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~lARMJNG SYSTEMS PLANNING UNDE;R UNC~~RTAINTY: MATHEMATICAL 
PROGRAMMING AND STOCHAS1'IC EFF'ICIENCY ANALYSIS 

J BRIAN IJARDAKf;R, SUSHII. PANDEY and tOUISE II PATrEN 

/J{!pariDlf!nt 0/ ~ncul/llr4/ l'conomics lind DUSliJf!ss Jlan4§I!OJf!nl. 

Unipersiif 01 Hell' !,'ng/lIntl. Armida/e. lIS' ZJ5I 

The complexity of modelling risk in farming systems is expJained and the artistic 

nature of lhe task noled. A brief oulline is presenled of an appropriate 

conceplual framework. drawmg attention to the merits of stochastic efficiency 

crilerta (or analysis of syslems when risk preferences of individual farmers are 

unavailable A dislinction IS drawn between planning problems with and without 

embedded fisk ~~or the non embedded risk case some risk programming 

melhods arc reviewed. drawing allen lIOn to those lhat generate stochastically 

efriclCnl solutions The menls of 'ubhly efficlCnl' (UE) programming are 

expJamed Some ways of usmg Uf.: programming to generate solutions lhat are 

sLochastically dommant wllh respect lo a funclton arc noled. ExLensions of 

programmmg models. including m~ formulations. La embedded risk uBinn discrete 

sLochaslic programming are reviewed. noling the problems or dimensionality and 

means by which lhey can be minirmscd. The paper concludes wilh a discuRsion of 

lhe ImporLance of correclly underslanding lhe way risk impacts upon lhe target 

farming syslem. and lhen or formulaling a programming model appropriate to lnc 

case No longer docs lack of computing capacity justify usc of crude bul easily 

solved a. lunate forms of model Ralher the task now facing analysls is lo 

devllor 1I1l h.'ls lhal arc sufficiently weU formulaLed lo generale helpful insights 

abouLlhe bugel farming systems 

Inlroduction 

AU plimmng. mrludmg plannmg farmmg syslems. Involves uncerlalnly Plans have their 

uutronws III ttl(> fui.urf" Bud we ('an Ilt'ver b(' absolutely sure whal lhe fulure Will bring 

lhu'('rlamly IS lrllporlanl b('l'aUSe Il aH('cls til(' consequem'es of deciSIOns in ways that decislon 

makers arl' not Indlrrerent aboul Such uncerlamty In consequences IS called risk. and most 

people are averse Lo fisk In l'ompl£'x. non"lin<'ar (ronrav(J) sysl(lms. such as farmmg sysl(lms. 

unr('rlomly works Lo bolh reduce the expected value of consequ(JJlces downSIde risk and Lo 

('rral" drvl8lions 10 ronS('qu('nc('s from lht'lf' expected valu('s . pure fisk Bolh lypes of fisk may 

{wed to be accounted for when plannmg Jch sysll'I' 
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Yel fisk and uncerlamly. by their very nalure are dlflicuJl to deal with. Because 

uncertamLy IS widespread In its origins and pervasive in its impacts, it cannot be (ully 

accommodaled in any planning model The analyst musL always simplify. so thal modelling 

becomes an artislic process. depending on the perceptions of realily of the analysL and on his or 

her ability to converL Lhose perceptions into an 'appropriate' planning modeJ. This paper is 

moLlvated by the belief lhal Loo ollen Lhe kinds of mathematical programming (MP) models lhal 

are buill to represent farmmg systems show a sorry lack of artistry Analysls loa often seem to 

allow themselves Lo be governed by outmoded ideas of whal IS computationally feasible. Therefore. 

