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Summary 

The 2014 U.S. Farm Act passed into law in early February, 2014, after approximately three years of hearings.    Much 

debate in the negotiations leading to this Farm Act focused on new programs for providing producers with support 

payments covering “shallow losses” in revenue. We develop an approach to examine the sensitivity of the farmer’s 

downside risk protection to marginal changes in the deductible in shallow loss program scenarios.  The copula 

approach we use simultaneously considers price and yield correlation across all U.S. counties producing several major 

field crops. We find that average payments under the shallow loss program scenarios are elastic with respect to the 

program’s payment coverage rate. To empirically assess where shallow loss is likely to most benefit producers, we map 

at the county level the ratios of expected shallow loss payments to crop insurance premiums for corn, soybeans, cotton, 

and winter wheat.  As tail dependencies among individual crop yield densities may vary spatially, we propose a method 

for grouping counties in a t-copula that allows for heterogeneity in tail dependencies.      
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1. INTRODUCTION 

The 2014 U.S. Farm Act (more precisely, the Agricultural Act of 2014) was signed into law in early 

February, 2014, after approximately three years of hearings.  Many policy recommendations for Title I of 

the 2014 Farm Act– historically the main section dealing with commodity support – revolved around the 

debate over whether federal farm support programs should focus mainly on protecting farmers against deep 

losses in revenues (or yields) or also include protection against shallow losses (Shields and Schnepf, 2011).  

In its current form, U.S. Federal Crop Insurance offers revenue coverage levels ranging from 50% to as 

high as 85%, i.e., deductibles from 50% to 15%.  Therefore, it covers deep losses in crop revenue but the 

deductibles leave producers exposed to potential for out-of-pocket loss (i.e., shallow loss). One possible 

legislative response is for Federal crop insurance to be complemented by shallow loss coverage in the Farm 

Act legislation. 

In fact, several characteristics of the Average Crop Revenue Election Program (ACRE) in Title I of 

the 2008 Farm Act fitted the general definition of a shallow loss coverage program.  In particular, ACRE 

could trigger a revenue payment with state level crop revenue falls as low as 10% relative to the benchmark 

revenue (in addition, a farm level trigger with no deductible needed to be met).  However, the ACRE 

program cannot be truly considered a pure shallow loss program.  In addition to the 10% state level 

deductible, the ACRE program limited payments to 25% of benchmark revenue, hereby fully covering 

State revenue losses when State revenue was between 67.5% and 90% of expected revenue, but with the 

payment at the ceiling when revenue was below 67.5% of expected revenue.  Hence, even with the cap on 

jcooper@ers.usda.gov
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payments, a portion of the deep losses are covered.  In addition to ACRE, the 2008 Farm Act’s 

Supplemental Revenue (SURE) program was a whole farm standing disaster assistance program that 

covered some of the deductible in the Federal crop insurance program in case of disasters. A true (albeit 

conditional) shallow loss program, SURE, expired in September 2011.    

Title I of the 2014 Farm Act allows the farmer to choose to enroll in Agricultural Risk Coverage 

(ARC), a shallow loss program.  In the analysis in this paper, we examine the earlier but similar ARC that 

was included in legislation that U.S. Senate passed in 2012. That ARC, with an 11% deductible (i.e., the 

coverage rate is 89%), and payments capped at 10% of benchmark revenue, is purely a shallow loss 

program, with a per acre payment rate fully covering revenue losses when revenue is between 79% and 

89% of expected revenue. Presumably, the seemingly arbitrary 89% coverage rate was not chosen based on 

any general principles for farm risk management, but as a result of a budgetary scoring exercise. This 

choice of coverage rate begs the question of what the impacts of different coverage rates would be on 

program payments.
1
 In fact, the ARC that was actually passed by Congress has a coverage rate of 86 

percent of expected (or benchmark) revenue, demonstrates the tweaking of program parameters during the 

development of program proposals. 

The main goal of this paper is to develop an approach to examine the sensitivity of average 

payments as well as the farmer’s downside risk protection to marginal changes in the deductible in shallow 

loss program scenarios, based on one-percent increments over the 15% to 5% deductible range (i.e., 

revenue coverage rates in the range of 85 to 95 percent).    Given that the program that we examine has a 

payment ceiling of 10% of benchmark revenue, our analysis covers a program that would provide support 

for actual revenues in the range of (75 to 85)% to (85 to 95)% of benchmark revenue, i.e., losses between 

(5 to 15)% and (15 to 25)% of benchmark revenue are examined.   

To analyze how the payment distribution changes with the coverage rate requires an estimation 

approach that can differentiate over small increments in the coverage rate, such as the kernel-based 

                                                           
1 In addition to ARC, the 2014 Farm Act has shallow loss support in the form of the Supplemental Coverage Option 

(SCO) for program crops besides cotton and the Stacked Income Protection (STAX) program specifically for upland 

cotton.  A farmer’s participation in individual-ARC precludes participation in SCO. For the sake of brevity in our 

discussion of shallow loss support, we focus on ARC. 
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approaches in Goodwin and Ker (1998) and Cooper (2010).  However, these approaches have never been 

simultaneously applied to more than one region. Since the federal government needs to concern itself with 

national level impacts as well as regional implications, minimizing aggregation bias requires using county 

level data (the lowest aggregation level available nationally). And as county yields are spatially correlated, 

to produce unbiased national level figures we require a simulation approach that can simultaneously 

account for correlation across all counties yet allow for examination of marginal changes in the coverage 

rate with the kernel-based densities (or parametric densities, for that matter). 

