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FARMING SYSTEMS PLANNING UNDER UNCERTAINTY: MATHEMATICAL
PROGRAMMING AND STOCHASTIC EFFICIENCY ANALYSIS

J BRIAN 11ARDAKER, SUSHIL PANDEY and LOUISE H PATTEN

Department of Agricullirsl beonomics and Business Management,
Unrversily of Kew bngland Armidafe. NSH 2351

The complexity of modelling risk in farming syslems is explained and the arlistic
nature of the lask noled. A brief outline is presented of an appropriate
conceplual framework, drawing altenlion lo the merils of stochaslic efficiency
crileria for analysis of systems when risk preferences of individual farmers are
unavailable A distinclion i1s drawn belween planning problems with and without
embedded nisk  For the non embedded risk case some risk programming
methods are reviewed. drawing attenlion to those thal generale slochaslically
clficient solulions  The ments of ‘ulilly efficient’ (UE) programming are
explamed  Some ways of using UE programming to gencrale solulions thal are
slochastically dominant with respecl lo a funclion are noled. Extensions of
programming models, including UE formulations. to embedded risk using discrele
stochastic programming are reviewed. noting the problems of dimensionality and
means by which Lhey can be minimised. The paper concludes with a discussion of
the importance of correclly understanding the way risk impacls upon the larget
farming syslem. and then of formulaling a programming model appropriale to tne
casc  No longer docs lack of compuling capacity juslify use of crude bul easily
solved 8, wmate forms of model Ralher the task now facing analysts is lo
devuiop i ls thal are sufficienlly well formulated lo generate helpful insights
about the largel farming systems

Introduction

All planmng. mcluding planming farming systems. mvolves uncerlainty Plans have their
oulcomes m the fulure dnd we can never be absolulely sure what the fulure will bring
Uncerlainly 1s important because il affecls the consequences of decisions in ways thal decision
makers are nol indifferen! aboul  Such uncerlainly n consequences 1s called risk. and mosl
people are averse lo nsk In complex. non-lincar (concave) systems. such as farming systems.
uncerlainty works to bolh reduce the expected value of consequences downside risk - and lo
creale deviations in consequences from thewr expecled values - pure risk  Bolh Lypes of risk may

need lo be accounted for when planmng ach syslei



Yel risk and uncerlamnly, by their very nalure are difficull io deal with Because
uncertainly 1s widespread i ils origins and pervasive in ils impacls, it cannol be fully
accommodaled in any planning model The analysl must always simplify. so thal modelling
becomes an artislic process, depending on Lhe perceptions of reality of the analysl and on his or
her abilily lo converl those perceplions into an ‘appropriale’ planning model. This paper is
molivated by Lhe beliel thal loo often the kinds of mathemalical programming (MP) models that
are buill to represent farming systems show a sorry lack of arlistry Analysls loo often seem lo
allow themselves to be governed by outmoded ideas of whal is computationally feasible. Therefore,
Uns paper 1s more exposilory Lthan novel, with the aim of redressing to some extent {his silualion

Conceplual Background

¥hal follows is based on the proposition thal the subjective expected ulility (SEU)
hypothesis provides the best operalional basis for structuring risky choice1 The SEU hypothesis
volves disaggregaling risky decision problems inlo separate assessmenls of the decision maker's
beliels aboul the uncerlamly. caplured via subjective probabilities, and his or her prelerences for
consequences. captured via a uliity funclion with the two parls then recombined lo selecl as
optimal the decision which yields the highest expected utility

The ympheations for modeling decisions about farming syslems seem clear, the individual
farmer’s behefs and preferences are wital inputs lo the planming process But in practice things
are not hat simple Expenience shows thal lhere may be considerable problems of elicitation,
especially of uliliies  Also. in many planming studies it may be far from obvious whose beliels and
preferences are relevanl  The analysis may be being performed to generale recommendations for
numbers of farmers (conslduting a ‘largel group’ or ‘recommendation domam’). each of whom
may be supposed lo have different behefs and preferences  Such will often be the case i less
developed counlries where agricullure 1s lypically composed of many smail farm umils. each alone
too small lo juslify the expense of an indwidual planming study

Approaches to such difficullies may start with the adoplion of “public’ probabilities. that
are based on the best availabie data or experl opintons  Such probabilibies may be viewed as the
behiefs towards which farmers’ opinions may be expected to converge as extension programs are
deveoped Lo inform them-of such hings as new technologies. improved markel opporlunilies.
better oullook formation etc