HilS paper IS more expository lhan novel. wilh the aIm of redressing Lo some extent this situation 

Conceptual Background 

Whal roHows IS based on the prOpOSitIOn lhal the subjective expected ulihty (SEU) 

hypolhrsis prOVides the best operal1onal baSIS for structurmg risky choice J The SEU hypothesis 

HlVO)VPS disaggregatlllg risky deCISIOn problems mto separate assessments of the decision maker's 

hellefs about the uflccrtamty. captured via subJccLJve probablhtws. and hIS or her preferences for 

ronsrquences. captured via a ublily (unctIOn wtlh the two parts then recombined to seleeL as 

optimal the deCISion which Yields the highest expected uLJhty 

Till' unphe-allons for modelhng deCISIons about farmmg systems seem clear, the mdividual 

fi)rmrr·s behefs and preferences are vllal mputs to the planmng process Bul in practice things 

are not hat Simple EXI)efltmcC shows that lhere may be conSiderable problems of elicjlabon. 

(lsprcmUy of utthllf.'s Also. IJ) many plantung studies It may be far from obVIOUS whose beliefb and 

prfferencl's are rel('vant The analYSIS rnay be being performed Lo generate recommendations (or 

numbers or farmers (ronslttutmg a larg{'l group' or 'recommendatlOn domam'). each of whom 

may be suppos(ld lo have d,Ht'renl b(lhe(s and prrft1renr(>s Surh wlll ollen be the rase In less 

drvploped counlflPs where agnrullure IS tYPlcallv composed of many smail farm umls. each alone 

too small Lo JustIfy lhe rxpen.;£.' of an indIVIdual plannmg study 

Approaches to such difficulties may slart With the adoplton of 'publlc' probabllilws. lhat 

are hased on thp bps! avullabl.? dala or expert opmlOns SUdl probablhLJes may be Viewed as the 

b(>lJ(>fs towards whIch farmers' opinIOns may he exprc1ed to converge as exlenslon programs arr 

dev(,~op('d Lo tnform UW'H· of such Ihmgs as new lrchnoJogJels. unproved markel oJlPorlunilil!s. 
brtter outlook mformallon ('tr 

I 
n IIIllst be admlUed thnl lhe- SEU hypothesIS has rome tinder IJlcrcJrsmg cnllcism on lhe grounds af otfumulahllg 

evIdence of rr«'quenl breakdown of the so ('ailed mdt'pcndl'nrc aXiom (!ft'. for example. MachlOa 198)) Yel II seems thnl 

no beller optrahonal fromework bas yet found Wide llcceplttrlCe 
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So rar as rarmers' preferences are concerned. no such convergence may be expected. 

regardJess of extension efforts However. something may be known. or may be able to be inferred. 

about the range of fisk attitudes among the target populatIOn of farmers In this casco the 

melhods of slochastic efficiency analysts provide a means of parliliomng decision slrategies into 

efficient and dommaled sels Any indiVidual farmer whose risk averse behaviour is consistent with 
the assumptions made wif) find hIS or her optimal strategy among lhe efficienl sel. The lask for 

lhe I\nalyst is lo make this sel as small as possible wilhout excludmg from the sel the strategies 

thal would actually be preferred by any appreciable number of farmers in lhe target population 

This is usually done by selling bounds on lhe degree of risk aversion anlicipaled. using the 

melhod or slochastic dominance analysis with respect to a function. also known as generalised 

slochasl!c efrlciency analYSIS (Meyer 19778. b) Clearly. Il Will be desirable to incorporate the 

same prmcJples into MP models rf farming syslems 

Slructuring Risk Problems 

The modelling of any risky farmmg system must slart WIth an understanding of the way 

uncerlamly Impacts on lhat syslem An outline deCIsion tree provides a good means for capturing 

m a SImple diagram the principal kmds of deCISIon lhal the farmer musl make and the maIO 

sources of uncerlamly Impmgmg on lhose chOices As noled. the focus should be on representing 

the essen hal fealures of the system ralher lhan on lhe impossIble lask of reflecting all lhe delail 

and compleXIty of lhe real system 

Oulllne deCISIOn trees for lwo basic cases are iIIuslrated in Figure I In this figure lhe 

convenllon IS followed of represenlmg deciSIOns wilh mulliple opltons by deciSIon fans. shown wilh 

small squares for their nodes. and uncertam evenLs with many possible oulcomes by event rans. 