We conduct our analysis for all counties that grow corn, soybeans, winter wheat, and upland cotton 

(the latter not an ARC crop but included here nonetheless for academic interest) for which the National 

Agricultural Statistics Service (NASS) of the U.S. Department of Agriculture (USDA) reports data.  To 

date, the only published approaches to estimating Farm Act support that address the spatial correlation 

across multiple regions use block bootstrap approaches (e.g., Cooper, 2010; Dismukes et al., 2011). These 

approaches work by simply drawing with replacement vectors of a year’s worth of historical data.  Since 

each random draw is a cross-section of all regions included in the analysis, historical correlations between 

the regions are maintained.  However, by imposing no other assumptions on the data, the empirical 

distribution for each region is only defined in 1/T probability increments, where T is the total number of 

data points for each region in the analysis. Since US county level data is relatively sparse before 1975, we 

had approximately 35 years of county level data for a broad coverage of the US. This is equivalent to 

estimating a density in 2.87% increments, which is not sufficiently defined for addressing incremental 

changes in the shallow loss coverage rate.  

In response, this paper uses copula approaches with nonparametric price and yield distributions that 

can simultaneously estimate revenue distributions across all counties reporting yields for each of the four 

crops using empirical distributions that are defined over arbitrarily small probability increments. In 

considering spatial relationships in yields, imposing only the historic correlations on the simulated 

marginal densities may be overly restrictive by not considering possibilities for tail dependencies in yields 

(i.e., extreme yield events may occur simultaneously across groups of counties). As tail dependencies 
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among individual crop yield densities may vary spatially, we propose a method for grouping counties in a 

t-copula that allows for heterogeneity in tail dependencies.  Using this approach, we compare payments and 

their impacts on farm revenue for county and farm level implementations of ARC.  Next, we compare ARC 

support payments and their revenue impacts to those under the existing ACRE program.  Finally, we 

generate maps to assess how the relative size of ARC payments to federal crop insurance varies regionally. 

   

2. BACKGROUND 

The  ARC program is complex and we will only describe its principle properties here. Under the Senate’s 

ARC Program, a qualifying producer would make a one-time choice for the life of the next Farm Act to 

receive the revenue support based on farm or county level benefit calculations.
2
    

The ARC revenue payment (denoted as ARCijt) to producer i of crop j in period t is as defined in the 

2012 proposed legislation is:  

(1) ARCijt  = max{ 0, min[(0.10 ∙ BRijt ), (ARCGRijt − ACRijt )]} ∙ PE ∙ ijt
A , 

where:   

BRijt is the Benchmark Revenue, calculated as the 5-year Olympic moving average (an average that 

removes highest and lowest values) yield per eligible acre of crop j for farm or county i times the 5-

year Olympic moving average of the national marketing year average price. If average yield for the 

individual is less than 60% (70% in 2013 crop years or later), then 60 (70)% of the applicable 

“transitional yield” is used in its place;
3
 

ARCGRijt is the Agricultural Risk Coverage Guarantee Revenue, calculated as 89% of the Benchmark 

Revenue (BR).   

ACRijt is the Actual Crop Revenue, calculated as county or farm yield for crop year t times the higher of the 

U.S. average midseason cash price for marketing year t or the crop’s marketing assistance loan 

rate;  

                                                           
2 This paper examines the Senate version of ARC. The version actually passed into law with the 2014 Farm Act differs 

in some parameters and provisions, but not in the manner that is germane to the focus of this paper. 
3 The “transitional yield’ is defined as per the Risk Management Agency (USDA) and generally mirrors average county 

yield. 
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PE is the percentage of eligible acres planted and is 65% for the farm level payment and 80% for the 

county level payment. The prevented planting rate is 45% in either case;
4
 

Aijt is the total of eligible acres for farm or county i. In the case of ARC, eligible acres are all acres planted 

to crop j. 

 

To the extent possible, the proposed legislation calls for making separate ARCGR calculations for 

irrigated and nonirrigated acres. Note that unlike the 2008 Farm Act, the proposed 2012 Senate bill does 

not give the farmer the choice between enrollment in the revenue-support program or the “traditional” 

price-based supports, and the latter are eliminated. ARC payments are subject to total limits per recipient 

and spouse, as well as limits based on adjusted gross income (as defined in Federal tax code).  The ARC 

program does not cover cotton, which has its own support option under Title XI of the proposed bill. 

Nonetheless, the benefit of the research process is that we can still model cotton support under ARC. Title 

XI of the 2014 Farm Act also has two shallow loss options, which are designed to complement federal crop 

insurance, and while we cannot address these here for the sake of brevity, our analysis approaches can be 

extended to those as well as to other federal crop insurance policies. 

There are a number of differences between the ARC and ACRE programs that are too numerous to 

cover here. Besides differences in the coverage rate and the maximum payment rate, these include the 

omission of the farm to aggregate yield ratio and the double trigger. Unlike under ACRE, the farmer 

enrolling in ARC does not receive a percentage of Direct Payments, which are eliminated in the proposed 

legislation as well in the 2014 Farm Act.  Like ACRE, ARC payments in the 2012 Senate bill are made to 

planted acres, but total acres receiving payments are limited to acres planted on the farm over the 2009 to 

2012 crop years (plus some allowed acreage adjustments) under ARC instead of base acres on the farm 

under ACRE.  Unlike the ACRE revenue guarantee, the ARC revenue guarantee has no floor or ceiling on 

how much it is allowed to move from year to year, but on the other hand, calculation of average prices uses 

                                                           
4 A functionally equivalent statement to Equation (1) is ARCijt  = min{ (0.10 ∙ BRjt ), max[0, (ARCGRjt − ACRjt )]} ∙  

EEij ∙ Aijt . 
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a longer time frame under ARC than under ACRE. A more detailed description of the ACRE program is 

available in Cooper (2010).  