It must be admilled that the SEU hypelkesis has come under inereasing colicsm on Lhe grounds of accumulating
evidence of frequent breakdown of the so calied independence axtom (see. for example. Machina 1981) Yel it scems thal

ne betler operalione! framework has yel fourd wide acceplance



So far as farmers’ preferences are concerned, no such convergence may be expecled.
regardless of extension efforls However. something may be known, or may be able {o be inferred.
about the range of nisk atlitudes among lhe largel population of farmers In this case. the
methods of stochastic efficiency analysis provide a means of parlitioning decision strategies into
efficient and dominaled sels Any individual farmer whose risk averse behaviour is consislent with
the assumptions made will find his or her optimal stralegy among the efficient sel. The lask for
the analyst is to make this sel as small as possible without excluding from the sel the siralegies
thal would aclually be preferred by any appreciable number of farmers in the targel populalion
This is usually done by selling bounds on lhe degree of risk aversion anlicipaled, using lhe
methed of stochaslic dominance analysis with respect to a funclion, also known as generalised
slochastic efficiency analysis (Meyer 1977a, b) Clearly. it will be desirable to incorporate the
same principles into MP models »f farming systems

Structuring Risk Problems

The modelling of any nisky farming system must starl with an understanding of the way
uncerlamty impacts on thal system An oulline decision tree provides a good means for capluring
i a simple diagram the principal kinds of decision thal the farmer must make and lhe main
sources of uncerlainly impinging on those choices As noled. Lhe focus should be on representing
Lhe essential fealures of the system ralher than on the imposstble lask of reflecling all the detail
and complexily of the real system

Ouline decision Lrees for two basic cases are illustraled in Figure 1 In this figure the
convention 1s followed of representing decisions with mulliple oplions by decision fans. shown with
small squzres for their nodes. and uncerlain evenls with many possible oulcomes by event fans,
represented with small circles as their nodes Al each node. the Lree 1s continued for only one of
the many possible branches

The first case shown in the figure is based on the assumption that it is realistic to model
the system as if all decisions are made initially and then the uncertainly unfolds subsequently in
lerms of risky consequences of the choice laken. ie non-embedded risk In the second case
some embedded risk 15 recogmsed. in thal the decisions are segrepated into lUhose laken mtially
and Lhose laken al a laler stage when some uncertainly has unfolded The second stage decisions
will be conditioned by both the imtial choices and the revealed uncerfain oulcomes The final
outcomes of the whole process are regarded as stll uncerlam. represented by the right-mosl
evenl [an

Mosl real decisions aboul farming system have the characlenstics of Lhe second case.
rather than the first Indeed farm decision making involves a continuous sequence through lime
of decision and evenls. involving many slages. nol just Lwo as shown in the figure Yet most MP



The simplest case

Embedded risk (iwo stage)

Figure 1: Outline Decision Trees



studies of farming systems have either ignored risk. or have trealed it as not embedded. The
reasons are not hard lo find Any accounting for risk in MP models complicales the task. and
accounting for embedded risk 1s especially difficull Risk programming methods are reasonably
well developed lo handle the non-embedded case. bul less progress has been made in lhe
development of stochaslic programming approaches to handle embedded risk.

Risk Programming Approaches

To provide a basis for what follows, the notation for the standard linear programming (LP)
model is introduced first. then some of the more widely used risk programming models are briefly
reviewed

Linear programming

In a nisk programming contex!. LP can be used to represent Lhe maximisation of expecled
profil. as follows

maximise E = ¢'x -
subject to
Ax < b
and x 2 0.

where E is expected profit,
cis an n by | veclor of activily expected nel revenues;
x is an n by | vector of aclivily levels,
{15 fixed cosls;
Ais an m by n matrix of technical coefficients, and
b is an m by 1 veclor of resource stocks
Define ¢ = p'C. where
pis an s by 1 veclor of slale probabililies; and
Cis an s by n malrix of aclivity net revenues by stale (row) and aclivity
(column)

This formulation differs from the conventional one i hal fixed costs are recognised
(allthough their level does mol affecl the solulion in this hnear case) and by the explicit
accounting for risk i aclivity nel revenues across p. stales of nature The matrix C may be
based on hislorical dala, correcled for inflation and trends. or may be parlially or wholly
subjective  In either case. there is no reason why the (subjective) probabulities, p. should
necessarily be equal for all states