rt'presenled wllh small Circles as lhelr nodes At earh node. lhe trep IS contmued for only one of 

th£' many pOSSIble branches 

The first rase shown In lhe figure IS based on lhe assumption thal It IS reallshc lo model 

lhe syslem as If all deCISIons are made Inllially and lhrn the uncertamty unfolds subsequently in 

terms of risky consrquences of lhe ('hoJ(~e laken. i c non -embedded risk In the second case 

some embeddpd fisk IS recognised. HI lhpl the deCISIons are segregated mlo lhose taken IIlltmlly 

and lhose laken al a laler 6lage when some uncerlamly has unfolded The second stage deCISions 

Will be conditIOned by bolh the Inlllal rhOlces and the revealed uncerlam outcomes The (mal 

oult-omes of the whole procrss are regarded as shit unc(>rlam. represenled by the nghl- most 

eVtlnl fan 

Most real deCISIOns aboul farnung system have the rharaclensllCs of lhe second case. 

rather than lhtl first Indeed. farm d('CISIOn makmg Involves ii rOlllmuous sequence through tunc 

or deCISion and events. mvolvtng milny stages. not Jusl two (18 shown If) lhe figure Yel mosl MP 
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The simplest case 

Embedded risk (two stage) 

Figure 1 : Outline Decis;on Trees 
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studies of farming systems have eilher ignored risk. or have trealed il as not embedded. The 

reasons are not hard to find Any accounling (or risk in MP models complicates the task. and 

accounling (or embedded risk IS especially difficult RIsk programming methods are reasonably 

well developed Lo handle the non -embedded case. buL less progress has been made in the 

developmenl or sLochaslic programming approaches Lo handle embedded risk. 

Risk Programming Approaches 

To provide a baSIS for what follows. the nolalion (or the standard linear programming (LP) 

model is introduced firsl. lhen some of Lhe more widely used risk programming models are briefly 

reviewed 

lJnear programming 

In a risk programming conlexl. l.P can be used La represenl the maximisation o( expected 

profit as follows 

maxImise E :; c'x - f 

subject Lo 

Ax S b 

and x l O. 

where E IS expected profil. 

c IS an n by J veclor of activily expected nel revenues; 

x is an n by I vedor of acllVlty levels. 

f is fixed cosls; 

A is an m by n malrix of lechnical coefficienls. and 

b is an m by J vector of resource slocks 

Define c :; pT, where 

p is an s by 1 vedor of stale probabihltes; and 

C IS an s by n malrix of arLJvily net revenues by slale (row) and activlly 

(column) 

ThiS formulaUon dIffers from the conventIOnal one m thal flxed cosls are recognised 

(allhough their level does nol affecl the solution III this hncar case) and by the explicit 

accounling for risk III actIVIty nel revenues across p' slales o( nalure The malrix C may be 

based on hislorical dala. correcled for inflabon and trends. or may be partially or wholly 

subjective In eilher case. there is no reason why the (subjecllve) probabtlilies. p. should 

npcessarily be equal for all slales 
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In the aLuve LP model the stochaslic nalure of the activily nel revenues is recognised, 

bul risk aversion on lhe parl of the (armer is Ignored. Perhaps the best - known exlension of lhe 

model Lo accounl for risk aversIOn IS quadratic risk programming (QRP): 

Quadratic risk programming 

The QRP model may be formulated as follows: 

maximise E :: c'x - r 
subjecllo 

Ax s. b 

x 'Qx -: V. V paramelric 

and x L 0 

where Q is an n by n activity net revenue variance-covariance matrix; and 

V IS the variance of the net income of the farm plan. 

Note lhat Q :: (p'O)'(p'D), where D = C - uc', ie an s by n matrix of deviations of activity 

nel revenues from respeclive means. with u defined as an s by 1 veclor of ones. 