  

3. Methodology for Estimating the Density Function for ARC Payments 

For the simulation of ARC payments, we need to generate the distributions of market year price and county 

or farm yields.  However, the procedure for doing so is considerably complicated by the fact that price and 

yields are temporally correlated with each other, and yields across regions are spatially correlated. Hence 

the estimated distributions must take these correlations into account or measures of the variability of 

payments and their impacts on revenue variability will be incorrect. We estimate the density function for 

payments based on: 1) estimates of price and yield densities for a particular base year; and 2) an empirical 

method for imposing the historical correlations on this simulated data.   

 

3.1.  Modeling the Price-Yield Relationship Using Price and Yield Deviates   

Our focus is on estimating the distribution of payments for a given reference crop year t, given that at pre-

planting time in t, season average prices and realized yields are stochastic.  As such, sector level modeling 

that separately identifies supply, demand, and storage is unnecessarily complex and would divert the focus 

of this article. A convenient way to address our questions is to model prices and yields as percentage 

deviations of realized prices and yields at the end of the season from the expected values at the beginning 

of the season when planting decisions are made. 

While the academic literature is rich with papers on price estimation for commodities (see 

Goodwin and Ker 2002 for an overview), few express prices in deviation form. One example that does is 

Lapp and Smith (1992), albeit as the difference in price between crop years rather than between pre-

planting time and harvest within the same crop year. As price deviation was measured between years, yield 

change was not included in their analysis.  Paulson and Babcock (2008) provide a rare example of analysis 

of within-season price-yield relationship in an examination of crop insurance. Like them and Cooper 
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(2010), we re-express the historical price and yield data as proportional changes between expected and 

realized price and expected and realized yield within each period, respectively.  

For the model, the realized county, state, and national average yields, Yit , are detrended to 2011 

terms to reflect the proportional change in the state of technology between that in time t and that in 2011
5
.  

We detrend yield based on the standard practice of using a linear trend regression of Yit = f(t).
6
 The 

expected value of Yit, or E(Yit), is calculated from the fitted trend equation.  Based on historical yield 

shocks, 
it

Y  =  
  

 
it

itit

YE

YEY 
, we generate the detrended yield distribution, 

d

i t
Y , as  

(1)    2011
1

d

it i it
Y E Y Y   , t ≠ 2011, 

where index i corresponds to all geographical units for which NASS has provided data over the study 

period for the corresponding crop.  Price is transformed into deviation form, 
t

P , as the difference between 

the expected and realized (harvest time) price, or 
t

P  =  
  

 
t

tt

PE

PEP 
. 

Using the short time series of available yield and price data to calculate 
d

i
Y  and P  results in 

discontinuous distributions that are inadequate to investigate subtle incremental changes in the shallow loss 

coverage rate. Therefore, we start by simulating continuous distributions of 
d

i
Y  and ΔP. 

 

3.2. Generating the Distribution of Yields and Prices 

Like Deng, Barnett, and Vedenov (2007) and Goodwin and Ker (1998), we utilize the nonparametric 

kernel-based probability density function (Härdle, 1990; Silverman, 1986) for generating a smoother yield 

density than that which would be supplied by a block bootstrap. This function, as applied to our notation 

and omitting the geographical subscript i, is  

(2)  












 
 

 h

Yy
K

Th
yf

d

t

d

l
T

t

d

l

1

1ˆ , l = 1,…,L.  

                                                           
5 The crop subscript is omitted. 
6 We examined the results across multiple counties using various forms of trend regressions (e.g. Loess and fully 

flexible Fourier), and found the simulation results to not be highly sensitive to the model specification.  
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where 
d

l
y  are the yield points for which the density function is estimated.  It allows us to generate values 

of 
d

Y  distributions that approach a continuous function as L approaches infinity.  Equation (2) gives 

support to generating yield values over the observed range of detrended yields, i.e., the (L x 1) vector d
y  is 

drawn over the     m in , m ax
d d

Y Y  interval. The function K(.) is a Gaussian kernel (ibid.).
7
  The 

optimal bandwidth h for smoothing the density is calculated according to equation 3.31 in Silverman 

(1986), which is a common choice for single mode densities such as those being evaluated here.
8 
 

We simulate a yield distribution for each {crop, geographical unit} combination by taking N = 

10,000 draws of yield values, denoted as 
*d

Y , from each estimated kernel density. The draws are generated 

using a table-based inverse CDF approach combined with interpolation (e.g., Derflinger et al., 2009).  That 

is, we first construct tables of the yield values and their associated probabilities from the estimated kernel 

densities. Then, for each randomly chosen probability, the closest pair of probability values spanning the 

random probability draw are looked up in the table along with their associated pair of yield values. More 

precise approximations of the continuous distributions are constructed by linear interpolation between these 

two {probability, yield} points from the tables.  The simulated price deviations are generated using the 

same kernel approach, again with 10,000 draws from the inverse CDF. 

Yields and prices generated from a kernel-based density function can be expected to have a lower 

standard error than the actual data given the smoothing of the density (but greater than with a parametric 

functional form). We bring the standard error of the kernel-generated yields back to the level of the actual 

data by assuming that any difference between the kernel yield and the actual yield is normally generated 

noise with mean zero, and add this noise to each 
*d

Y .  This approach and its application to generating farm 

level yields (
*F d

Y ) is discussed in more detail below.  

 

                                                           
7 We found the estimated density of program payments to be insensitive to the choice between Gaussian and biweight 

kernels. 
8 The bandwidth                     ⃑     ⃑        , where  ⃑ is the (Nx1) variable for which the density is to be 

estimated,    ⃑  is the  standard deviation, and    ⃑        , is the inter-quartile range, where    and    are the 75th  

and 25th  percentile values of the values of  ⃑ sorted in ascending order. 