In the abuve LP model the stochaslic nalure of Lhe activily nel revenues is recognised.
bul risk aversion on the parl of the farmer is ignored Perhaps Lhe best-known extension of the
model Lo account for risk aversion 1s quadralic risk programming (QRP):

Quadralic risk programming

The QRP model may be formulaled as follows:

maximise B = ¢'x - {
subject {o
Axsh
¥@x = V.V parametric
and x 2 0

where Q is an n by n aclivity nel revenue variance-covariance malrix; and
V is Lthe vanance of the net income of Lhe farm plan.

Nole that Q = (p'D)(p'D). where D = C - uc'. i.e an s by n matrix of devialions of aclivily
nel revenues from respeclive means. wilh u defined as an s by | veclor of ones.

The formulation above generales lhe so-called (E. V)-efficient sel of solutions. It is
equivalenl o the more usual formulation where variance is minimised subject to a parametric
constraint on expecled income bul is preferred on grounds of consislency with what follows. In
compulation. however. il is usually easier lo minimise the quadralic function for variance subject
to a paramelric constraint on expecled income

QRP is easy o use given access to a suilable computer program. However, the generated
(E. V)-efficient set is stochastically efficient only under the strong assumplions that either the
distribution of total nel revenue is normal. or the farmer's ulility function is quadratic (Levy and
Hanoch 1970) The quadratic ulilily funclion has the unforlunate properties of nol being
everywhere increasing and of implymg increasing risk aversion, so is generally nol regarded as
acceptable Approximate normality 1n Lhe distribulion of tolal nel revenue may be reasonable, bul
the question is really an empirical one and the form of distribution will vary from case to case.
Moreover. conventional stalislical tesls of the adequacy of the normal approximalion are nol
appropriate in the assumed presence of non-linear utilily for income - {be issue is whelher lhe
deviations from the normal distribulion matler lo the decision maker, not whether they salisfy
some arbitrary statistical criterion

In the days when quadralic programming compuler codes were less available and less
reliable lhan they are loday. many efforls were made lo find LP approximations lo the QRP
formulation. By far the mosl successful was Hazell's MOTAD programming (Hazell 1971).




MOTAD programming

The MOTAD model is:
maximise B = ¢'x - {
subject to
Axgb
Dx +1y2u
p'y <M. M parametric
and x,y 20

where |is an s by s idenlity matrix;
y is an s by 1 vector of activily levels measuring negative income deviations by
stale; and
M is mean absolule deviation of tolal nel revenue.

An outhne of the malrix for MOTAD programming is shown in Figure 2. As for QRP,
alternative formulations exist thal generale the same solution sel.

Although ralionalisations of MOTAD programming have been proposed in lerms of Lhe
‘reasonableness’ of a focus of concern on negalive rather Lhan positive devialions of income. in
fact the approach can be justified 1n lerms of the SEU hypothesis only in lerms of il being an
approximation Lo QRP  The (E. M)-efficient frontier approximates the (E. V) fronlier but. as noled,
the lalter is generally nol stochastically efficient and therefore the (E. M) frontier is even less
likely to conlain the ulilily-maximising solution for a given farmer. Though undoubledly valuable
al the lime il was developed. it is surprising in these circumstances that MOTAD programming is
still so widely used A development of the MOTAD model by Tauer (1983) known as larget MOTAD
appears lo have considerably more meril.

Target MOTAD

This model may be formulaled as:
maximise E = ¢'x - [
subject lo
Ax <b
Cx +ly >l
p'y <D. D parametric
and x.y 20

where T is larget level of Lolal nel revenue, and
D 1s deviation from largel.




p <M

Figure 2: Outline of MOTAD Matrix




The formulalion generales the (E. D)-efficient sel of solutions for a given value of T. An
outline of the matnx is gven i Figure 3. The similarities with, and differences from. Lhe
standard MOTAD model are apparent

Target MOTAD has the importanl advanlage that the solulions are second-degree
stochastically dominanl. meaning that they are stochastically efficient for risk-averse decision
makers However. Lhe approach has the disadvantage thal values of bolh T and D Lo be specified.
It 1s possible. bul messy. lo generate the full solulion sel for all possible values of these Lwo
paramelers (HcCamley and Khebenstein 1987) Moreover. no means is provided within the model
of discriminaling amongsl Lhe large range of slochaslically efficient solutions Lhat in most cases
would thereby be generaled

