention in agricultural policy processes and strategies 
from national to regional levels. This paper is addressing these issues in order to 
smooth policy shifts to CA in dry Mediterranean areas. 
 
Keywords: Conservation agriculture, Mediterranean climate, ecological 
intensification, climate-smart agriculture, no-tillage systems.  
 
 
 



I. Introduction : Conservation agriculture as smart-climate agriculture 
a. Major edaphic features of Mediterranean basin 

The Mediterranean basin lies in a transition zone between the arid climate of North 
Africa and the temperate and rainy climate of central Europe and it is affected by 
interactions between mid-latitude and tropical processes. The 20th century witnessed a 
drastic stress on soil and water resources (Garcia-Orenes et al., 2009). In fact, soils of 
good agronomic quality are limited, yet essential for food, feed, fiber and fuel 
production (Ryan et al., 2006). In addition, nearly 41 millions of food- insecure 
population has been reported in Near-East and North Africa (FAO, 2008).  

Climate change may add to existing problems of desertification, water scarcity and 
food production, while also introducing new threats to human health, ecosystems and 
national economies of countries. The most serious impacts are likely to be felt in 
North African and eastern Mediterranean countries. As a consequence, adaptation to 
climate change and emissions reduction may represent a welcome opportunity to 
guide the economic development of the region in a more sustainable direction. Hence, 
significant increase in food production to meet demand will have to be achieved 
despite the increasing temperature and frequency of extreme vents, decreasing rainfall 
effectiveness and regressive change to more fragile and harsh environment (degrading 
soils, declining and polluting water resources, desertification  ...). 
 

b. Conservation agriculture: Concepts and principles 
 
Conservation agriculture represents a fundamental change in production system 
thinking and is counterintuitive, novel and knowledge intensive. The concepts that 
underpin CA are aimed at resource conservation while profitably managing 
sustainable production intensification and ecosystem services. They translate into 
three practical principles that can be applied through contextualised crop-soil-water-
nutrient management practices in space and time that are locally devised and adapted 
to capture simultaneously a range of productivity, socioeconomic and environmental 
benefits of agriculture and ecosystem services at the farm, landscape and provincial or 
national scale (Kassam et al., 2009).  
The three principles of optimum CA are: (1) Minimizing soil disturbance by 
mechanical tillage and thus seeding directly into untilled soil, eliminating tillage 
altogether once the soil has been brought to good condition, and keeping soil 
disturbance from cultural operations to the minimum possible; (2) Maintaining year-
round organic matter cover over the soil, including specially introduced cover crops 
and intercrops and/or the mulch provided by retained residues from the previous crop; 
and (3) Diversifying crop rotations, sequences and associations, adapted to local 
environmental conditions, and including appropriate nitrogen fixing legumes; such 
rotations contribute to maintaining biodiversity above and in the soil, contribute 
nitrogen to the soil/plant system, and help avoid build-up of pest populations (Kassam 
et al., 2009). Climate-smart agriculture includes proven practical techniques and 
approaches that can help achieve a triple win for food security, adaptation and 
mitigation (FAO, 2010). Conservation agriculture fits to this definition as well. 
 

c. Conservation agriculture: worldwide trends 
  

No-tillage (NT) systems has become increasingly popular in the world (117 million 
hectares (Kassam et al., 2009) and in the Mediterranean countries particularly Spain 



(Sanchez-Giron et al., 2007), France (Trocherie and Rabaud, 2004), Tunisia (AFD, 
2006), Portugal (Carvalho and Basch, 1994) and Morocco (Mrabet, 2008) over the 
last decades. Worldwide, the annual increase in NT acreage is about 5.3 million ha. 
While adoption of CA under the climatic conditions of the Mediterranean region 
might be more challenging, it is at the same time more urgent than in other climatic 
zones (Kassam et al., 2009). 
 

 
II. Conservation agriculture as a mitigation option: can we beat the heat and 

the splash? 
a. Mitigating carbon dioxide emissions  

The Mediterranean climate is currently the focus of intense research on climate 
related issues (Somot et al., 2007). The intent is to produce a new climate regime that 
will launch the world toward a low-carbon future, thus avoiding the potentially 
devastating effects of climate change. As it appears in IPCC’s 2007 report, the 
Mediterranean basin is climate change vulnerability “hotspot”.  