3rd AIEAA Conference – Feeding the Planet and Greening Agriculture Alghero, 25-27 June 2014 

________________________________________________________________________________________________  

 

________________________________________________________________________________________________  

10 

 

3.3. Imposing the historical correlations on the simulated densities 

Of course, as drawn, the simulated national, state, and county detrended yields, and the simulated price 

deviation for each crop, being i.i.d., do not have the same Pearson correlation matrix as the historical 

(actual) data, even if these have the correct means and variances.  The historical correlations between these 

m+1 data vectors need to be imposed on their simulated counterparts, but without changing their respective 

means and variances, where m is the number of yield vectors in the model.  To do so we rely on a copula-

based approach (Nelsen, 2006).  

Given R , the N-by-(m+1) matrix of simulated data vector, the basic outline of the copula process is 

to: (1) generate a N-by-(m+1) matrix of quantiles,  
0 1

n i
n i U

U
 

U , that follow a desired multivariate 

distribution (in our case the meta-t distribution), which is defined over a target correlation matrix, C, and a 

vector of potentially different degrees of freedom parameters, ν ; and (2) use an inverse probability density 

function (PDF) approach to find  
* 1

U


R R , where 
1

U


 is a loose mathematical notation.  
*

R  will 

have (approximately) the same target inter-variable dependence relationship parameters as the historical 

data.  The matrix U can be thought of as the structure of the association between the marginal distribution 

functions.  

Formalized first by Sklar (1959, 1973), copulas are multidimensional functions that couple 

multivariate distribution functions with their univariate marginal distribution functions.  Therefore, a 

copula can be used to convert a set of uncorrelated variables (e.g., our simulated yield and price 

distributions) to a multivariate distribution with a dependence structure defined by the target inter-variable 

relationship parameters of the chosen functional form.  The t-copula is of particular interest when modeling 

crop yield distributions because it has the ability to capture lower and upper tail dependence.  This is a 

desirable feature if extremely low (crop failure) or high yields are likely to occur contemporaneously at 

neighboring locations.
9
  

                                                           
9 Archimedean copulas (e.g. Clayton and Gumbel) have asymmetric tail dependencies but do not appear practical for 

application to the large number of marginal distributions that we consider. 
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The t-copula is the unique copula of a random vector X  that has a multivariate t distribution with ν 

degrees of freedom and univariate t-distributed marginal distributions, each with the same degrees of 

freedom parameter, ν (e.g., Demarta and McNeil, 2005). There is an inverse relationship between ν and 

extreme value (or tail) dependence (Embrechts et al., 2002).  Because all marginal distributions share a 

common degrees of freedom parameter, the tail dependence imparted by the t-copula is highly symmetrical.  

Given the geographical extent of our analysis, this constitutes a non-negligible limitation to generating 

multivariate yield densities.  We address this issue by relying on the so-called grouped t-copula described 

in Daul et al. (2003) and Demarta and McNeil (2005). The grouped t-copula is similar to the t-copula 

except that subgroups of the univariate t-distributed marginal distributions of random vector X  are now 

allowed to have different degrees of freedom parameters, resulting in varying levels of asymptotic tail 

dependence. In this paper, we estimate different degrees of freedom parameters for groups of counties 

classified by Farm Resource Region. These regions were constructed by the Economic Research Service to 

represent “geographic specialization in production of U.S. farm commodities” based on physical (climate, 

soils, topography, water), and socioeconomic farm characteristics (ERS, 2000). We form two other groups, 

one with all state-level yield marginal distributions and the other one with the national yield and price 

marginal distributions. In total, we estimate 11 degrees of freedom parameters for corn and winter wheat, 

10 for soybeans, and 8 for cotton.   

For each crop j included in the analysis, we impose historical correlations on the m i.i.d. simulated 

detrended yield distributions and the price deviate distribution following steps outlined in Demarta and 

McNeil (2005).  First we estimate nonparametrically the (unknown) marginal distributions of the actual 

data  1
, , ,

d d

m
Y Y P D  by so-called pseudo-likelihood (Genest et al., 1995).  This method consists in 

extracting the “probabilities” associated with each value of the actual data to derive the empirical marginal 

distribution functions, 
i

D
F̂ , as follows: 

(3)  







T

t

dDD
tii

T
dF

1

,

1
1

1
)(ˆ , 
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where 1 is the indicator function, which takes value one when the condition between brackets is met and 

zero otherwise. Note that if the matrix of actual data, D , is not full rank, i.e., rank( D ) < number of 

columns of D , then it is bootstrapped to ensure full rank. This entails that, at this stage, T may be greater 

than the number of years of the historical data (T=10,000 in the present analysis). 

Using equation (3), we can form the matrix of marginal distributions of the historical data, 

(1, )

ˆ { }
t t T

V


V  with         
1

,1 , 1 ,1 ,

ˆ ˆ ˆ, , , , ,
m

d d

t t t m D t D t m
V V V F Y F Y F P


   .  The unknown parameters 

that uniquely define the grouped t-copula are the correlation matrix and, in our particular case, the degrees 

of freedom associated with each of the m+1 marginal distribution functions.  In the context of the t-copula, 

Lindskog et al. (2003) suggests a method-of-moments estimator for the correlation matrix.  Following this 

procedure, we first construct the empirical Kendall’s tau rank correlation matrix of the actual data, ˆ


C , 

which is an unbiased and consistent estimator of the true Kendall’s tau matrix.  Second, we transform this 

matrix into the corresponding Pearson correlation matrix, Ĉ , using the result of Lindskog et al. (2003) 

who prove that there is a direct correspondence between Kendall’s tau, and Pearson correlation’s 

coefficient for the family of elliptical distributions, to which the multivariate-t belongs: 

(4) ˆ ˆs in
2

 
  

 
τ

C C . Daul et al. (2003) show that the equality cannot be maintained in the case of meta-t 

distributions in which degrees of freedom parameters differ across groups of univariate marginal 

distributions but the approximation error is small.  