The formulaUon above generales lhe so-called (E, V)-efficienl sel of solutions. It is 

equivalenl In lhe more usual formulation where variance is mimmised subject Lo a parametric 

constraint on expected Income but is preferred on grounds of consislency wilh what follows. In 

compulation. however. it lS usually easier Lo minimise the quadratic function for variance subjecL 

to a paramelric constraint on expected income 

QRP is easy to use gi·;en access to a suilable computer program. However, the generated 

(E. V)-efficienl set is stochastically efficient only under the strong assumptions thal eilher the 

dIstribution of lolal nel revenue is normal. or lhe rarmer's utility function is quadratic (Levy and 

Banoch 1970) The quadratic utility fundion has lhe unfortunale properties of nol being 

everywhere Increasing and of impJymg increasing risk aversion, so is generally nol regarded as 

acceptable Approximate normaJily In the dislribution cf lolal nel revenue may be reasonable, but 

lhe queslion is reaJJy an cmp.rical one and the form of dislribution will vary from case to case. 

Moreover. convenLJonal sla~islical lesls of lhe adequacy of lhe normal approximation are nol 

appropriate in lhe assumed presence of non-linear utilily for income - lhe issue is whether lhe 

deviations from lhe normal distribution maller La the decision maker, nol whether Lhey satisfy 

~ome arbiLrary sLalislical criterion 

1n the days when quadratic programmmg computer codes were less available and less 

reliable than lhey are loday. many efforts were made Lo find LP approximations lo the QRP 

formulation By far lhe most successful was Hazell's MOTAD programming {Hazell 1971}. 



MOTAD programming 

The MOTAD model is: 

maximise E :: c'x - f 

subjecllo 

Ax ~ b 

Dx t Iy 2 uO 
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p'y ~ M. M paramelric 

and x. y L 0 

where I is an s by s idenlily malrix; 

y is an s by I vedor of activily levels measuring negative income deviations by 

slale; and 

M is mean absolule deviation of lolal nel revenue. 

An oulline of lhe matrix foJ' MOTAD programming is shown in Figure 2. As for QRP, 

allernalive formulalions eXlsl thal generale the same solulion sel. 

Allhough ratIOnalisatIOns of MOTAD programming have been proposed in lerms of lhe 

'reasonableness' of a focus of concern on negalive rather than posilive deviations of income. in 

facl lhe approach can be Justified In terms or the SEU hypothesis only in lerms of it being an 

approximation lo QRP The (E. M)-efficienl frontier approximates the (E. V) frontier but. as noled. 

lhe laller is generally nol stochastically efficienl and lherefore lhe (E. M) frontier is even less 

likely Lo con lain the ulilily- maximising solulion for a given farmer. Though undoubtedly valuable 

al lhe lime it Vias developed. It IS surprising in lhese circumstances that MOTAD programming is 

slill so Widely used A developmenl of the MOTAD modeJ by Tauer (1983) known as larget MOTAD 

appears lo have considerably more merit 

Target MOTAD 

ThiS model may be formulaled as: 

maximise E = c'x - r 
subjeclto 

Ax s: b 

ex + Iy :2 uT 

p'y ~ D. D parametric 

and x. y 1. 0 

where T is targel level of lolal nel revenue, and 

D IS deviallOn from largel 
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x 1 y 

c I 

A s b 

o ~O 

p ~~ 

Figure 2: Outline of I\~OTAD Matrix 
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The rormulal1on generaLes the (E. D) -efficienL seL or solutions for a given value of T. An 

outline or the malrlx IS gIven In Figure 3. The SImIlarities with. and differences (rom. lhe 

standard MOTAD model are apparenl 

TargeL MOTAD has lhe imporlant advantage lhat lhe solutions are second-degree 

stochastically dominanl. meamng that lhey are stochastically efficient (or risk-averse decision 

makers However. the approach has the disadvanlage lhal values of bolh T and D Lo be specified. 