Mran -Gini programming

The mean Gim approach suggesled by Yilzhaki (1982). and illustrated in a farm planning
conlext by Okunev and Dillon (1988). can be formulated as
maximse £ - ¢'x - f
subject lo
Ax < b
Bx Iy* tly =0
gyt gy -cc paramelrc
and x.y' .y 20

where B s an h by n malrix of nel revenue differences for n activilies and all h
possible discrele pairs of stales. h = s(s - 1)/2,
y+ and y are h by I veclors of lotal positive and negative nel revenue
differences summed across aclivities for each discrele pair of slates;
g 1s an h by 1 veclor of probabililies of these pairs. found as the product of the
probabihilies of the corresponding Lwo slales; and
G 1s the lotal Gim difference

An outhne for this form of model is given in Figure 4

The mean-Gini programming approach 1s general in the sense Lhal it is applicable lo any
monotonic concave ulility funclion and probabilily distribulion Because (E. G)-efficient sels are
always second - degree slochastically efficient (Lhough Lhe reverse is nol always true) the method is
superior lo quadralic nsk programming and MOTAD The main advanlage of Lhe approach is thal
1L 18 relalively casy lo use. being based on only a two-parameler model A possible limitalion is
thal some slochaslically efficient solulions thal would be preferred by slrongly risk-averse
decision makers may be excluded from the efficient set  However, this limilation inay not be
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@ Figure 3: Outline of Target MOTAD Matrix
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q q = |9
A <1|b
B - | =10
Figure 4: Cutline of Mean-Gini Matrix
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serious and may in facl be an advanlage f decision makers are only weakly nsk averse (Buccola
and Subaei 1984)

As with larget MOTAD. mean- Gini programming will generale a 'arge sel of solutions. To
narrow down the range of solutions eviaently requires some knowledge of Lhe atlitude(s) to risk of
the farmer(s) One extreme possibiity exists if an individual farmer is idenlified whose ulility
function can be ehiciled In this case direct ulility maximisalion is appropriate

Utihty maximisation

Lamberl and McCarl (1989) have illustialed MP models involving direcl maximisation of
expected ub:lity The implied generally nonhinear programming model 1s of the form.
maximise EjU]  pli(z)

subject to
Ax < b
Cx Iz uf
and x - 0

where  U() 15 @ monotome concave ulibly function,
215 an s by | veclor of nel incomes by stale; and
Ulz) 1s an s by | vector of utilities of nel income by state

Because U() 15 monotonic and concave. nonlinear algorithms such os MINOS (Murtagh and
Saunders 1977) will find the global oplimum  Allernalively approximalion on U() by linear
segmentation 1s strawghtforward (Duloy and Norlon 1975) A method of progressive improvement of
the hnear approxination can be used by adding additional hinear segments in Lhe region of the
imbally delermined values of z

As discussed above. it will oflen be inappropriate or impossible to elicil an individual
farmer's u'ibly function for direct incorporation inlo a uliblly maximising risk programming
model  Pallen. Hardaker and Pannell (1988) have proposed a means of generaling a sel of
solulions of wider interest when less Lhan complele nfermation 1s available aboul farmers' risk
allitudes They called their approach utibity efficient (UL) programming

Utilily elflicienl programming

The method proposed by Patlen el al depends on the defimtion of a separable ulilily
function of the form U - G(z) + 8}H(z){ where varialion in the parameter B can be interpreled as
varialion in nisk preference

@
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The UE programming model lakes the form
maximise E{U]  p'Glz) + sfp'H{z). B parametnc

subject Lo
Ax < b
Cx Iz of
and x 2 0

An outhne of the matnix for this formulation i given in Figure 5
Patlen el al emphasised the so called ‘sumex” funclion,
U expl gz) Blexp( hz)l.8.g. h 20

which has a number of desirable properties The funclion implies decreasing risk aversion as z
increases. i accord wilh expecled ‘normal’ behaviour In addilion. as 8 1s vared the coefficient
of absolule risk aversion also varies. ranging from g when 8 15 zero o close lo h when 8 s large
They illustraled UE programming using linea- segmentalion of the uliity funclion. permilling
solulion using paramelric hinear programmmg  However. the model can also be solved usig a
nonhnear algorithm  Moreover although software such as MINOS does nol include a paramelric
option. il 1s possible lo use the software to generate a large number of solutions for a range of
values of B with Witle trouble approximaling the full set obtamable by parametric programming