We use the spectral decomposition-based approach proposed by Higham (2002) to force the 

obtained correlation matrix to be positive semi-definite and contain all ones on the diagonal in the event 

that it does not meet these requirements. Next, we estimate a separate degrees of freedom parameter for 

each of the m+1 univariate marginal distributions in V̂  by maximizing the likelihood function of the t 

copula (e.g., Bouyé et al., 2002).  

With the estimated degrees of freedom parameters and correlation matrix in hand, we can now 

build matrix U .  The multivariate t distribution is a mixture of a multivariate random normal distribution 



3rd AIEAA Conference – Feeding the Planet and Greening Agriculture Alghero, 25-27 June 2014 

________________________________________________________________________________________________  

 

________________________________________________________________________________________________  

13 

 

(MVN) and the root of a univariate inverse gamma distribution (Ig).  Generalizing this mixture 

construction, we simulate the grouped t-copula following Demarta and McNeil (2005).  We start by 

generating N=10,000 draws of a (m+1)-dimensional MVN distribution, Z , with mean vector from the 

historical yield and price data and correlation matrix Ĉ .  We then construct m+1 perfectly dependent
10

 Wi 

variates by applying the inverse cumulative distribution function (CDF) of each univariate Ig(νi/2,νi/2) to 

the same N=10,000 random draws of a uniform distribution U(0,1). The next step is to calculate the so-

called multivariate meta t random vector (Embrechts et al., 2002), X , as: 

(6)  
1 ( 1 )

i i
i m

W Z
  

X  

where each vector of Xi is a univariate t distribution with νi degrees of freedom, the correlation amongst 

which is Ĉ .  Finally, the matrix of marginal distributions of the grouped t-copula, U , is formed by 

applying the CDF of the univariate t distribution with νi degrees of freedom to the corresponding vector Xi. 

We then generate discrete correlated simulated county, state and national yield, and national price 

distributions, 
*

R , by using  the same table-based inverse CDF functions for the kernel marginal densities 

discussed earlier, in which the “probabilities” from the grouped t copula are used to find the corresponding 

price and yields from the nonparametric distributions in R  (that is, the P-values from the grouped t copula 

are matched with same P-values in the linearly interpolated tables for the kernel density, and the associated 

price and yield values for the latter P-values are looked up in these tables). Spearman rank correlations are 

maintained throughout the successive steps. 

The copula approach above imposed the historical correlations on the simulated densities for 1,171 

corn counties, 1,017 soybean counties, 734 winter wheat counties, and 117 upland cotton counties.   

 

3.4. Generating the Farm Level Yield Distribution 

In general, farm level yields with adequate time series and relevance to specific regions are not available 

from the USDA. One approach to developing farm level yield is to infer it from Federal crop insurance 

                                                           
10 Perfect dependence in this case means that Kendall’s tau is equal to one (Demarta and McNeil, 2005). 
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premiums in conjunction with information from NASS on county yields, using the assumption that the 

premiums are actuarially correct, that the NASS county yields have the same distribution as the county 

yields for the crop insurance participants, and that the difference between county and farm level yield is 

distributed normally with mean zero (Coble and Dismukes, 2008).  These first two assumptions are strong 

and are hard to test in general, but Cooper et al. (2012) suggest some empirical evidence for the third.  

We select the inflation factor, 
ki

 , such that the Actual Production History (APH) indemnity 

calculated from our yield distribution is equal to the APH premium: 
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  is the RMA base premium rate for the crop and 

county, 
APH

i
p is the APH price, and the coverage rate, , is .65.

11
  For each county-crop combination, we 

generate the simulated farm-level yields by adding a normally distributed random shock with mean zero 

and standard deviation 
ki

 to our simulated county-level yield data to generate simulated farm-level yields.  

 

4. DATA 

Data on county, state, and national planted yields for corn, wheat, and soybeans are supplied by the 

National Agricultural Statistics Service (NASS) of the U.S. Department of Agriculture.  We assume that 

each farmer’s benchmark yield for the purpose of  ARC calculations is simply the county average yield.   

                                                           
11 According to a personal communication in 2012 with the chief actuary of the USDA’s Risk Management Agency, the 

base premium rate is the appropriate crop insurance rate from which to infer the farm level standard deviation of yield.  

Here we assume that the producer does not choose enterprise units, but if one wanted to account  for these, 
k

i
 could be 

scaled by a ratio of the premium under some average choice of enterprise units versus that under the basic option. This 

ratio would be less than one, thus lowering 
ki

  . 
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 For each crop, we follow ther Risk Management Agency’s (RMA) definitions of the expected and 

realized prices as used in their revenue-based insurance policies. For example, for realized price Pt for corn, 

we use the average of the daily November  prices (October prices starting in 2011) of the December 

Chicago Board of Trade (CBOT) corn future in period t.  For the expected value of price Pt, or E(Pt), we 

utilize a non-naive expectation, namely the average of the daily February prices of the December CBOT 

corn future in period t, t = 1975,…,2011.  

By definition, the Senate’s ARC’s actual crop revenue (ACR) is calculated using the midseason 

average national cash price. Based on an examination of monthly cash prices and sales volumes over the 

last 37 years for corn, soybeans, and winter wheat, we find that the mid-season price is on average 97% to 

98% of the season average price. Therefore, we assume a 0.02 basis value between the two. We convert 

P2011 to the cash price using the basis defined as the median difference between Pt and the NASS season 

average price in t over the ten years prior to 2011.  