It IS possible. but messy. to generale lhe full solulion sel for all possible values of these lwo 

paramelers (McCamley and Khebenstein 1987) Moreover. no means is provided within lhe model 

of dlscrnmnaling amongst the large range or slochaslically ('tridenl solutions lhat in mosl cases 

would Lhereby be generated 

LIp-an ~Gini programming 

The JJlean GlIlI approarh suggesled by Yilzhakl (1982). and illuslraled in a farm planning 

conlext by Okunev and DIllon (1988). can be rormulaled as 

maXllflise E . c'x ( 

subject lo 

Ax s b 

Bx Iy t t Iy - :: uO 

q'y + + q'y :.; G. G parametric 
t ~ 

and x. y . y 1. 0 

where fl IS an h by n maLnx of nel revenue differences for n activities and all h 

pOSSible dlscrele pairs of slales. h = s(s - 1)/2, 
+ y and yare h by I vecLors of lolal posItive and negalive net revenue 

dIfferences summed across acLJvilies for each discrele pair of slales; 

q IS an h by I vf:clor of probabilities of lhese pairs. found as the product of lhe 

probablhtles of the correspondmg lwo stales; and 

G is lhe Lolal Gml difference 

An outline for lhls form of model is given in FIgure 4 

The mean-Glnl programnung approach IS general in the sense Lhal iL is applicable Lo any 

monotonic concave utility runcllan and probabihLy dislribulion Because (E. G)-efficienL sels are 

always second degree sLochaslically erflcient (lhough lhe reverse is not always true) the method is 

superior to quadralic nsk programmmg and MOTAD The maIO advantage of the approach is lhal 

It IS relatIvely easy to usc. bemg based on only a lwo- parameter model A possible Iimitalion is 

lhat some slochastically efflclenl solul/ons lhat would be preferred by strongly risk-averse 

decision makers may be excluded (rom lhe ellicienl sel However. lhis limitation may nol be 
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x y ~] 

c 

A s b 

c ~ T 

p loS@] 

Figure 3: Outline of Target MOlAD Matrix 
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x y+ II '-_Y_---' 

c 

q q 

A 

B -I = 0 

Figure 4: Outline of Mean-Gini Matrix 
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Sl'rlOljS and may If} fad be dn advdntage II decIsion makers are only weakly risk averse (Bucrola 

and Subaei 1984) 

As wllh larget MOrAD. mean· Glf}i programnung Will generale a large sel 01 solulions. To 

narrow down lhe range of solullOns eVlUenUy reqUIres some knowledge of lhe aLLilude(s) lo risJ\ 01 

lhe larmer(s) One extreme possibility exisls If an mdlvldual farmer IS Hienllfied whose utility 

funclion call be ellclled In thiS caSt' direct utility maxlmlsaLlOn IS appropnale 

ULJhLy rnaxlfIlIsalion 

Lambert and McCarl (198~) have i1luslr dled MP models IllvolvJng direct maXImIsation 01 

('xpected ul !llly The Implied generally nonlinear programnJlng model IS 01 lhe form. 

maXlfTllSe Ell)j pJl(z) 

sllbjf'rl 10 

Ax ~. b 

ex Iz uf 

and x :' 0 

where U(} IS Ii monotonic concave utlhty fu lll'll on , 

2 IS an s by I vector of net Incomes by state, and 

U(z) IS all s by I vector 01 ulllities of ll£ll mrome by slale 

Becausp U( ) IS monotonic and concave. nonlmear algorllhms such (is MINOS (Murlagh and 

Sauuders 1977) Will fmd lh(' globa: oplimllm Allernallvely approximation on U{) by linear 

srgmentl1lion I" slritlghll'orward (Duloy and Norlon 1 H7f» A mel hod of progressive improvement of 

the l!Bear approxlilldllOn ran be uli{'d by addmg additIOnal hU<'dr segments in lhe region of the 

initially del('rmlned values of 'L 

As discussed above. It Will o(lefl be Inapproprwle or Impossible Lo eitclt an individual 

farmer's Lllhly (undlon (or dJr('rt lO('orporallOn IOta 11 ullllly maxImising nsk programmUlg 

model Pallen. Hardclker and PilnnC'1I (t 988) have proposed a means of generalmg a sel or 
solutIOns of Wider Illleresl when I('ss lhan complele mf('rmalion IS available about farmers' risk 