Although not mentioned by Patten el al  another form of UE programming could make
use of the negalive exponential ulihty function of the parametric form

U expl }1 8z + ilz]. B parametric.

which may be supposed to generale a sel of solulions very similar to. 1f nol identical with, those
identified as elficient using slochasti~ dominance with respect to a funclion. with bounds sel on
the coefficient of absolute risk aversion of g and h

Patlen el al derved efficient farm plans assuming a sumex ultly funclion which was
approximated bv hnear segments lo facilitate the apphcation of a hinear programming algorithm
For dlustrative purposes the same problem was solved for bolh the negalive exponential and the
sumex utilily funclions using a nonhnear programmmng algorthm In cach case. a range of
solulions was oblamned by selting g and h al the assumed lower and upper bounds of the
coelficient of absolule risk aversion then solving for the relevant range of values of g Both
specifications produced very smilar results  Furlher empinical studies wilth more reahislic
examples will be needed lo estabiish the generalily of this observalion
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pG(z)

pH(z)
A < |b
C -1 = | f

Figure 5: OQutline of UE Matrix
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Stochastic Programming

Various approaches to he solution of problems with embedded risk have been proposed
In melhods such as chance-constraimed programming. risk in the constrainls is dealt with
indireclly by selting a probability with which the constraints. individually or collectively, musl be
salisfied However. such methods are less than 1deal because the choice of Lhe crilical leve] of
probabilily 15 ilself a part of the decision problem, with associaled payoffs and risks To sweep
Uhis parl away by means of ar arbitrary judgment seems unsalisfactory.

Excepl for a few special cases, the best approach lo problems with embedded risk appears
to be via discrete stochastic programining (DSP) (Cocks 1968. Rae 1971a. b) A DSP medel for Lhe
sumplesl two-slage problem may be formulated as

maximise E{U] = p'U(z.L,l)
subject to
Alx] 4 bl
Ly F Ay < by
Cvar Ty
and Xy Xy 2 0 t:=1 .s

where subscripls | and 2 ndicale first- and second slage actvilies, respeclively, and the
subscript | indicales the state of nature, and Ly 15 a sel of s matrices hnking first- and second-
slage aclmvilies

The matrix layout for a Lwo- slage problem with only lwo slales is given n Figure 6 The
Nigure indicales the capacty for the overall malnx of a DSP problem lo become very large.
especially if more stages and many stales are lo be accommodated However. the computational
capacily of modern computer MP software 1s considerable. making it lechnically possible lo solve
large problems Nevertheless. the so-called ‘curse of dimensionality’ is a very real consideralion
since large problems. even if compulable. imply mimmally @ Ume- consuming and ledious data
handhng task On the posilive side. use of compuler software such as spreadsheels adapted for
dala mput or compulerised matrix generators can help  Moreover. Lhe later slages 1 large
problems can be abridged since they need be present only in sufficient delal to assure lhe
‘correcl’ first slage decision  Aclusl later stage decisions can be resolved by runmng further
models incorporaling the oulcomes of uncertan events as they unfold (Kaiser and Apland 1989)
The problem for the analysl. of course. 1s lo know whal degree of abridgment 1s acceplable al any
slage for a given model

A major advanlage of DEP is that the sequential nalure of decision problem can be
represented in Lhe model Due lo this fealure. risks in bolh the constrainis and the mpul ~outpul
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Figure 6: Outline of UE-DSP Matrix (nonlinear)
(Two states only)
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coefficients can be modelled These are oflen more imporlanl sources of risks in farming.
Whelher or nol a farmer is risk averse. the downside risk thal is embedded in most farming
systems can be caplured al leasl in approximate fashion in DSP. Because in embedded risk cases
the later slage decisions are not only dependenl of the earlier decisions bul also on the oulcome
of random events, DSP generales an oplimal slralegy. with recommended levels of some activities
being conditional on uncerlain outcomes that become known only with the passage of lime.

Aithough the curse of dimensionalily' can be lackled lo a cerlain extent by lhe judicious
formulalion of the problem. DSP models often require more dala and analyst's time than some of
the models described earlier The exlra insighls thal can be discerned from DSP need lo be
weighed against thesz cosls.