  

5. DISCUSSION OF THE PAYMENT SIMULATION RESULTS 

Tables 1 and 2 present the simulation results for ARC payments per acre, gross revenue per acre, and total 

gross revenue with ARC payments for the 2011 crop year for corn, soybeans, winter wheat, and upland 

cotton, assuming that producers have chosen the county-level option or the farm-level option, respectively 

(noting that upland cotton is not included as an ARC eligible crop in the proposed legislation). The results 

are weighted by planted acres for all counties for which NASS reported county level data over 1975 to 

2010.  To conserve space, the lower bound of the 95% confidence intervals for payments per acres (section 

A in the tables) is not shown, but the values are close to zero. Similarly, the upper bound of the confidence 

intervals are not shown for gross revenue plus the payments (section C), because these are the same as in 

the gross revenue only case (section B).  To preserve the impacts of spatial correlation in the reported 

national-level statistics, the data in the (number of counties) x10,000 matrix of simulation results is 

summed vertically through each of the 10,000 columns to derive the 1×10,000 draws of the national level 

impacts.   
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As can be seen in the first output column of Tables 1 and 2, average payments per acre tend to be 

relatively low, and not exceeding $5.12 per acre in any scenario given 2011 price and yield assumptions. 

The farm-based average payments are larger than the county-level ones despite the farm-level program 

paying to a lower share of planted acres than its county-level counterpart. The difference between the farm 

and county payments can be attributed, at least in part, to differences in risk between farm- and county-

level yields (and we expect payments to be increasing in yield variability).  Hence, without an empirical 

analysis like this paper, one would not be able to say which program would provide greater benefits.     

Section D of Tables 1 and 2 presents two measures of downside risk reduction. We show that ARC 

would produce relatively low decreases in the coefficient of variation (CV) of revenue (last column), with 

the maximum change being a 3.48-percent decrease in the case of wheat with the county option.  However, 

CV is limited in informational value in the case of the asymmetric distributions assessed here. Alternatively 

then, the tables also provide the change in the lower bound of the empirical 95% confidence interval of 

revenue in moving from the case of gross revenue (section B of the tables) to gross revenue plus the 

payment (section C).  This measure of downside risk reduction ranges from 1.35% to 3.89% depending on 

the scenario, with the latter being for winter wheat with the county option (see Table 2). Hence, while the 

average benefits that would be provided by the ARC program would appear small for 2011, its impact on 

reducing downside revenue risk would not appear trivial, particularly for winter wheat producers.  In 

general for 2011, if implemented, the farm-level program would tend to provide higher mean benefits than 

the county program across all crops. It would also yield marginally greater reductions in downside revenue 

risk than the county-level program for corn, soybeans, and cotton, while this conclusion is reversed for 

winter wheat.  

Table 3 has the same output format as Tables 1 and 2, but for the ACRE program from the 2008 

Farm Act.  The difference in design between ACRE and ARC are big enough that a priori assessments of 

the empirical differences between these two programs are difficult to make. Average payments under 

ACRE were lower than for both farm-level and county-level ARC across all crops. Based on the percent 

change in the lower bound of the empirical 95% confidence interval between gross revenue and gross 
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revenue plus the payment, ARC’s downside revenue risk protection was superior to ACRE’s for all crops 

but cotton for which ACRE is dramatically better.  When considering the coefficient of variation as a 

measure of risk, while we reach the same conclusion, it is worth noting that the superiority of ACRE over 

ARC for cotton is not as pronounced. Assuming she or he had a choice, a farmer would prefer ARC over 

ACRE given yield and price conditions similar to 2011. However, under the ACRE program, farmers still 

received 80% of the (fixed) Direct Payments, as well as marketing loan benefits, albeit at a 30 percent 

reduction in marketing assistance loan rates, in addition to the revenue payment.  

The ARC program proposed by the Senate is only one option among many commodity support 

programs that could be designed to protect farmers against shallow losses in crop revenue. While ARC in 

its 2012 Senate version covers losses between 11% and 21% of benchmark revenue, one could envision 

lowering or increasing the coverage rate. We investigate what happens to average ARC payments per acre 

when letting the coverage rate vary from 85% to 95%, which corresponds to losses ranging between (15% 

to 25%) and (5% to 15%) of benchmark revenue, respectively.  Resulting farm- and county-level payments 

are represented on Figure 1.  Average payments as a function of the coverage rate tends to be relatively 

linear although a couple of cases exhibit small positive second derivatives. All functions are elastic with 

respect to the coverage rate. Moving from a coverage rate of 85% to 95% (or reducing the deductible from 

15% to 5%), average payments increase by a minimum of $0.60 for the farm-level cotton program to $1.44 

for the farm-level soybean program.  In percentage terms, the most dramatic increased is observed for the 

county-level soybean program with 69%.  Not only does the level of coverage matter to the farmer but it 

also impacts the total cost of the program to the government. American farmers planted 92.3 million, 75.2 

million, and 41.1 million acres of corn, soybean, and winter wheat in 2011. Based on our estimates, 

increasing the coverage rate from 85% to 95% would raise the cost to the government by $267 million and 

$209 million under the farm- and county-level options, respectively.   