altitudes They called their (tpprodrh ulthly efflCl<'nl (UE.) programming 

Ulillty efficienl programming 

The nwlhod proposed by Paltt'n el al df'pends on HIP deflnlllOn of a separable uLJltly 

funellon of the form U - G(z) t aJ//(zlf where variatIOn In I.he parameler B can be interpreled as 

varia lion 10 risk preleren('(' 
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The UE programmmg model lakes Lhe form 

maXImIse ~;IUl p'C(z) f aJp'U(zH. II parametric 

subject La 

Ax ~ b 
ex Iz' uf 

and x 1 0 

An outhne of tilt' malnx for lhls formulation In gIven In Figure [) 

Pallen el al emIlhastsed the so coiled 'sumex' fum'lIon. 

1I" ('xp( gz) O)l*Xp( htH. 8. g. h ). O. 

wlurh has it number of deslrablf! propertIes The (unclton Implies dccreasmg riSK IlverSlon as z 

mrreBses. m accord wllh expf't:led 'normal' beluWlour In additIOn. as 8 IS vaned Lhe coeffiCient 

01 absoluit' fisk aversIon also vartes rangmg (rom g "ht'n 8 IS zero to close Lo It when a IS large 

Thry Illustrated UE programmmg usang Imea' segmentation of the ubhly funclton. permlWng 

solulton usmg paramflrtc hnear programmmg Uo"rver, lhe model can also be solved uSlUg a 

nonhnear algOrithm MOf('over Illlhollgh sotlware surh as MINOS does not mclude a parametric 

ophon, It IS posslbll' Lo USf thp software to gem,lrate it Jarge numbl'f of solutions for a range of 

vahlt's of n wdh htU£' trouble. approxunahng lhr full s(Jt obhunnble by parametnc programmmg 

Although nol lTlenhoned by Pallen et al < anot.her rorm of lJE programmmg could makl' 

use of th£' nrgallv£' ('xpon£lnltal ubhty (unruon of the parametric f()rm 

II £lxp( U I a ~g • 6i1t7.). fl parametric. 

whIch may h(' supposed to gcnrrale a sel of s()lutsons very SImilar to If nol Identical wllh. lhos(l 

IdrnlJfwd as l"'iflCWul mung slorhasLI" donunanr'> wllh rrsp(l('t to a funehon. With bounds set on 

th(l (,oefflrwnl of absolute risk (In·rSlOn of g and h 

PaUl"'n el 61 dpflved eHltlN}t farm plans assummg d sUJnrx ullllly funrlion wtnch was 

approxnnaled tw IUlrar segments Lo (m'lhlale the ilppht>abon of a hnpar programmmg algOrithm 

~'or Jlluslrahvt' purposes the samr J>robll'm was solved for bolh the negallvE' exponenllaJ and the 

sumex uhhly runclions usmg a nonhnear programmmp IllgonUun In each case. a range of 

solutions was oblamrd by seltlflg g and h at the assumN lower and upper bounds of HIP 

('OpHlrlrnt of absolult, risk aversIOn then solvmg for lhe fttJrvanl range of values of a 80lh 

sprC'lflrahons produ{,fd Vf.'ry s.mllar rrsults f'urlher rmptnral stUdies wllh more rpalislJr 

examples WIU be needl'd to eslabilsh ttw georfllhl y of Uus observalion 
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[ x : I I: z I 
pG(z) I 

I pH(z) ] 

A oS b 

c -I 

Figure 5: Outline of UE Matrix 
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Stochastic Programming 

Vanous approaches Lo the solullon of problems wilh embedded risk have been proposed 

In meL hods such as chance-conslratncd programmmg. rIsk In lhe conslramls is dealt wUh 

mdirecUy by sellmg a probabihly wilh which lhe constramts. mdividually or collectively, musl be 

satisfied However. such methods are less than Ideal because lhe choice of the critical level 01 

probability IS Ilself a part of the deriSion problem. wllh assocIated payoffs and risks To sweep 

thiS parl away by means of or. arbilrary Judgment seems unsallsfactory. 