Intensification of agricultural production is an important factor influencing 
greenhouse gas emission, particularly the relationship between intensive tillage and 
soil carbon loss (Reicosky & Archer 2007). Estimates from Ra ich and Potter (1995) 
showed that soil respiration on a global scale is 77 Pg C year-1, which is 
approximately 10 times the contribution of industrial CO2 emissions (Schlesinger and 
Andrews, 2000). Due to the large order of magnitude, small changes in soil CO2 flux 
across large areas can produce a great effect on CO2 atmospheric concentrations. CA 
production systems were reported by Moussadek et al. (2011a) in Morocco, Alvaro-
Fuentes et al. (2007) and López-Garrido et al. (2009) in Spain and Akbolat et al. 
(2009) in Turkey to offset short-term anthropogenic emissions of CO2 in croplands. 
From the study by Moussadek et al. (2011a), the CO2 flux was 4.94, 3.95, 2.1 and 
0.73 g m2 per hour at initiation of tillage, respectively, for chisel, disk plow, stubble 
plow and NT. At 96 hours, these fluxes were 1.81, 1.60, 1.30 and 0.80 g m2 per hour  
(Figure 1). 
 

 
 
Figure 1. Soil CO2 flux associated with primary fall tillage as compared to no-tillage 
(NT) systems (Moussadek et al., 2011a). 
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b. Erosion mitigation 
Mediterranean climate is one of the most aggressive in respect of erosion, as a result 
principally of violence of autumn storms, which come after several months of 
absolute drought  (García-Ruiz, 2010). Among all soil degrading processes, 
accelerated soil erosion has the most severe impact on the soil organic matter (SOM) 
pool. On sloping lands, erosion is depleting SOM. 
 
No-till vegetation cover is crucial to the maintenance of a number of factors that may 
lessen the impacts of climate change, including reducing the direct temperature effects 
of sunlight on soil, preserving channels for water infiltration, reduced slaking in 
heavier soils, and preserving structural integrity of the topsoil to resist water erosion 
events. The literature overwhelmingly supports success of no-tillage practices in 
achieving reduction of soil erosion and runoff. The erosion risk decreases as the soil 
surface is continuously covered mainly during the rainy season. Using radio- isotopic 
techniques (7Be), Nouira et al. (2007) found that no-tillage systems reduce 
significantly soil erosion rate and sediment losses as compared to conventional tillage 
(CT) in semiarid Morocco. Using rainfall simulation technique, Moussadek et al. 
(2011b; Figure 2) and Dimanche  (1997; Table 1) concluded that CA maximize the 
green water component of the hydrological cycle and minimize losses by runoff and 
evaporation in semiarid areas of Morocco. However, knowledge on the impact of 
erosional processes on soil organic carbon dynamic and understanding the fate of 
carbon translocated by erosion processes is still lacking but is crucial to assessing the 
role of erosion on emission of CO2 and other greenhouse gases into the atmosphere.  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
Figure 2. Runoff loss as affected by tillage and NT residue removal under two rainfall 
intensities in Zaers region (Moussadek et al., 2011b). 
 
 



Table 1: Percent of runoff volume and detachability under no-tillage and chisel plow 
as compared to disk plow at Ras Jerri (Meknes, Sais, Morocco) (Dimanche, 1997). 
 
Tillage system  

Rain Intensity 
(mm/h)  

?v = 25% ?v = 30% 
50 80 50 80 

Disk plow Qr and De (%) 100 100 100 100 
Chisel plow Qr (%) 

De (%) 
103 
93.5 

96.3 
85.4 

102.4 
93.6 

93.8 
92.7 

No-tillage Qr (%) 
De (%) 

52.9 
28.9 

66.2 
38.9 

49.2 
30.0 

69.7 
49.4 

?v = Volumetric soil moisture, Qr = Runoff volume: Quantity of water generated as 
runoff, De = Detachability (a term used to describe a soil’s susceptibility to erosion).  
 