The ARC payments presented up to this point were estimated under the assumption that cash 

prices, used to calculate actual revenues, were at the 2011 levels. In Table 4, we report what would happen 

to payments if market prices were 80% and 120% of their 2011 levels based on our simulations. We first 
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observe that average program payments per acre and downside risk protection, measured by the percent 

change in the lower bound of the confidence interval of average revenue, both have a negative (as 

expected) and nonlinear relationship with cash prices. Furthermore, while downside risk protection is 

higher for ACRE than ARC at low price levels (relative to 2011), the drop off in this metric as cash prices 

increase is much more rapid for ACRE than ARC. At relatively higher cash prices, average payments per 

acre and downside risk protection remain comparatively higher for the farm-level ARC program (F-ARC). 

At lower prices, C-ARC has more impact on reducing downside risk than F-ARC, for all crops considered 

in this study.  

More broadly speaking, it would seem that when benchmark revenue is determined at an aggregate 

level (e.g., county for C-ARC or state for ACRE), average payments and downside revenue protection tend 

to skyrocket as cash prices fall. With a farm-level trigger (as in F-ARC) the rate of change in these two 

metrics is noticeably slower. That is, payments remain more “under control” with the more targeted F-ARC 

as prices drop. When taking all these observations into account, it would seem that C-ARC is an 

intermediate between ACRE and F-ARC, with more moderate increases in payments as prevailing cash 

prices decrease compared to the former, and a higher likelihood of no payments being made than the latter.  

We hypothesize that shallow loss support like ARC is likely to be of relatively greater interest to 

farmers in less risky production regions. Figure 2 shows maps of county level the ratio of the (pre-subsidy) 

federal RP insurance premium to average farm level ARC payments for a representative farmer for each 

county in the data set. RP is farm revenue-based crop insurance product, and we assume the producer 

chosen coverage rate is 70%.  When actuarially correct, the RP premium is equal to the mean RP indemnity 

payment. Since the RP insurance covers deep (or at least deeper) losses and the ARC covers shallow losses, 

we presume a priori that RP insurance premiums will be larger relative to average ARC payments the 

riskier the production region.    

This hypothesis is visually affirmed by the maps in Figure 2. For corn and soybeans, the ratio tends 

to be lower for counties in the Corn Belt, and higher in riskier areas such as the South East or far north. For 

winter wheat, the ratio is clearly higher in Texas than the generally less risky production areas in Kansas.   
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As the premium subsidy on RP is expressed as a percentage of the total premium, the results in these maps 

show that in riskier production regions, federal commodity support  in the form of ARC payments will tend 

to be lower relative to federal commodity support in the form of insurance premium subsidies 

   

6. CONCLUSIONS 

 

The 2014 Farm Act provides farmers with options for “shallow loss” revenue support, including a variant 

of the ARC program discussed in this paper.   The choice of the deductible for determining the ARC 

payment was in flux over the negotiations period leading to the 2014 Farm Act, and may be so again in 

negotiations over the next Farm Act, given the significant impact this choice can have on support 

payments.  The main goal of this paper is to develop an approach for examining the sensitivity of the 

farmer’s downside risk protection to marginal changes in the deductible in shallow loss program scenarios.  

In particular, this paper develops an approach with nonparametric price and yield distributions that can 

simultaneously estimate revenue distributions across all counties reporting yields for four major crops 

using empirical distributions that are defined over arbitrarily small probability increments.  We find that 

average payments are elastic with respect to the revenue program’s coverage rate. In addition, using this 

approach, the paper compares payments and their impacts on farm revenue for county and farm level 

implementations of ARC.  We find that based on our estimates of expected payments and their impacts on 

downside revenue risk, producers are likely to prefer the farm-level implementation of the revenue support 

program to the county-level versions, as least for the 2012 Senate proposal ARC.     Furthermore, our maps 

show a tendency for shallow loss support to be a greater proportion of total commodity support (defined 

here as ARC payments plus federal crop insurance support) in primary production regions.   

For this analysis, no attempt was made to adjust the price deviates for exogenous variables (e.g., 

changes in interest rates) that may have caused a shift in the distribution of price deviates over time. An 

econometric approach for accounting for the effects of these variables on price deviates is addressed in 
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Cooper (2010).  Future analysis can seek to apply information from that approach to re-centering the price 

distributions as modeled here.    

While the empirical analysis in this paper is for a U.S. policy subject, the methods discussed here 

are general and apply to a wide variety of subjects for which the analysis requires that systemic risk across 

large geographic regions be addressed. For example, in the EU, the second pillar of the Common 

Agricultural Policy reform for 2014-2020 offers a new risk-management toolkit including insurance 

schemes for crops, animals, and plants. The methods discussed in this paper could be directly applied to 

assessing the budgetary costs and impacts on farm revenues in the EU of possible insurance programs in a 

manner that accounts for systemic weather risks within and across EU member countries. 

But the methods discussed here have applications beyond crop insurance. Many models that seek 

to empirically assess how producers respond to changes in risk require the simulation of prices and yields. 

Since weather impacts can be systemic, correct analysis of how producers may respond across a wide 

region to these impacts require that the simulated yields across the producers maintain the correlations of 

the actual historic data. The approach demonstrated here can impose these relationships across thousands of 

representative farmers, or sub-regions.  Furthermore, the same approach can be used to simulate correlated 

weather data across a large number of regions, which is useful in modeling multi-region (e.g., counties, 

provinces) impacts of risk management strategies for climate change. 
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Table 1. Simulated ARC Payments Per Acre, Gross Revenue Per Acre, and Total Gross Revenue with ARC Payments, 2011 Crop Year, Farm-

level trigger. 