Except (or a rew speCial cases. the best approach to problems wilh embedded risk appears 

to be Via discrete stochastIc programmmg (DSP) (Cocks 1968, Rae 19710. b) A DSP model for the 

simplest l wo ~ stage problem may be formulated as 

maxumse r:(U) :. p'Ub2l) 

subject Lo 
AJx

J 
~ bl 

Llll) + A2lx2t \ b2l 
e2l X2t IZl zZl r Zt 

and xI' xZl l 0 l!' 1. . s 

where subscnpts I and 2 mdlCale first and second stagC' 8rllVlhes. respecLJveJy, and lhe 

subscrtpt l mdlcnles t.he slate of nalurf!, and Lit IS a sel of s malrICf;$ hnkmg firsl- and second­

stage acLJvlLJes 

The malrlx layout for a two slage problem wIth only two slales IS given m Figure 6 The 

figure mdlcalrs the capacIty for the overall malrlx of a DSP problem Lo become very large, 

espeCially If more !'tages and many slales are lo be accommodated However. lhf.' compulallOnal 

rapacity of modern ('ompulrr MP software IS consldrrabJe. makmg It lechnically possible to solve 

large problems Nl'v{JrlhcJess the so called 'curse of dimensIOnality' IS a very real considerallon 

SIO('(' lan~e problems. eVf.'n If compulable. Imply mlmmally a lime' consummg and tediOUS data 

handlmg tusk On lhr poslllvc SIde, us£' of compuler software surh as sprf.'adshellts adapled for 

dala mput or compult'flsed matrix generators can help Moreover. the laler stages In large 

problems ('an be abridged SIU(,(! they nrcd be prfsent only III SUfflCll'nt detail to assure til{' 

'correct' flrsl slagf.' declslO'n Aclual latl'r slage dt'clsJOns can be resolved by runnmg further 

modpls mrorporalmg lh" oulrornps of unrerlam events as thry unrold (Kaiser and Apland 1989) 

The problrm for lhe nnalysl. of coursC'. IS to know whal degrl'c of abridgment IS acceplable al any 

slage for a gIven model 

A major advantagr of DSP IS lhal lhfl sequtlnlmJ nalure of derISion problem can be 

represented If) lhr modt'l Due Lo thIS (eature. risks H1 both the conslramls and the mput-output 
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coerfidenls can be modelled These are orLen more imporlanl sources of risks in farming. 

Whelher or nol a farmer is risk averse. lhe downside risk lhal is embedded in mosL farming 

syslems can be captured at leasl in approximate fashion In DSP. Because in embedded risk cases 

lhe laler stage deCISIons are not only dependent of the earlier decisions bul also on the oulcome 

of random events. DSP generales an oplimal slralegy. wilh recommended levels of some aclivilies 

being condilional on uncerlam oulcomes lhal become known only wilh the passage of lime. 

Allhough the 'curse of dnnenslOnalily' can be tackled to a certain extent by the judicious 

formulation of the problem. DSP models often require more data and analysl's lime lhan some 01 

lhe models described earlier The eXlra insights lhal can be discerned from DSP need Lo be 

weighed against lhes~ cosls. 

Inspection of Figure 6 In comparison wilh earlier matrix layouts reveals lhal several of 

lhe risk programmmg models already discussed cnn best be vlewed as special cases of DSP. In 

particular. It is evident that melhods such as target MOTAD and UE programming extend readily to 

the full DSP case with embedded risk 

Overview and Prospecl 

Given the exlra compleXity or accounting ror risk and risk aversIon in MP models. lhe first 

issue lo consider is whether risk mallers m planning (armmg syslems. Clearly. downside risk may 

be important in some cases. and should be accounled for. 1'00 often. il seems. models are 

construcled using overly oplimlsbc technical or economiC planning coefficients. The phenomenon 

IS noL confined Lo MP sludles. there is abundanl evidence of widespread over-estimation in lhe 

formulation and appraisal of rural development projects (World Bank 1988) The causes appCbr lo 

mclude :l lendency Lo use modal or 'normal' values. rather lhan expected values. relaled La a lack 

of appreciation of the skewed nalure of the dislributions of many planning coefficients. especiaUy 

on the oUlpul side 

Risk aversion may be less imporlanL lhan is commonly lhought. for example. lhere is 

accumulaling evidence aboul the levels of TJsk aversion 10 various farming communilies. 