III. Eco-efficiency in Mediterranean agro-systems  

The term eco-efficiency was proposed to emphasize creating more goods and services 
while using fewer resources and inducing less wastes and pollution. In other terms, 
this is a strategy by which to produce more food without using more land, water and 
energy-based input (Wilkins, 2008). This is achievable when soils have the capacity 
to restore their physical, chemical and biological quality through enhancing ecological 
and biological processes.  

  
a. Carbon sequestration and storage  

Soil organic matter of cropland increases only if either the additions can be enhanced 
or the decomposition rates be reduced. Soils under Mediterranean climate present low 
levels of organic carbon (Zdruli et al., 2004). Climatic effects inducing high 
mineralization rates of the organic matter, low biomass production under rainfed 
conditions, intensive soil tillage used for crop establishment, straw removal and 
grazing of the stubble and soil erosion can be pointed out as the main reasons for the 
soil organic carbon depletion of Mediterranean cropland  (Basch et al., 2008). In other 
terms, in the region, soils have not been deliberately managed to sequester carbon and 
tillage has reduced soil carbon.  

Carbon sequestration is the process by which atmospheric carbon dioxide is taken up 
by plants through photosynthesis and stored as carbon in biomass and soils. Carbon 
dynamic in the soil is attracting considerable research effort given its implication in 
terms of global climate change. Lal (2004) proposed a large array of CA management 
practices in relation to soil organic carbon sequestration (Table 2). 

The concentrations of organic matter in top soils in Mediterranean regions routinely 
increase under no-tillage systems, due to a favorable shift in the balance of 
accumulation and decomposition (Table 3). As shown by Mrabet et al. (2001), the soil 
organic carbon (SOC) pool to 20 cm depth of a Calcixerol soil increased from  33.92 
Mg ha-1 in conventional tillage (CT)  to  37.28 Mg ha-1 in conservation agriculture 
(no-tillage) system with average SOC sequestration rate of 0.3 Mg ha-1 yr -1 for the 
11-yr period.  

In Tunisia, soil stored 4-7% more carbon under NT than under CT (Ben Moussa 
Machraoui et al., 2010). Angar et al. (2011) found similar amelioration in SOC under 
NT compared to CT under sub-humid climate but under semiarid climate NT greatly 
enhanced SOC in comparison with CT (Table 4). This is to confirm that soils with 



lower initial SOC are more responsive to residue addition under NT and hence to 
SOC accumulation.  

  
Table 2: Comparison between traditional and recommended management practices in 
relation to soil organic carbon sequestration (Lal, 2004). 
 
Traditional methods  Recommended management practices 
Biomass burning and residue removal Residues returned as surface mulch 
Conventional tillage and clean cultivation Conservation tillage, no-till and mulch 

farming 
Baer/idle fallow Growing cover crops during the off-season 
Continuous monoculture Crop rotations with high diversity 
Low input subsistence farming and soil 
fertility mining 

Judicious use of off-farm input 

Intensive use of chemical fertilizers Integrated nutrient management with 
compost, biosolids and nutrient cycling, 
precision farming 

Intensive cropping Integrated tree and livestock with crop 
production 

Surface flood irrigation Drip, furrow or sub-irrigation 
Indiscriminate use of pesticides Integrated pest management 
Cultivating marginal soils Conservation reserve program, restoration of 

degraded soils through land use change. 
 
In Syria, SOM was increased by conservation tillage, particularly by no-till direct 
drilling from 0.8 to 0.95% in a three-course wheat- lentil-summer crop rotation and 
from 1.3 to 2.8% in a two-course wheat- lentil cropping systems (Ryan, 1998). After 
3-year, Abdellaoui et al. (2010) reported an increase in SOC content of 0-8 cm from 
1.79% under CT to 1.99% under NT at Mitidja plain (Algeria) without depletion at 
deeper horizons. 

Particularly in France, Oorts et al. (2007) reported an increase by more than 2 times 
of soil carbon content of an Alfisol surface horizon (0-5cm) when shifting from CT to 
CA in a period of 33 years (Table 3). The same trend has occurred in Spain for 
Xerofluvent  after only 15 years (Alvaro-Fuentes et al. (2008), Table 3. Thus carbon 
sequestration can continue for 20 to 35 years before reaching a new plateau of 
saturation (Kimetu et al., 2009). However, most studies on SOM dynamics have been 
made for the plow layer (0–20 cm depth). There is a strong need to assess the land use 
and management impacts on depth-distribution because of the depth-dependent 
response of CA practices to temporal changes in the SOM pool (Mrabet, 2008).  
 