 

A. ARC revenue payment per acre B. Gross revenue per acre C. Revenue per acre w/ARC D. % Change C-B 

Crop 

Mean 

($/acre) 

Upper 

bound, 

95% 

CI ($) 

Coeff. 

of 

variation 

% of 

time 

payment 

is made 

Mean 

($/acre) 

Lower 

bound, 

95% 

CI ($) 

Upper 

bound, 

95% 

CI ($) 

Coeff. 

of 

variation 

Mean 

($/acre) 

Lower 

bound, 

95% 

CI ($) 

Coeff.  

of 

variation 

Lower 

bound, 

95% 

CI 

Coeff. 

of 

variation 

              Corn 4.64 12.04 0.59 15.24 844 636 1155 0.16 848 646 0.15 1.70 -1.98 

              Soybean 5.12 10.43 0.43 17.46 580 429 771 0.16 585 439 0.16 2.39 -2.87 

              Winter 

wheat 3.28 5.96 0.37 22.12 249 171 367 0.21 253 177 0.20 3.46 -3.27 

              Cotton
a
 4.77 10.63 0.53 28.43 783 422 1232 0.27 787 432 0.26 2.46 -1.55 

 

aNote that upland cotton is not included as an ARC eligible crop in the Senate’s 2012 farm bill legislation nor in the 2014 Farm Act. 
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Table 2. Simulated ARC Payments Per Acre, Gross Revenue Per Acre, and Total Gross Revenue with ARC Payments, 2011 Crop Year, 

County-level trigger. 

 

A. ARC revenue payment per acre B. Gross revenue per acre C. Revenue per acre w/ARC D. % Change C-B 

Crop 

Mean 

($/acre) 

Upper 

bound, 

95% 

CI ($) 

Coeff. 

of 

variation 

% of 

time 

payment 

is made 

Mean 

($/acre) 

Lower 

bound, 

95% 

CI ($) 

Upper 

bound, 

95% 

CI ($) 

Coeff. 

of 

variation 

Mean 

($/acre) 

Lower 

bound, 

95% 

CI ($) 

Coeff.  

of 

variation 

Lower 

bound, 

95% 

CI 

Coeff. 

of 

variation 

              Corn 2.30 11.57 1.35 6.56 844 636 1155 0.16 846 644 0.15 1.35 -1.40 

              Soybean 2.25 9.85 1.16 12.00 580 429 771 0.16 582 437 0.16 1.97 -2.21 

              Winter 

wheat 2.63 6.89 0.67 9.33 249 171 366 0.21 252 178 0.20 3.89 -3.48 

              Cotton
a
 2.75 12.62 1.30 7.41 783 422 1232 0.27 785 432 0.26 2.26 -1.44 

 

a Note that upland cotton is not included as an ARC eligible crop in the Senate’s 2012 farm bill legislation nor in the 2014 Farm Act. 
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Table 3. Simulated ACRE Payments Per Acre, Gross Revenue Per Acre, and Total Gross Revenue with ACRE Payments, 2011 Crop Year.
a
 

 

A. ACRE revenue payment per acre B. Gross revenue per acre 

C. Revenue per acre 

w/ACRE D. % Change C-B 

Crop 

Mean 

($/acre) 

Upper 

bound, 

95% 

CI ($) 

Coeff. 

of 

variation 

% of 

time 

payment 

is made 

Mean 

($/acre) 

Lower 

bound, 

95% 

CI ($) 

Upper 

bound, 

95% 

CI ($) 

Coeff. 

of 

variation 

Mean 

($/acre) 

Lower 

bound, 

95% 

CI ($) 

Coeff. 

of 

variation 

Lower 

bound, 

95% 

CI 

Coeff. 

of 

variation 

              Corn 1.20 11.96 3.28 2.79 844 636 1155 0.16 845 642 0.15 1.07 -1.09 

              Soybean 1.04 9.27 2.93 4.22 580 429 771 0.16 581 436 0.16 1.74 -1.58 

              Winter 

wheat 0.76 4.67 1.91 2.73 249 171 366 0.21 250 174 0.20 1.94 -1.53 

              Cotton 2.23 26.41 3.38 4.52 783 422 1232 0.27 785 446 0.26 5.68 -1.82 

 

a
ACRE calculates revenue losses at the state level but also includes a farm level trigger. 
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Figure 1: Average National ARC payments as a function of the coverage rate 

factor in the ACR’s “Guarantee Revenue” 
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Table 4. Simulated Average Payments and Downside Risk Reduction For Farm-level (F-ARC) and County-level 

(C-ARC) ARC and ACRE Given Three Cash Price Scenarios. 

% cash price 

Corn Soybeans Winter wheat Cotton 

Avg. 

Payment 

($/acre) 

% change 

CI lower 

bound 

Avg. 

Payment 

($/acre) 

% change 

CI lower 

bound 

Avg. 

Payment 

($/acre) 

% change 

CI lower 

bound 

Avg. 

Payment 

($/acre) 

% change 

CI lower 

bound 

 

80% 8.49 3.52 8.69 4.66 4.84 5.98 6.17 3.59 

F-ARC 100% 4.64 1.70 5.12 2.39 3.28 3.46 4.77 2.46 

  120% 3.01 1.02 3.42 1.32 2.43 2.14 3.97 1.66 

          

 

80% 5.05 3.62 6.18 5.71 4.95 7.88 4.42 4.06 

C-ARC 100% 2.30 1.35 2.25 1.97 2.63 3.89 2.75 2.26 

  120% 1.31 0.69 0.97 0.69 1.60 1.98 1.92 1.21 

          

 80% 8.48 7.69 8.02 11.14 2.99 9.04 8.51 17.51 

ACRE 100% 1.20 1.07 1.04 1.74 0.76 1.94 2.23 5.68 

 120% 0.29 0.15 0.14 0.21 0.28 0.46 0.70 1.07 
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Figure 2:  Ratio of Federal RP crop insurance premiums to farm level ARC payments for a representative 

farmer in each county. 

 