Inspection of Figure 6 in comparison wilh earlier malrix layouls reveals thal several of
the risk programming models already discussed can besl be viewed as special cases of DSP. In
pariicular, it is evident thal methods such as larget MOTAD and UE programming extend readily to
the full DSP case wilh embedded risk

Overview and Prospect

Given the extra complexily of accounting for risk and risk aversion in MP models, Lhe first
issue to consider is whether risk matlers in planning farming systems. Clearly, downside risk may
be imporlanl in some cases. and should be accounted for. Too often, il seems. models are
construcled using overly oplimistic lechnical or economic planning coefficients. The pheaomenon
15 nol confined lo MP studies; there is abundanl evidence of widespread over-eslimation in the
formulation and appraisal of rural development projects (World Bank 1988) The causes appear lo
nclude 3 tendency Lo use modal or ‘normal’ values, rather than expecled values, related to a lack
of apprecialion of the skewed nalure of lhe distribulions of many planning coefficients. especially
on the outpul side

Risk aversion may be less important than is commonly thoughl. For example. there is
accumulating evidence aboul the levels of risk aversion in various farming communilies.
Cerlainly. farmers generally. and parbicularly poor {armers in LDCs, are rizk averse. bul nol ss
markedly so as some lilerature has suggested Poor farme.s cannol afford nol to take some risks
since risks are everywhere Moreover, they are highly constramed by their limiled resources in
whal they can do. Although the importance of risk aversion will vary from situation to situation,
Hardaker and Ghodake (1981) found htlle difference in prediclive power for small-scale farmers in
the semi-and tropics of India belween QRP models thal accounted for the (measured) risk
aversion and expecled income maximising models However, where risk aversion is preseil and
expecled lo be importanl, il clearly needs lo be correctly accounled for in an MP model. If a
uulily furclion is available, the model should be formulaled to maximise expecled ulilily Where
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no such individual utilily function can be used, it will be best to employ a parametric MP model
that will generate the smallest possible subset of efficienl soluliors. while minimising the chance
that the solutivn most preferred by any individual farmer is excluded. While largel MOTAD and
mean-Gini methods may do this job. UE programming appears lo have most to offer. especially if
something is known aboutl the relevanl form of ulilily function and range of risk aversion.

It s essential n designing MP models to judge whether important risks are embedded or
non-embedded Where embedded risk 15 presenl. recognising ils impacl via DSP will generally give
much beller solulions. irrespective of whether the ulilily funclion is linear or non-linear. Most
farming systems tend lo have embedded risk and, hence, efforls al modelling such risks via
appropriate DSP formulalions can be rewarding. Moreover, the methods for accounting for risk
aversion discussed in relation o nsk programming extend directly to the DSP case.

The expanding power of compulers and the increasing availability and power of MP
software appear {o open the door for much bigger and belter models of farming syslems, including
models accounting for risk and risk aversion. Of course, bigger models may not be betler. In
planning farming systems we are slill a long way from the silualion thal prevails in the
formulation of animal feeds where the outpul of a well-developed MP model can confidently be
used as a plan of aclion. Farming syslems, parlly because of their human sub-systems, are nol
and will never be amenable Lo such Lreatment. Rather models of farming syslems must be viewed
as aids lo decision making The value of modelling comes first from the systems analysis implied
in developing the model. Il is necessary lo find oul many fealures of the real syslem before a
plausible model can be buill. Bul once buill. it has Lo be recognised that the model is at best a
caricalure of the real system The value in solving the model comes from understanding the
cause and effect relationships al work within the model and then from noling the similarities and
differences belween these modelled features and the reality.

it follows that the value of a model in use depends nol only on ils size; the skill with
which it has been construcled is also importanl. The challenge is to build beller, nol necessarily
bigger models. Because model building is an arlistic process. as discussed in the introduction. it
1s nol surprising thal some people do the job beller than olhers. and that there is much to be
learnl from experience The unforlunate realily is thal so many novices appear lo ignore what is
already known. Nowhere is this more true than in accounting for risk. as evidenced by the still
widespread use of the inferior risk programming formulations that are inappropriate to
accommodate both the type of risk and the preferences of the farmers. It has been argued in
this paper thal the challenge for the future in accounting for risk in modelling farming systems
lies in (a) correctly accounting for embedded risk. and (b) finding lhe best way of generaling
smaller and yel more relevanl stochastically efficient solution sels
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