 
 
 
 
 
 
 
 
 
 



Table 3: Tillage systems effect on soil organic matter (g kg-1) in different 
Mediterranean countries (Compiled by Mrabet, 2011). 
 
Country  Soil order Horizon 

(cm) 
Years No-Tillage Conventional 

Tillage 
France Alfisol 0-5 4 21.50 17.30 
 Alfisol 0-5 33 22.60 11.00 
Syria Inceptisol 0-10 10 17.50 11.00 
Tunisia Isohumic 

Fersialitic 
0-20 
0-20 

4 
4 

27.50 
22.40 

24.10 
15.50 

Morocco Calcixeroll  0-5 5 17.30 16.60 
Calcixeroll 0-2.5 11 28.90 23.50 

Italy Cambisol 0-40 3 07.50 7.50 
Entisol 0-10 - 20.10 14.30 

Portugal Cambisol 0-20 3 14.82 12.94 
Vertisol 0-10 - 25.30 19.10 

Spain Xerocrept 0-5 18 22.50 15.00 
 Xerofluvent  0-5 15 18.81 08.80 

 Calciorthid  0-5    16 13.70        08.70 
 Calcisol 0-5 7 12.55 10.17 
 Haploxeralf 0-5 14 11.00 07.00 
 Haploxeralf 0-10 8 11.60 08.80 
 Xerofluvent  0-5 3 17.20 15.70 
 
Table 4: 10-year tillage effects on organic carbon content (%) for two contrasting 
soils and climates in Tunisia (Angar et al., 2011) 
 
Horizon (mm) Sub-humid (Clay soil)  Semiarid (Clay sandy soil)  

No-tillage Conventional 
Tillage  

No-tillage Conventional 
Tillage  

0-100 2.31 1.93 2.17 1.50 
100-200 2.23 1.82 2.10 1.30 
200-300 2.14 1.74 2.05 1.50 
300-400 2.09 1.63 1.90 1.40 
 
 

b. Soil fertility buildup with CA: 
 

In the past, much of the focus of soil fertility research, conducted under conventional 
tillage systems, was on diagnosis of nutrient deficiencies and behavior of these 
elements in soils as well as responses to fertilizers in the fields. Soil fertility should be 
oriented to soil and crop management changes; in order words it has to be dynamic 
not static. The negative nutrients and carbon budgets of cropping systems must be 
changed to positive balances to set in motion soil restoration trends in dry areas of 
Mediterranean basin. Conservation agriculture (no-tillage with mulch; NT) has proven 
to be an effective strategy to improve soil quality (aggregation, porosity, infiltrability, 
etc) and fertility (N, P and K contents, biological activity etc) in Mediterranean semi-
arid areas of Spain (Cantero-Martínez et al., 2003; 2007; Fernandez-Ugalde et al., 
2009), Portugal (Basch et al., 2008); Tunisia (Ben Moussa Machraoui et al., 2010), 



Algeria (Abdellaoui et al., 2011), Morocco (Mrabet, 2008), Turkey (Ozpinar, and 
Cay, 2006; Avci, 2005), Italy (De Vita et al., 2007) and Syria (Ryan, 1998). 
 
The increase of plant nutrients such as N, P, and K in the soil under NT practice was 
also reported in various sites across Mediterranean basin and would be beneficial to 
soil chemical and physical properties and crop production and yield in the long-term.  
Furthermore, improved soil fertility will allow to reduce mineral fertilizer input  
contributing thus to reduced energy use for its manufacturing and a reduced potential 
for the emission of nitrous oxides.  