Certainly. farmers generi:llly. and parllcularly poor farmers in LUes. are ri~k averse. bul nol as 

markedly so as some lilera~ure has suggesled Poor farme. s cannol afford nol La lake some risks 

smce risks are everywhere Moreover. lhey are highly conslralllcd by lheir limiled resources in 

whaL they can do. Allhough lhe Imporlance of risk aversIOn will vary from siluation to situation. 

Hardaker and Ghodake (1981) found lillie difference in predicLive power for small-scale farmers in 

the semi-and lropics of India beLween QRP models LhaL accounled for the (measured) risk 

aversion and expected income maximising models However. whrre risk aversion is preseilt and 

expecler! La be imporlanl. iL clearly needs lo be correctly accounled for in an MP model. If a 

uulily fUl·clion is avaJlable. the model should be formulaled Lo maximise expected ulilily Where 
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no such individual utility funclion can be used. it will be best to employ a parametric MP model 

that will generate the smallest possible subset of efficienl solullor'l. while minimising the chance 

that the solutiiin most preferred by Ilny individual farmer is excluded. While LargeL MOTAD and 

mean-Gini melhods may do this job. UE programming appears Lo have most Lo offer. especially if 

somelhing is known about the relevant form of ulility funclion and range of risk aversion. 

It is essenlial In designing MP models lo judge whelher imporlant risks are embedded or 

non-embedded Where embedded risk IS present. recognising ils impact via DSP will generally give 

much beller solutions. irrespecllve of whelher the utilily funclion is linear or non-linear. Most 

farming syslems lend lo have embedded risk and. hence. efforls al modelling such risks via 

appropriale DSP formulations can be rewarding. Moreover. the methods for accounting for risk 

aversion discussed in relation to risk programming extend direcUy to lhe DSP case. 

The expanding power of computers and the increasing availabilily and power or MP 

soflware appear to open the door for much bigger and belter models of farming syslems. including 

models accounting for risk and (lsk aversion. or course. bigger models may not be beller. In 

planning farming sysLems we are still a long way from the siluation lhat prevails in lhe 

formulation of animal feeds where the output of a well-developed UP model can confidently be 

used as a plan of aclion. Farmmg systems. partly because of their human sub-systems. are not 

and will never be amenable to such lrealment Rather models of farming syslems musl be viewed 

as aids to decision making The value of modelling comes first from the systems analysis implied 

in developing the model. It is necessary lo nnd oul many fealures of lhe real syslem before a 

plausible model can be buill. But once buill. il has 10 be recognised that the model is at best a 

carica lure of the real system The value in solving the model comes from understanding the 

cause and effect relationships at work \'Iithin the model and then from noling lhe similarities and 

differences between these modelled features and the reality. 

It (ollows thal the value of a model in use depends nol only on its si~e; the skill wilh 

which it has been construcled is also important. The challenge is lo build beller. nol necessarily 

bigger models. Because model building is an artistic process. as discussed in the inlroduction. it 

IS nol surprising lhat some people do the job better than olhers. and thal there is much to be 

learnt from experience. The unforlunate reality is thal so many novices appear to ignore whal is 

already known Nowhere is this more true than in accounting for risk. as evidenced by the st.ill 

widespread use of the inferior risk programming formulations that are inappropriate to 

accommodate both the lype of risk and the preferences of the farmers. It has been argued in 

this paper that the challenge for lhe future in accounting for risk in modelling farming systems 

lies in (a) correctly accounting for embedded risk. and (b) finding the best way of generating 

smaller and yet more relevant slochaslicaJJy efficient solution sets 
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