 
c. Agricultural sustainability with conservation agriculture: unlocking the 

potential and mitigating drought 
 

Management of the SOM pool to improve soil quality and agronomic productivity is 
now related to the urgency to increase food production. At the same time, generally, 
the yield potential of improved varieties is not realized when soils are degraded and 
crops grown under sub-organic and edaphic conditions. Mrabet (2008) and other 
authors from Mediterranean countries have shown that optimal soil management 
(conservation agriculture with mulch) is essential to achieving the agronomic 
potential of improved varieties even under drought. According to various research 
studies (Table 5) pertaining to comparing yields of CA vs. CT, crops under NT 
system showed the highest values if not equal ones (Mrabet, 2011 in Morocco; 
Alvaro-Fuentes et al., 2009; Lopez-Bellido et al., 2000; Angàs et al., 2006 in Spain; 
Mazzoncini et al., 2008 in Italy; Ben Moussa-Machraoui et al., 2010; Angar et al., 
2011 (Figure 3) in Tunisia; Pala et al., 2007 in Syria ). Higher yields result in a greater 
amount of crop residues left in the field, which consequently contribute to the SOC 
pool. The superior yield effect of NT in comparison to CT can be due to lower water 
evaporation from soil combined with enhanced soil water availability.  It is then worth 
saying that CA helps adapt agricultural production to Mediterranean climate change.  
This is even more remarkable due to early seeding allowed by CA in order to 
maximize the utilization of rainfall received during the entire crop growing season. In 
addition, due to better water use efficiency, crops have higher vigor and resilience to 
biotic stresses (ie disease, pest and weeds).   
 
The inclusion of forage or food legumes in crop rotations as a recommended 
management practice within the concept of conservation agriculture can also be 
regarded as a strategy to not only prevent nutrient leaching and reduce fertilizer input 
but also to enhance SOC accumulation and to improve soil fertility and biomass 
production (Mrabet, 2008). 
 
 



 
Figure 3. Durum wheat grain yield as affected by tillage systems for two contrasting 
climates of Tunisia (Angar et al., 2011). 
 
Table 5: Regional assessment of wheat yield (Mg ha-1) under no-tillage (NT) and 
conventional tillage (CT) systems in Morocco (Compiled by Mrabet et al., 2011). 
  
Region and Average 
annual rainfall (mm) 

Soil type Rotation  NT CT Years  

Abda  
(270 mm) 

Vertisol 
Vertisol 

Wheat-Fallow 
Continuous Wheat 

3.10 
1.60 

2.40 
1.60 

19 
19 

Chaouia  
(358 mm) 

Mollisol Continuous Wheat 2.47 2.36 4 
Vertisol Wheat-Fallow 3.70 2.60 10 
Vertisol Continuous Wheat 1.90 1.40 10 
Mollisol 
Vertisol 
Rendzina  

Different rotations 2.21 1.90 9 
Wheat-Chickpea 
Wheat-Chickpea 

1.87 
2.53 

0.76 
1.47 

3 
9 

Zaers (410 mm) Vertisol 
Entisol 
Alfisol 

Wheat-Lentils  
Wheat-Lentils  
Wheat-Lentils  

1.97 
2.99 
2.71 

1.41 
2.72 
2.49 

4 
4 
4 

Sais  
(438 mm) 

Vertisol 
Alfisol 

Different rotations 
Different rotations 

2.55 
2.72 

2.49 
2.74 

4 
4 

Gharb  
(570 mm) 

 Vertisol 
 

Continuous Wheat 2.80 2.26 3 

 
IV.  Conclusions  

Technologies that enhance land, water and labor productivity and that allow an 
increase in long-term productivity without associated ecological harm are urgently 
needed for Mediterranean basin. The sustainability of cropping systems can be 
increased by introducing CA in Mediterranean basin. CA- and especially no-tillage 
systems are recognized as the main measures to turn the soil into a tremendous carbon 
sink. It was found that, with CA, carbon sequestration in agricultural soils can 
contribute to offsetting CO2 anthropogenic emissions and also to enhance soil fertility, 
soil water retention and crop production. Higher and stable grain yields under CA 
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should allow to increased adaptation to climate change and allowed food security. 
However, to fully achieve these benefits, CA needs heightened attention in 
agricultural policy processes and strategies from national to regional levels. In other 
terms, the greater impact that can result from the adoption of CA as a matter of policy 
and good stewardship is that agriculture development in the Mediterranean region will 
become part of the solution of addressing regional and global challenges including 
resource degradation, land and water scarcity as well as climate change.        
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